
1

Exercise 11.

Measurement of programmable peripheral

units

Goal of the measurement

• Digital design knowledge

• Verilog knowledge

• Xilinx ISE (Exercise 3 & 10)

• SPI & UART communication standards (Serial Communication Standards

documentation)

Goal of the measurement

The goal of this lab is (1) to study and/or implement the UART and SPI communication

protocols, (2) to implement a typical peripheral interface (3) get more experience about CAD

aided hardware design.

Preparing for the measurement

This measurement is based on earlier exercises. Scrutinize what you have learned in “Digital

devices basics” and “Implementation and analysis of sequential networks”!

Read the papers available on the homepage: “Serial Communication Standards”, “Design of

an SPI receiver”

Check the measurement tasks and the test questions!

Measurement tasks

The block diagram of the complete hardware to implement is depicted below. All of the

modules use the system clock and reset input.

Laboratory Excercises 1.

2

nCS

sck

miso

cs

so

spi Dout
[12:0]

[1
1

:4
]

temp

sw

[7
:0

]

dprocsck

ld sw

TMP121

LEDs SW 7seg

Seg7_cntrl

uart

d3

d2

d1

d0

din3 din2 din1 din0

bcd1

bcd0

tx_out

clk

rst
an seg

an seg

top_level

PC
tx_out

The following skeleton files can be downloaded from the homepage:

− In top_level module every sub-module but the UART is instantiated.

− Seg7_cntrl: The 7-segment display controller module you have designed earlier. The

only improvement is that beside the BCD codes, this controller is able to display the

minus sign on a digit (if the input is 13d) or to switch the digit off (for any other non-

BCD input). The decimal point for the segment din1 is always on, for all the other

segments, it is always off. The internal enable signal is generated in a more efficient

way as before. You have nothing to modify in this module, but examine the its new

features and modifications.

− spi: the skeleton for the SPI receiver to implement. Initially nCS = 1, sck = 0, Dout =

13’b0. This should be modified, and Dout should contain the 13 bit temperature value.

The integer part will be displayed on the LEDs.

− The tb_spi_temp is a test bench for the SPI module. During the measurement, you hace

to examine and use this. (There is nothing to modify.)

− The input for the dproc module is the temperature and the value of the switches. The

output is a 4 digit BCD value. Depending on sw[7], the output represents directly

sw[6:0] or temperature-sw[6:0]. During the measurement, you have to examine this

module and to do a little modification.

− The pins.ucf contains the pinout for our hardware. There is nothing to modify.

− The uart is added to the project as a black-box module.

− cs.zip: a chip scope configuration file. Initially, do not add this to your project!

1. SPI receiver: implementation, simulation and test

Based on the description made in the paper “Design of an SPI receiver”, selecting SCK for

4 MHz-re, and considering that the system clock is 16 MHz, the temperature conversion time

is 130 ms, and 13 of 16 transferred data bits are relevant, we get the following block diagram:

Laboratory Exercises I. Measurement of programmable peripheral

units

3

CNTR

23 bit

==

2'b01

==

3

==

67

D

FF

16 bit

shift regiszter

nCSSCK MISO

13 bit

regiszter

[1]

[1:0]

RST

SET

INV
AND

CE

CE D

D

Dout

sck_rise

OR

rst

[22:0]

[22:0]

1.1. Examine the block diagram! Is the specification of TMP121 fulfilled? How long is
one communication cycle? What are the 3 comparators for? Is the Dout output
always consistent?

1.2. Implement the SPI module and check its functionality with simulation! You should
understand the structure of the given test bench file! How is the temperature
sensor simulated? How can you see on the simulation waveforms, wether your
module is functioning well?

1.3. Generate and download the bit file, check the functionality without offset
temperature (sw[6:0]=0)! Set up 42 deg. offset! What have you experienced?
Supplement the dproc module in order to correct this error?

2. Optional task

2.1. Evaluate the binary-BCD converter implemented in the dproc module! What is
the used conversion algorithm? How many clock cycles does a conversion take?
When is a new conversion started? What is the role of the following registers:
data_old, data_out, data_conv és data_high? What are their values before and
after a conversion?

Test questions 0.

1. What are the properties of the SPI interface? What signals are required for communication

and what is the role of these signals?

2. Draw a time diagram of the TMP121 communication.

3. How many wires are needed to use 4 peripherals on the SPI bus, what are they?

4. What is the fixed point number representation? What is the value of each bit?

5. In what format does the TMP121 send temperature data? What temperature does the

hexadecimal value 0x0C88 correspond to?

6. Write the value -42h in 2's complement binary 8-bit integer format. What decimal value

does the bit pattern correspond to if it is considered a signed, fixed-point value with two

fractional bits?

Laboratory Excercises 1.

4

7. Give the Verilog code for a 16-bit shift register with an enable input which shifts to the

left. The inputs to the module are clock (clk), enable (en); the output is the current state of

the shift register (shr).

8. Give the Verilog code of an 8-bit shift register with an enable input, which shifts to the

right. The inputs to the module are: clock (clk), enable (en); the output is the current state

of the shift register (shr).

9. Give the Verilog code of a 20-bit up-counter. The inputs to the module are clock (clk),

reset (rst); the output is the current state of the counter (cntr).

10. Specify (with an assign statement) the Verilog code to calculate the absolute value of a

14-bit two's complement value. The input signal shall be named data_2comp and the

absolute value signal shall be named data_abs. The latter signal is also declared.

