
© BME-MIT 2014, All Rights Reserved
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Handling of Permanent Storage

Tamás Kovácsházy, Phd

20th topic
Handling of Permanent Storage

Operating systems (vimia219)

© BME-MIT 2014, Minden jog fenntartva 2. lap

Permanent storage

CPU registers

Cache

Physical memory

Permanent storage

External storage

Backup storage

© BME-MIT 2014, Minden jog fenntartva 3. lap

Handling of the Permanent storage
 Permanent storage or “storage”:

o Typically compared to the physical memory
o It offers orders of magnitudes bigger storage capacity
o Also orders of magnitudes slower

• Throughput
• Latency

o Nonvolatile storage
• If properly used, otherwise it do losses data
• Data security is a major issue!

o Block based
• OS handles this storage based on blocks

– No byte access, a full block must be handled
• A block can be read, written or erased
• Programs cannot be executed directly from storage, it must be loaded

into memory first!
• One exception

– NOR flash memory is organized as bytes (as regular memory)
– It is possible to execute the OS or other programs directly from NOR flash

© BME-MIT 2014, Minden jog fenntartva 4. lap

How we map files to storage?

 The file is the logical unit of data storage on the permanent
strorage (file)
o It has a name (named collection).

o We reference it by its name

o It’s size can vary, practically any size is allowed
• There is a hard limit coming from the physical storage and the filesystem

 The main task of the operating system regarding permanent
storage is the mapping of files (logical unit) to blocks (physical
unit)

 This task is solved by the OS using a multilayer hierarchical
system, solving the problem on multiple abstraction level

 On the lowest layer you will find some special HW (HDD, Flash
drive, etc.)
o RAM drive is an exception here

© BME-MIT 2014, Minden jog fenntartva 5. lap

Abstraction levels (simplified)

Logical file system

e.g. directories/folders, etc.

Abstraction levels

File-organization module

Basic file system

I/O control or device driver

Devices

Hardware commands

(IDE, SATA, SCSI)

User and higher
layer OS functions

© BME-MIT 2014, Minden jog fenntartva 6. lap

Devices: Hard Disk Drive

SectorTrack

Cilinder

(on all platters)

Arm

Head

© BME-MIT 2014, Minden jog fenntartva 7. lap

Hard disk drive terminology

 Hard Disk Drive (HDD):
o Rotating magnetized platters

o Read/write heads are mounted on a movable arm

o A set of data available in a head position is a track

o Tracks on multiple platters are handled as a cylinder

o A track is split into sectors

o The cylinder, track, and sector identifies the readable/writable
data block

o In practice we use logical addressing (Logical Block Addressing)
• The device transforms logical block addresses to physical ones

o LBA: 48 or 64 bit addressing today

o The sector/block size is 512 byte or 4 Kbyte (new advancement)
• We use both today

• Performance may vary do to block size

© BME-MIT 2014, Minden jog fenntartva 8. lap

The real speed of an HDD?
 Strongly depends on actual head position and how the requested

data positioned relative to it, and how fast platters rotate
o Average and maximum seek time (latency)
o It takes time to position the head over the cylinder storing the data than

waiting for the sector to move under the head…

 Multiple level of optimization:
o Disk scheduling

• What is the optimal order of serving the incoming requests?
• Optimizing head movement

o HDD level optimization (SATA NCQ, SCSI).
o Operating system level optimization
o Prefetch...

 Multiple level of caches:
o HDD level cache (16-64 Mbyte typically).
o Hard disk controller cache (on expensive RAID controllers)
o Operating system level cache:

• Disk cache, dynamically changing size as memory requirements change

© BME-MIT 2014, Minden jog fenntartva 9. lap

Devices: NAND flash storage
 Low level hardware interface is identical to the interface of HDDs

o Solid State Disk (SSD) with SATA or IDE interface
o PEN drive with USB interface

• Flash card readers work just like PEN drives but with removable FLASH memory

 Reading the data is fast independently from the location of the
data on the device:
o There are no heads to move, and no sectors to move into position
o More like RAM, but addressed with blocks (the unit of reading, writing,

erasing)

 Writing (erasing actually) is problematic:
o A flash memory cell can be erased a very limited number of times

• Cheap PEN drive: some thousand of times
• High end server SSD: some millions of times

o Writing/erasing is slower also than reading
• It is executed in parallel on multiple flash chips on bigger devices (SSD)

o Wear leveling (device and/or OS level)
• E.g. on OS level special file system can provide this: JFFS2, YAFFS, UDF

(on optical medium), ZFS has built in support for it
o TRIM (SSD + OS support required): The number of writes can be reduced to

avoid the effects of „write amplification”
• Write amplification: Accessing a block results multiple writes on other blocks
• E.g. Last access time must be written if a block is read!

© BME-MIT 2014, Minden jog fenntartva 10. lap

Device attachment
 How the storage device is attached to the computer?
 Host-Attached Storage:

o Direct connection to the computer: SATA/eSATA, IDE, SCSI, SAS, etc.
o Indirect connection:

• USB, Firewire based tunnel
• RAID (Redundant Array of Inexpensive Disks)

 Storage-Area Networks (SAN):
o A network tunnel between the host and the storage device using

block based access
• File level access handled on the host!

o Dedicated storage solution: Fibre channel
o Ethernet and/or TCP/IP based: iSCSI, AoE

 Network-Attached Storage (NAS):
o A network tunnel between the host and the storage device using a

file based access
o TCP/IP based: NFS, SMB/CIFS

© BME-MIT 2014, Minden jog fenntartva 11. lap

USB

 USB mass storage device class.

 SCSI command set is tunneled through the USB
bus transparently

o The OS sees it as a device connected to the SCSI bus

o USB only creates a tunnel between the device and the
OS

© BME-MIT 2014, Minden jog fenntartva 12. lap

RAID
 Facts:

o HDDs and SSDs are relatively cheap
o They are not reliable enough (HDD: moving components, SSD: wear)
o HDDs are slow, and SSDs are not fast enough compared to physical

memory

 Idea:
o Use multiple one of them…
o Redundant usage of multiple devices may increase reliability
o Parallel usage of multiple devices may increase speed
o Let’s create a virtual disk from multiple physical disks

• The virtual disk will be handled by the OS...
• This virtual disk is called as “RAID array”

 Implementations:
o HW RAID controllers
o SW RAID solutions

• Motherboard RAID solutions are like this nearly exceptionally
• Some server motherboards may have a HW RAID controller

© BME-MIT 2014, Minden jog fenntartva 13. lap

RAID levels

 RAID 0-6 and nested levels
 RAID 0-1 levels are typically implemented using

SW RAID and from small number of disks (typically
using 2 disks)

 RAID 2-4 levels are rarely used today
 RAID 5 and 6 are the typical today for larger

number of disks
o 4 disks or more

 Nested RAID levels:
o RAID 1+0 or RAID 0+1.

 There are manufacturer specific proprietary RAID
levels also…

© BME-MIT 2014, Minden jog fenntartva 14. lap

RAID level 0

 RAID 0 (striped disks).

 Multiple disks are used in parallel

 The file is split into small parts stored and those
parts are stored on the disks:
o This parts can be access in parallel if they are located

on different disks
• The storage capacity of the disks adds up

• In case of N disks the read and write speed is multiplied by
somewhat lower than N (due to overhead)

• The access time (latency) is close to the access time of one
disk due to overhead of the RAID controller

• If any of the disks fail the file cannot be accessed

© BME-MIT 2014, Minden jog fenntartva 15. lap

RAID level 0

File1_4

File1_0

File1_5

File1_1 File1_2 File1_3

Disk 0 Disk 1 Disk 2 Disk 3

© BME-MIT 2014, Minden jog fenntartva 16. lap

RAID level 1

 RAID 1 (mirroring).

 Using multiple redundant disks

 All parts of a file is written to all (N) disks

o Assuming that the disks are identical the available storage
capacity is the capacity of one disk

o Read and write speed is somewhat slower then for one disks
(due to overhead)

o Access time is increased due to overhead

o In a special case read speed my be close to N times faster
• If we assume that the failure of one disk can be identified without

explicitly reading the content from all disks and doing a majority vote

• In this case the parts of the file can be read just like at RAID 0

o One operation disk is enough (N-1 is allowed to fail)

© BME-MIT 2014, Minden jog fenntartva 17. lap

RAID level 1

File1_5

File1_4

File1_3

File1_2

File1_1

File1_0

File1_5

File1_4

File1_3

File1_2

File1_1

File1_0

File1_5

File1_4

File1_3

File1_2

File1_1

File1_0

File1_5

File1_4

File1_3

File1_2

File1_1

File1_0

Disk 0 Disk 1 Disk 2 Disk 3

© BME-MIT 2014, Minden jog fenntartva 18. lap

RAID level 5
 RAID 5 (block interleaved distributed parity).

 Multiple disks are used redundantly and in parallel

 Data and parity are stored on N+1 diszk
o Read and write speed are close to the speed of a RAID 0

array (if HW controller is used)

o Storage capacity is N times the storage capacity of one disk

o If 1 disk fails the data can be accessed

o If 2 or more disks fail the data is lost

o In case of one identified disk failure the data not
necessarily reconstructable!

• Silent errors may be present on the “good” disks

• These silent errors are identified when the array is reconstructed
after the replacement of the failed disk

© BME-MIT 2014, Minden jog fenntartva 19. lap

RAID level 5

File1_3

File1_0

File1_4

File1_1

File1_3-5par

File1_2

File1_5

File1_1-3par

Disk 0 Disk 1 Disk 2 Disk 3

© BME-MIT 2014, Minden jog fenntartva 20. lap

RAID level 6
 RAID 6 (block interleaved dual distributed parity)
 Multiple disk are used redundantly and in parallel
 The data and parity are stored on N+2 disks.

o Read and write speed are close to the speed of a RAID 0
array (if HW controller is used)

o Storage capacity is N times the storage capacity of one disk
o If 2 disks fail the data can be accessed

• If no silent errors are present!
• If one disk fails it must be replaced immediately to maintain the

error margin for the one silent error

o If 3 or more disks fail the data is lost
o If we always replace a failed disk (one error assumption)

another silent/hidden error can be corrected, i.e., the
survivability of the array is better

© BME-MIT 2014, Minden jog fenntartva 21. lap

RAID level 6

File1_45_par2

File1_2

File1_0

File1_45_par1

File1_23_par2

File1_1

File1_4

File1_3

File1_01_par1

File1_5

File1_23_par1

File1_01-par2

Disk 0 Disk 1 Disk 2 Disk 3

© BME-MIT 2014, Minden jog fenntartva 22. lap

Disadvantages of RAID
 Falsified sense of data security:

o It can correct only the isolated and random failure of a drive.
o It cannot save data if the power supply fries all the HDDs with

some overvoltage (can happen any time)
o It cannot correct data loss due to SW problems, viruses, and

malicious user access, etc.
o It is not a replacement for data backup, only increases

availability and/or speed of the storage subsystem

 HW RAID controllers are expensive>
o 8 port SATA RAID with RAID 5/6 support in the 800 USD range
o It is in the same price range as the disks attached to it
o A second low end server can be bought from this

 SW RAID is slow, they are for RAID 0/1 primarily
o Implementation of RAID 5/6 is slow in software due to complex

coding required for parity computation

© BME-MIT 2014, Minden jog fenntartva 23. lap

Advantages of RAID

 RAID 1/5/6 reduces the possibility of unscheduled downtime
due to random disks failures
o The HDD is the weakest element of computer systems:

• E.g. Google HDD statistics

• http://labs.google.com/papers/disk_failures.pdf

• Temperature does not influence HDD lifetime as much as earlier reports
suggested

• SMART (Self-Monitoring, Analysis, and Reporting Technology) is efficient in
predicting disk failures, but disks fail without any signs found in SMART
previously (some errors cannot be predicted based on SMART)

• Who uses SMART? (Everybody should try it!)
– Smartmontools + GSmartControl or HDD Guardian

– Some HDDs and SSDs have compatibility problems (see list)

o Optical drives can also fail miserably (the story of the failing CD drive)

 RAID 0/5/6 speeds up disk read and write speed
o HDD is the weakest link also from this point of view

http://labs.google.com/papers/disk_failures.pdf

© BME-MIT 2014, Minden jog fenntartva 24. lap

Storage Area Network (SAN)
 A network tunnel is built between the storage and the host

o Low level, block based solution
o Send SCSI commands most cases
o Practically, it is a storage virtualization solution:

• Provides the same properties as local storage, but it is more scalable, can be freely
partitioned, bootable, etc.

• It works like storage attached locally
• In one time it can be attached to only one host (some exceptions can be found in

clusters).
 Solutions:

o Special protocol: Fibre channel (expensive, requires dedicated HW)
o Ethernet and/or TCP/IP based: iSCSI, AoE.

• Cheap or free of charge (OS built in), partial or full SW solution, for booting special
firmware required for the network cards (e.g., to boot a PC from iSCSI a special
firmware is required for the network cards, for example Intel provides that for server
network cards).

 Conventions:
o Target: The server device on the network, which makes the storage available on

the network (the storage is attached to it directly or it accesses it through nested
SAN layers)

o Initiator: The client that uses the storage by accessing it through the target
device

o Naming conventions to identify the designated storage
• iSCSI Qualified Name (IQN)

o Initiator level access control
• The decision is made if a given initiator can access the or not (block based access)

© BME-MIT 2014, Minden jog fenntartva 25. lap

Abstraction levels (simplified)

Logical file system

e.g. directories/folders, etc.

Abstraction levels

File-organization module

Basic file system

I/O control or device driver

Devices

Hardware commands

(IDE, SATA, SCSI)

User and higher
layer OS functions

© BME-MIT 2014, Minden jog fenntartva 26. lap

Basic file system

 The main task of this layer is writing and reading blocks
on the physical disks

 It has to do caching also
o Buffer cache:

• A different cache is used for paging (page file cache) and for caching of
physical blocks

• Practically it is a double caching scheme (the two caches are developed
for different reasons in parallel)

o Unified buffer cache:
• The cache operate only on block level, there is no page file cache

o Unified virtual memory:
• Paging and OS level filesystem cache is unified in a single cache

• The file is mapped to virtual memory

• E.g. Linux and Windows use it

• Linux: As long as there is free memory it is used for file cache

© BME-MIT 2014, Minden jog fenntartva 27. lap

File-organization module

 The task of this layer is to map logical blocks (parts of
files) to physical blocks (allocation)

 Solutions
o Contiguous allocation

o Linked allocation

o Indexed allocation

 Free-space management:
o Bit vector

o Linked list

o Grouping of free spaces

o Counting

o Space maps

o We do not address free-space management in this class...

© BME-MIT 2014, Minden jog fenntartva 28. lap

Contiguous allocation 1st slide

 The file occupies a contiguous set of physical
blocks
o Access is simple and fast in case of a HDD (sectors and

tracks can be accessed contiguously from HDD).
o Growing files cause serious problems:

• How big space should be allocated for growing files to allow
growth?

o Finding space for new files is problematic, external
fragmentation cannot be avoided

• After erasing a file the physical blocks storing the file are put
on the free list

• For this free space a smaller or equal sized file can be
written later

– The same algorithms can be used as with memory allocation (first
fit, next fit, best fit, worst fit)

© BME-MIT 2014, Minden jog fenntartva 29. lap

Contiguous allocation 2nd slide

 Growing files:
o Best fit allocation strategy is very dangerous

o After exhausting the free space the file needs to be copied
to bigger free space which is extremely resource intensive

 Reducing external fragmentation:
o Copying the whole drive to a new one and then back to the

old one (off-line).
• A scheduled downtime is required to do it

• It takes long time and requires lot of resources

o Reducing external fragmentation on-line
(defragmentation)

• Resource intensive also

• The performance of the system degrades during the process

© BME-MIT 2014, Minden jog fenntartva 30. lap

Linked allocation 1st

 Data structures on the disk store the identification of the
first and the last block of the file

 All blocks may store the identification of the next and
previous block in the file

 The blocks storing the file can be located anywhere on
the disk

 No external fragmentation
 Problems:

o Sequential file access is simple and fast, but indexing into files
are resource intensive (direct access to the nth block requires to
read all blocks before or after the block).

o Storing the identification of the next and previous block in the
blocks reduces space available in the block

o Fragile: damage to a block renders the file inaccessible
o It increases head movement (seek) if the blocks are not

contiguous on the disk
• Lot of time is spent seeking for the parts of the file

© BME-MIT 2014, Minden jog fenntartva 31. lap

Linked allocation 2nd

 For example the FAT file system uses this method
 Defragmentation means a different process here:

o The aim is to reduce head movement during file access
• It is not reasonable to do it on an SSD

– There is no head movement, and writes caused by the process
reduces the lifetime of the SSD

o The aim is achieved by organizing the file into
contiguous physical blocks

o It is also called defragmentation...
o This is why it is reasonable to run the defragmentation

program under Windows on FAT file systems
• It speeds up file access
• Not only read speed, but write speed also increased!

– Free space is also organized into contiguous regions...

© BME-MIT 2014, Minden jog fenntartva 32. lap

Indexed allocation
 It uses special index blocks to store information about the

files:
o Some blocks are allocated to store indexes (metadata)
o Other blocks store the files (and only the content of the files)

 It is efficient for both sequential and random access
o It is enough to read only the index blocks to locate any part of

the file

 Fragile:
o No readable index block makes the file inaccessible
o Index blocks can be replicated easily

 It causes lot of head movement if the blocks of a file is
spread on the disk
o A defragmentation algorithm similar to the algorithms applied

to the linked allocation may be used to minimize head
movement and speed up disk access

© BME-MIT 2014, Minden jog fenntartva 33. lap

Logical file system
 Operating system specific

o An operating system specific API is on the top of this layes
o Typical API functions:

• Create, Delete, Read, Write, Set/Get attributes, etc.

 Storing metadata (everything required to store the file
except the data of the file itself)
o Due to metadata and other inefficiencies we can store less file

than the size of the storage medium would suggest

 File:
o Abstract data type (object or file pointer)
o It has a name, type, and other properties
o File locking is also provided

 Directory/Folder
 Volume/Drive

© BME-MIT 2014, Minden jog fenntartva 34. lap

File

 The file is the logical unit of information storage on the
permanent storage

 Properties:
o Name:

• Naming conventions, OS specific (see the Windows/UNIX differences).

• Is it a unique identifier in a folder/directory?
– Most cases it is, but there are exceptions in some older OSs...

o Type (specifies how the OS handles the file):
• E.g. Windows uses the extension (.*), but in UNIX file type is partially

mapped to the file system (regular file, symbolic link, device, etc.) partially
decided based on extension and file content

o Access times
• E.g. Creation time, Last modification time (write), last access time (read or

write)

o Access rights (User and type of access are specified)

o Other OS specific information

© BME-MIT 2014, Minden jog fenntartva 35. lap

Directories/Folders

 Hierarchic storage of information...

 Implementations:

o Single-level, used in early operating systems

o Two-level, it was used even in the 1990s (e.g. IBM
OS/400).

o Tree-structured file system

o Acyclic-graph file system

o General graph file system

© BME-MIT 2014, Minden jog fenntartva 36. lap

Acyclic-graph file system

 A file or subdirectory can be mapped to multiple
directory (but not into itself or under itself)

 It exists only in one instance, it is only mapped into
multiple directory!!!

 E.g. UNIX/Linux hard or symbolic links

o The „hard or symbolic link” type linkage identifiable through file
properties

• It is possible to iterate through he file system due to it, which is a must...

o What if a file or directory linked into multiple directories is
deleted?

• Only the reference is deleted, the file is preserved

• Not deleted as long as all references are deleted

• The file is deleted with all the links

© BME-MIT 2014, Minden jog fenntartva 37. lap

General graph file system

 It is not used in operating systems

o Searching for files is algorithmically complex

o How we can stop the search?

o The WEB can be considered as implementing a general
graph structure

• It is not a real file system, but search on the WEB is quite
problematic (It is hidden from us by Google and other
companies, though)

© BME-MIT 2014, Minden jog fenntartva 38. lap

Drives or volumes

 It is the highest layer on the level of logical file
system

 It is mapped to a physical or logical partition on
the physical storage

 How they appear in the operating system?

o They have a unique identifier in the OS (e.g. Windows
drive letters, e.g. C:)

• It is the first branch in the tree of the file system…

o They can be mapped to any location in the file system
(UNIX/Linux mount, newest Windows OSs)

© BME-MIT 2014, Minden jog fenntartva 39. lap

Data structures on the device

 Low level data structures

o Boot control block

• Loaded by the firmware (BIOS or EFI in cases of the PC
platform) to load the operating system

o Volume control block

• Stores partition/volume specific data

• Partition size and location, unpartitioned space, etc. is store
here

o File system specific information

• Description of the directory/folder structure

• File descriptions (File Control Block)

© BME-MIT 2014, Minden jog fenntartva 40. lap

Data loss...
 The files may be present in the memory and also on the permanent

storage
o These two versions may be different:

• E.g. the copy in the memory may be never...
o The metadata and allocation structures can be also under modification
o A malfunction or loss of power may cause inconsistency

 Consistency check
o Can be done on-line, but repair can be done off-line some cases

 Keeping the file system consistent continously
o Transaction oriented file systems

• Other names: Log-structured, log-based transaction oriented, journaling
• E.g. NTFS, EXT3 és EXT4.
• It does not provide data security, it keeps at least a working copy, but not necessarily the new

one!

 Safe system shutdown even in case of power loss
o Uninterruptible Power Supply (UPS) with properly configured software to shut

down the system in case of long power problems
 Backup and system restore

o Schedule of backups
o Backups must be tested if restore is possible using them (can be done on a test

system)
o Without a successful restore from backup data security cannot be guaranteed!

© BME-MIT 2014, Minden jog fenntartva 41. lap

Some common file systems 1st

 FAT (File Allocation Table)
o 8+3 character file name, long file names are stored in a special file...
o FAT16 (the first one was FAT12)

• Max. 2GB partition size
• 32767 directory entry
• It is even used today on smaller pendrives and memory cards

o FAT32
• 2 TByte (TiB in the SI system) partition size

– For other reasons there is a 64 GByte or 128 GByte-os partition size limit in earlier
version of Windows

• Maximum file size: 4 GByte-1 byte
– This is why it is impossible to copy some large files to portable storage...

 NTFS (New Technology File System)
o 264 Byte (16 EB) - 1 KByte max. file size, 232-1 files, etc.
o 264 sectors on a partition.
o 256 character long file names
o Transaction based
o Needs defragmentation

© BME-MIT 2014, Minden jog fenntartva 42. lap

Some common file systems 1st

 FAT (File Allocation Table)
o 8+3 character file name, long file names are stored in a special file...
o FAT16 (the first one was FAT12)

• Max. 2GB partition size
• 32767 directory entry
• It is even used today on smaller pendrives and memory cards

o FAT32
• 2 TByte (TiB in the SI system) partition size

– For other reasons there is a 64 GByte or 128 GByte-os partition size limit in earlier
version of Windows

• Maximum file size: 4 GByte-1 byte
– This is why it is impossible to copy some large files to portable storage...

 NTFS (New Technology File System)
o 264 Byte (16 EB) - 1 KByte max. file size, 232-1 files, etc.
o 264 sectors on a partition.
o 256 character long file names
o Transaction based
o Needs defragmentation

The FAT and NTFS file
systems are case insensitive
regarding the file names for

historical reasons…

© BME-MIT 2014, Minden jog fenntartva 43. lap

Some common file systems 2nd

 EXT2
o Default file system in earlier Linux versions
o There exists a Windows driver for it

• It does not support EXT2 on the system partition

o Max. file size: 16 GByte - 2 TByte (depends on the block size)
o Max. number of files: 1018

o Max. file name length: 255 byte (case sensitive).
o Max. partition size: 2-32 TB (depends on Linux kernel).
o Fragmentation is slow, defragmentation is rarely needed, and can be done only off-

line

 EXT3
o Enhanced EXT2, transaction based
o Htree based indexing, makes possible to make more directories
o It is easy to convert file systems between EXT2 and EXT3

 EXT4: Further enhancements to EXT3 (bigger storage, extents, etc.).
o Linux distributions use it as the default file system
o Last in the EXT filesystem family, BTRFS will follow with lot of new features

 CD-ROM/DVD file system (ISO 9660, Rock Ridge, Joliet, El Torito extensions)
o The max. file size is 2/4 Gbyte
o This is why files are split to smaller parts on DVDs

© BME-MIT 2014, Minden jog fenntartva 44. lap

Future filesystems
 ZFS (It was introduced late 2005)

o Developed by SUN Microsystems, now by Oracle

o Open source, but not GPL license (OpenZFS is GNU, but with limited
features)

• Cannot be introduced into the Linux kernel…

o Lot of new features…
• Extreme focus on data integrity achieving much better data integrity than other available filesystem

solutions (including BTRFS),

• Copy on write transactional model support,

• Support for RAID like RAID-Z features (use of HW RAID is not recommended under ZFS)

• On-line resilvering and scrub for detecting and repairing file system integrity and detecting silent errors
on physical disks,

• Snapshot and clone support,

• Storage pool support (LVM like features),

• Multiple-level file system caching including RAM, fast disk (SSD or fast HDD) caching,

• Filesystem compression and encryption

• Deduplication,

• Clustering and high availability,

 Btrfs (B-tree file system)

o GPL licenced open source alternative

o Less features and not as stable as ZFS

© BME-MIT 2014, Minden jog fenntartva 45. lap

NAS (Network-Attached Storage)
 File system level file sharing

o Most cases printers can be shared also using this technology...

 Examples:
o Network File System (NFS).

• Primarily UNIX type OSs, but there exists Windows implementation also

o Server Message Block / Common Internet File System (SMB/CIFS)
• Primarily Windows, but it is available on UNIX type OSs (SAMBA).

 File system level sharing
o The network transports directory and file level commands (open, close,

read, write files)
o It is typically multiuser
o Access rights are handled on the user and file level
o Server and client file handling conventions may be different causing

problems
• E.g. UNIX and Windows file names and properties are very different

 The HTTP protocol is a totally different thing, it is a file access
protocol
o Primarily the complete file is read or written

© BME-MIT 2014, Minden jog fenntartva

Monitoring file systems

 Low level (block based) monitoring

o Sysinternals: Disk Monitor (diskmon.exe)

o Must be executed as system administrator

 High level (file based) monitoring

o Sysinternals: Process Monitor (procmon.exe)

 It is necessary to observe that on low level much
less activity is detected

o Why?

o Caching…

46. lap

