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Exercise 4. 

Frequency Domain Analysis 

Required knowledge 

 Fourier-series and Fourier-transform. 

 Measurement and interpretation of transfer function of linear systems. 

 Calculation of transfer function of simple networks (first-order, high- and low-pass 

RC network). 

Introduction 

Signals are often represented in frequency domain by their spectrum, frequency, harmonic 

components, amplitude and phase. Time- and frequency-domain representations are mutually 

equivalent, and the Fourier transform can be used to transform signals between the two 

domains. Fourier transform exists for almost all practical signals which are used in electrical 

engineering practice. Frequency domain representation often simplifies the solution of 

several practical problems. It offers a compact and expressive form of signal representation 

by allowing the separation of spectral components. Frequency-domain representation can be 

effectively used in measurement of signal parameters, signal transmission, 

infocommunication, system design, etc.  

One of the most important classes of signals is the class of periodic signals. Periodic signals 

are often used as excitation signals since they produce periodic signal with the same 

frequency at the output of the system the parameters of which are to be measured. Periodic 

signals are easy to observe with simple instruments like oscilloscopes, moreover averaging 

can also be effectively used to increase the signal-to-noise ratio. System parameters can be 

determined by measuring the amplitude gain (or attenuation) and phase shift between the 

output and input. Fourier transform allows the characterization of systems in a simple 

algebraic form instead of differential equations connected to time-domain representation.  

Aim of the Measurement 

During the measurement, the students study the method of signal analysis in frequency 

domain. They compare time domain algorithms to frequency domain ones. After finishing 

the measurement, they will be able to use frequency domain tools to describe properties of 

signals which are no trivial to be detected in time-domain. This laboratory lecture 

demonstrates how the students can apply their knowledge of signal and systems in order to 

solve engineering problems.  
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Theoretical background 

Fourier series and Fourier transform 

Real-valued periodic signals can be decomposed into linear combination of sine and cosine 

functions. This trigonometrical series is referred to as Fourier series of signals, and it has the 

following form (T stands for the period, and T/2   denotes the angular frequency): 
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where the coefficients can be calculated using the following equations: 
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These operations are based on the orthogonality of trigonometric functions on the interval 

[0…T].  

Fourier series have also a simpler form where complex-valued coefficients and complex 

exponential basis function are used: 
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For real-valued signals: )(conjugate
C

k
C
k UU  , i.e., Fourier components form complex 

conjugate pairs.  

The Fourier series of some practically important signals are summarized in the following 

table. 
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Table 4-I. Fourier series of some periodic signals. 

 

Fourier transform is the extension of Fourier series. It can be applied for square or absolute 

integrable functions. The spectrum of the signal x(t) is obtained using the Fourier transform 

as follows: 
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The signal can be reconstructed from the spectrum X(jω) as follows: 
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The Fourier transform of some important signals such as Dirac impulse, step function, sine 

and other periodic functions is not convergent in classical sense since they are not square 

integrable functions. However, the Fourier transform of such signals can also be interpreted 

using the Dirac delta function. The Fourier transform of a complex exponential function e
jωt

 

is a Dirac delta at the frequency of the signal, so the Fourier transform of general periodic 

signals can be easily expressed using the Fourier series (4-3): 
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where ω0 denotes the fundamental frequency of the periodic signal, δ(ω–kω0) denotes the 

Dirac delta function at the frequency kω0. Dirac deltas are represented graphically as peaks at 

the frequencies where they are located. The spectrum (Fourier transform) of some typical 

periodic signals are illustrated in the following table. 
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Spectrum of sine signal. 

 

x(t)=A∙cos(ω0t+φ) 

The spectrum contains 

only two complex 

conjugate spectral 

components at 

 frequency ±ω0.  

Spectrum of a square signal.           

  

 

Spectrum is decreasing with 

envelope 1/ω (dotted line). Only 

odd components (±ω0, ±3ω0, 

±5ω0…) are present.  

 

Spectrum of a triangle signal.           

  

 

Spectrum is decreasing with 

envelope 1/ω
2
 (dotted line). Only 

odd components (±ω0, ±3ω0, 

±5ω0…) are present.  

 

Table 4-II. Fourier series of some periodic signals 

It is important to note that it is not a general rule that the even harmonic components are 

missing from a periodic signal. For example, if the symmetry of a square wave differs from 

50%, even spectral components will also appear.  

Application of periodic signals as excitation signals 

The most important excitation signals are sine wave and square wave. In some applications, 

(e.g., measurement of static nonlinear characteristics) triangular or saw tooth signals are also 

used.  

Square wave is often used as excitation signal since it is easy to generate even with simple 

circuits, and it can be used to measure the step response of a system. When a square wave is 

applied as excitation signal, it is important that its half period should hold considerable 

longer (at least 5 or 10 times) than the largest time constant of the system to be investigated. 

In other words, the transient should vanish, and the steady state should be achieved before a 

new edge of the square wave. If this condition is fulfilled, the excitation signal can be 

regarded as a good approximation of a periodic step signal, so the response of the system can 

be regarded as its step response.  

The shape of a signal in time domain allows us to make some important qualitative 

conclusions about its frequency-domain behavior. Since the square wave is not continuous (it 

contains steps at every level transition), so its spectrum is wide, i.e., it contains harmonic 

components of significant power in wide frequency range. It is an advantageous property 

when the square wave is used as excitation signal, since it excites the system in wide 

frequency range. Square wave is often used to test the frequency response of filters, 

amplifiers, etc. If the output of these systems is a clear square wave, then their transfer 

functions are frequency independent in a wide frequency range, so they cause small linear 

distortion on their input signals.  

When an excitation signal is selected, both its time- and frequency-domain behavior should 

be considered. Some simple rules of thumb allow us to qualitatively determine the 

frequency-domain properties of a signal from its time-domain shape. The bandwidth of a 

signal is in close connection with its smoothness. The smoother a signal is, the faster its 
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Fourier coefficients (or amplitude spectrum) tend to zero, i.e., its bandwidth is small. The 

smoothness of a signal is characterized by its derivative functions. Generally, if the k-th 

derivative of a function is not continuous, then its amplitude spectra decreases 

asymptotically as 
)1(  k

 . For example, the square wave is not continuous, i.e., k  = 0, so 

its spectrum decreases as 1 . The spectrum of the triangular wave tends to zero faster than 

that of the square wave, since it is a continuous function, and its first derivative is not 

continuous (k = 1), so its spectrum decreases with envelope 
21  . Intuitively speaking, high 

frequency spectral components are required to generate steep slopes and discontinuities in a 

function. E.g., a triangular wave is “smoother” than a square wave, so its bandwidth is lower 

if their frequencies are identical. It is worth to note, that if functions are approximated with 

finite Fourier sum, the error of the approximation is the highest in the vicinity of 

discontinuities (this phenomenon is called Gibbs-oscillation).  

Measurement of the transfer function 

It is well known that a linear time-invariant system can change only the phase and amplitude 

of a sine wave applied to its input. Hence, the system can be characterized at each frequency 

by a complex number (complex gain) whose phase is the phase shift of the system, and its 

magnitude is the gain of the system. The transfer function is the complex gain of the linear 

system as function of frequency.  

Several methods are known which allow the measurement of the transfer function of linear 

systems. In the following, some of these methods are summarized (the emphasis is put on the 

measurement of magnitude characteristics).  

Measurement of amplitude characteristics with stepped sine 

A well-known method of measurement of amplitude characteristics is performed using a sine 

wave generator and an AC multimeter (Fig. 4-1). The measurement doesn’t require 

expensive special instruments if high precision is not crucial. Its disadvantage is that the 

measurement is relatively time consuming, since the amplitude characteristics should be 

measured point-by-point along the whole frequency range. The frequency resolution of the 

measurement is determined by the frequency resolution of the sine wave generator. When 

only the bandwidth is to be measured, it can be done by setting the frequency to the center 

frequency where the gain is nominal, and than the frequency should be changed until the 

output signal decreases by 3 dB. The multimeter can often be exchanged with an 

oscilloscope, but the precision of an oscilloscope is generally worst than that of a multimeter. 

H

V

 

Figure 4–1. Measurement of transfer function with sine wave generator and multimeter 

The amplitude reference point has to be set before beginning the measurement. Every 

subsequent measurement result is compared to this reference point. The reference point is set 

according to the type of the amplitude characteristics (e.g., high-pass, low-pass, band-
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pass…). For example, if a system has low-pass characteristics as shown in Fig. 4–2, the 

reference point should be set at low frequency, at least one or two decades below the cutoff 

(corner) frequency. If the multimeter has fixed 0 dB point, it is recommended to set the input 

signal such that 0 dB appears at the output. Some of the modern multimeters allow us to set 

the 0 dB point to an arbitrary value. In this case, the input signal should be set as high as 

possible in order to ensure good signal-to-noise ratio. Care should be taken when setting the 

level of input signal! A common mistake is that the output signal becomes distorted, e.g., due 

to saturation, or the measured values are out of the range of the instruments. Except of some 

special cases, neither the input nor the output signals can exceed the supply voltage. If a 

passive circuit is measured (e.g., first-order RC network), no power supply is required. The 

level of input signal shouldn’t be changed during the whole measurement. It is generally 

recommended to check the shapes of the signals with an oscilloscope during the 

measurement.  

 [dB]H

log f

A

-20dB/dekád

-3 dB

1 10 100 1000

 

Figure 4–2. Transfer function of a low-pass filter 

During the course of the measurement, the frequency is often changed logarithmically (see 

Fig 4–2), e.g., with steps 1-2-5-10-..., but it is recommended to measure with finer steps in 

the vicinity of the cutoff frequency. The cutoff frequency is often defined as the frequency 

where the amplitude characteristics decreases by 3 dB below the nominal value. (E.g., if the 

nominal gain is 9 dB, the gain is 6 dB at the cutoff frequency.) 

The stepped sine wave method has the advantage that it offers a good signal-to-noise ratio. 

However, the measurement of the whole amplitude characteristics requires considerable 

time, since the frequency should be changed after each measurement, and we should wait 

until the transient vanishes after each time the frequency is changed.  

Measurement of amplitude characteristics with multisine 

In order to speed up the measurement, high bandwidth signals and frequency selective 

instruments (like spectrum analyzer or FFT analyzer) can be used to measure the whole 

amplitude characteristics in one step. Typical high-bandwidth excitation signals are 

multisine, swept sine (i.e., chirp), periodic sinc function, noise…  

The multisine is a periodic excitation signal which consists of the sum of sine waves with 

different frequencies. The frequencies are generally integral multiples of a fundamental 

frequency. The amplitudes of the sine wave components can be set to an arbitrary level, 

however, it is practical to set the levels of the sine components to the same value. The phases 

of the components should be set to different values (often randomly) in order to ensure small 

crest factor (crest factor = peak value / RMS value). A given measurement setup limits the 

peak value of the excitation signal in order to avoid saturation, so if the crest factor is small, 

20 dB/decade 
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the given peak value ensures high RMS value, i.e., good signal-to-noise ratio. Multisine 

signal will be generated by a function generator that can produce a preprogrammed multisine 

waveform.  
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Figure 4–3. Multisine in time and frequency domain 

The multisine is defined in time domain as follows: 

    



F

k

kkk tfAtx
1

2sin  , (4-6) 

where F is the number of frequency components, and Tkf
k
 , where T is the period of the 

multisine. 

Measurement of nonlinear distortion 

Nonlinear distortion is caused by systems whose output is not a linear function of their 

inputs. If this static nonlinear characteristics is approximated with its Taylor series, it is 

apparent that if a sinusoidal excitation signal is used, the output signal will contain spectral 

components not only at the fundamental frequency but also at integral multiple of it (at other 

harmonic positions). This phenomenon is called nonlinear distortion.  

Several instruments (e.g., function generators, amplifiers) are often characterized by their 

nonlinear distortion. Distortion is caused by the internal circuits of the instrument which 

results in the increase of spurious harmonic components. However, distortion may also occur 

using an incorrect measurement arrangement, e.g., by overdriving either the device under 

test or any of the instruments. The signal levels are often limited by the measurement range 

of the instrument and the supply voltage of the devices. Conversely, measurement range of 

an instrument (e.g., an oscilloscope) should be set every time such that no saturation is 

caused. In the figure below one can see a case when a sine wave is distorted, so its spectrum 

is contaminated by harmonic components. Frequency domain investigation is more suitable 

to detect distortion as time domain measurements, since the frequency selectivity of the 

spectrum analysis allows the detection even very small spurious spectral components that 

appear due to the distortion. The figure below shows that even a small distortion can cause 

the increase of harmonic components in the spectrum.  
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Figure 4–4. First row of graphs: undistorted sine wave (time function and spectrum);  

second row of graphs: distorted sine wave (saturation at 0.95). Parameters: 1 V amplitude, 

1 kHz frequency, 50 kHz sampling frequency.  

Distortion can be quantitatively characterized by the Total Harmonic Distortion (THD). Two 

definitions are also used to calculate THD: 
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where iX  is the i-th harmonic component of the signal. The difference is that in the first 

definition, THD ( 1k ) is given as the ratio of the effective value of the harmonic components 

and the effective value of the signal, while in the second definition THD ( 2k ) is given as the 

ratio of the effective value of the harmonic components and the effective value of 

fundamental frequency component X1. Care should be taken, since harmonic components are 

often measured in dB. In this case, they should be converted to absolute value: 
20/

ref

dB

10 iX

i UX  . Uref is the reference voltage. It is defined in the manual of the 

instrument. However, in the case of the distortion measurement it is nut crucial, since both 

the nominator and the denominator can be divided by this term.  

Transfer function of first-order systems 

The general forms of first-order, low-pass (WLP) and high-pass (WHP) filters are: 
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In electrical engineering, the piecewise linear approximations of Bode plots are also often 

used. These plots are given for first-order systems in figures below: 

 

Figure 4–5. Piecewise linear approximation of Bode plots of first-order, low-and high-pass 

systems.  

In this laboratory first-order, low- and high-pass filters will be investigated that are realized 

by R-C components. The schematic diagrams and related transfer functions of such systems 

are: 
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bode plot of first order high-pass RC filter
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Figure 4–6. Schematics and transfer functions of first-order, low- and high-pass RC 

networks. Cutoff frequency is in this example: ω0=1/RC=1000 rad/sec.  
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The transfer functions of first-order RC networks in analytical forms are: 

 
RCj

W



1

1
RCLP, ,                                                   

RCj

RCj
W






1
RCHP, . (4-8) 

 

One can see that the cutoff frequency is: ω0=1/RC, and the nominal gain of these systems is 

unity, i.e., A = 1. Important properties of these networks are: 

 

property low-pass RC network high-pass RC network 

Cutoff frequency / time constant ω0 = 1/τ = 1/RC ω0 = 1/τ = 1/RC 

DC gain 0 dB (1) -∞ dB (0) 

gain at cutoff frequency  -3 dB (1/ 2 ) -3 dB (1/ 2 ) 

gain at ω→∞ -∞ dB (0) 0 dB (1) 

slope of W  below cutoff frequency 0 dB/decade 20 dB/decade 

slope of W  above cutoff frequency -20 dB/decade 0 dB/decade 

DC phase shift 0
○
  90

○
 

phase shift at cutoff frequency 45
○
 45

○
 

phase shift at ω→∞ 90
○
 0

○
 

 

The knowledge of basic behavior of low- and high-pass networks is also important when 

instruments are characterized. For example, when an oscilloscope is used with AC coupling, 

its input stage behaves like a high-pass filter. The cutoff frequency of AC coupling of the 

oscilloscope Agilent 54622 is 3.5 Hz by specification.  

For high-frequency signals an instrument (oscilloscope, mulimeter…) behaves like a low-

pass filter. Care should be taken, since not only the fundamental, but higher order harmonic 

components can be modified by the instrument. For example, if the bandwidth of an 

oscilloscope is 100 MHz, and a periodic square wave of 10 MHz is measured, the effect of 

the oscilloscope’s bandwidth even on the 10-th (and higher order) harmonic components can 

not be neglected. It will result in the phenomena as the square wave would be composed of 

only harmonic components up to the order of ten, hence sharp edges will disappear. The 

bandwidth of some oscilloscopes can also be decreased intentionally to improve signal-to-

noise ratio when low frequency signals are measured.  

The time domain behaviors of first-order RC networks are shown in the figures below: 
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Figure 4–7. Step responses of first-order, low- and high-pass RC networks. Time constant is: 

τ=1/ω0=RC=1 msec.  

 

Web Links 

http://en.wikipedia.org/wiki/Cutoff_frequency 

http://en.wikipedia.org/wiki/Oscilloscope 

http://en.wikipedia.org/wiki/Frequency_domain 

http://en.wikipedia.org/wiki/Fourier_transform 

 

Measurement Instruments 

Digital multimeter Agilent 34401A  

Power supply Agilent E3630 

Function generator Agilent 33220A 

Oscilloscope Agilent 54622A 
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Test Board 

The board VIK-05-01 contains objects to be measured. The RC networks are configurable by 

allowing to select the resistance. The time constants for both the low- and high-pass 

networks are can be set by knobs.  

 

Figure 4–8. Circuit diagram of the variable first-order, low-pass filter 

 

Figure 4–9. Circuit diagram of the variable first-order, high-pass filter 
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Laboratory Exercises 

1. Spectral analysis using FFT 

In this task we get acquainted with the use of the FFT function of the oscilloscope. Save 

the plots from the oscilloscope and explain your findings. 

The first task should be performed without using a window function. This can be set in 

the FFT menu by choosing a Rectangular window in Settings-> More FFT-> Window. 

The FFT display can be scaled in the X direction in the FFT Settings->Span and 

Settings-> Center menu. Using a Span of 20 kHz and a Center of 10 kHz is a good 

starting point. The display can be shifted and scaled in the Y direction in the Settings-

>More FFT menu with the Scale and Offset parameters.  

1.1. Set a 1 kHz square wave on the function generator and observe the spectrum 
using the oscilloscope in the case of computing the FFT from one period only. 
(This can be set using the time-base of the oscilloscope: the instrument 
computes the FFT from the displayed part of the signal.) Observe how the 
spectrum changes when it is computed from more whole periods (eg. exactly 10 
periods). Which one of the two spectrum plots look more similar to the one 
expected from theory? What is the reason for this? Calculate the resolution of 
the FFT (Δf) in both cases. 

 

comments, observations> 

 

1.2. Now set a sine wave on the function generator, and tune the frequency so that 
the spectral leakage is maximal by computing the FFT from 10.5 periods of the 
signal. (This is achieved by setting 1.05 kHz frequency.) The amplitude of the 
sine wave should be set to 1 VRMS. Measure the amplitude of the sine wave by 
using the cursors on the spectrum figure and compare it with the theoretically 
expected value. Repeat the measurement using Hanning and Flat Top 
windows. (Settings-> More FFT-> Window menu.) Explain why the amplitude 
measurement is improved by using the different window functions. What 
differences can you observe in the shapes of the spectral peaks depending on 
the choice of the FFT window? 

 

<comments, observations> 

 

1.3. By using the sine wave set in the previous task, observe how the spectrum is 
changed when the input of the oscilloscope is overdriven. This can be set by 
choosing the input sensitivity in such a way that the peaks of the sine wave are 
clipped in the time-domain plot. Explain your findings. 

(Note: this task shows that during spectrum analysis the time-domain plot should 

always be checked in order to assure that the input signal does not get distorted. By 

omitting this we might overdrive the input channel which leads to wrong 

measurements.) 

<comments, observations> 
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2. Spectrums of various signals 

Generate sine and square waves by using the function generator. Display the spectrums 

of these signals on the oscilloscope by the built-in FFT function. 

2.1. Measure the first 10 harmonics of the sine and square wave signals and 
compare them with the theoretical values. What are the differences? What is 
the reason? 

Let the amplitude be 2 Vpp in every case. The output load of the function generator 

should be set to high impedance, otherwise the displayed values on the generator 

and the oscilloscope are different. It is worth noting that the oscilloscope displays 

the result of the FFT in dBV which means that the reference is a sine signal with 

amplitude 1 VRMS. 

<measurement setup> 

 

f/f0 1 2 3 4 5 6 7 8 9 10 11 

U [dBV] 

measured 
           

U [dBV] 

theoretical 
           

<comments, observations> 

 

f/f0 1 2 3 4 5 6 7 8 9 10 11 

U [dBV] 

measured 
           

U [dBV] 

theoretical 
           

<comments, observations> 

 

 

2.2. Change the duty cycle of  the square wave. What does it cause in the 
spectrum? 

Note: low value for duty cycle can be set in the Pulse menu. Observe the spectrum 

at some particular duty cycle values, such as 5, 10 and 20 %. Which harmonics are 

missing from the spectrum? 

<comments, observations> 

 

 

2.3. Study the spectrum of a noise signal. Examine the differences compared to the 
periodic waves. 

<comments, observations> 
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3. Analysis of Low-pass and High-Pass Filtering 

Determine the effects of low-pass and high-pass filtering in the time and frequency 

domain, respectively.  

3.1. Use the first order low-pass filter of the test board. By applying square wave 
excitation examine the input and output signal in time- and frequency domain, 
respectively. Let the frequency of the square wave be approximately 10 times 
smaller than the theoretically calculated cutoff frequency of the filter. What do 
you observe? Explain the results. 

<comments, observations> 

 

3.2. Repeat the previous exercise using a high-pass filter on the same board. Let 
the frequency be approximately 10 times smaller than the cutoff frequency of 
the filter. What is the effect of the filter on the square wave? 

<comments, observations> 

 

4. Measuring the amplitude characteristic by applying high bandwidth 

periodic signals 

Measure the amplitude characteristic of the first order low-pass filter on the board in one 

step. The parameters of the filter (values of the resistors) can be set up by the switch. 

4.1. Estimate the cutoff frequency of the first order low-pass filter by examining the 
input and output spectrums. The excitation signal should be a periodic sinc 
wave (Arb->Select Wform->Built-In-> Sinc menu on the function generator). Set 
the frequency of the sinc function around 10 times smaller compared to the 
theoretically expected cutoff frequency. 

 Compare this kind of measurement method with the stepped sine measurement 
 used in the 4

th 
laboratory “Time domain alalysis”. What are the 

 advantages/drawbacks of the different methods? 

<comments, observations> 

 

4.2. Use noise signal as excitation. Measure the amplitude spectrum of the output. 

<comments, observations> 

 

Additional remarks 

Measurement of the spectrum 

The spectrum of signals can be measured with spectrum analyzers. There are dedicated 

instruments for spectrum analysis, but several modern oscilloscopes also have built-in FFT 

(Fast Fourier Transform) based spectrum analyzer. In the laboratory, the FFT module of the 

oscilloscope is used to display the spectrum. FFT is a special case of the well-known DFT 

(Discrete Fourier Transform). In the FFT, the symmetry of exponential basis functions are 

used to improve the speed of spectrum calculation.  

When a spectrum analyzer is used to display the spectrum of a signal, generally one-sided 

spectrum is displayed, i.e., only the positive (right) frequency axis is displayed (note that in 

©BME-VIK Only students attending the courses of Laboratory 1 (BMEVIMIA304/C05) are allowed to download this file, and to 
make one printed copy of this guide. Other persons are prohibited to use this guide without the authors' written permission.



Laboratory exercises 1. 

16 

Table 4-II both negative and positive frequency axes are displayed). This means no loss of 

information since the spectrum lines at the negative axis are the complex conjugates of the 

positive ones, so the amplitude spectrum is symmetric, and positive part is enough for most 

of the analysis.  

Since digital oscilloscopes work on sampled signals, so sampling theorem should be hold, 

i.e., the bandwidth of the observed signal should be less than the half of the sampling 

frequency.  

An important aspect of FFT-based spectrum analysis is that a real instrument can process 

samples of finite length. It is called windowing, i.e., the processing of finite number of 

samples of a signal means that we select a finite time window from the whole signal. Two 

important result of this fact are the so called leakage and picket fence. Leakage means that 

spectrum components may appear on such frequencies where no signal is present, and picket 

fence means that the amplitude of a signal obtained after FFT may smaller than its real 

amplitude. Windowing appears in each case since observation of a signal over an infinite 

time interval is practically not possible.  
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Figure 4–10. Illustration of the effect of windowing. The first row contains the time 

functions while the second row contains corresponding spectrums. Left column: ideal sine 

wave and its spectrum. Center column: the observed (windowed) part of a sine wave and its 

spectrum. Right column: the FFT of the observed signal. Circles indicate the spectrum 

calculated by FFT, the dotted line is the spectrum of the windowed signal. Both picked fence 

and leakage can be observed. Frequency of the signal is 0.025 Hz and sampling frequency 

is 1 Hz. 

The complete explanation of the phenomenon of windowing is out of the scope of this guide 

but a short illustration of the leakage and picket fence can be seen in Fig. 4–10. for the case 

of a pure sine wave. 

The left column of Fig. 4–10. shows the time function of a rather long observation of a sine 

wave (it is a good approximation of an infinite long observation). The spectrum is a spike at 

the frequency of the signal (0.025 Hz), as expected.  

In the center column, a finite interval is selected from the time function. This operation can 

be mathematically modeled as if the signal were multiplied by a window function w(t) which 

is zero where the signal is not observed and it is one where the signal can be observed. This 

kind of window function is called rectangular window. The spectrum of such a truncated sine 
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wave is not a Dirac pulse, but the spectrum of the window function at the frequency of the 

sine wave (in the case of a rectangular window, it is a discrete sinc function). The reason is 

that multiplication in time domain corresponds to convolution in frequency domain: let the 

Fourier transform of the window function be W(f) and the spectrum of the sine wave is δ(f–

f0), hence their convolution  is W(f)×δ(f–f0) = W(f–f0).  

Finally, the FFT can be interpreted as if the continuous spectrum were sampled at discrete 

frequency values (it is a discrete Fourier transform). The values calculated by the FFT from 

the windowed signal are indicated by circles in the right column of Fig. 4–10 (these values 

are displayed on a spectrum analyzer). As one can see, in worst case the spectrum is 

calculated not at the peak of the windowed spectrum, so the peak value displayed by the 

spectrum analyzer is smaller than the peak value of the original spectrum. This phenomenon 

is called picket fence. The leakage can also be recognized in the figure, since the spectrum 

calculated by FFT contains nonzero values around the peak of the spectrum, where the 

spectrum of an ideal sine wave is zero.  

The effect of picket fence and leakage can be reduced by applying different window 

functions. There are several window functions, most commonly used windows are: 

rectangular window, Hanning window and flat-top window.  
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Figure 4–11. Spectrums with different window functions: rectangular, Hanning, flat-top. 

Frequency of the signal is 0.025 Hz and sampling frequency is 1 Hz. 

Fig. 4–11. shows the spectrum of a sine wave with different window functions. The leakage 

is most serious in the case of the rectangular window. In worst case, the amplitude of the 

signal read from the spectrum analyzer can be even approximately 65% (approx. 4 dB) of the 

original amplitude (see left columns). In the case of a flat-top window (right column), the 

amplitude of the signal is displayed correctly, i.e., picket fence practically disappears, so it is 

advantageous when amplitude is measured. Its disadvantage is that the peak at the frequency 

of the sine wave becomes rather wide. A good trade-off is Hanning window which is often 

used for general investigations.  

Let’s note that windowing occurs even we do not use it intentionally, but we process a data 

set of finite length without explicitly windowing it. In this case we use rectangular window 

implicitly.  

It is also important, that picket fence and leakage can disappear even in the case of a 

rectangular window, but it depends on the frequency of the signal to be observed (compare 

Fig. 4–11 and Fig. 4–12). This is the real problem, since if the picket fence would reduce the 

amplitude to 65% in every case, this error could be compensated, but the amount of 
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amplitude reduction depends on the signal’s frequency so it is hard/impossible to 

compensate.  
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Figure 4–12. Spectrums with different window functions: rectangular, Hanning, flat-top. 

Frequency of the signal is 0.024 Hz and sampling frequency is 1 Hz. There is no picket fence 

and leakage.  

Bandwidth 

Every real measurement device has a finite input bandwidth, so does the oscilloscope. 

Within the  bandwidth, input signals are handled unbiased. In the case of DC coupling the 

input characteristic can be modeled by a first-order, low-pass filter. The definition of the 

bandwidth is the frequency where the power has dropped by half (-3 dB). If the input signal 

contains components out of this band, then the measured signal will be distorted. The error 

can be detected in both frequency (assuming that the device has FFT function) and time 

domains, because the FFT is based on time-domain measured data. In case of sine waves the 

situation is simple. However, before measuring complex signals (square, triangular signals) 

the frequency bandwidth which guarantees undistorted transfer has to be estimated. 

Dynamic range 

Applying frequency domain measurements two important parameters of the measurement 

devices have to be considered: bandwidth and dynamics. The dynamics is not equivalent 

with the resolution of the AD converter. The former gives the difference which can be 

measured between two signals (during one measurement session). The later one defines the 

smallest step size. The smallest signal that can be measured is typically determined by the 

noise floor, which may coincide with error derived by resolution of the AD converter or may 

be greater because of analog noise sources or may be decreased by using averaging. The 

dynamic of a common measurement device is 50-60 dB. In the case of a high quality 

spectrum analyzer it can be even 90 dB. 

 

Sampling frequency 

In digital devices the sampling frequency is one of the most important parameters. 

Unfortunately, the requirement in time domain differs from the requirement in frequency 

domain. Measurement in frequency domain needs only the sampling theorem to be 

complied. For example, in the case of sine waves 4-5 samples from one period are enough. 

In the case of time domain analysis more samples are necessary. To observe small changes 

in waves as high sampling frequency as possible should be applied. However, in frequency 

domain the frequency resolution should be increased. In the case of FFT analyzers distance 

between two adjacent frequencies depends on the size of FFT and the sampling frequency 
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( Nff
s

 ). According to the expression increasing the sampling frequency decreases the 

resolution. A good strategy in frequency domain analysis is when we decrease the sampling 

frequency as much as possible while we increase the size of FFT. It is worth noting that the 

device in the laboratory works with fixed size of FFT. Therefore, only the sampling 

frequency can be adjusted.  

 

Test questions 

1. What are the spectrums of the following waves: sine, square and  triangle  waveforms?  

2. What is the spectrum of a square pulse? 

3. Let the period time be fixed. What causes varying the rise and fall time of a triangle 

wave in the spectrum?  

4. Let the period time be fixed. What causes varying the duty cycle of a square wave in the 

spectrum? 

5. What is the equivalent operation of time shifting in the frequency domain? 

6. What is the spectrum of the convolution of two given signals? 

7. What is the spectrum of the derivative of a given signal? 

8. What is the spectrum of the integral of a given signal? 

9. What is the effect of scaling the time  (    atxtx  , a is a constant) in the spectrum? 

10. What is the spectrum of a real and absolutely integrable signal? 

11. What is the relation between the real and complex Fourier coefficients?  

12. How can the power be calculated in time and frequency domain, respectively? 

13. How can be the frequency resolution of the DFT or FFT calculated based on the 

sampling rate and sample size? 

14. What are the most common FFT window functions, and what are their main advantages? 

15. What kind of excitation signals should be used if we aim to measure the frequency 

response (amplitude characteristic) of a system at multiple frequencies simultaneously? 

16. What kind of frequency components can be observed in the output if a linear system is 

excited by a sine wave?  

17. What kind of frequency components can be observed in the output if a non-linear system 

is excited by a sine wave?  
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