
Budapest University of Technology and Economics

Department of Measurement and Information Systems

Collaboration of Tasks

Tamás Kovácsházy, PhD
13rd Topic

Inter Process Communication with Message Passing

Operating systems (vimia219)



© BME-MIT 2014, All Rights Reserved 2. lap

Looking back, communication solutions

 Using shared memory(RAM or PRAM model):

o Among threads running in the context of a process
(shared memory of the process)

 Messages:

o No shared memory

• Among processes running inside an operating system

• Distributed system (network communication)

o Microkernel based operating system

 Inter Process Communication, IPC



© BME-MIT 2014, All Rights Reserved 3. lap

Messages

 Different from the same word used in computer networks

o We consider a more generic notion of message

 Message passing

 For example:

o System call

o TCP/IP connection (TCP) or message (UDP) for internal 
(localhost) or external communication (among machines)

 Most cases they are implemented as OS API
function/method calls resulting a system call

 The operating system implements them by its services



© BME-MIT 2014, All Rights Reserved 4. lap

Some notes
 Semaphore, Critical section object, and Mutex are 

also implemented by the OS and handled by 
system calls
o Threads running in the context of a process 

communicate using shared memory (fast, low resource 
utilization)

oMutual exclusion and synchronization are solved by 
messages (using system calls).

o It has some overhead:
• Experiments: Lockless programming, transactional memory 

etc.
• There is no good solution, but we can pick a better one than 

the other (Churchill is right).
• The good solution is application and software architecture 

dependent



© BME-MIT 2014, All Rights Reserved 5. lap

Properties of message passing

 Compared to shared memory:

o Higher delay

o Lower bandwidth

o Unreliable communication channel

• Shared memory is reliable with the propability of 1
– RAM, PRAM model

• It is not true even for system calls in an operating system
– System overload may happen!

• Using a computer network is unreliable by definition
– Random and intentional errors

– Intentional errors are the worse, because they target the 
vulnerabilities of the system directly



© BME-MIT 2014, All Rights Reserved 6. lap

Addressing messages

 Computer networks...

 A given process (unicast address).

 All processes (broadcast address).
o E.g. power management messages

• Standby, Hibernate, PowerOff, etc. 

 A group of processes (multicast address).

 One process from a group of processes (anycast
address).
o E.g. a process that is going to serve the request from 

the processes that can serve the request because they 
run a specific service



© BME-MIT 2014, All Rights Reserved 7. lap

Direct communication
 Symmetric message based communication

o send(P, message)
o receive(Q, message)
o P, Q are process identifiers
o Q, the sender, is specified when receive() is called!

o Message is a data structure containing the information to be sent

 Asymmetric message based communication
o send(P, message)
o receive(id, message)
o P is the process identifier of the recipient
o The id identifies the sender. The receiver receives from anybody!

• In other words, id is a return value…

o Message is a data structure containing the information to be sent

 There is a direct reference in the code to the receiver or the sender 
(symmetric)
o Not a good idea...
o Makes everything too complex.



© BME-MIT 2014, All Rights Reserved 8. lap

Indirect communication
 There is a entity in between the communicating parties

o Proxy design pattern

 This entity can be: Mailbox, MesssageQueue, Port, etc.
 Interface: constructor and destructor plus

o send(A, message)
o receive(A, message)

 „A” is the identifier of the entity
o In distributed systems it may be in part the identifier of the node (identifier 

of a computer)

P QA (mailbox)



© BME-MIT 2014, All Rights Reserved 9. lap

Additional properties

 Minimum one sender

 Minimum one receiver
o After the message is received by a process it is deleted 

(single read)

o The message can be read multiple times (explicit delete is 
needed to remove it)
• SystemV Shared Memory in UNIX

 Owner can be:
o Operating system

• It exists independently of the processes which use it

o A process (It is located in the memory area of the process)
• It exists with that process



© BME-MIT 2014, All Rights Reserved 10. lap

Blocking

 Non-blocking call = asynchronous call
o Results and side effects does not available when the 

call returns (They may not have happened at all)

o Only execution of the real functionality is started after 
returning from the call

o Handling of return values, results, and side effects 
needs some other solutions from the caller:
• E.g. Events, signals, callback fuctions, etc. are used

 Blocking call = synchronous call
o Results and side effects are available on the return of 

the call (they happened).

o Handling of return values is simple...



© BME-MIT 2014, All Rights Reserved 11. lap

Blocking on the sender side

 Blocking send():
o The send() call does not return until the message is 

received (direct communication) or stored into the 
communication entity (indirect communication)

o How we handle errors?
• The send() call returns with errors

 Non-blocking send():
o After sending the message locally, it returns (does not 

wait for delivery or positive acknowledgements)

o A callback function or signal handling, etc.



© BME-MIT 2014, All Rights Reserved 12. lap

Blocking on the receiver side

 Blocking receive():

o The receive() call does not return until something is 
received (maybe with a timeout)

o Classic example: TCP/UDP socket listen().

 Non-blocking receive():

o The receive() call returns immediately with some data

• If there is a message receive, it return with that

• If there is no message it is told (pl. empty message with 0 
length, null reference, error code, etc.).

• If there is no message and non-blocking receive is called in 
an infinite cycle it results busy waiting (eats the CPU).



© BME-MIT 2014, All Rights Reserved 13. lap

Implementations 1.
 Mailbox:

o Indirect communication
o A single message is stored or multiple one, but the maximum number 

of messages is specified
o The mailbox is handled on the OS level

 MessageQueue:
o Indirect communication
o Infinite number of messages can be stored

• Of course, system resources limit the number

o Message based middlewares
• MSMQ, IBM's WebSphere MQ, Oracle Advanced Queuing (AQ), JBoss

Messaging, Apache Qpid.

 Embedded operating systems typically support 
Mailbox/MessageQueue type solutions even to communicate 
among threads
o Simple, problem free solution



© BME-MIT 2014, All Rights Reserved 14. lap

Implementations 2.

 TCP/IP TCP or UDP port:

o Direct communication

o Socket interface

o Localhost (127.0.0.1/8) can be used inside the machine

o Low level solution, several middlewares are based on it:

• Remote Procedure Call, RPC

• Remote method Invocation:

– CORBA (Common Request Broker Architecture), 

– JAVA RMI (Remote Method Invocation),

– DCOM/.NET Remoting, 

– SOAP (Simple Object Access Protocol).

• Message based middlewares (we have already talked about them)



© BME-MIT 2014, All Rights Reserved 15. lap

Implementations 3.

 Various pipes and streams:

o Typically direct but can be indirect (named pipe)

o E.g. UNIX pipe, Windows Named Pipe, RTLinux FIFO

 System V Shared Memory (UNIX, Linux)

o Direct

o Memory based interface using the special features of 
the MMU

o In the UNIX lectures is will be introduced



© BME-MIT 2014, All Rights Reserved 16. lap

Remote Procedure Call

 It is introduced in detail:

o It is used even now, primarily for OO, so it is called 
Remote Method Invocation in this context

o Very illuminating to see how it works...

 Remote Procedure Call, RPC:

o Calling a function located in the memory of an other 
process from the calling process using messages

o The caller blocks while waiting for the answer

o The called function runs in a thread of the called 
process



© BME-MIT 2014, All Rights Reserved 17. lap

P
 s

id
e
 O

S

Q
 s

id
e
 O

S

Architecture of RPC

Stack

Free memory

Heap

Data

Code

Stack

Free memory

Heap

Data

Code

P process (client) Q process (server)

Function/method

Calling 
code

P
 s

id
e

H
W

Q
 s

id
e

H
W

Computer

Network

Called 
code



© BME-MIT 2014, All Rights Reserved 18. lap

How the programmer sees RPC

 Practically using a remote procedure is like calling a local 
one (actually it is calling a local one).

o The function is available as a stub function in a program library 
(prepared by the RPC development system)

o The programmer needs to nothing about where the actual 
function will be executed (RPC hides the details)

 Implementation of the actual function is similar than 
writing a local function

o The programmer gets an interface definition (prepared by the 
RPC development system) and implements the functionality 

o The programmer needs to nothing about from where the actual 
function is called (RPC hides the details)



© BME-MIT 2014, All Rights Reserved 19. lap

RPC in operation 1.

 The parameters and return value of the call has types

o Structured message is sent

o Platform independence is realized by the Operating System and 
the development system (compiler or interpreter)
• All sent data is converted to standard formats e.g. Binary Encoding Rules

(BER), XML, etc.

 The client program calls a normal local function

o The local function is an automatically generated stub function 
handling the RPC

o The stub hides the details of communication from the 
programmer using it

o We do not talk about that how the server is found
• Let us assume that it is known…



© BME-MIT 2014, All Rights Reserved 20. lap

RPC in operation 2.

 The responsibilities of the client side stub are during the call

o Packing the parameters of the call into a platform independent form 
and putting it into a message (or messages), and sending it to the 
server

o To implement this it uses the services of the operating system and the 
computer network

 On the server side the RPC service gets the messages 
containing the parameters of the call (including function 
name)

o It converts the parameters to a local form

o It calls the local function

o The return values are converted back to standard form

o The standard form return values are sent back to the client in a 
message (or messages)



© BME-MIT 2014, All Rights Reserved 21. lap

RPC in operation 3.

 The client side stub receives the messages with the 
return values in standard form
o It converts the standard form return values to the local form

o It returns with the return values converted back to local form 
from the stub into the calling program

 The client thread calling the remote code
o Waits for an event  caused by the incoming message containing 

the return values

 The server thread waits for incoming calls, and if there is 
any, it runs (executes the calls)
o It blocks on listening for incoming messages


