Operating Systems

Memory Management in Windows

Zoltan Micskei
http://www.mit.bme.hu/~micskeiz
Cicick;

EY

(EV Ty

FPAULT TOLERANT SYSTHMS
RESHARCH GROUL

Budapesti Miiszaki és Gazdasagtudomanyi Egyetem

Méréstechnika és Informaciés Rendszerek Tanszék

Copyright Notice

® These materials are part of the Windows Operating System
Internals Curriculum Development Kit, developed by David A.
Solomon and Mark E. Russinovich with Andreas Polze

® Microsoft has licensed these materials from David Solomon
Expert Seminars, Inc. for distribution to academic organizations
solely for use in academic environments (and not for
commercial use)

B http://www.academicresourcecenter.net/curriculum/pfv.aspx?1D=6191

© 2000-2005 David A. Solomon and Mark Russinovich

Slides based on Windows Operating System Internals Curriculum Development
Kit

How much free memory do |
have right now?

Operating systems

Basics of memory management in Windows

® Virtual memory

— Hiding physical memory, paging...
m Efficiency

— demand driven paging

= memory sharing, copy-on-write

- file caching in memory (section object)
® Security

— separate address space for every process

— accessing through handles (access token)

Configuring the Memory Manager

Like most of Windows, the memory manager attempts to automatically provide
optimal system performance for varying workloads on systems of varying sizes
and types. While there are a limited number of registry values you can add
and/or modify under the key HKLM\
SYSTEM\CurrentControlSet\Control\Session Manager\Memory Management to
override some of these default performance calculations, in general, the memory
manager’s default computations will be sufficient for the majority of workloads.

Many of the thresholds and limits that control memory manager policy decisions
are computed at system boot time on the basis of memory size and product type.
(Windows 2000 Professional and Windows XP Professional and Home editions
are optimized for desktop interactive use, and Windows Server systems are
optimized for running server applications.)

Maximal physical memory (GB)

max 4 GB can be handled %
on 32 bit

Vista Basic

x64 IA-64
64-bit 64-bit

64 bit: much larger
memory

Vista Business

Server 2008
Standard

12@ / n/a
32/ n/a

Server 2008
Enterprise

204g n/a

Itanium

n/a 2048

Physical Address Extension (PAE)

36 address bit: CPU + OS support

Itanium: Intel server arch.,
not so popular

32-bit x86 address space

Default /3GB switch

2GB
for user
process

3GB
for user
process

2GB
system
space

Operating systems

64-bit address space

® 64-bit=17,179,869,184 GB
— x64 currently supports 48 address bit = 262,144 GB

x64

8192 GB
(8 TB)
for user
process

6657 GB
system
space

Operating systems

Virtual Address Space (V.A.S.)

User address space:

— The running application
(.EXE and .DLLs)

= User space stack for
every thread

Accessible from
user mode

— Data structures of the
application Accessible only
from kernel

mode

Operating systems

00000000

Unique for
every process

TFFFFFFF

80000000

Common for the
whole system

FFFFFFFF

* No user process can touch another user process address space (without first
opening a handle to the process, which means passing through NT security)

* Separate process page tables prevent this

*“Current” page table changed on context switch from a thread in 1

process to a thread in another process

Virtual Address Space (V.A.S.)

System space:

— Executive, kernel and HAL 00000000

— System level data structures Accessible from Unique for
— Page tables (virtual = physical user mode every process
mapping, different for
TFFFFFFF

processes)
— Executive heaps (pools)

— Kernel mode device drivers
(in the nonpaged pool) from kernel

— File system cache mode

— Kernel mode stack for every
processes’ every thread

80000000
Accessible only

Common for the
whole system

FFFFFFFF

No user process can touch kernel memory

» Page protection in process page tables prevent this
* OS pages only accessible from “kernel mode”

* Threads change from user to kernel mode and back (via a
secure interface) to execute kernel code, this does not
affect scheduling (not a context switch)

Dynamic Kernel Address Space: Windows and the
applications that run on it have bumped their heads on the
address space limits of 32-bit processors. The Windows
kernel is constrained by default to 2GB, or half the total 32-
bit virtual address space, with the other half reserved for use
by the process whose thread is currently running on the
CPU. Inside its half, the kernel has to map itself, device
drivers, the file system cache, kernel stacks, per-session code
data structures, and both non-paged (locked-in physical
memory) and paged buffers allocated by device drivers.

9

Prior to Windows Vista, the Memory Manager determined at boot
time how much of the address space to assign to these different
purposes, but this inflexibility sometimes led to situations where
one of the regions became full while others still had plenty of
available space. The exhaustion of an area can lead to application
failures and prevent device drivers from completing I/O operations.

In 32-bit Windows Vista, the Memory Manager dynamically
manages the kernel's address space, allocating and deallocating
space to various uses as the demands of the workload require. Thus,
the amount of virtual memory used to store paged buffers can grow
when device drivers ask for more, and it can shrink when the
drivers release it. Windows Vista will therefore be able to handle a
wider variety of workloads and likewise the 32-bit version of the
forthcoming Windows Server® code-named "Longhorn," will scale
to handle more concurrent Terminal Server users.

Of course, on 64-bit Windows Vista systems, address space
constraints are not currently a practical limitation and therefore
require no special treatment as they are configured to their
maximumes.

Memory allocation

® Two steps

® Reserve: reserving virtual address space
® Commit: allocating the virtual memory

® Only commits what is really needed

Operating systems

Shared memory

® E.g. multiple processes use the same file

Process 1 Disk
00000000
User mode
v.a.s.
7FFFFFFF

M
Physical
memory

Operating systems

Process 2

)I
User mode
v.a.s.

12

Working Set

® Working Set:
— Physical memory pages belonging to a process
— Can be accessed without a page fault

® Working set limit:
— Maximal physical memory a process can have

— If reached, should switch pages:
® NT 4.0: modified FIFO algorithm
e Windows 2000: Least Recently Used (UP systems)

— If free memory falls under a limit: trimming

Working set: Implemented as array of working set list
entries (WSLE)

Lifecycle of physical pages

demand zero
page faults

page read from

disk or kernel | —.
allocations ‘\

Standby
Page
List

N\

PI’OCEESS “soft” modified Free zero Zero
Working fpaeie page Page page Page PB ad
Sets aults writer List dmzze List age

List
t

Modified
Page

working set List

replacement

Private pages at /
process exit

Operating systems

//

Status Description
Active/valid: Page is part of working set (sys/proc), valid PTE points to it

Transition: Page not owned by a working set, not on any paging list, I/O is in
progress on this page

Standby: Page belonged to a working set but was removed; not modified
Modified: Removed from working set, modified, not yet written to disk

Modified no write: Modified page, will not be touched by modified page write,
used by NTFS for pages containing log entries (explicit flushing)

Free: Page is free but has dirty data in it — cannot be given to user process — C2
security requirement

Zeroed: Page is free and has been initialized by zero page thread

Bad: Page has generated parity or other hardware errors

Page file

= What?
— Only modified data, not the code
When?

— Also if there is free memory

= Processes cannot use as much physical memory as they like
- Reservation for new processes

One page file for each partition
— Recommended: not on the system drive
— But create a small one for the crash dump file

Recommended size

— 1,5 times physical memory (?), Fixed size (?)

Operating systems i T
MOEGYETE

Windows XP (& Embedded NT4) can run with no paging file

NT4/Win2K: zero pagefile size actually creates a 20MB
temporary page file (\temppf.sys)

WinPE never has a pagefile

Page file maximums:
16 page files per system
32-bit x86: 4095MB
32-bit PAE mode, 64-bit systems: 16 TB

How to configure paging files for optimization and recovery in Windows XP
(http://support.microsoft.com/kb/314482/en-us)

15

® Changing the size of the
page file
- GUI
- regedit

Page file

® Perfmon: Page file
utilization (%)

® Sysinternals: pagedfrg.exe

Page file: GUI: System Properties / Advanced / Performance, Settings / Advanced
/ Virtual Memory, Settings

Registry:

HKEY LOCAL MACHINE\SYSTEM\CurrentControlSet\Control\Session
Manager\Memory Management

Simple question:

How much memory does a process consume and
for what?

Operating systems

Process memory usage - 0

® Task manager

Select columns ey = Update SpQEd

Select the columns that will appear in the table.

= View
("] Cyde - T .
[] working set (memory) Refresh now Ip [Users] Details ISE(‘
[C] Peak working set (memory) Update speed » High
] Working set delta (memory) : oMo
[¥] Memory (private working set) v Group by type
[7] Memory (shared working set) Expand all Low
= Commit sze Collapse all poused
| Paged pool
(] NP pool
[7] Page faults
[T] pF Delta -

Operating s

Process memory usage - 1

o

Name Working set (memory) Memory (private working set) Commitsize PF Delta
BN conhost.exe 580 K 148K 700K 0
BN conhost.exe 752K 156K 712K 0
[* | ConsoleGuessGa... 4740K 1496 K 13832K 0
7 csrss.exe 2136K 1096 K 1916K 0
7 csrss.exe 16184 K 956 K 1952K 0
87 dasHost.exe 7276 K 2260K 2800K 0
©0 devenv.exe 116 356 K 68576 K 223 688K 16

Memory - Working Set
* shared pages also
Memory — Private Working Set

o * without shared pages

Memory — Commit size
* private virtual memory
* this goes to the page file

Operating systems

http://windowshelp.microsoft.com/Windows/en-US/help/e4598b92-b1c1-bc52-
5e30-6871dcc59¢a01033.mspx

Process memory usage - 2

® Process Explorer:

— Details in the
process property

® Virtual Memory

® Physical Memory

Operating systems

~laix]
1cPaP | Secunty | i | b Stings |
Image | Pedomance || Per Graph Threads |
rCPU rijo
Priority 13 Reads 452
Kernel Time 0:00:15.250 Read Delta 0
User Time 0:00:40.843 Read Bytes Delta 0
Total Time 0:00:56.093 Writes 58
Context 2015 Write Delta 0
~Virtual Memory Write Bytes Delta 0
Private Bytes 20 224K Other 9488
Peak Private Bytes 22 204K Other Delta 0
Virtual Size 96 864K Other Bytes Delta 0
Page Faults 344258 | pandies
Page Fault Delta 148 Handles 423
~Physical Memory - GDI Handles 411
Working Set 17920K USER Handles 288
WS Private 9 764K
WS Shareable 8 188K
WS Shared 6460 K
Peak Working Set 20 500K

Lab Manual - OS5 Memory
Management

m ® Sysinternals VMmap

Process memory
usage

21

System memory usage

* All committed virtual memory
* This should go to the page file,
does not mean it is currently in

the page file

Commit limit: physical memory +
actual size of the page files

~ Active memory pages

Standby list

e Task Manager
File Options View

Processes| Performance | App history | Startup | Users | Details | Services

CPU
72% 2.00 GHz

4
AN

Memory

Memory [

—

0.7/1.0 GB (70%)

Disk 0 (C)

(]

29%

ompasition

Ethernet ‘

S: 0 R: 0Kbps
°746 MB
°1.3/2.(°271

aged poo

151 MB 427 M

~) Fewerdetails | (8 Open Resource Monitor

273 MB

Non-paged pool

N/A

MB

B

Resource monitor

=) Resource Monitor o [= s
File Monitor Help

Overview | CPU_ | Memory [Disk | Network
‘Processes = 73% Used Physical Memory OF m > Views |-| | =
Physical Memary [757 MB In Use ™ 255 MB Available oF piedihreea liemen 0% 1

Bl Hardware [l In Use Wl Moditied M standby] Free
Reserved 757 MB TMB 256 MB 3IMB
1MB
Available 253 MB 60 Seconds
Cached 263 MB Commit Charge
Total 1023 M8

Installed 1024 MB

Hard Faults/sec 100 4

Operating s

Memlnfo: Peer Inside Memory Manager Behavior on Windows Vista and Server
2008

http://www.alex-ionescu.com/?p=51

Optimalization: Prefetch (Windows XP)

® Many page fault at the start of the application
®m Always the same pages are needed
® Prefetch: watching the first 10 seconds

® Prefetch “trace file”: \Windows\Prefetch
— Name: .EXE-<hash from full path>.pf

® On next startup
— Needed pages are loaded asynchronously

= Watching the boot sequence also

Details: http://msdn.microsoft.com/msdnmag/issues/01/12/XPKernel/default.aspx

Another: Superfetch (Vista)

® 8 priorities to the memory pages
— 8 standby list for each priority
® Monitoring the usage of pages

® After memory deallocations pages are slowly
moved back to the standby list

Physical Memory Usage History

Source: http://technet.microsoft.com/en-us/magazine/cc162480.aspx

A significant change to the Memory Manager is in the way that it manages
physical memory. The Standby List management used by previous versions of
Windows has two limitations. First, the prioritization of pages relies only on the
recent past behavior of processes and does not anticipate their future memory
requirements. Second, the data used for prioritization is limited to the list of
pages owned by a process at any given point in time. These shortcomings can
result in scenarios like the "after lunch syndrome," where you leave your
computer for a while and a memory-intensive system application runs (such as an
antivirus scan or disk defragmentation). This application forces the code and data
that your active applications had cached in memory to be overwritten by the
memory-intensive activities. When you return, you experience sluggish
performance as applications have to request their data and code from disk.

Windows XP introduced prefetching support that improved boot and application
startup performance by performing large disk I/Os to preload memory with code
and file system data that it expected, based on previous boots and application
launches. Windows Vista goes a big step further with SuperFetch, a memory
management scheme that enhances the least-recently accessed approach with
historical information and proactive memory management.

SuperFetch is implemented in %SystemRoot%\System32\Sysmain.dll as a
Windows service that runs inside a Service Host process
(%SystemRoot%\System32\Svchost.exe). The scheme relies on support from the
Memory Manager so that it can retrieve page usage histories as well as direct the
Memory Manager to preload data and code from files on disk or from a paging
file into the Standby List and assign priorities to pages. The SuperFetch service

essentially extends page-tracking to data and code that was once in memory, but that the
Memory Manager has reused to make room for new data and code. It stores this
information in scenario files with a .db extension in the %SystemRoot%\Prefetch
directory alongside standard prefetch files used to optimize application launch. Using this
deep knowledge of memory usage, SuperFetch can preload data and code when physical
memory becomes available.

Whenever memory becomes free-for example, when an application exits or releases
memory-SuperFetch asks the Memory Manager to fetch data and code that was recently
evicted. This is done at a rate of a few pages per second with Very Low priority I/Os so
that the preloading does not impact the user or other active applications. Therefore, if you
leave your computer to go to lunch and a memory-intensive background task causes the
code and data from your active applications to be evicted from memory while you're gone,
SuperFetch can often bring all or most of it back into memory before you return.
SuperFetch also includes specific scenario support for hibernation, standby, Fast User
Switching (FUS), and application launch. When the system hibernates, for example,
SuperFetch stores data and code in the hibernation file that it expects (based on previous
hibernations) will be accessed during the subsequent resume. In contrast, when you
resume Windows XP, previously cached data must be reread from the disk when it is
referenced.

See the sidebar "Watching SuperFetch" for a glimpse of how SuperFetch impacts
available memory.

B Process Monitor: files used
at application startup

Prefetch

® Prefetch files
— C:\Windows\Prefetch

® |ayout.ini

® Content of a prefetch file:

— strings.exe

® Virtual memory, paging
® Multiple optimalization

® Analysing memory usage
— Task manager: quick summary

— Process Explorer, Meminfo: details

Operating systems

® \Windows XP Kernel Improvements: Prefetch

® |[nside the Windows Vista Kernel:
— 1. part: Multimedia Class Scheduler

— 2. part: Superfetch, Ready*

m XP Myths: Prefetch and other misconceptions

® Memlnfo: Peer Inside Memory Manager
Behavior on Windows Vista and Server 2008

