

Slides based on Windows Operating System Internals Curriculum Development

Kit

Configuring the Memory Manager

 Like most of Windows, the memory manager attempts to automatically provide

optimal system performance for varying workloads on systems of varying sizes

and types. While there are a limited number of registry values you can add

and/or modify under the key HKLM\

SYSTEM\CurrentControlSet\Control\Session Manager\Memory Management to

override some of these default performance calculations, in general, the memory

manager’s default computations will be sufficient for the majority of workloads.

Many of the thresholds and limits that control memory manager policy decisions

are computed at system boot time on the basis of memory size and product type.

(Windows 2000 Professional and Windows XP Professional and Home editions

are optimized for desktop interactive use, and Windows Server systems are

optimized for running server applications.)

6
7

7
7

8
8

• No user process can touch another user process address space (without first

opening a handle to the process, which means passing through NT security)

• Separate process page tables prevent this

•“Current” page table changed on context switch from a thread in 1

process to a thread in another process

9
8

No user process can touch kernel memory

• Page protection in process page tables prevent this

• OS pages only accessible from “kernel mode”

• Threads change from user to kernel mode and back (via a

secure interface) to execute kernel code, this does not

affect scheduling (not a context switch)

Dynamic Kernel Address Space: Windows and the

applications that run on it have bumped their heads on the

address space limits of 32-bit processors. The Windows

kernel is constrained by default to 2GB, or half the total 32-

bit virtual address space, with the other half reserved for use

by the process whose thread is currently running on the

CPU. Inside its half, the kernel has to map itself, device

drivers, the file system cache, kernel stacks, per-session code

data structures, and both non-paged (locked-in physical

memory) and paged buffers allocated by device drivers.

Prior to Windows Vista, the Memory Manager determined at boot

time how much of the address space to assign to these different

purposes, but this inflexibility sometimes led to situations where

one of the regions became full while others still had plenty of

available space. The exhaustion of an area can lead to application

failures and prevent device drivers from completing I/O operations.

In 32-bit Windows Vista, the Memory Manager dynamically

manages the kernel's address space, allocating and deallocating

space to various uses as the demands of the workload require. Thus,

the amount of virtual memory used to store paged buffers can grow

when device drivers ask for more, and it can shrink when the

drivers release it. Windows Vista will therefore be able to handle a

wider variety of workloads and likewise the 32-bit version of the

forthcoming Windows Server® code-named "Longhorn," will scale

to handle more concurrent Terminal Server users.

Of course, on 64-bit Windows Vista systems, address space

constraints are not currently a practical limitation and therefore

require no special treatment as they are configured to their

maximums.

12

Working set: Implemented as array of working set list

entries (WSLE)

Status Description

Active/valid: Page is part of working set (sys/proc), valid PTE points to it

Transition: Page not owned by a working set, not on any paging list, I/O is in

progress on this page

Standby: Page belonged to a working set but was removed; not modified

Modified: Removed from working set, modified, not yet written to disk

Modified no write: Modified page, will not be touched by modified page write,

used by NTFS for pages containing log entries (explicit flushing)

Free: Page is free but has dirty data in it – cannot be given to user process – C2

security requirement

Zeroed: Page is free and has been initialized by zero page thread

Bad: Page has generated parity or other hardware errors

15

Windows XP (& Embedded NT4) can run with no paging file

NT4/Win2K: zero pagefile size actually creates a 20MB

temporary page file (\temppf.sys)

WinPE never has a pagefile

Page file maximums:

16 page files per system

32-bit x86: 4095MB

32-bit PAE mode, 64-bit systems: 16 TB

How to configure paging files for optimization and recovery in Windows XP

(http://support.microsoft.com/kb/314482/en-us)

Page file: GUI: System Properties / Advanced / Performance, Settings / Advanced

/ Virtual Memory, Settings

Registry:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session

Manager\Memory Management

http://windowshelp.microsoft.com/Windows/en-US/help/e4598b92-b1c1-bc52-

5e30-6871dcc59ca01033.mspx

Lab Manual - OS5 Memory
Management

21

MemInfo: Peer Inside Memory Manager Behavior on Windows Vista and Server

2008

http://www.alex-ionescu.com/?p=51

Details: http://msdn.microsoft.com/msdnmag/issues/01/12/XPKernel/default.aspx

Source: http://technet.microsoft.com/en-us/magazine/cc162480.aspx

A significant change to the Memory Manager is in the way that it manages
physical memory. The Standby List management used by previous versions of
Windows has two limitations. First, the prioritization of pages relies only on the
recent past behavior of processes and does not anticipate their future memory
requirements. Second, the data used for prioritization is limited to the list of
pages owned by a process at any given point in time. These shortcomings can
result in scenarios like the "after lunch syndrome," where you leave your
computer for a while and a memory-intensive system application runs (such as an
antivirus scan or disk defragmentation). This application forces the code and data
that your active applications had cached in memory to be overwritten by the
memory-intensive activities. When you return, you experience sluggish
performance as applications have to request their data and code from disk.

Windows XP introduced prefetching support that improved boot and application
startup performance by performing large disk I/Os to preload memory with code
and file system data that it expected, based on previous boots and application
launches. Windows Vista goes a big step further with SuperFetch, a memory
management scheme that enhances the least-recently accessed approach with
historical information and proactive memory management.

SuperFetch is implemented in %SystemRoot%\System32\Sysmain.dll as a
Windows service that runs inside a Service Host process
(%SystemRoot%\System32\Svchost.exe). The scheme relies on support from the
Memory Manager so that it can retrieve page usage histories as well as direct the
Memory Manager to preload data and code from files on disk or from a paging
file into the Standby List and assign priorities to pages. The SuperFetch service

essentially extends page-tracking to data and code that was once in memory, but that the

Memory Manager has reused to make room for new data and code. It stores this

information in scenario files with a .db extension in the %SystemRoot%\Prefetch

directory alongside standard prefetch files used to optimize application launch. Using this

deep knowledge of memory usage, SuperFetch can preload data and code when physical

memory becomes available.

Whenever memory becomes free-for example, when an application exits or releases

memory-SuperFetch asks the Memory Manager to fetch data and code that was recently

evicted. This is done at a rate of a few pages per second with Very Low priority I/Os so

that the preloading does not impact the user or other active applications. Therefore, if you

leave your computer to go to lunch and a memory-intensive background task causes the

code and data from your active applications to be evicted from memory while you're gone,

SuperFetch can often bring all or most of it back into memory before you return.

SuperFetch also includes specific scenario support for hibernation, standby, Fast User

Switching (FUS), and application launch. When the system hibernates, for example,

SuperFetch stores data and code in the hibernation file that it expects (based on previous

hibernations) will be accessed during the subsequent resume. In contrast, when you

resume Windows XP, previously cached data must be reread from the disk when it is

referenced.

See the sidebar "Watching SuperFetch" for a glimpse of how SuperFetch impacts

available memory.

