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Exercise 5. 

Time Domain analysis 

Required knowledge 

 Time-domain description of first- and second-order systems. 

 Measurement of phase shift between periodic signals. 

 Transmission line theory: reflection calculation, wave propagation. 

 Theory of averaging of noisy signals.  

Introduction 

Time domain investigation of signals and systems is one of the most essential tool of 

electrical engineering. When a physical phenomenon is investigated, its time domain 

behavior is one of the most important property which should be observed. In 

infocommunication often the shape of the received signal carries the information (e.g., its 

amplitude, phase, rate of change…). Even if a signal is stored or transmitted in digital form, 

most essential building blocks of digital signals (bits) are represented by analogue signals in 

the physical layer. In order to establish a high quality digital communication, the analogue 

signals must be well-conditioned: high signal-to-noise ratio should be achieved, the state 

transitions should be sharp enough, oscillation and reflections should be avoided.  

Simple first- and second-order systems and transmission lines that will be investigated in the 

measurement are basic building blocks of several complex systems, so it is crucial to be 

familiar with the time-domain behavior and measurement technique of these systems.  

Aim of the measurement 

Students will perform the following task: (1) time- and phase measurement, (2) frequency 

dependent transfer of linear systems, investigation in time domain, (3) signal shaping in 

distributed parameter systems, (4) averaging as noise suppression. They will get acquainted 

with time domain reflectometry, and practice the time and phase measurement with 

oscilloscope, and failure diagnosis by means of investigation of time domain waveforms. 

Web links 

http://en.wikipedia.org/wiki/Lissajous_curve 

http://en.wikipedia.org/wiki/Time-domain_reflectometry 
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Measurement instruments 

Power supply Agilent E3630A 

Function generator Agilent 33220A 

Oscilloscope Agilent 54622A 

Test board 

The test board consist the following circuits: 

 first-order, passive low-pass filter (R-C filter), 10 different resistors, resistors can be 

selected with switch, 

 first-order, passive high-pass filter (R-C filter), 10 different resistors, resistors can be 

selected with switch, 

 second-order, active low-pass filter (Sallen-Key). Cutoff frequency and quality factor 

can be adjusted by changing the resistor and the capacitor in 10-10 different settings. 

The test board (VIK-05-01) is the same as in the exercise Frequency domain analysis, please 

check the figures there. 

Theoretical background 

Measurement of pulse parameters 

The definition of pulse parameters are given in Figure 5-1): 

 Rise-time: the time during which the signal increases from the 10% to 90% of the final 

value. Care should be taken, since the base point is at the low level of the signal. For 

example, if Ulow =1 V and Uhigh =10 V, then threshold values are: U10% = 1.9 V and 

U90% = 9.1 V.  

 Fall time: the time during which the signal decreases from 90% to 10% of the initial 

value. 90% and 10% again refers to the difference between Ulow and Uhigh. 

 Overshoot: the difference between the peak value and the final value of the signal. It is 

often given relative to the final value in percent. 

 Undershoot: the difference between the negative peak value and the final value of the 

signal at the falling edge.  

 Droop: the decrease of the amplitude of the pulse from the beginning to the end. 

 Impulse width: the time difference between the 50% threshold levels of the positive and 

negative edges. 

 Settling time (ringing time): the time during which the signal settles after the level 

transition at its input within a specified interval around the final value of the signal (and 

doesn’t leaves this interval any more). The typical values of specified interval are, e.g., 

±0.1%, ±1%, ±5% around the final value.  

These methods are based on graphical evaluation, hence the measurement of the parameters 

is sometimes not obvious and not well-defined (e.g., at wrong signal-to-noise ratio, spurious 

oscillations occur…). In these cases, the measurement report should contain the detailed 

description of the measurement.  
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Figure 5-1.  Definition of pulse parameters 

It is a general rule that either of the previous parameters are measured, the range (both 

time/div and volt/div) should be as tight as possible, i.e., we should zoom on the measured 

part of the signal as close as possible in order to minimize the measurement error.  

Modern digital oscilloscopes are able to measure these parameters automatically (Quick 

Measure button on the oscilloscopes used in the laboratory). However, the ranges should be 

set manually before these functionalities are used, and measurements should be verified 

visually, since these automatic measurements are based on the data which are displayed on 

the screen of the oscilloscope. For example, if rise time is measured and the time/div setting 

is too high, then the rising edge may be seen as 1-2 pixels on the screen. In this case even the 

oscilloscope can not do precise measurement. Contrary, if the time/div is too fine, and the 

steady-state high and low levels can not seen on the screen (we zoom too close to the edge, 

and other parts of the signal can not be seen), then the oscilloscope cannot correctly calculate 

the 10% and 90% threshold levels, so the measurement will be incorrect. Quick Measure 

function is a useful tool, however, it is recommended to make some measurements manually, 

otherwise we won’t know how to set up the oscilloscope for the measurements.  

Measurement of the transfer function 

It is well known that a linear time-invariant system can change only the phase and amplitude 

of a sine wave applied to its input. Hence, the system can be characterized at each frequency 

by a complex number (complex gain) whose phase is the phase shift of the system, and its 

magnitude is the gain of the system. The transfer function is the complex gain of the linear 

system as function of frequency.  

Several methods are known which allow the measurement of the transfer function of linear 

systems. In the following, some of these methods are summarized (the emphasis is put on the 

measurement of magnitude characteristics).  

Measurement of amplitude characteristics with stepped sine 

A well-known method of measurement of amplitude characteristics is performed using a sine 

wave generator and an AC multimeter (Figure 5–2). The measurement doesn’t require 

expensive special instruments if high precision is not crucial. Its disadvantage is that the 
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measurement is relatively time consuming, since the amplitude characteristics should be 

measured point-by-point along the whole frequency range. The frequency resolution of the 

measurement is determined by the frequency resolution of the sine wave generator. When 

only the bandwidth is to be measured, it can be done by setting the frequency to the center 

frequency where the gain is nominal, and than the frequency should be changed until the 

output signal decreases by 3 dB. The multimeter can often be exchanged with an 

oscilloscope, but the precision of an oscilloscope is generally worst than that of a 

multimeter. 

H

V

 

Figure 5–2. Measurement of transfer function with sine wave generator and multimeter 

The amplitude reference point has to be set before beginning the measurement. Every 

subsequent measurement result is compared to this reference point. The reference point is set 

according to the type of the amplitude characteristics (e.g., high-pass, low-pass, band-

pass…). For example, if a system has low-pass characteristics as shown inFigure 5–3, the 

reference point should be set at low frequency, at least one or two decades below the cutoff 

(corner) frequency. If the multimeter has fixed 0 dB point, it is recommended to set the input 

signal such that 0 dB appears at the output. Some of the modern multimeters allow us to set 

the 0 dB point to an arbitrary value. In this case, the input signal should be set as high as 

possible in order to ensure good signal-to-noise ratio. Care should be taken when setting the 

level of input signal! A common mistake is that the output signal becomes distorted, e.g., 

due to saturation, or the measured values are out of the range of the instruments. Except of 

some special cases, neither the input nor the output signals can exceed the supply voltage. If 

a passive circuit is measured (e.g., first-order RC network), no power supply is required. The 

level of input signal shouldn’t be changed during the whole measurement. It is generally 

recommended to check the shapes of the signals with an oscilloscope during the 

measurement.  
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Figure 5–3. Transfer function of a low-pass filter 

20 dB/decade 
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During the course of the measurement, the frequency is often changed logarithmically (see 

Figure 5–3), e.g., with steps 1-2-5-10-..., but it is recommended to measure with finer steps 

in the vicinity of the cutoff frequency. The cutoff frequency is often defined as the frequency 

where the amplitude characteristics decreases by 3 dB below the nominal value. (E.g., if the 

nominal gain is 9 dB, the gain is 6 dB at the cutoff frequency.) 

The stepped sine wave method has the advantage that it offers a good signal-to-noise ratio. 

However, the measurement of the whole amplitude characteristics requires considerable 

time, since the frequency should be changed after each measurement, and we should wait 

until the transient vanishes after each time the frequency is changed.  

Measurement of phase difference 

Two methods will be introduced how the phase difference between two signals of the same 

frequency can be measured.  

The first method is traced back to the measurement of ratio of time intervals, more precisely 

on the ratio of the time delay between two signals and the period of the signal. The method is 

illustrated in Figure 5-4. The two signals are fed to the two different channels of the 

oscilloscope. Then we should search the same reference points on the two signals. 

Practically, the positive or negative zero crossing points are used as reference points. Let t  

denote the time delay between these two reference points. Furthermore, let T denote the 

period which can be measured as the time difference between two consecutive positive or 

negative zero crossing of the signal. The phase difference can be calculated as 




 360
T

t
 . The advantage of the method is that it is not sensitive to the time base error 

of the oscilloscope, only the linearity of the time base is required. However, it is true only 

until the time/div setting remains the same when t  and T are measured. If t  is 

considerably smaller than T, then t  should be measured with smaller time/div setting (finer 

time resolution). In this case the error of time base can not be neglected when measurement 

error is calculated. It depends on the specification of the oscilloscope whether t  and T 

should be measured with the same or different time base setup. 

 

Figure 5-4. Phase difference measurement based on time interval measurement 

The oscilloscope used in the laboratories have built-in phase shift measurement functionality 

which is based on the previous method. This tool works properly only when at least one 

whole period of the observed signal can be seen on the display of the oscilloscope. This 

constraint limits the accuracy when small phase difference is measured, since in this case we 

t

 
T 
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can not zoom of the time difference ( t ) between the signals which would required to make 

a precise measurement. This example shows that it is highly recommended to be able to 

perform manual measurement since automatic functionalities may fail in some cases.  

The second method of phase shift measurement is based on the so called Lissajous plot. In 

this case, the oscilloscope should be used in X-Y mode, and the signals should be connected 

to the two different channels of the oscilloscope. We consider now sinusoidal signals of the 

same frequency. First, the channels should be grounded (it can be set in the menu where 

coupling is set), and the oscilloscope ray should be set to the origin of the display. Then, 

grounding should be turned off, and the vertical and horizontal dimension of the ellipse 

appearing on the display should be measured as shown in Figure 5-5. The phase shift can be 

calculated from the measured values as 
b

a
arcsin . Let’s note that the measurement is 

based on the ratio of two quantities that are measured on the same axis, so the gain and 

calibration errors are eliminated as far as both a and b are measured with the same volt/div 

setting.  

 

Figure 5-5. Phase difference measurement based on Lissajous-plot 

First-order RC circuits 

During the course of laboratory measurement first-order, low- and high-pass filters will be 

performed. One of the simplest measurement method is the measurement of the step 

response of the systems which can be performed with a simple square wave generator. The 

analytical form of the step responses of general first-order, low- and high-pass systems are: 

 )1()(LP






t

eAtv ,                                   




t

Aetv )(HP , (5-1) 

where A is the amplitude gain and τ stands for the time constant of the system. In the 

laboratory, first-order RC filters will be investigated whose schematic diagrams are shown 

below: 
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Figure 5-6. Schematic diagrams of first-order, low- and high-pass RC networks.  

The time constant of such systems is τ = RC, and their gain is unity: A = 1. The responses of 

these systems on a step function of amplitude Upeak are:  

 )1()( peakRCLP,
RC

t

eUtv


 ,                                   RC

t

eUtv


 peakRCHP, )( , (5-2) 

Step response of the first order RC networks are shown in the figures below: 
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Figure 5-7. Step responses of first-order, low- and high-pass RC networks. Time constant is: 

τ =1/ω0=RC=1 msec. 

Measurement of time constant of first-order systems 

The time constant of the systems will be measured using square wave input signals. If the 

half of the period of the square wave used as excitation signal is considerably longer (at least 

5 or 10 times) than the time constant of the system to be measured, the square wave can be 

regarded as a periodic step function, and the output of the system can be regarded as the step 

response of the system. The measurement arrangement is found in the figure below. First-

order RC circuits contain only passive components so they do not require supply voltage.  

R 

C Uin Uout 

C 

Uin Uout R 
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Figure 5-8. Measurement arrangement of step response and time constant.  

In the figure, Rg denotes the output impedance of the function generator (Rg = 50 Ω). This 

resistance has practical significance if the input impedance of the DUT is not considerably 

higher than Rg. In this case, the input signal can be less than the value set on the function 

generator since the input impedance of the DUT and Rg form a voltage divider. Rg can also 

influence the time constant of the system, since it is added to the resistance of the RC 

network.  

Rg 
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Ug 

Device under 
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Uin 
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ch1 ch2 

oscilloscope 

Power supply 

(if required) 
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Three methods will be introduced to measure the time constant based on the step response. 

These methods are summarized in the figures below: 
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Figure 5-9. Illustrations of time constant measurement methods based on step response. Left 

column: low-pass filter; right column: high-pass filter. First row: tangent at zero point; 

second row: measurement at the 63.2% and 36.8% of the maximum value; last row: 

measurement at the 50% of the maximum. The time constant in this example is τ = 1 ms. 

In the examples, the half of the square wave is more than five times the time constant so the 

system’s response achieves the steady state before each new edge of the excitation signal.  

The methods of time constant measurement are: 

1. Time constant measurement based on tangent at zero point:  

o At the falling edge: draw the tangential of the step response at the beginning 

of the falling edge. The tangential crosses the time axis at the time constant.  
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o At the rising edge: draw the tangential of the step response at the beginning 

of the rising edge. The tangential reaches the final value of the step response 

at the time constant. 

2. Measurement at the 63.2% and 36.8% of the maximum value:  

o low-pass filter: the step function reaches the 63.2% of the final value after 

rising edge, and it reaches the 36.8% of the initial value at the falling edge 

after the time constant. Note that 63.2% = 1–1/e and 36.8% = 1/e.  

o high-pass filter: the step function reaches the 36.8% of the initial value after 

the time constant (i.e., it decreases to the e-th part during the time constant). 

3. Measurement at the 50% of the maximum value: the step function reaches its 50% 

after 0.6931 times the time constant. Note that 0.6931 = –log(1–1/2).  

All of these methods can be proved according to the step response of first-order systems 

given in equation (5-1).  

To prove the first method, the derivative of the step response should be calculated, that is 





 

 A
e

A
tv

t

)0('LP  for low-pass filter. Since 0)0(LP tv , the tangential reaches the 

amplitude A after at t = τ. Proof is similar for high-pass filter (it should be solved as 

homework). 

The proof the second and third method differs only in the last step. The final value of the 

step response of low-pass filter is A. In order to calculate how many time it takes to reach a 

value aA, we should solve the equation aAeAtv

t

 


)1()(LP . One obtains that it is true 

for t = –τ∙ln(1–a). For a = 63.2% = 1–1/e one obtains t = –τ∙ln(1–(1–1/e)) = τ, and for 

a = 50% = 0.5 one obtains t = –τ∙ln(1–0.5) = 0.6931∙τ. Proof is similar for high-pass filter (it 

should be solved as homework). 

Step response of second-order, low-pass filter 

The general transfer function of second-order, low-pass filters is of the form (both forms are 

often used): 

 

2

0

2

0

2

0

2

0

21
1

1

)(
















ss

A

ss

Q

A
sW , (5-3) 

where Q denotes the quality factor, ξ denotes the damping factor, ω0 is the natural frequency 

(undamped resonance frequency) and A is the gain.  

In the laboratory the so-called Sallen-Key topology is used to realize the filters. Its schematic 

is shown in Figure 5-10. R1 and C1 can be set with code switches. They have influence on the 

resonance frequency and on the quality factor. The detailed analysis of the circuit is out of 

the scope of this guide, it can be found in several text books and on the Internet. In the 

measurement, only the behavior of the circuit as a typical second-order system is 

investigated. The measurement of the step response of the filter is performed according to 

Figure 5-8. Since the circuit contains an operational amplifier, it requires supply voltage!  

©BME-VIK Only students attending the courses of Laboratory 1 (BMEVIMIA304/C05) are allowed to download this file, and to 
make one printed copy of this guide. Other persons are prohibited to use this guide without the authors' written permission.



Exercise 5. 

 

  

11 

 

Figure 5-10. Schematic diagram of the second-order, low-pass filter.  

The expected step responses of an ideal second-order, low-pass filter are shown in 

Figure 5-11. with different Q and ω0 parameters.  
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Figure 5-11. Step responses of the second-order, low-pass filter with ω0 = 1 krad/s (left 

figure) and ω0 = 2 krad/s (right figure), and with different quality factors.  

The step response is determined by parameters Q and ω0. ω0 determines the frequency of 

oscillation (if the system is underdamped), and Q determines the ability of the system to 

oscillation. Five important cases are distinguished according to the value of Q: 

 Q < ½: the system is overdamped (exponential settling) 

 Q = ½: the system is critically damped (fastest settling without oscillation) 
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 ∞ > Q > ½: the system is underdamped (settling with exponentially decreasing 

oscillation) 

 Q = ∞: the system is undamped (oscillation with constant amplitude) 

 Q < 0: the system is unstable (oscillation with exponentially increasing oscillation) 

Two parasitic effect emerging during the step response measurement should be noted. When 

the input (Uin) is observed in the arrangement Figure 5-8, an oscillation may be observed on 

the input even if the function generator is set correctly (it generates a square wave). The 

oscillation is present due to the finite output impedance of the generator (Rg = 50 Ω), which 

causes that the voltage on the output is coupled back to the input through capacitor C1 and 

resistor R1. The coupling ratio is especially high if resistance R1 has low value, and 

capacitance C1 has high value. In this case, the output impedance of the function generator is 

comparable with the impedance of R1 and C1 (e.g., if R1 = 100 Ω, then the voltage division 

ratio between the generator and the common junction of R1 and C1 is R1/(R1+Rg)=1/3!).  

The second effect that can be observed is that the measured step response may contain an 

abrupt jump right after the rising edge of the input signal although ideally it is a continuous 

function. The reason is the finite output impedance of the operational amplifier (OPA): the 

step function is coupled from the input to the output through R1 and C1 (C1 behaves like a 

short circuit  for a short time interval at the edges of a square signal). In ideal case, the OPA 

would have zero output impedance (it behaves as a voltage generator), so the coupling from 

the input would be zero. However, the output impedance of a real OPA may be even some 

ten ohms which is comparable with the minimal value of R1. 

Although these parasitic effect cause slight difference between the theory and practice, but 

show good examples what kind of aspects should be taken into account in a practical 

measurement.  

 

Time-domain reflectometry (TDR) 

Transmission lines are often used in micro-wave circuits, impulse technique and high-speed 

digital systems. Every conductor can be regarded as transmission line if its length is at least 

approximately the tenth of the wavelength of the signal to be transmitted. If high frequency 

signal is transmitted through a conductor, the nature of the propagation of electromagnetic 

waves in transmission lines should be considered.  

Figure 5-12 shows a block diagram where time-domain reflections in transmission lines can 

be investigated. A voltage generator is used which is able to provide a step function at its 

output (in practice a square wave generator is used with long period such that steady state is 

achieved between level transitions). The output impedance of the generator equals to the 

wave impedance of the transmission line, i.e. Zg = Zo (matched termination on the input). The 

voltage ex(t) is measured with an oscilloscope at the output of the generator that is connected 

to the input of the transmission line. The transmission line is terminated with a real valued 

load with impedance of value ZL. 
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Figure 5-12. Block diagram of time-domain reflectometry 

Let estimate the signal shapes with simple physical considerations. The system is in idle 

state before time instant t = 0. When the step function of amplitude 2Ei appears at the input, 

the transmission line shows a wave impedance of Zo independently on the load impedance. 

The reason is that the signal has finite propagation speed, so the signal “doesn’t know” when 

it is appeared on the input what are the load conditions; it “sees” only the wave impedance of 

the cable. Hence, a voltage divider is formed from the generator impedance Zg and wave 

impedance Zo, and a step wave of amplitude Ei propagates towards the end of the end of the 

cable. When the wave reaches the load impedance (after a time Tk), a reflection occurs. The 

reflection coefficient (γ) depends on the load impedance and wave impedance of the cable as 

the following equation:  

 
0

0

ZZ

ZZ

E

E

L

L

i

r




 . (5-4) 

The reflected wave is γ times of the incident wave, i.e., it is Er = γEi. The voltage on the load 

is zero until a wave reaches this point (until time instant Tk), and after the time instant Tk the 

sum of the incident and the reflected voltage (Ei+γEi) is measured. The voltage observed on 

the input remains Ei until the reflected wave arrives back to the input, and than it becomes 

(Ei+γEi). Since we investigate the case when Zg = Zo, so no more reflection occurs on the 

input, hence the steady state has been achieved.  

The propagation time from the input to the end of the cable is denoted by Tk. The round-trip 

delay during which the first reflection (Er) arrives at the input of the cable is 2Tk. If the input 

is matched, i.e., Zg = Zo, then the steady state has been achieved, and the steady-state input 

voltage is Uss = Ei+γEi. Substituting γ into this equation, and using that Zg = Zo, one obtains: 

 
gL

L
ss 2

ZZ

Z
EU i


 , (5-5) 

which means that the steady-state voltage can be calculated as if the load impedance were 

directly connected to the generator (note that the amplitude of the input signal is 2Ei).  

The above described measurement is called TDR (Time-Domain Reflectometry). This kind 

of measurement can be used to detect whether a cable is terminated correctly (no reflection 

occurs.  

Some important case is illustrated in the following figure:   

Zg 

2Ei 

2Tk 
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Figure 5-13. Waveforms in the case of different load impedance 

Case B is important when short pulses have to be generated, since the pulse duration can be 

tuned with the length of the cable. 

Note that if the generator impedance isn’t matched (Zg ≠ Zo) too, reflection happens also on 

the input, and all of the previously described rules can be applied to calculate reflection on 

the input.   

If the load impedance is not a real-valued one, then the waveforms are more complex. The 

waveforms in initial state (t = 0) can be approximated by substituting ZC  0 ; ZL  , and 

in steady state (t = ) conditions ZL  0 ; ZC   can be used. In the intermediate states the 

waveforms are exponential depending on the nature of the load. The typical waveforms are 

illustrated in the following figures.   
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Figure. 5-12 

Figure 5-14. Reflected waveforms in the case of complex load impedances. 

TDR is used to investigate long cables. Any kind of damage influences the wave impedance 

of the cable, which causes reflection at the position of the damage. To perform a TDR 

measurement, we need to access only one end of the cable. The waveforms allow us to 

predict the type of damage (short circuit: ZL  0, break ZL  ). Timing values allow us to 
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predict the location of the damage. By multiplying the half of the round-trip delay (Tk) by the 

propagation speed of the wave (v), one obtains the location of damage: l = v∙Tk. The 

propagation speed of the wave depends on the dielectric constant 
r

c
v


 , where c is the 

speed of light in vacuum and r  is the relative dielectric constant of the material.  

 

Laboratory exercises0. 

1. Measurement of time domain parameters of signals 

1.1. Investigate the step response of the first order low- and high pass filter (VIK-05-
01 test board) by different filter parameters (different switch settings) using a 
100 Hz square wave excitation signal. Document the tendency you see by 
changing the resistor value of the RC filter and explain what is the reason. 

<your observations> 

1.2. The next exercises should be accomplished either using the passive low- or the 
high-pass filter, depending on the instruction of your tutor. Measure the step 
response of your first order filter, with given parameters received from the tutor. 
(The parameters of the filter can be changed by the switch.) 

kind of the filter selected by your tutor (low-pass/high-pass):  

setting of codeswitch selected by your tutor:    

1.2.1. Apply a 100 Hz square wave to the input of the filter, and investigate the 
wave shapes on the oscilloscope. In order to omit reflections the output 

impedance of the generator is 50 , thus, it cannot be considered as 
ideal voltage driven generator. Investigate therefore also the input signal 
of the filter, and check how close it is to an ideal square wave. 

<your observations> 

1.2.2. Give a rough estimate for the time constant of the filter based on the 
tangent at the zero point. 

<your observations> 

1.2.3. Estimate the time constant of the filter based on the time the step 
response reaches the 50% of the final value. Calculate the error of the 
estimate. 

<your observations> 

1.2.4. If you have a low pass filter: estimate the time constant of the filter based 
on the time at which the distance between the signal actual value and 
the final value decreases by a factor e relative to the final value. 
Calculate the error of the estimate. 

If you have a high pass filter: estimate the time constant of the filter 
based on the time at which the signal actual value decreases be a 
factor e relative to the zero value (value at time 0). Calculate the error of 
the estimate. 

<your observations> 
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1.2.5. Compare the results of the time constant estimates based on different 
methods. Which are more accurate than others? 

<your observations> 

1.3. Measure the step response of the active second order low pass filter (same test 
board as in the previous exercise) with filter parameters given by your tutor. 
Filter parameters can be set by two switches. Do not forget to provide 
symmetric power supply to the active circuit, and pay attention to the right 
polarity. 

setting of codeswithes selected by your tutor: 

 R31-40: ................ 

 C1-C11:............... 

1.3.1. Apply a square wave to the input of the filter, and investigate the wave 
shapes on oscilloscope! 

<your observations> 

1.3.2. Define and determine the following parameters: rise time, 5% settling 
time, under/overshoot! 

<your observations> 

1.4. Study the behavior of the oscilloscope in the case of a very low frequency  
square wave. Check the effect of switching between AC and DC coupling. What 
is the reason for the difference? 

<your observations>  

1.5. Measure a very high frequency square wave in the time domain (the highest 
that can be set on the function generator). What is the difference compared with 
the ideal square wave? Why? 

<your observations>  

2. Transfer function measurement using time domain methods 

2.1. Measure the magnitude and phase response of the passive low- or high-pass 
filter using a sinusoidal excitation signal according to the exercises below!  

2.1.1. Measure the phase response of the filter at the theoretically computed 
cutoff frequency by two different measurement methods: (a) 
measurement of time delay and period time with oscilloscope. (b) phase 
measurement with the built in possibility of the oscilloscope (Quick 
Measure function). Compare the results of the two methods. Measure 
the phase delay around the cutoff frequency with the previous 3 
methods. Compare the measurement based on different methods. 

<your observations> 

2.1.2. Explain why and in which circumstances method (a) can be more 
accurate than method (b)! 

<your observations> 

2.1.3. Measure the magnitude response (attenuation) of the filter at the 
theoretically computed cutoff frequency by two different measurement 
methods: (a) by measuring the RMS value of the input and output using 
the Quick Measure function of the digital oscilloscope and computing the 
attenuation in dB by the logarithmic formula, and  (b) by using the dB 
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function of the digital multimeter directly. By finetuning the excitation 
frequency, find the real cutoff frequency (-3 dB point) of the filter. 

<your observations> 

2.1.4. Measure the magnitude and phase response of the filter at seven 
different frequencies, at 1/10, 1/5, 1/2, 1, 2, 5, and 10 times of the cutoff 
frequency! For the phase measurement the Quick Measure function  of 
the oscilloscope should be used, for the magnitude the dB function of the 
digital multimeter should be applied. Collect the results in a table and 
draw the diagrams using the charts below (Edit/ChartObject/Open)! 

The measured magnitude response: 

 

0

0,2

0,4

0,6

0,8

1

1,2

1 10

Frequency [kHz]

Magnitude [dB]

 

The measured phase response: 

 

0

0,2

0,4

0,6

0,8

1

1,2

1 10

Frequency [kHz]

Phase [degrees]

 

<your observations> 

3. Investigation of reflection on a coaxial cable 

3.1. Investigate the reflection of signals on a coaxial cable! Apply a square wave to 
the cable. 

3.1.1. Investigation of the reflection with a step signal: set a square wave on 
the function generator as an excitation signal, and investigate the 
reflection by applying different loads (short circuit, open circuit, matched 
load) to the far end of the cable! Display the signals of both the near and 
far end of the cable simultaneously on the digital oscilloscope! Document 
the wave shapes and your observations. 

<your observations> 

©BME-VIK Only students attending the courses of Laboratory 1 (BMEVIMIA304/C05) are allowed to download this file, and to 
make one printed copy of this guide. Other persons are prohibited to use this guide without the authors' written permission.



Exercise 5. 

 

  

19 

3.1.2. Calculate the propagation speed from the reflection time and the known 
length of the cable! Calculate the relative dielectric constant of the cable. 

(The propagation speed of the light in vacuum is 
s

m 103 8c .) 

<your observations> 

3.1.3. Investigate the reflection if the impedances on both sides of the cable are 
unmatched. Document the wave shape. 

<your observations> 

Additional Laboratory Exercises 

4. Investigation of the reflection using a short pulse signal 

4.1.1. Set the shortest pulse signal on the function generator as an excitation 
signal, and investigate the reflection by applying different loads (short 
circuit, open circuit, matched load) to the far end of the cable. Display the 
signals of both the near and far end of the cable simultaneously on the 
digital oscilloscope! Document the wave shapes and your observations. 

<your observations> 

5. Averaging as noise suppression 

5.1. Get acquainted with the averaging function of the oscilloscope. Generate a 
noisy periodic signal! The signal to noise ratio can be made worse the most 
easily by reducing the amplitude of the signal generator (setting a very low 
signal amplitude, at which the signal level is comparable to the level of the 
ambient noise). Set the function generator to produce a periodic triangular 
waveform with 1 kHz frequency and 100% symmetry, and reduce the amplitude 
to the least possible value (20 mVpp peak-to-peak)! Trigger the oscilloscope to 
the rising edge of the waveform. 

5.1.1. Investigate the waveform without and with averaging! Use the function 

generators SYNC output as trigger source! Measure the peak value of 
the signal in both cases. 

<your observations> 

5.1.2. Accomplish the averaging first by using the noisy waveform as trigger 

source, then by using a noise free source (SYNC output of the signal 
generator). What is your observation? 

<your observations> 

5.1.3. Repeat the previous measurement with square wave signal! What is your 
observation? 

<your observations> 
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Test questions 0. 

1. Draw the schematic of a first-order, low-pass RC filter! Give the impulse response and 

step response with parameters R and C!  

2. Draw the schematic of a first-order, high-pass RC filter! Give the impulse response and 

step response with parameters R and C!  

3. Give the transfer function of a second-order filter with parameters: DC gain (A), natural 

resonance frequency (ω0) and quality factor (Q)! 

4. How the time constant of a first-order, low-pass filter can be measured using the 

tangential of the step response?  

5. How the time constant of a first-order, high-pass filter can be measured using the 

tangential of the step response?  

6. How the time constant of a first-order, low-pass filter can be determined when we 

measure the time required to reach  a percent of the final value after the step function 

appears? What is the concrete form of this expression when a = 50% and a = 1–1/e? 

7. How the time constant of a first-order, high-pass filter can be determined when we 

measure the time required to reach  a percent of the initial value after the step function 

appears? What is the concrete form of this expression when a = 50% and a = 1/e? 

8. How the phase shift between two sinusoidal signal can be determined based on time 

interval measurement?  

9. How the gain error of time base generator influences the phase shift measurement based 

on time interval measurement?  

10. How the nonlinearity of time base generator influences the phase shift measurement 

based on time interval measurement?  

11. How a signal is reflected on a long cable if it is terminated with: short circuit, open 

circuit or wave impedance?  

12. How the relative dielectric constant of the material ( r ) can be calculated using the 

round-trip time and length of the cable?  

13. How a signal is reflected in a cable when the generator impedance is matched to the 

wave impedance of the cable (Zg = Zo), but the load impedance is not matched (ZL ≠ Zo)?  

14. How a signal is reflected in a cable when the generator impedance is matched to the 

wave impedance of the cable neither on the input  (Zg ≠ Zo), nor on the output (ZL ≠ Zo)?  

15. How the trigger source should be selected when averaging of a noisy signal is required? 

16. What happens if noisy signals are averaged such that trigger is also noisy?   

17. How the variance (power) of the noise changes after averaging N samples?  

18. How the signal-to-noise ratio changes after averaging N samples?  
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