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Handling of the Permanent storage
 Permanent storage or “storage”:

o Typically compared to the physical memory
o It offers orders of magnitudes bigger storage capacity
o Also orders of magnitudes slower

• Throughput
• Latency

o Nonvolatile storage
• If properly used, otherwise it do losses data 
• Data security is a major issue!

o Block based 
• OS handles this storage based on blocks

– No byte access, a full block must be handled
• A block can be read, written or erased
• Programs cannot be executed directly from storage, it must be loaded 

into memory first!
• One exception

– NOR flash memory is organized as bytes (as regular memory)
– It is possible to execute the OS or other programs directly from NOR flash
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How we map files to storage?

 The file is the logical unit of data storage on the permanent
strorage (file)
o It has a name (named collection).

o We reference it by its name

o It’s size can vary, practically any size is allowed
• There is a hard limit coming from the physical storage and the filesystem

 The main task of the operating system regarding permanent 
storage is the mapping of files (logical unit) to blocks (physical 
unit)

 This task is solved by the OS using a multilayer hierarchical 
system, solving the problem on multiple abstraction level

 On the lowest layer you will find some special HW (HDD, Flash
drive, etc.)
o RAM drive is an exception here
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Devices: Hard Disk Drive
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Hard disk drive terminology

 Hard Disk Drive (HDD):
o Rotating magnetized platters

o Read/write heads are mounted on a  movable arm

o A set of data available in a head position is a track

o Tracks on multiple platters are handled as a cylinder

o A track is split into sectors

o The cylinder, track, and sector identifies the readable/writable 
data block

o In practice we use logical addressing (Logical Block Addressing)
• The device transforms logical block addresses to physical ones

o LBA: 48 or 64 bit addressing today

o The sector/block size is 512 byte or 4 Kbyte (new advancement)
• We use both today

• Performance may vary do to block size
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The real speed of an HDD?
 Strongly depends on actual head position and how the requested 

data positioned relative to it, and how fast platters rotate
o Average and maximum seek time (latency)
o It takes time to position the head over the cylinder storing the data than 

waiting for the sector to move under the head…

 Multiple level of optimization:
o Disk scheduling

• What is the optimal order of serving the incoming requests?
• Optimizing head movement

o HDD level optimization (SATA NCQ, SCSI).
o Operating system level optimization
o Prefetch...

 Multiple level of caches:
o HDD level cache (16-64 Mbyte typically).
o Hard disk controller cache (on expensive RAID controllers)
o Operating system level cache:

• Disk cache, dynamically changing size as memory requirements change
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Devices: NAND flash storage
 Low level hardware interface is identical to the interface of HDDs

o Solid State Disk (SSD) with SATA or IDE interface
o PEN drive with USB interface

• Flash card readers work just like PEN drives but with removable FLASH memory

 Reading the data is fast independently from the location of the 
data on the device:
o There are no heads to move, and no sectors to move into position
o More like RAM, but addressed with blocks (the unit of reading, writing, 

erasing)

 Writing (erasing actually) is problematic:
o A flash memory cell can be erased a very limited number of times

• Cheap PEN drive: some thousand of times
• High end server SSD: some millions of times

o Writing/erasing is slower also than reading
• It is executed in parallel on multiple flash chips on bigger devices (SSD)

o Wear leveling (device and/or OS level)
• E.g. on OS level special file system can provide this: JFFS2, YAFFS, UDF 

(on optical medium), ZFS has built in support for it
o TRIM (SSD + OS support required): The number of writes can be reduced to 

avoid the effects of „write amplification”
• Write amplification: Accessing a block results multiple writes on other blocks
• E.g. Last access time must be written if a block is read!
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Device attachment
 How the storage device is attached to the computer?
 Host-Attached Storage:

o Direct connection to the computer: SATA/eSATA, IDE, SCSI, SAS, etc.
o Indirect connection:

• USB, Firewire based tunnel
• RAID (Redundant Array of Inexpensive Disks)

 Storage-Area Networks (SAN):
o A network tunnel between the host and the storage device using 

block based access
• File level access handled on the host!

o Dedicated storage solution: Fibre channel 
o Ethernet and/or TCP/IP based: iSCSI, AoE

 Network-Attached Storage (NAS):
o A network tunnel between the host and the storage device using a 

file based access
o TCP/IP based: NFS, SMB/CIFS
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USB

 USB mass storage device class.

 SCSI command set is tunneled through the USB 
bus transparently

o The OS sees it as a device connected to the SCSI bus

o USB only creates a tunnel between the device and the 
OS



© BME-MIT 2014, Minden jog fenntartva 12. lap

RAID
 Facts:

o HDDs and SSDs are relatively cheap
o They are not reliable enough (HDD: moving components, SSD: wear)
o HDDs are slow, and SSDs are not fast enough compared to physical 

memory

 Idea:
o Use multiple one of them…
o Redundant usage of multiple devices may increase reliability
o Parallel usage of multiple devices may increase speed
o Let’s create a virtual disk from multiple physical disks

• The virtual disk will be handled by the OS...
• This virtual disk is called as “RAID array”

 Implementations:
o HW RAID controllers
o SW RAID solutions

• Motherboard RAID solutions are like this nearly exceptionally
• Some server motherboards may have a HW RAID controller
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RAID levels

 RAID 0-6 and nested levels
 RAID 0-1 levels are typically implemented using 

SW RAID and from small number of disks (typically 
using 2 disks) 

 RAID 2-4 levels are rarely used today
 RAID 5 and 6 are the typical today for larger 

number of disks
o 4 disks or more

 Nested RAID levels:
o RAID 1+0 or RAID 0+1.

 There are manufacturer specific proprietary RAID 
levels also…
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RAID level 0

 RAID 0 (striped disks).

 Multiple disks are used in parallel

 The file is split into small parts stored and those 
parts are stored on the disks:
o This parts can be access in parallel if they are located 

on different disks
• The storage capacity of the disks adds up

• In case of N disks the read and write speed is multiplied by 
somewhat lower than N (due to overhead)

• The access time (latency) is close to the access time of one 
disk due to overhead of the RAID controller

• If any of the disks fail the file cannot be accessed
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RAID level 1

 RAID 1 (mirroring).

 Using multiple redundant disks

 All parts of a file is written to all (N) disks

o Assuming that the disks are identical the available storage 
capacity is the capacity of one disk

o Read and write speed is somewhat slower then for one disks 
(due to overhead)

o Access time is increased due to overhead

o In a special case read speed my be close to N times faster
• If we assume that the failure of one disk can be identified without 

explicitly reading the content from all disks and doing a majority vote

• In this case the parts of the file can be read just like at RAID 0

o One operation disk is enough (N-1 is allowed to fail)
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RAID level 5
 RAID 5 (block interleaved distributed parity).

 Multiple disks are used redundantly and in parallel

 Data and parity are stored on N+1 diszk
o Read and write speed are close to the speed of a RAID 0 

array (if HW controller is used)

o Storage capacity is N times the storage capacity of one disk

o If 1 disk fails the data can be accessed

o If 2 or more disks fail the data is lost

o In case of one identified disk failure the data not 
necessarily reconstructable!

• Silent errors may be present on the “good” disks 

• These silent errors are identified when the array is reconstructed 
after the replacement of the failed disk 
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RAID level 6
 RAID 6 (block interleaved dual distributed parity)
 Multiple disk are used redundantly and in parallel
 The data and parity are stored on N+2 disks.

o Read and write speed are close to the speed of a RAID 0 
array (if HW controller is used)

o Storage capacity is N times the storage capacity of one disk
o If 2 disks fail the data can be accessed

• If no silent errors are present!
• If one disk fails it must be replaced immediately to maintain the 

error margin for the one silent error

o If 3 or more disks fail the data is lost
o If we always replace a failed disk (one error assumption) 

another silent/hidden error can be corrected, i.e., the 
survivability of the array is better
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Disadvantages of RAID
 Falsified sense of data security:

o It can correct only the isolated and random failure of a drive.
o It cannot save data if the power supply fries all the HDDs with 

some overvoltage (can happen any time)
o It cannot correct data loss due to SW problems, viruses, and 

malicious user access, etc.
o It is not a replacement for data backup, only increases 

availability and/or speed of the storage subsystem

 HW RAID controllers are expensive>
o 8 port SATA RAID with RAID 5/6 support in the 800 USD range
o It is in the same price range as the disks attached to it
o A second low end server can be bought from this

 SW RAID is slow, they are for RAID 0/1 primarily
o Implementation of RAID 5/6 is slow in software due to complex 

coding required for parity computation
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Advantages of RAID

 RAID 1/5/6 reduces the possibility of unscheduled downtime 
due to random disks failures
o The HDD is the weakest element of computer systems:

• E.g. Google HDD statistics

• http://labs.google.com/papers/disk_failures.pdf

• Temperature does not influence HDD lifetime as much as earlier reports 
suggested

• SMART (Self-Monitoring, Analysis, and Reporting Technology) is efficient in 
predicting disk failures, but disks fail without any signs found in SMART 
previously (some errors cannot be predicted based on SMART)

• Who uses SMART? (Everybody should try it!)
– Smartmontools + GSmartControl or HDD Guardian

– Some HDDs and SSDs have compatibility problems (see list)

o Optical drives can also fail miserably (the story of the failing CD drive)

 RAID 0/5/6 speeds up disk read and write speed
o HDD is the weakest link also from this point of view 

http://labs.google.com/papers/disk_failures.pdf
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Storage Area Network (SAN)
 A network tunnel is built between the storage and the host

o Low level, block based solution
o Send SCSI commands  most cases
o Practically, it is a storage virtualization solution:

• Provides the same properties as local storage, but it is more scalable, can be freely 
partitioned, bootable, etc.

• It works like storage attached locally
• In one time it can be attached to only one host (some exceptions can be found in 

clusters).
 Solutions:

o Special protocol: Fibre channel (expensive, requires dedicated HW)
o Ethernet and/or TCP/IP based: iSCSI, AoE.

• Cheap or free of charge (OS built in), partial or full SW solution, for booting special 
firmware required for the network cards (e.g., to boot a PC from iSCSI a special 
firmware is required for the network cards, for example Intel provides that for server 
network cards).

 Conventions:
o Target: The server device on the network, which makes the storage available on 

the network (the storage is attached to it directly or it accesses it through nested 
SAN layers)

o Initiator: The client that uses the storage by accessing it through the target 
device

o Naming conventions to identify the designated storage
• iSCSI Qualified Name (IQN)

o Initiator level access control
• The decision is made if a given initiator can access the  or not (block based access)
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Basic file system

 The main task of this layer is writing and reading blocks 
on the physical disks

 It has to do caching also
o Buffer cache:

• A different cache is used for paging (page file cache) and for caching of 
physical blocks

• Practically it is a double caching scheme (the two caches are developed 
for different reasons in parallel)

o Unified buffer cache:
• The cache operate only on block level, there is no page file cache

o Unified virtual memory:
• Paging and OS level filesystem cache is unified in a single cache

• The file is mapped to virtual memory

• E.g. Linux and Windows use it

• Linux: As long as there is free memory it is used for file cache
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File-organization module

 The task of this layer is to map logical blocks (parts of 
files) to physical blocks (allocation)

 Solutions
o Contiguous allocation

o Linked allocation

o Indexed allocation

 Free-space management:
o Bit vector

o Linked list

o Grouping of free spaces

o Counting

o Space maps

o We do not address free-space management in this class...
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Contiguous allocation 1st slide

 The file occupies a contiguous set of physical 
blocks
o Access is simple and fast in case of a HDD (sectors and 

tracks can be accessed contiguously from HDD).
o Growing files cause serious problems:

• How big space should be allocated for growing files to allow 
growth?

o Finding space for new files is problematic, external 
fragmentation cannot be avoided

• After erasing a file the physical blocks storing the file are put
on the free list

• For this free space a smaller or equal sized file can be 
written later

– The same algorithms can be used as with memory allocation (first
fit, next fit, best fit, worst fit)
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Contiguous allocation 2nd slide

 Growing files:
o Best fit allocation strategy is very dangerous

o After exhausting the free space the file needs to be copied 
to bigger free space which is extremely resource intensive

 Reducing external fragmentation:
o Copying the whole drive to a new one and then back to the 

old one (off-line).
• A scheduled downtime is required to do it

• It takes long time and requires lot of resources

o Reducing external fragmentation on-line
(defragmentation)

• Resource intensive also

• The performance of the system degrades during the process
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Linked allocation 1st

 Data structures on the disk store the identification of the 
first and the last block of the file

 All blocks may store the identification of the next and 
previous block in the file

 The blocks storing the file can be located anywhere on 
the disk

 No external fragmentation
 Problems:

o Sequential file access is simple and fast, but indexing into files 
are resource intensive (direct access to the nth block requires to 
read all blocks before or after the block).

o Storing the identification of the next and previous block in the 
blocks reduces space available in the block

o Fragile: damage to a block renders the file inaccessible
o It increases head movement (seek) if the blocks are not 

contiguous on the disk
• Lot of time is spent seeking for the parts of the file
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Linked allocation 2nd

 For example the FAT file system uses this method
 Defragmentation means a different process here:

o The aim is to reduce head movement during file access
• It is not reasonable to do it on an SSD

– There is no head movement, and writes caused by the process 
reduces the lifetime of the SSD

o The aim is achieved by organizing the file into 
contiguous physical blocks

o It is also called defragmentation...
o This is why it is reasonable to run the defragmentation 

program under Windows on FAT file systems
• It speeds up file access
• Not only read speed, but write speed also increased!

– Free space is also organized into contiguous regions...
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Indexed allocation
 It uses special index blocks to store information about the 

files:
o Some blocks are allocated to store indexes (metadata)
o Other blocks store the files (and only the content of the files)

 It is efficient for both sequential and random access
o It is enough to read only the index blocks to locate any part of 

the file

 Fragile:
o No readable index block makes the file inaccessible
o Index blocks can be replicated easily

 It causes lot of head movement if the blocks of a file is 
spread on the disk
o A defragmentation algorithm similar to the algorithms applied 

to the linked allocation may be used to minimize head 
movement and speed up disk access
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Logical file system
 Operating system specific

o An operating system specific API is on the top of this layes
o Typical API functions:

• Create, Delete, Read, Write, Set/Get attributes, etc.

 Storing metadata (everything required to store the file 
except the data of the file itself)
o Due to metadata and other inefficiencies we can store less file 

than the size of the storage medium would suggest

 File:
o Abstract data type (object or file pointer)
o It has a name, type, and other properties
o File locking is also provided

 Directory/Folder
 Volume/Drive
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File

 The file is the logical unit of information storage on the 
permanent storage

 Properties:
o Name:

• Naming conventions, OS specific (see the Windows/UNIX differences).

• Is it a unique identifier in a folder/directory?
– Most cases it is, but there are exceptions in some older OSs...

o Type (specifies how the OS handles the file):
• E.g. Windows uses the extension (.*), but in UNIX file type is partially 

mapped to the file system (regular file, symbolic link, device, etc.) partially 
decided based on extension and file content

o Access times
• E.g. Creation time, Last modification time (write), last access time (read or 

write)

o Access rights (User and type of access are specified)

o Other OS specific information
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Directories/Folders

 Hierarchic storage of information...

 Implementations:

o Single-level, used in early operating systems

o Two-level, it was used even in the 1990s (e.g. IBM 
OS/400).

o Tree-structured file system

o Acyclic-graph file system

o General graph file system
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Acyclic-graph file system

 A file or subdirectory can be mapped to multiple 
directory (but not into itself or under itself)

 It exists only in one instance, it is only mapped into 
multiple directory!!!

 E.g. UNIX/Linux hard or symbolic links

o The „hard or symbolic link” type linkage identifiable through file 
properties

• It is possible to iterate through he file system due to it, which is a must...

o What if a file or directory linked into multiple directories is 
deleted?

• Only the reference is deleted, the file is preserved

• Not deleted as long as all references are deleted

• The file is deleted with all the links
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General graph file system

 It is not used in operating systems

o Searching for files is algorithmically complex

o How we can stop the search?

o The WEB can be considered as implementing a general 
graph structure

• It is not a real file system, but search on the WEB is quite 
problematic (It is hidden from us by Google and other 
companies, though)
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Drives or volumes

 It is the highest layer on the level of logical file 
system

 It is mapped to a physical or logical partition on 
the physical storage

 How they appear in the operating system?

o They have a unique identifier in the OS (e.g. Windows 
drive letters, e.g. C:)

• It is the first branch in the tree of the file system…

o They can be mapped to any location in the file system
(UNIX/Linux mount, newest Windows OSs)
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Data structures on the device

 Low level data structures

o Boot control block

• Loaded by the firmware (BIOS or EFI in cases of the PC 
platform) to load the operating system

o Volume control block

• Stores partition/volume specific data

• Partition size and location, unpartitioned space, etc. is store 
here

o File system specific information

• Description of the directory/folder structure

• File descriptions (File Control Block)
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Data loss...
 The files may be present in the memory and also on the permanent 

storage
o These two versions may be different:

• E.g. the copy in the memory may be never...
o The metadata and allocation structures can be also under modification
o A malfunction or loss of power may cause inconsistency

 Consistency check
o Can be done on-line, but repair can be done off-line some cases

 Keeping the file system consistent continously
o Transaction oriented file systems

• Other names: Log-structured, log-based transaction oriented, journaling
• E.g. NTFS, EXT3 és EXT4.
• It does not provide data security, it keeps at least a working copy, but not necessarily the new 

one!

 Safe system shutdown even in case of power loss
o Uninterruptible Power Supply (UPS) with properly configured software to shut 

down the system in case of long power problems
 Backup and system restore

o Schedule of backups
o Backups must be tested if restore is possible using them (can be done on a test 

system)
o Without a successful restore from backup data security cannot be guaranteed!
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Some common file systems 1st

 FAT (File Allocation Table)
o 8+3 character file name, long file names are stored in a special file...
o FAT16 (the first one was FAT12)

• Max. 2GB partition size
• 32767 directory entry
• It is even used today on smaller pendrives and memory cards

o FAT32
• 2 TByte (TiB in the SI system) partition size

– For other reasons there is a 64 GByte or 128 GByte-os partition size limit in earlier 
version of Windows

• Maximum file size: 4 GByte-1 byte
– This is why it is impossible to copy some large files to portable storage...

 NTFS (New Technology File System)
o 264 Byte (16 EB) - 1 KByte max. file size, 232-1 files, etc.
o 264 sectors on a partition.
o 256 character long file names
o Transaction based
o Needs defragmentation
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Some common file systems 1st

 FAT (File Allocation Table)
o 8+3 character file name, long file names are stored in a special file...
o FAT16 (the first one was FAT12)

• Max. 2GB partition size
• 32767 directory entry
• It is even used today on smaller pendrives and memory cards

o FAT32
• 2 TByte (TiB in the SI system) partition size

– For other reasons there is a 64 GByte or 128 GByte-os partition size limit in earlier 
version of Windows

• Maximum file size: 4 GByte-1 byte
– This is why it is impossible to copy some large files to portable storage...

 NTFS (New Technology File System)
o 264 Byte (16 EB) - 1 KByte max. file size, 232-1 files, etc.
o 264 sectors on a partition.
o 256 character long file names
o Transaction based
o Needs defragmentation

The FAT and NTFS file 
systems are case insensitive 
regarding the file names for 

historical reasons…
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Some common file systems 2nd

 EXT2
o Default file system in earlier Linux versions
o There exists a Windows driver for it

• It does not support EXT2 on the system partition

o Max. file size: 16 GByte - 2 TByte (depends on the block size)
o Max. number of files: 1018

o Max. file name length: 255 byte (case sensitive).
o Max. partition size: 2-32 TB (depends on Linux kernel).
o Fragmentation is slow, defragmentation is rarely needed, and can be done only off-

line

 EXT3
o Enhanced EXT2, transaction based
o Htree based indexing, makes possible to make more directories
o It is easy to convert file systems between EXT2 and EXT3

 EXT4: Further enhancements to EXT3 (bigger storage, extents, etc.).
o Linux distributions use it as the default file system
o Last in the EXT filesystem family, BTRFS will follow with lot of new features

 CD-ROM/DVD file system (ISO 9660, Rock Ridge, Joliet, El Torito extensions)
o The max. file size is 2/4 Gbyte
o This is why files are split to smaller parts on DVDs
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Future filesystems
 ZFS (It was introduced late 2005)

o Developed by SUN Microsystems, now by Oracle

o Open source, but not GPL license  (OpenZFS is GNU, but with limited 
features)

• Cannot be introduced into the Linux kernel…

o Lot of new features…
• Extreme focus on data integrity achieving much better data integrity than other available filesystem

solutions (including BTRFS),

• Copy on write transactional model support,

• Support for RAID like RAID-Z features (use of HW RAID is not recommended under ZFS)

• On-line resilvering and scrub for detecting and repairing file system integrity and detecting silent errors 
on physical disks,

• Snapshot and clone support,

• Storage pool support (LVM like features),

• Multiple-level file system caching including RAM, fast disk (SSD or fast HDD) caching,

• Filesystem compression and encryption

• Deduplication,

• Clustering and high availability,

 Btrfs (B-tree file system)

o GPL licenced open source alternative

o Less features and not as stable as ZFS
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NAS (Network-Attached Storage)
 File system level file sharing

o Most cases printers can be shared also using this technology...

 Examples:
o Network File System (NFS).

• Primarily UNIX type OSs, but there exists Windows implementation also

o Server Message Block / Common Internet File System (SMB/CIFS)
• Primarily Windows, but it is available on UNIX type OSs (SAMBA).

 File system level sharing
o The network transports directory and file level commands (open, close, 

read, write files)
o It is typically multiuser
o Access rights are handled on the user and file level
o Server and client file handling conventions may be different causing 

problems
• E.g. UNIX and Windows file names and properties are very different

 The HTTP protocol is a totally different thing, it is a file access 
protocol
o Primarily the complete file is read or written
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Monitoring file systems

 Low level (block based) monitoring

o Sysinternals: Disk Monitor (diskmon.exe)

o Must be executed as system administrator

 High level (file based) monitoring

o Sysinternals: Process Monitor (procmon.exe)

 It is necessary to observe that on low level much 
less activity is detected

o Why?

o Caching…
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