Exact inference in general Bayesian networks, in Naive BNs and in Hidden Markov Models

AI: EXACT inference in BNs

Outline

\diamond Types of inference in (causal) BNs
\diamond Exact inference by enumeration
\diamond Hardness of exact inference in general BNs
\diamond Linear time diagnostic inference in Naive BNs
\diamond Types of (observational) inference in Hidden Markov Models
\diamond Approximate inference by stochastic simulation
\diamond Approximate inference by Markov chain Monte Carlo

Inference tasks

Simple queries: compute posterior marginal $\mathbf{P}\left(X_{i} \mid \mathbb{E}=\mathbf{e}\right)$
e.g., $P($ NoGas \mid Gauge $=$ empty, Lights $=o n$, Starts $=$ false $)$

Conjunctive queries: $\mathbf{P}\left(X_{i}, X_{j} \mid \mathbf{E}=\mathbf{e}\right)=\mathbf{P}\left(X_{i} \mid \mathbf{E}=\mathbf{e}\right) \mathbf{P}\left(X_{j} \mid X_{i}, \mathbf{E}=\mathbf{e}\right)$
Optimal decisions: decision networks include utility information; probabilistic inference required for P (outcome|action, evidence)

Value of information: which evidence to seek next?
Sensitivity analysis: which probability values are most critical?
Explanation: why do I need a new starter motor?
Causal inference: what is the effect of an intervention?
Counterfactual inference: what would have been the effect of a hypothetical/imagery past intervention\&observation?

Inference by enumeration: principle

Let X be all the variables. Typically, we want the posterior joint distribution of the query variables Y given specific values e for the evidence variables E.

Let the hidden variables be $\mathrm{H}=\mathrm{X}-\mathrm{Y}-\mathrm{E}$.
Then the required summation of joint entries is done by summing out the hidden variables:

$$
\mathbf{P}(\mathbf{Y} \mid \mathbf{E}=\mathbf{e})=\alpha \mathbf{P}(\mathbf{Y}, \mathbf{E}=\mathbf{e})=\alpha \sum_{\mathbf{h}} \mathbf{P}(\mathbf{Y}, \mathbf{E}=\mathbf{e}, \mathbf{H}=\mathbf{h})
$$

The terms in the summation are joint entries!
Obvious problems:

1) Worst-case time complexity $O\left(d^{n}\right)$ where d is the largest arity
2) Space complexity $O\left(d^{n}\right)$ to store the joint distribution
3) How to find the numbers for $O\left(d^{n}\right)$ entries???

Inference by enumeration: goal oriented

Slightly intelligent way to sum out variables from the joint without actually constructing its explicit representation

Simple query on the burglary network:
$\mathbf{P}(B \mid j, m)$
$=\mathbf{P}(B, j, m) / P(j, m)$
$=\alpha \mathbf{P}(B, j, m)$
$=\alpha \Sigma_{e} \Sigma_{a} \mathbf{P}(B, e, a, j, m)$

Rewrite full joint entries using product of CPT entries:
$\mathbf{P}(B \mid j, m)$
$=\alpha \Sigma_{e} \Sigma_{a} \mathbf{P}(B) P(e) \mathbf{P}(a \mid B, e) P(j \mid a) P(m \mid a)$
$=\alpha \mathbf{P}(B) \Sigma_{e} P(e) \Sigma_{a} \mathbf{P}(a \mid B, e) P(j \mid a) P(m \mid a)$
Recursive depth-first enumeration: $O(n)$ space, $O\left(d^{n}\right)$ time

Complexity of exact inference

Singly connected networks (or polytrees):

- any two nodes are connected by at most one (undirected) path
- time and space cost of exact inference $O\left(d^{k} n\right)$

Multiply connected networks:

- can reduce 3SAT to exact inference: $0<\mathrm{p}($ AND $) ? \Rightarrow$ NP-hard
- equivalent to counting 3SAT models \Rightarrow \#P-complete

1. $A \vee B \vee C$
2. $C \vee D v \neg A$
3. $B \vee C \vee \neg D$

Diagnostic inference in Naive BNs

Useful for assessing diagnostic probability from causal probabilities:
$P\left(\right.$ Cause Effect $\left._{1: n}\right)$
$=\frac{P\left(\text { Cause }^{2} \prod_{i=1}^{n} P\left(E f \text { fect }_{i} \mid \text { Cause }\right)\right.}{P\left(E f^{2} e c t_{1: n}\right)}$
$\propto P($ Cause $) \Pi_{i=1}^{n} P\left(\right.$ Effect $_{i} \mid$ Cause $)$

Hidden Markov Models

The world changes; we need to track and predict it
Diabetes management vs vehicle diagnosis
Basic idea: copy state and evidence variables for each time step
$\mathbf{X}_{t}=$ set of unobservable state variables at time t e.g., BloodSugar ${ }_{t}$, StomachContentst, etc.
$\mathrm{E}_{t}=$ set of observable evidence variables at time t e.g., MeasuredBloodSugar ${ }_{t}$, PulseRate ${ }_{t}$, FoodEaten ${ }_{t}$

This assumes discrete time; step size depends on problem
Notation: $\mathbf{X}_{a: b}=\mathbf{X}_{a}, \mathbf{X}_{a+1}, \ldots, \mathbf{X}_{b-1}, \mathbf{X}_{b}$

Markov processes (Markov chains)

Construct a Bayes net from these variables: parents?
Markov assumption: \mathbf{X}_{t} depends on bounded subset of $\mathbf{X}_{0: t-1}$
First-order Markov process: $\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{0: t-1}\right)=\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{t-1}\right)$
Second-order Markov process: $\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{0: t-1}\right)=\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{t-2}, \mathbf{X}_{t-1}\right)$

First-order

Second-order

Sensor Markov assumption: $\mathbf{P}\left(\mathbf{E}_{t} \mid \mathbf{X}_{0: t}, \mathbf{E}_{0: t-1}\right)=\mathbf{P}\left(\mathbf{E}_{t} \mid \mathbf{X}_{t}\right)$
Stationary process: transition model $\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{t-1}\right)$ and sensor model $\mathbf{P}\left(\mathbf{E}_{t} \mid \mathbf{X}_{t}\right)$ fixed for all t

Example

First-order Markov assumption not exactly true in real world!
Possible fixes:

1. Increase order of Markov process
2. Augment state, e.g., add Temp, Pressure $_{t}$

Example: robot motion.
Augment position and velocity with Battery ${ }_{t}$

Inference tasks

Filtering: $\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{e}_{1: t}\right)$
belief state-input to the decision process of a rational agent
Prediction: $\mathbf{P}\left(\mathbf{X}_{t+k} \mid \mathbf{e}_{1: t}\right)$ for $k>0$
evaluation of possible action sequences;
like filtering without the evidence
Smoothing: $\mathbf{P}\left(\mathbf{X}_{k} \mid \mathbf{e}_{1: t}\right)$ for $0 \leq k<t$
better estimate of past states, essential for learning
Most likely explanation: $\arg \max _{\mathbf{x}_{1: t}} P\left(\mathbf{x}_{1: t} \mid \mathbf{e}_{1: t}\right)$
speech recognition, decoding with a noisy channel

Filtering

Aim: devise a recursive state estimation algorithm:

$$
\begin{aligned}
& \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t+1}\right)=f\left(\mathbf{e}_{t+1}, \mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{e}_{1: t}\right)\right) \\
& \begin{array}{l}
\mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t+1}\right)=\mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t}, \mathbf{e}_{t+1}\right) \\
\quad=\alpha \mathbf{P}\left(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}, \mathbf{e}_{1: t}\right) \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t}\right) \\
\quad=\alpha \mathbf{P}\left(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}\right) \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t}\right)
\end{array}
\end{aligned}
$$

I.e., prediction + estimation. Prediction by summing out \mathbf{X}_{t} :

$$
\begin{aligned}
& \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t+1}\right)=\alpha \mathbf{P}\left(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}\right) \sum_{\mathbf{x}_{t}} \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{x}_{t}, \mathbf{e}_{1: t}\right) P\left(\mathbf{x}_{t} \mid \mathbf{e}_{1: t}\right) \\
& \quad=\alpha \mathbf{P}\left(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}\right) \sum_{\mathbf{x}_{t}} \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{x}_{t}\right) P\left(\mathbf{x}_{t} \mid \mathbf{e}_{1: t}\right)
\end{aligned}
$$

$\mathbf{f}_{1: t+1}=\operatorname{FORWARD}\left(\mathbf{f}_{1: t}, \mathbf{e}_{t+1}\right)$ where $\mathbf{f}_{1: t}=\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{e}_{1: t}\right)$
Time and space constant (independent of t)

Filtering example

Divide evidence $\mathrm{e}_{1: t}$ into $\mathrm{e}_{1: k}, \mathrm{e}_{k+1: t}$:

$$
\begin{aligned}
\mathbf{P}\left(\mathbf{X}_{k} \mid \mathbf{e}_{1: t}\right) & =\mathbf{P}\left(\mathbf{X}_{k} \mid \mathbf{e}_{1: k}, \mathbf{e}_{k+1: t}\right) \\
& =\alpha \mathbf{P}\left(\mathbf{X}_{k} \mid \mathbf{e}_{1: k}\right) \mathbf{P}\left(\mathbf{e}_{k+1: t} \mid \mathbf{X}_{k}, \mathbf{e}_{1: k}\right) \\
& =\alpha \mathbf{P}\left(\mathbf{X}_{k} \mid \mathbf{e}_{1: k}\right) \mathbf{P}\left(\mathbf{e}_{k+1: t} \mid \mathbf{X}_{k}\right) \\
& =\alpha \mathbf{f}_{1: k} \mathbf{b}_{k+1: t}
\end{aligned}
$$

Backward message computed by a backwards recursion:

$$
\begin{aligned}
\mathbf{P}\left(\mathbf{e}_{k+1: t} \mid \mathbf{X}_{k}\right) & =\sum_{\mathbf{x}_{k+1}} \mathbf{P}\left(\mathbf{e}_{k+1: t} \mid \mathbf{X}_{k}, \mathbf{x}_{k+1}\right) \mathbf{P}\left(\mathbf{x}_{k+1} \mid \mathbf{X}_{k}\right) \\
& =\sum_{\mathbf{x}_{k+1}} P\left(\mathbf{e}_{k+1: t} \mid \mathbf{x}_{k+1}\right) \mathbf{P}\left(\mathbf{x}_{k+1} \mid \mathbf{X}_{k}\right) \\
& =\sum_{\mathbf{x}_{k+1}} P\left(\mathbf{e}_{k+1} \mid \mathbf{x}_{k+1}\right) P\left(\mathbf{e}_{k+2: t} \mid \mathbf{x}_{k+1}\right) \mathbf{P}\left(\mathbf{x}_{k+1} \mid \mathbf{X}_{k}\right)
\end{aligned}
$$

Smoothing example

Forward-backward algorithm: cache forward messages along the way Time linear in t (polytree inference), space $O(t|\mathbf{f}|)$

Most likely explanation

Most likely sequence \neq sequence of most likely states!!!!
Most likely path to each x_{t+1}
$=$ most likely path to some \mathbf{x}_{t} plus one more step

$$
\begin{aligned}
& \max _{\mathbf{x}_{1} \ldots \mathbf{x}_{t}} \mathbf{P}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{t}, \mathbf{X}_{t+1} \mid \mathbf{e}_{1: t+1}\right) \\
& =\mathbf{P}\left(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}\right) \max _{\mathbf{x}_{t}}\left(\mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{x}_{t}\right) \max _{\mathbf{x}_{1} \ldots \mathbf{x}_{t-1}} P\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{t-1}, \mathbf{x}_{t} \mid \mathbf{e}_{1: t}\right)\right)
\end{aligned}
$$

Identical to filtering, except $f_{1: t}$ replaced by

$$
\mathbf{m}_{1: t}=\max _{\mathbf{x}_{1} \ldots \mathbf{x}_{t-1}} \mathbf{P}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{t-1}, \mathbf{X}_{t} \mid \mathbf{e}_{1: t}\right)
$$

I.e., $\mathbf{m}_{1: t}(i)$ gives the probability of the most likely path to state i. Update has sum replaced by max, giving the Viterbi algorithm:

$$
\mathbf{m}_{1: t+1}=\mathbf{P}\left(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}\right) \max _{\mathbf{X}_{t}}\left(\mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{x}_{t}\right) \mathbf{m}_{1: t}\right)
$$

Viterbi example

Exact inference:

- polytime on polytrees (NBNs,HMMs)
- NP-hard on general graphs

