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Exercise 8. 

Identification and control of linear systems 

 

Introduction 

The control design methods presented in the Control Engineering course (serial compensator 

design, two degrees of freedom controller, state space-based control) are model-based ones. 

As the name suggests, these methodologies assume that the model of the plant is known, and 

the design of the controller is based on its parameters.  

Process models can be obtained by two ways. At first, they can be derived from physical 

principles defining the operation of the system (e.g. motion equations or heat transfer laws) 

and the corresponding parameters (e.g. body mass or heat transfer coefficients) might be 

measured in an adequate way.  

However, in practice there are parameters that can hardly be measured or found in 

datasheets. For instance, consider a simple temperature control of a room. Based on the 

physical principles, one can derive the qualitative model (i.e. the transfer function) of the 

process. However, in the model of the system, the heat transfer coefficient of the heater and 

the walls and are present, and their measurement is quite difficult. On the other hand, we are 

able to vary the input signal (power applied to the heater) in a wide range, and we can easily 

measure the temperature of the room, i.e. we can apply an arbitrary signal to the input of the 

process and measure its response on the output. Based on these data and the qualitative 

model, the parameters of the process and therefore the numerical model can be found using 

adequate identification methods.   

One must keep in mind that the identified parameters only approximate (better or less) the 

real parameters. Also, physical parameters of the process might vary as time passes. 

Consider the aging of the heating system: as scale appears inside the heating pipes reducing 

the heat transfer coefficient parameters (and therefore the efficiency) of the system, the 

model of the process changes. The controller has to be robust enough to handle these 

parameter changes and show a good performance even though the model of the process used 

during control design is not fully accurate.  

This exercise presents these practical aspects of the material presented in the Control 

Engineering course. The laboratory exercise follows the path the engineer tracks during the 

design and implementation of control systems: data acquisition carried out on the plant, 

identification of the process model, development of a robust control algorithm and its 

software realization, final test and evaluation of the control system.  
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Aim of the exercise 

The laboratory exercise allows students to try how principles and methods presented in the 

Control Engineering course can be used in practice, and therefore study the practical aspects 

of control design. The tasks will be carried out using a physical plant, represented by an 

electrical circuit, which is controlled by a PC equipped with a data acquisition card with AD 

and DA converters. Laboratory tasks include  

1. measurement of the typical parameters (settling time, damping) of the plant using a 

signal generator and an oscilloscope 

2. selection of the adequate sampling time and excitation signal for identification, 

computer-based data acquisition and model-fitting  

3. specification of the parameters of the desired closed-loop dynamics and design of a 

state-feedback compensator with state estimator in discrete time  

4. verification of the controller by simulation  

5. real-time realization of the compensator in state space and evaluation of reference 

signal tracking, disturbance rejection and robustness properties of the physical 

control system  

These tasks represent the path the control engineering has to track when designing a 

controller for a partially unknown physical system in the practice. During the laboratory 

practice, physical instruments like signal generator and oscilloscope and industry-standard 

software (Matlab, Simulink and Control System Toolbox) will be used. 

Required knowledge 

To successfully complete the measurement tasks, students need to possess knowledge of the 

following fields: 

 modeling and properties of dynamical systems 

 basics of system identification 

 control design in state-space  

The required knowledge is covered by the Signals and Systems and Control Engineering 

courses. However, most important parts are briefly summarized in the Preliminaries section 

of this laboratory guide. (Some paragraphs are placed in boxes, these parts are not necessary 

to know, but they help to understand the details.) 

Read over the preliminaries section carefully, as the teacher might check your knowledge by 

oral questions or a written test. 
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Preliminaries  

Dynamic properties of control loops 

Given is a dynamic system which can be either a plant or the whole closed control loop. The 

dynamic properties of the system show, how the transient looks like on the output, if the 

input was changed. The speed of the transient and its overshoot can be characterized by 

different parameters. 

Generally, fast operation and small overshoot (big stability margin) are required in closed 

loop. Usually, the speed-up results increasing overshoot, hence a good tradeoff should be 

found between these requirements. One should first examine the dynamic properties of the 

plant, and based on these parameters realizable specification can be defined for the closed 

loop behavior. 

The properties (speed) of the continuous-time plant have to be taken into consideration at the 

selection of a sampling time. The sampling time is both required at the identification and the 

controller design phase. 

During this exercise, the students have to estimate the dynamic properties of the plant first, 

and based on these values, the sampling time and the requirements for the controlled system 

can be determined. 

To examine the dynamic properties, one can use the continuous-time transfer function of the 

system. A stable pole (a pole placed on the left-hand-side half plane of s ) is slower if the 

real part of the pole is closer to zero. The pole or complex conjugate pair of poles of the 

closed loop which is the closest to the imaginary axis is referred to as the dominant pole or 

dominant pair of poles of the closed loop.  

As a rule of thumb, one can conclude that if the other poles are placed leftwards to the dominant poles 

such that the absolute value of their real parts are at least three times the absolute value of real part of the 

dominant pair of poles, then the transients caused by these poles decay before the first peak of the step 

response and therefore the dynamic properties of the system are overwhelmingly determined by the 

dominant pair of poles.  

Since a complex pair of poles corresponds to a second order term, the closed loop can be 

well approximated by the prototype second order term as specified by the dominant pair of 

poles. A typical pole-zero map of a closed loop with a dominant pair of poles is shown in 

Fig. 8-1. 

 

Fig. 8-1 Typical pole-zero map of a closed loop 
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A typical transient, the step response of the closed loop is shown in Fig. 8-2. The figure 

shows that the steady-state error for a step reference signal can be defined by )(1 v . The 

dynamic properties of the closed loop are: 

 the overshoot )(/)]()([  vvTvv m ,  

 the time to the first peak mT ,  

 the settling time %2T   

 and the rise time riseT .  

There is a direct connection between the dynamic properties and the location of the 

dominant pair of poles of the closed loop, defined by its undamped natural frequency 0  

and damping factor  (see Fig. 8-1): 
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Fig. 8-2 Dynamic properties of the control loop 

The dynamic properties of the closed loop can be than approximated using the known 

formulae for the prototype second order term, e.g. assuming zero steady-state error: 
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The damping factor   of the dominating pair of poles can be obtained from the maximal 

allowed overshoot of the closed loop, v . Usually, the undamped natural frequency is 

selected as sT/50  , where  is TT  denotes the aggregate time constant of the plant. 

Our goal is to approximate the best the transfer function 1)(closed sW  in order to assure that the output 

signal tracks the reference signal with the smallest error possible by setting appropriate damping and 

frequency parameters. 

If the damping factor is fixed, the speed of the transients can be influenced by setting the undamped 

natural frequency 0  of the dominant pair of poles. The marginal frequency of the closed loop (which is 

approximately the crossover frequency c of the open loop transfer function) is nearly identical to the 

corner frequency T/10  of the second order prototype system approximating the closed loop. 

Therefore, the undamped natural frequency 0 of the dominating pair of poles can be determined from 

the marginal frequency ch    affecting the speed of closed-loop transients.  

However, if we have our model of the plant identified from its step response, and we have determined the 

time constants iT  from it, then the relative error of the step response of the plant will be significant in the 

neighborhood of 0t . Therefore, if we accelerate the system so much that its transients are significant in 

the neighborhood of 0t , then we might experience undesired closed-loop behavior due to model 

uncertainties.  

In practice, by introducing the aggregate time constant  is TT  of the plant (by approximating the 

denominator of the plant by a first-order Taylor-series, so considering the plant as a first order prototype 

term with the time constant sT ), the thumb rule of choosing sT/50  can be used, especially in case of 

aperiodic systems (systems which can be considered as a serial interconnection of first order terms).  

The acceleration of the system is also limited by nonlinearities appearing in case of large 

signals (saturation etc.) and high frequency disturbances (their effects have to be cut down 

significantly by the closed loop).  

Typical discrete-time process models 

To carry out parametric system identification, at first a suitable model class has to be chosen. 

These classes differ in whether they include any external excitation signal, the or what filter 

they apply on the input and the noise. The Matlab-based System Identification Toolbox 

(IDENT) developed by Ljung et al defines many of these models, amongst which we will 

focus only on the ones of discrete-time SISO (Single Input Single Output) systems.  

The naming convention of the system models corresponds to their properties. AR stands for 

Auto Regressive, MA stands for Moving Average, X refers to a model containing 

eXogenous input signal, OE denotes Output Error (additive error reduced to the output). BJ 

stands for the Box-Jenkins model while PEM denotes the most general Parameter Estimation 

Model. The normalized time used for the description of the models is iTt  , where T is the 

sampling time and i is the index of the sampling instance. )(tx is a possible sample-series, 

while kz   denotes the shift operator defined by )(:)( ktxtxz k  . Although only the ARX and 

ARMAX models will be used during the exercise, here we present also the most simple and 

most general models supported by IDENT, namely the AR and PEM models too: 

(AR)  )()()( 1 tetyzA  , 

(ARX)  )()()()()( 11 tentuzBtyzA k   , 

(ARMAX)  )()()()()()( 111 tezCntuzBtyzA k
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The external input (control signal on the input of the plant) is denoted by )(tu , the white 

noise is denoted by )(te and the output signal with the added noise is denoted by )(ty . 

)(),(),(),(),( 11111  zFzDzCzBzA  are polynomials of the shift operator 1z  and IDENT uses 

kn  to describe the time delay or time lag ( TnT kh  , where T is the sampling time). The 

polynomials )(),(),(),( 1111  zFzDzCzA  of the models are monic ones, such that

a

a

n

n zazazA
  1

1

1 1)( .  

In order to allow an arbitrary gain for the system without noise, )( 1zB cannot be monic: 
)1(1

21

1)(
  b

b

n

n zbzbbzB  . The gain of the noise channel can be set by the appropriate 

standard deviation of the white noise ),0()( Nte  . IDENT uses the 2:   parameter 

instead of the normal deviation. According to the conventions of Matlab, the polynomials 

)(,),( 11  zFzA  have to be defined by their coefficients in the descending order of the 

powers of z, e.g. as ]1[ 21 anaaaA   for )( 1zA . Note that kn and B are defined 

simultaneously by inserting kn leading zeros into B . 

Identification methods  

In the sequel, we omit the time delay since it can be modeled by the appropriate shift of the 

values of )(tu  if kn is known.  

Assume that an appropriate model type M  has been chosen, and the corresponding )(M  

models can be parameterized by the parameter vector  , which potentially have to meet 

given requirements (stability etc.): pR MD . (For example, let the model type M  be the 

AR model with 2an , this means )()()1( 2

2

1

1 tetyzaza    or in other form 

)2()1()()( 21  tyatyatety , in this case the parameter vector which has to be determined 

is: Taa ][ 21 .)  

Clearly, every model provides a possibility for prediction, namely the current output can be 

predicted based on the actual input and the previous input and output data. Especially, if the 

model class is 

 )(),()(),()( 11 tezHtuzGty    , (8-1) 

then the prediction can be carried out with the one-step-ahead predictor defined by  

 )()],(1[)(),(),()1(ˆ:)( 11111 tyzHtuzGzHtty   M , (8-2) 

which gives a prediction for )(ty  based on the outputs available until time moment )1( t  

and the inputs known until time t . The predicted output is denoted by )1(ˆ tty . 

Then the prediction error is given by 

 )](),()()[,(),( 111 tuzGtyzHt     (8-3) 

The one-step-ahead predictor gives an approximation which is optimal in the estimated value of the 

square error if the following conditions are met: 

)1( te  and )](),()())[,(1( 111 tuzGtyzHz    are independent. 

)1( te  and )1()( 1  tuzG are independent. 

tteE  ,0)(  . 
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The condition iii) is always fulfilled in case of white noise. If the system has a low-pass characteristics, 

then the conditions i) and ii) are also fulfilled in case of external noise. However, signals measured in 

closed loop or quantizing errors can cause problems. 

The data available for the parameter estimation is )}(),(),2(),2(),1(),1({ NuNyuyuyZ N  , 

which contains N  input-output pairs. The problem is to choose the appropriate parameter 

vector N̂  and therefore the adequate model )ˆ( NM from the class of systems 

}:)( M{MM D   based on the information in NZ :  

 MDZ N

N ̂ .  (8-4) 

Such a mapping is referred to as parameter estimation for model identification. We seek such 

a model which "describes" well the measured data, and we consider that the most important 

property of the model is its prediction capability. It means that, in order to choose a “good” 

model, at first the prediction error ),(  t  is determined from the information contained in 

.tZ  We choose the value of N̂  at the time instance Nt   such that the prediction errors 

Ntt N ,,2,1),ˆ,(   would be the smallest possible ones. 

However, we shall at first define what do we mean by the word “small”. The series of 

prediction errors is a vector in NR , so therefore the error can be characterized by the square 

of its norm: 

 



N

t

F

N

N t
N

ZV
1

2
),(

2

11
),(  . (8-5) 

The approximation N̂  is defined as a solution to an optimization problem: 

 ).,(minargˆ N

N
D

N ZV 
 M

  (8-6) 

In case of the ARX model, the optimum can be determined algebraically, if we do not 

restrict the class of models ( pRMD ). In other cases, a suitable optimization method shall be 

used, which can use the exact or approximated derivatives of ),( N

N ZV  .  

The IDENT toolbox uses a quasi-Newton method for the identification of ARMAX and even 

more complex models. The main problem of optimization is that there might be a number of 

local optima beside the global optimum (especially in case of complex system models), so 

there is a significant risk of finding not the global, but only a local optimum. Therefore it can 

be necessary to repeat the optimization several times starting from different initial guesses.  

Identification of the ARX model using the least square method (LS) 

For an ARX model 

 )()()()(:)(
)(

1
)(

)(

)(
)( 11

11

1

tezHtuzGte
zA

tu
zA

zB
ty 





 . (8-7) 

The predictor reads 

 ),()()()](1[)()](1[)(
)(

)(
)(),(ˆ

111

1

1
1 tuzBtyzAtyzAtu

zA

zB
zAty 




   (8-8) 

and let us introduce the notations 

 )]1()()()1([:)(  ba
T ntutuntytyt  , (8-9) 

 T
nn ba

bbaa )(: 11   (8-10) 

Then a predictor linear in   can be defined by  
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  )(),(ˆ tty T . (8-11) 

The prediction error and the criterion to minimize are as follows. 

  )()(),( ttyt T , (8-12) 

 




N

t

TN
N tty

N
ZV

1

2

)()(
2

11
),(  . (8-13) 

The latter is a linear parameter estimation problem, and its solution can be computed from the condition 

0),(  N
N ZV  : 

 



N

t

T
N

t

N
N tt

N
tyt

N
ZV

11

0)()(
1

)()(
1

),(  , (8-14) 
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 
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
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t
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1

1

1

)()(
1

)()(
1

:ˆ  . (8-15) 

(8-14) and (8-15) can be written in another form as well. Note, that in (8-15) a matrix needs to be 

invertible, which is obtained from the )(t  vector containing input-output data. If the input for the 

identification was not selected properly (e.g. u  is constant) the resulted matrix will not be invertible. 

We suppose, that the observed data have been generated by the noisy system )()()( 00 ttty T  

corresponding to the real parameter 0 , where )(0 t  denotes the noise. Our goal is that if N  then 

0
ˆ  LS
N  (i.e. the LS estimation is consistent). One condition is therefore that the measurements )(t  

and the noise )(0 t  have to be uncorrelated. 

Generally, only the observations Nttuty 1),(),( are available for the computation of the regression 

vector )(tT , so the initial values corresponding to the time instances 0t , necessary for the LS 

estimation, are missing. The number of these initial values depend on an  and bn . Therefore, we 

consider the data series only from 1 nt , where }1,{max  ba nnn . By that way, the problem can be 

transformed to the original problem by reindexing and redefinition of N. 

Identification of the ARX model using the instrumental variables method (IV) 

As it has been shown, the correlation of the observation )(t  and the noise )(0 t  can cause problems in 

case of the linear regression model  )(),(ˆ tty T . In order to decrease the correlation, we can 

substitute )(t  by an appropriate instrumental variable )(t  at a properly chosen position of the formula 

of estimation.  

The instrumental variable )(t  has to be correlated with the )(t  observations, but also has to be 

uncorrelated with the noise )(0 t . 

The IDENT toolbox uses a numerically suitable IV4 algorithm for determining the parameters of the 

ARX model by the instrumental variable method. The IV4 method determines the suitable instrumental 

variables )(t  and the estimation N̂  in four steps. 

Identification of the ARMAX model using quasi-Newton method 

The IDENT toolbox uses a quasi-Newton optimization method for the identification of ARMAX models 

given as )()()()()()( 111 tezCtuzBtyzA   . The algorithm of the one-step-ahead predictor is 

applicable for ARMAX models, so ),(ˆ ty  and ),(  t  can be computed. Based on the results, the 

gradient of the error criterion ),( N
N ZV   can be obtained. The IDENT toolbox uses a multiple-step 

algorithm for the identification of ARMAX models with an IV4 estimation as initial step. 

Services of the IDENT toolbox 

Although the identification will be supported by a graphical user interface during the 

laboratory practice, it is useful to overview the services of the underlying IDENT toolbox. In 
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the followings the data structures and most important function calls of the toolbox will be 

presented. 

The system model is described by a special data structure named "th”. If the system is known (i.e. the 

coefficients of the polynomials and the square of the standard deviation of the white noise are 

numerically determined, e.g. because we would like to generate signals for the simulation of a known 

system in order to test the identification algorithms on a given benchmark system) the IDENT toolbox 

stores the system to a th-type variable upon the function call 

 th=poly2th(A,B,C,D,F,lambda,T).  

The latter parameters ( TFDC ,,,,  ) are optional, the value 1 will be substituted if they are omitted. A 

noisy or no-noise output of the system can be generated from known input and noise data series u  and e
by 

 y=idsim([u,e],th) 

 y=idsim(u,th). 

Input signals are to be defined as column vectors and resulting output data points will be also returned in 

a column vector. Appropriate input signals can be generated by, for example, the rand and sign 

functions of Matlab.  

The identification of an unknown system starts with the measurement of the input signal )(tu  and the 

noisy output signal )(ty . These measurements are then collected to the column vectors u  and y , and 

they are concatenated to the matrix ][ uyz   containing two columns. The identification using the 

services of IDENT has to be preceded by the selection of the adequate system model class (ARX, 

ARMAX, OE etc.), the selection of the orders of its polynomials and the specification of the time delay. 

The aim of identification methods is to obtain the optimal parameters of the polynomials by assuming 

that the noise )(te is unknown. The least square (LS) method, or more general parameter estimation 

techniques, like instrumental variable (IV) methods, numerical optimization or the combination of these 

methods can be used for finding optimal parameters. The IDENT toolbox chooses the identification 

method according to the type of the system. The instrumental variable (IV) method can be used only for 

ARX system models. The number of the nontrivial parameters in the polynomials of the system models, 

which is the order of the polynomial expect )( 1zB , is to be given in a column vector, e.g. 

][ kfdcba nnnnnnnn  in case of a PEM model. The zero order is allowed, e.g. if 0an , then 

1)( 1 zA , so therefore it has no effect. If the chosen system model does not contain all polynomials 

)(,),( 11  zFzA  , then the orders of the missing polynomials is forbidden to include in nn . The 

following polynomial orders have to be given in the order presented for the PEM model: 

(AR) annn  

(ARX) ][ kba nnnnn  

(IV4) ][ kba nnnnn  

(ARMAX) ][ kcba nnnnnn  

(PEM) ][ kfdcba nnnnnnnn . 

Identification methods of IDENT store the results (identified parameters and  ) to the th  structure 

specified by the user: 

(AR) thar=ar(y,nn) 

(ARX) tharx=arx(z,nn) 

(IV4) thiv4=iv4(z,nn) 

(ARMAX) tharmax=armax(z,nn) 

(PEM) thpem=pem(z,nn). 

By considering the non-noisy output of the identified system, or the known noise )(te  in case of 

simulation experiments, the output of the noisy system can be generated, e.g. in case of a PEM model: 

 y=idsim(u,thpem) 

 y=idsim([u e],thpem) 



Laboratory 2  Exercise 8 

 

8-10 

©BME-VIK Only students attending the courses of Laboratory 2 (BMEVIMIA305/BMEVIMIAC07) are allowed to download 

this file, and to make one printed copy of this guide. Other persons are prohibited to use this guide without the authors' written 
permission. 

The results of the identification can be displayed by the command  

 idplot([y u]), 

which plots both the output and the excitation signal. 

Coefficients of the polynomials can be extracted from the th structure, e.g. in case of a PEM model by the 

function call  

 [A,B,C,D,F]=th2poly(thpem). 

Measurements and identification results can be displayed on the same plot and can be visually compared 

by general Matlab services (plot etc.). Note that several functions listed here can be called by a more 

general way, and they also allow the identification of MIMO (Multiple Input Multiple Output) systems.  

The IDENT toolbox provides methods not only for discrete-time parameter identification as presented 

afore, but it also has several other services. Theoretical background of the algorithms of the IDENT 

toolbox is given in details in [1]. 

Requirements for the identified model 

Although the identification is carried out on sampled data, and the identified model is also a 

discrete-time one, the underlying system is a continuous one. Therefore, we require that the 

identification results for discrete-time linear models correspond to sampled continuous-time 

(analogous) linear systems. It is known that if is is a pole of the continuous-time system, then 

it is mapped to the discrete-time pole Ts

i
iez   of the sampled system. It means that if iz is a 

negative real pole of the identified model with an odd multiplicity, then the model does not 

correspond to any continuous-time linear system (with the same dimension) since 

Tzs ii /)ln( -valued continuous poles can appear only along with their complex conjugate 

pairs, which is impossible if iz is a pole on the negative real axis with odd multiplicity. 

The IDENT toolbox assures that (assuming a stable system) the poles appearing outside the 

unity disk due to numerical inaccuracy return to the region of stability (the unity disk) by 

substituting 1

iz  instead of iz  if 1iz . 

However, it is possible that even though the signals of the ARX model, obtained by using 

the LS method, approximate well the input and output signals measured on the unknown 

system, some poles of the discrete-time model appear inside the )0,1[ interval of the 

negative real axis with odd multiplicity (a reason for such a phenomenon can be a 

quantization error). In that case the use of more time-consuming but more accurate IV4 or 

ARMAX models is recommended. 

State space-based compensator design in discrete-time 

Assuming a known model of the identified plant, compensators can be designed using 

various techniques. One of these methodologies, which can be considered classical 

nowadays, is based on the use of state feedback (SF), state observer (SO) and reference gain 

terms ( ux NN , ) allowing setpoint control. The compensator design method assumes that the 

system is controllable and observable, i.e. the ranks of the controllability matrix cM  and the 

observability matrix oM  are the same as the dimension of the state-space of the system. 

The state equation of a continuous-time system reads BuAxx  , Cxy  , where the size of 

the matrices are nmrnnn CBA  ,, . In SISO case 1 rm . The controllability matrix of the 

system is defined as ][ 1BAABBM n

c

   while the observability matrix reads

TTnTTTT

o CACACM ])([ 1  . The requirement for the controllability and observability means 

that ranks of cM  and oM  equal n . 
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In discrete time the state equation of the plant reads iii uxx 1 , ii Cxy  , where ATe

and Bde
T

A


0

  assuming that a zero-order hold element was used as digital-analog 

converter and T  denotes the sampling time. Control System Toolbox provides the c2dm 

function with 'zoh' (default) model for the conversion to such representations. In discrete 

time the controllability and observability matrices of the system read ][ 1 n

cM   

and TTnTTTT

o CCCM ])([ 1  , respectively. 

State space-based compensators can be designed both in continuous- and discrete-time. The 

Control Engineering course has addressed both techniques. Since the students have to use a 

discrete-time controller during this measurement task, only the discrete-time state-state 

based compensator design is presented in the sequel. 

Pole placement with state feedback 

If the state feedback is defined by ii Kxu  , where the size of the gain is nrK  (which means 

that the control input is the linear combination of the states), then the state equation of the 

closed loop is ii xKx )(1   and its characteristic equation reads ))(()( KzIzc  . 

It is known that the poles of the transfer function and the eigenvalues of the state matrix are 

the same. Therefore, if one would like to place the poles )det()(  zIz of the plant in 

order to stabilize and/or accelerate the system in closed loop, one can choose 

nn

nn

nc pzpzpzzzzzzzz  



1

1

121 )())(()(   as the characteristic polynomial of 

the closed-loop system and seek for the state feedback K  which assures 

))(det()( KzIzc   (pole placement problem). The region of stability in z  is the unity 

disk and fast poles are in the neighborhood of 0z  since is  is mapped to .0 T

i ez  

For SISO systems the algebraic problem can be solved using the Ackermann formula: 

 )()100( 1  

ccMK  , (8-16) 

where nR)100(   is a unity row–vector and Ippp nn

nn

c  



1

1

1)(  . In the 

sequel the use of the Ackermann formula will be denoted by 

 
c

c

M

z
K 

)(
),(


. (8-17) 

Control System Toolbox provides the acker function for the computation of K  using the 

Ackermann formula. 

Actual observer 

Since the state x  appearing in the state-feedback is usually not available for measurement 

(sensors measure only the output y ), it has to be substituted by a suitable approximation x̂ . 

If the signals are deterministic, then the term calculating x̂  is referred to as the state observer 

(in case of stochastic signals the notation state estimator is used, and the term is a Kalman 

filter in the majority of cases).  

In discrete time it is practical to exploit the fact that the measurement iy  is available at the time instant 

iTt  , so by taking this property into consideration a delay of one sampling period can be eliminated in 

the controller. This strategy is not applicable on the input, since an algebraic loop would appear in the 

system, making the computations more difficult. 

Let us consider that ),(  C  is observable, e.g. ),( C  is observable and 1 , i.e. there 

exists the inverse of the matrix  . The actual observer is a diskrete-time, linear time-

invariant (LTI) dynamic system with the estimated state x̂  as its output:  
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 11ˆˆ   iiii uHyGxFx . (8-18) 

The estimation error xxx ˆ~   reads 

       1111 ˆ~
  iiiii xFGCuHGCxxFx . (8-19) 

so we can obtain an asymptotic state observer if we choose the following parameters in order 

to assure 0~ ix : 

 1
~~,,  ii xFxGCHGCF  is stable and fast (8-20) 

If the speed of the transient of the observer is prescribed by its characteristic polynomial

),(zo  where       ,detdet  GCIzFIzzo  then G and F can be calculated by 

using the Ackermann-formula (or any other equivalent method) in SISO case: 

       GCFKGKCC T

IIIIII

TTT

I

IIc

o

M

z

,

)(
,,


 (8-21) 

Finally, H can be computed if G is known. 

Therefore, if the roots of the characteristic equation )det()( FzIzo  , corresponding to the 

decay of estimator error, are chosen to be suitably fast compared to the roots of )(zc , then 

the transients of the estimator decay rapidly and (if the model of the system was adequate) 

the error of the state estimator vanishes. 

The computation of ix̂ can be transformed into a form more suitable for real-time realization since 

)}.ˆ({ˆˆ 1111   iiiiii uxCyGuxx  Note that the computation of 11ˆ   ii ux  can be 

executed directly after the latest sampling while iyG  can be computed at the next sampling instance after 

measuring iy . It results efficient CPU-use, especially if xn dim is large. By introducing ix  (which can 

be computed between two sampling instances) the state equation of the actual observer can be 

transformed into the following form: 

 
  update"tmeasuremen"ˆ

update"time"ˆ 11



 

iiii

iii

xCyGxx

uxx
 (8-22) 

Setpoint control  

In the previous discussions on the controller design, we have assumed zero reference signal, 

which is unrealistic. Let us denote the reference signal by r , and assume that it is constant 

(or more precisely, it changes rarely and stays constant afterwards). We would like to assure 

that the difference  xrNx is zero in steady state and that there is no steady-state error on the 

output, i.e. ry  . The required control signal will be provided by rNu u  in steady state. 

Since the correction contains only feed-forward terms with respect to the state feedback, it 

leaves the characteristic equation of the closed loop unchanged, i.e. ))(det()( KzIzc 

. If mury  dimdimdim , then the size of the matrices xN  and uN  is mn  and mm , 

respectively (in SISO case 1m ). We take into consideration that the solution of the state 

equation in steady state is characterized by the equivalence of the previous and actual states 

in discrete time: 0)(   uxIuxx , so therefore  

 














 








 



m

mn

u

x

IC

I

N

N 0

0

1

. (8-23) 

Load estimation 

We have seen, that the states can be observed based on the input and output of the plant. 

Now we extend the state observer to be able to estimate an unknown disturbance. Using the 

estimated load value, its compensation can be carried out. 



Laboratory 2  Exercise 8 

 

8-13 

©BME-VIK Only students attending the courses of Laboratory 2 (BMEVIMIA305/BMEVIMIAC07) are allowed to download 

this file, and to make one printed copy of this guide. Other persons are prohibited to use this guide without the authors' written 
permission. 

The disturbance is assumed to be reduced to the input of the plant ("load change”). If we 

have knowledge about the characteristics of the disturbance, then it can be modeled. We may 

assume for instance that the disturbance is constant, so its difference equation is ii dd 1  ( d

is a constant with unknown value). If we augment the system with the state variable dxd  , 

and we introduce the notation TT

d

T xxx ),(~  then the extended state equation reads  

 

  .~~
0

,
~~~~

00

,

1

,1,

1

ii

id

i

i

iiii

id

i

id

i

xCy
x

x
Cy

uxxu
x

x

Ix

x
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




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
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
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 (8-24) 

Since the system )
~

,
~

,
~

( C  is not controllable (the external signal dx  obviously cannot be 

controlled internally by u ), we have to obtain the state feedback and the reference gains 

allowing setpoint control for the original system. However, the observer has to be designed 

for the extended system in order to make it capable of estimating both x̂  and dx̂ : 

 

),(),,(

)S()
~

,
~

,
~

()
~

,
~

,
~

(

)S(),,(

ux NNC

OHGFC

FKC







 (8-25) 

The realization of the control loop including load estimation is illustrated by Fig. 8-3. 

 

 

Fig. 8-3. Control with load estimation in discrete time. 

The essence of load estimation is that after the decay of the transients of the observer the 

term dx̂  added to the output of the controller and the disturbance d on the input of the plant 

compensate each other, and therefore the system is operating as in case of no disturbance. 

However, an adequately exact model of the system is indispensable. Nevertheless, the load 

estimator is able to compensate parameter changes. 

For further details and illustrative examples, see [2]. 
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Measurement Instruments 

Beside the well-known instruments (function generator and oscilloscope), a special test 

panel representing the plant to be identified and two special software products will be used 

during the laboratory practice. The PC running these software is interfaced to the test panel 

by an Advantech PCI-1711 data acquisition card. 

Test panel: input scaling circuit and plant 

The test panel comprises a scaling circuit and the plant itself. The scaling circuit converts the 

inputs to the [-10V, +10V] operating voltage range of the plant from the [0V, +10V] voltage 

range of the Advantech PCI-1711 data acquisition card.  Most relevant tasks of the exercise 

are to carry out on the plant.  

The plant is a third order linear dynamical system realized as an electronic circuit, and is the 

serial interconnection of a first order and a prototype second order term, i.e. its transfer 

function reads 

     
  

    𝜉      
           

  

The system shows linear time-invariant behavior in a wide range of signals with a good 

approximation. However, it has an output offset in case of zero input.  

The front panel of the device is shown by Fig. 8-4. The plant can operate in more than 

hundred operating modes, which realize systems with different parameters in the class of 

third-order systems. During the exercise the parameter values are unknown, and they have to 

be identified. 

 

y=x

x

x

u

SZAKASZ

+12V

GND

-12V

1

2

3

d

 

Fig. 8-4. Front panel of the plant (SZAKASZ in English means PLANT) 

The identification has to be carried out on the nominal system, and the assigned controller is 

also to be designed for the nominal system. Experiments (simulation and real-time 

experiments) should be carried out on the nominal system at first. Afterwards, the 
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experiments should be repeated on the plant with perturbed parameters (small parameter 

changes in negative and/or positive directions) in order to verify whether the controller is 

robust enough to deal with parameter changes.    

The plant is powered by the power supply available at the lab (plugs at the left-hand side of 

the front panel). Take care of connecting it with right polarity and accurate voltage settings 

(+12V, -12V). 

The plant has two inputs: u and d (BNC connectors), where u is the control signal and d is 

the external disturbance on the input of the plant. All three states of the plant are available 

for measurement (BNC connectors at the right-hand side of the front panel), amongst which 

1x  is assumed to be the output. The voltages applied to the input can vary between 0 and +10 

V and these levels are converted to the [-10 V,+10 V] range by the scaling circuit of the 

panel. This conversion, originated from the properties of the Advantech data acquisition 

card, remains hidden since also Matlab and Windows-based software modules use input 

signal in the [-10 V, +10 V] range.  The voltage measured on the outputs varies in the [-10 

V,+10 V] range. Signals with higher amplitudes result saturation and the plant leaves the 

region of linear operation hence such high amplitudes should be avoided. 

The offset of the output is compensated automatically by a constant term added to the 

controller output in the real-time control algorithm. 

The Consol Matlab application 

The Consol application, running in Matlab environment, is responsible for coordination of 

the identification, controller design, simulation and evaluation routines. The program can be 

started from Matlab Command Window by typing the command consol. The features of 

the application can be accessed from the Consol_Panel window, shown by Fig. 8-5. 

 

 

Fig. 8-5. Graphical User Interface of the Matlab application 
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The figure shows that control engineering tasks to be carried out in Matlab environment can 

be divided into four major parts. 

INPUT GENERATION 

This part deals with the generation and recording of the input signal necessary for 

identification. The signal generated is a series of varying-length square pulses which 

approximates a pseudo-random signal such that the minimal length of the constant periods 

can be set.  If the default signal is not adequate, the parameters of the input signal can be 

redefined.  

Suggested Sampling Time 

The suggested sampling time passed to the RT_DataAqu_Control application. The user can 

set here the time between two samplings (in ideal case). However, due to the properties of 

Windows scheduler, it cannot be assured that the suggested sampling time is respected 

exactly by the RT_DataAqu_Control application. 

Real (avarage) sampling time 

This parameter is the average sampling time which RT_DataAqu_Control was able to 

achieve in Windows environment. In the followings, controller design is carried out using 

this sampling time. The generation of the reference signal for RT_DataAqu_Control is 

carried out using the Suggested Sampling Time, which will realize a sampling time 

approximately identical to Real (avarage) sampling time. 

Amp 

Magnitude of the excitation square signal. The signal is symmetric, i.e. it varies between 

+Amp and –Amp. 

Min. Pulse length 

Defines the minimal pulse length in multiple of sampling periods i.e. gives at least how 

many sampling instances elapse between two amplitude changes. 

Change 

Probability of the change of the input signal at a given time instance: a real number between 

0 and 1. If the parameter is set to e.g. 0.3, then at each sampling instance, there is a 30% 

chance that the signal will change from –Amp to +Amp (or +Amp to –Amp). This probability 

is overridden (masked) if the number of samplings between the actual sampling instance and 

the last amplitude change is smaller than Min. Pulse length, since the input signal cannot 

change in that case. 

Samples 

Defines the length of the input signal in sampling instances. 

ADbits 

Defines the number of bits of the AD converter on the data acquisition board. It has 

significance only in case of simulation, where the plant is also simulated. It allows to cut out 

quantization (choosing high number of bits) or to check the effect of quantization on the 

properties of control. This parameter has no effect during the measurements since the data 

acquisition card has a 12 bit ADC.  

DAbits 

Used for the study of quantization effects during the simulation. During the data acquisition 

for identification or during the control, the number of bits of the DAC on the data acquisition 

board has to be given here. Based on it, the Matlab software passes a signal to 

RT_DataAqu_Control with a magnitude not exactly Amp but its adequately quantized value.  
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After setting the aforementioned parameters, the input signal can be generated by clicking on 

the Generate input button. The signal will be displayed in the window Figure No.1. If the 

signal does not fulfill the planned requirements, a new input signal can be generated by 

applying new parameter settings and clicking again on the Generate input button. 

IDENTIFICATION 

This part deals with the parameter settings for identification and the execution of the 

identification procedure. 

Load measured output 

By clicking on the Load measured output button, the measurements of the output signal 

recorded by RT_DataAqu_Control are loaded into Matlab workspace.  After that the input 

signal and the response of the plant are displayed in the window Figure No. 1. The value of 

Real (avarage) sampling time is determined simultaneously. 

Identification mode 

This allows the selection of the used identification model/method from the set LS, ARX, IV4 

and ARMAX. 

Start identification 

The identification of the model, based on the input signal used during data acquisition and 

the measured output signal, can be initiated by clicking on the Start identification button. 

Results are displayed at the IDENTIFICATION RESULTS block of the Results window (see 

Fig. 8-6).  

 

 

Fig. 8-6. Window displaying the parameters of the identified model and the controller 
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The identified parameters are contained by the vector theta. The variables zpid and spid 

contain the poles of the identified model in z and in s domains, respectively. The A3 

parameter gives the DC gain of the continuous model corresponding to the identified 

discrete-time one. T2 and ksi represent the time constant (reciprocal of the undamped natural 

frequency) and the damping of the second-order term of the model, respectively. T3 is the 

time constant of the first-order term of the model. 

Consol_Panel (and also the Results window) displays whether there exists a continuous-time 

model corresponding to the identified one (identification is carried out in discrete time). If 

not, the T3 time constant is corrected, which is indicated in the Results window. After the 

execution of identification, the identification error, which is the difference of the output 

signals of the real plant and that of the identified model, is displayed in the Figure No. 2. 

window. Then the input signal, the measured output signal and the output signal of the 

identified model are plotted in the window Figure No. 3. 

CONTROLLER DESIGN 

This block designs a discrete-time controller using state-space based techniques for the 

identified model, according to the prescribed specifications. 

Controller mode 

Defines whether the controller contains normal state feedback (normal), state feedback with 

integrating control (integral) or state feedback with load estimation (load). 

Poles calculator (optional, for assistance) 

The undamped natural frequency )(  and damping )(  of the dominant pair of poles can be 

given in a vector according to the conventions of Matlab. The software computes the pole 

itself (one of the pair of poles and its complex conjugate) based on these parameters. This 

function is useful for the specification of poles (scnew, sobs vectors). 

scnew(1), scnew(2), scnew(3), scnew(4) 

The prescribed continuous-time poles (dominant pair and additional poles) of the closed loop 

can be defined here. In case of integrating control, four poles are necessary. Otherwise, only 

three poles are needed. If a complex pole is specified, then its conjugate will also appear. 

After giving the poles (and pressing enter or leaving the edit window), the software 

calculates the corresponding discrete-time poles and displays them in the zcnew textbox. 

sobs(1), sobs(2), sobs(3), sobs(4) 

The prescribed continuous-time eigenvalues (dominant pair and additional poles) of the 

observer can be defined here. In case of load estimation, four eigenvalues are necessary. 

Otherwise, only three eigenvalues are needed. If a complex pole is specified, then its 

conjugate will also appear. After giving the eigenvalues (and pressing enter or leaving the 

edit window), the software calculates the corresponding discrete-time poles and displays 

them in the zobs textbox. 

The application designs a controller according to the specifications after clicking on the Start 

controller design button. Parameters of state feedback, reference gains and the observer are 

saved, displayed at the Results window and the file for passing them to 

RT_DataAqu_Control is prepared. (In case of deficient specifications, the program warns the 

user to correct the specification, or to execute the identification if no identified model is 

present.) Results window displays the designed state feedback K, the state feedback 

corresponding to the integrator Ki (only in case of integrating control), the reference gains 

Nx, Nu allowing setpoint control and the matrices F, G, H of the state equation of the 

discrete-time actual observer. 
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SIMULATION 

This block executes the simulation of the control loop with the controller designed for the 

identified model. It also compares simulation results with measurements on the controlled 

physical plant. 

Parameter modification 

The multiplier of parameter perturbation for the simulation can be defined here. The 

parameter 1.00 corresponds to the nominal system. The parameters A3, T3, ksi )( and T2 of 

the identified model are multiplied by this parameter before the simulation.  

Disturbance level 

Gives the magnitude of the step function disturbance appearing on the input of the plant 

(load).  

Filtering u and y  

This is an optional feature which allows the filtering of the input and output signals of the 

plant during the simulation.  

 

The simulation of the closed loop, comprising the previously designed controller and the 

(optionally perturbed) plant is carried out upon clicking on the Start Simulation button. (The 

length of the simulation, the shape of the reference signal and the time instance where the 

input load is switched on are determined automatically). Results are displayed in two 

windows.  

The left sub-window of Figure No. 4. shows the output signal, the reference signal and the 

input load, while the right sub-window shows the control signal (the output of the 

controller). 

Figure No. 5. is divided into four sub-windows. The top left one shows the state 
1xy   of the 

identified model, and its estimation )ˆ( 1x  provided by the state observer. The top right sub-

window shows the state 2x  of the identified model, and its estimation )ˆ( 2x  provided by the 

state observer. The bottom left sub-window shows the state 3x  of the identified model, and 

its estimation )ˆ( 3x  provided by the state observer. The bottom right sub-window shows the 

input load )(d  and its estimation )ˆ( dx provided by the observer (only in case of load 

estimation). 

Upon clicking on the Load measurements button, Figure No. 4. is extended by the plot of the 

measured output while Figure No. 5. is extended by the plots of the states of the physical 

plant and the estimated states provided by the observer realized by RT_DataAqu_Control 

(i.e. there will be three plots shown in each sub-window). 
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The RT_DataAqu_Control application 

The RT_DataAqu_Control application is running in Windows environment on the Lab PCs, 

i.e. it is a windows application with MFC (Microsoft Foundation Class) user interface. The 

program consists of two threads such that the one realizing data acquisition and control has 

higher priority.  

 

 

Fig. 8-7. User interface of the RT_DataAqu_Control application 

The program starts with a main dialog window (see Fig. 8-7.), which allows to display three 

functional dialogs: Set circuit Switches, Data aquisition for Identification, Closed loop 

Control. There is also a Quit button, which closes the application.  

Circuit selection 

The Set circuit Switches dialog allows the teacher to set which circuit will represent the 

nominal plant (see Fig. 8-8). Moreover, students can choose whether they would like to 

work with the nominal plant, or one with parameters perturbed to negative or positive 

direction. The selected settings appear in the windows used during data acquisition and 

closed loop control. It is recommended to check these parameters before starting the 

aforementioned functions.  

If the appropriate password is entered, the Circuit Code window is activated. Then the 

previously set code can be redefined. The radio buttons in the Parameter Variation frame 

allow the adjustment of perturbation. 
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Fig. 8-8. Dialog for parameter settings  

Data acquisition for identification  

The Data acquisition for Identification dialog shows the parameter set in the Matlab 

application: the suggested sampling time and the length of data acquisition (see Fig. 8-9). 

Fig. 8-9. User interface of the data acquisition  

After clicking on the Start button, the program waits for a safety period (approx. 50 

seconds), in order to let the system pass to its steady state. Then the data acquisition is 

started, and the application displays its progress in percentages.  

Except the START, STOP and QUIT buttons, all controls of the dialog box are inactive 

ones, since data displayed by them are either set in the Matlab program or are measurement 

data. 

Due to the properties of Windows scheduler, the prescribed sampling time cannot be exactly 

respected, but the difference from it is nearly constant at each sampling period and the 
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deviation of the real sampling time is minimal. The program uses the clock pulse of the CPU 

for fast and precise time measurement. (For CPUs with automatic clock scaling, e.g. Intel 

Centrino platforms, the automatic scaling feature has to be switched off by the system 

administrator.)  

The application informs the user when the data acquisition is finished. Clicking on the 

Quit/Save button closes the dialog and saves the measurements to a file. The application uses 

fixed-name files for communication with the Consol Matlab application, which files are re-

written upon running the data acquisition. It is practical to save these files or the appropriate 

Matlab variables and plots to your own directory in order to facilitate preparing the 

Laboratory report. The data acquisition can be interrupted any time by the Stop button. 

However, in that case only a truncated file is generated, which is not handled by the Consol 

Matlab application, so interrupting the data acquisition is not suggested.  

Control 

The functionalities of the Closed loop Control dialog box are similar to the ones of the Data 

acquisition for Identification dialog, but it displays also the type of the loaded controller (see 

Fig. 8-10.). In the control loop the offset of the output signal is automatically compensated 

by the term identoffsetoffset Ayu /:   added to the output of the control algorithm.  

Fig. 8-10. Dialog of the closed loop control  

The latter two dialogs load the files created by Matlab upon clicking on the appropriate 

button of the main dialog box. In case of corrupted files, the application deactivates all 

buttons except the Quit/Save one, with which the user can return to the main dialog. 
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Instruments for the laboratory tasks 

The following table summarizes which instruments are to be used to carry out the various 

laboratory tasks. 

 

Task Instrument 

Measurement of the parameters 

(speed, damping) of the plant 

Signal generator and oscilloscope 

Excitation signal generation Consol Matlab application 

Data acquisition Test circuit and RT_DataAqu_Control application 

Identification Consol Matlab application 

Controller design Consol Matlab application 

Simulation Consol Matlab application 

Closed loop control Test circuit and RT_DataAqu_Control application 

Evaluation of closed loop 

behavior 

Consol Matlab application 

Table 8-1. Tasks and platforms  
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Laboratory tasks 

1. Analysis of the plant with external instruments 

1.1. Select a square wave signal as the input signal of the plant such that the transients 

of the step response decay during one half-period of the square signal. The 

amplitude should be high, but care not to saturate the plant! 

1.2. Approximate the DC gain, the undamped natural frequency    and the damping 𝜉 

of the plant including a second order term (dominant pair of poles) 

1.3. Propose an adequate sampling time for data acquisition and control. Recall that the 

sampling time should satisfy Shannon’s theorem for all signals of the closed loop. 

For an initial guess, use e.g.       . 

2. Identification of the plant 

2.1. Based on the approximated parameters of the plant, design adequate excitation 

signals in the Consol Matlab application (refer to the Measurement Instruments 

section for the meaning of minimal pulse width and change parameters). The 

minimal sampling time is 20 ms. 

2.2. Carry out the data acquisition using the RT_DataAqu_Control application. 

2.3. Do the parametric identification of the plant using the LS, ARX, IV4 and ARMAX 

methods.  

2.4. Evaluate the results and select the best model for control design. 

3. Control design 

3.1. Choose and set the poles of the closed loop and the observer in continuous-time and 

design a controller with state feedback, state observer (without load estimation) and 

reference gains. 

3.2. Simulate the closed loop and evaluate the results. 

3.3. Using the RT_DataAqu_Control application, verify the operation of the designed 

controller on the physical process. Compare the results to the simulated ones. 

4. Test of robustness  

4.1. Analyze the closed loop behavior of the physical plant with perturbed (positive or 

negative direction) parameters (do not change the parameters of the controller). 

4.2. Change the controller designed in the previous task by including load estimation to 

the observer and simulate it along with the perturbed plant. 

4.3. Verify the closed loop behavior of the physical plant using the new controller also 

on the original and the perturbed plant and evaluate the results.  
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Useful hints  

Recall that the sampling time should be appropriate for each signal of the closed loop by 

Shannon's theorem. For an initial guess, use e.g. 0/2.0  . 

Apply such a (so-called persistent) signal on the input of the plant during the identification 

which excites the dynamics of the system. For this purpose, a signal with frequent 

amplitude-changes is more suitable than a constant one. The identification is carried out in 

sampled time, and in some special cases it's possible that there exists no continuous-time 

model corresponding to the identified discrete-time one. In that case, it is worth considering 

changing the sampling time so that the data acquisition has to be carried out again with the 

new sampling time. 

Ensure that the simulation time interval set in the Matlab application is long enough to 

represent the whole dynamics of the plant. During this interval, two reference signal changes 

and one disturbance change is applied to the system, and their compensation may need 

significant time. We are interested in the whole transient of the controlled loop. However, 

the identification is carried out at the same time interval, which should contain several 

amplitude changes. 

Recall that significant acceleration of the system may result large control signals which can 

cause saturation in the controller. On the other hand one of the most important goals of 

control design is to accelerate the systems as much as possible to have a quick closed loop 

behavior. Finding a suitable tradeoff between these requirements is a crucial point of control 

engineering. 

When designing the observer, mind that the observation of state variables not available for 

measurement is possible only with dynamical systems (observers) which are faster than the 

plant and even the closed loop accelerated by pole placement. 

A transient caused by a non-dominant (stable, in closed loop) pole decays before the time of 

the first peak determined by the dominant pair of poles if its absolute value is approximately 

three times the absolute value of the real part of the dominant pole. 
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Review questions 

1. Give the system models used for identification! 

2. Why identification is necessary? 

3. Define the conception of state feedback! 

4. Give the characteristic equation of the closed loop in case of state feedback! 

5. List the major problems corresponding to simple state feedback xKu   in typical 

control systems! 

6. Give the definition of the dominant pair of poles! 

7. Give the connection of the damping and undamped natural frequency of the prototype 

second-order term with the values of its poles! 

8. Give the conception of allowing setpoint control in systems with state feedback. 

9. Why is it necessary to use a state observer? 

10. Give the connection between the nomination “load” and the disturbance signal! 

11. Give the concept of disturbance compensation! 

12. Define the discrete-time actual observer and specify its advantages! 

13. How a continuous-time pole is mapped into the discrete-time domain? 


