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Exercise 5. 

Frequency Domain Analysis 

Required knowledge 

• Fourier-series and Fourier-transform. 

• Measurement and interpretation of transfer function of linear systems. 

• Transfer function of simple networks (first-order, high- and low-pass RC network). 

Introduction 

Signals are often represented in frequency domain by their spectrum, frequency, harmonic 

components, amplitude and phase. Time- and frequency-domain representations are mutually 

equivalent, and the Fourier transform can be used to transform signals between the two 

domains. Fourier transform exists for almost all practical signals which are used in electrical 

engineering practice. Frequency domain representation often simplifies the solution of 

several practical problems. It offers a compact and expressive form of signal representation 

by allowing the separation of spectral components. Frequency-domain representation can be 

effectively used in measurement of signal parameters, signal transmission, 

infocommunication, system design, etc.  

One of the most important classes of signals is the class of periodic signals. Periodic signals 

are often used as excitation signals since they produce periodic signal with the same 

frequency at the output of the measured system. Periodic signals are easy to observe with 

simple instruments like oscilloscopes, moreover averaging can also be effectively used to 

increase the signal-to-noise ratio. System parameters can be determined by measuring the 

amplitude gain (or attenuation) and phase shift between the output and input. Fourier 

transform allows the characterization of systems in the simple form of a transfer function 

instead of convolution or differential equations connected to time-domain representation.  

Aim of the Measurement 

During the measurement, the students study the methods of signal analysis in frequency 

domain. They compare time domain algorithms to frequency domain ones. After finishing 

the measurement, they will be able to use frequency domain tools to describe properties of 

signals which cannot be easily detected in time-domain. During the laboratory students can 

apply their knowledge of signal and systems for solving engineering problems.  
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Theoretical background 

Fourier series and Fourier transform 

Real-valued periodic signals can be decomposed into linear combination of sine and cosine 

functions. This trigonometrical series is referred to as Fourier series of signals, and it has the 

following form (T stands for the period, and T/2 =  denotes the angular frequency): 
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where the coefficients can be calculated using the following equations: 
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These operations are based on the orthogonality of trigonometric functions on the interval 

[0…T].  

Fourier series have also a simpler form where complex-valued coefficients and complex 

exponential basis function are used: 
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For real-valued signals: )(conjugate
C

k
C
k UU −= , i.e., Fourier components form complex 

conjugate pairs.  

The Fourier series of some practically important signals are summarized in the following 

table. 
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Table 4-I. Fourier series of some periodic signals. 

 

Fourier transform is the extension of Fourier series. It can be applied for square or absolute 

integrable functions. The spectrum of the signal x(t) is obtained using the Fourier transform 

as follows: 
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The signal can be reconstructed from the spectrum X(jω) as follows: 
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The Fourier transform of some important signals such as Dirac impulse, step function, sine 

and other periodic functions is not convergent in classical sense since they are not square 

integrable functions. However, the Fourier transform of such signals can also be interpreted 

using the Dirac delta function. The Fourier transform of a complex exponential function ejωt 

is a Dirac delta at the frequency of the signal, so the Fourier transform of general periodic 

signals can be easily expressed using the Fourier series (4-3): 
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where ω0 denotes the fundamental frequency of the periodic signal, δ(ω–kω0) denotes the 

Dirac delta function at the frequency kω0. Dirac deltas are represented graphically as peaks at 

the frequencies where they are located. The spectrum (Fourier transform) of some typical 

periodic signals are illustrated in the following table. 
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Spectrum of sine wave. 

 

x(t)=A∙cos(ω0t+φ) 

The spectrum contains 

only two complex 

conjugate spectral 

components at 

 frequency ±ω0.  

Spectrum of a square wave.           

  

 

Spectrum is decreasing with 

envelope 1/ω (dotted line). Only 

odd components (±ω0, ±3ω0, 

±5ω0…) are present.  

 

Spectrum of a triangle wave.           

  

 

Spectrum is decreasing with 

envelope 1/ω2 (dotted line). Only 

odd components (±ω0, ±3ω0, 

±5ω0…) are present.  

 

Table 4-II. Fourier series of some periodic signals 

It is important to note that it is not a general rule that the even harmonic components are 

missing from a periodic signal. For example, if the symmetry of a square wave differs from 

50%, not only odd, but even spectral components appear.  

Measurement of the spectrum by FFT 

The integral (4-3) can be performed analytically for the above given, mathematically 

described signals, but this is often not the case for signals we are measuring. In this case, we 

only know the measured signal with a certain time resolution, since we had to sample the 

analog signal before numerical processing: 

 ),(][ tnunu =  (4-7) 

where sft /1=  is the sampling time, the reciprocal of the sampling rate or sampling 

frequency sf . Accordingly, during the period time T we sample tTN = /  samples. The 

integral of Equation (4-3) can be approximated with a sum: 
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where we have used the fact that T/20  =  and NTt /1/ = . Notice that the last 

formula is the definition of the Fourier series of a discrete-time signal, and the same sum 

without the 1/N term is the DFT (Discrete Fourier Transform). So it is clear that if we want 

to know the Fourier components of a periodic signal, we can get them from the DFT of the 

signal samples by simple scaling with 1/N. 

The Agilent oscilloscope used in the lab has a built-in "FFT" function. Let's see what this 

means in practice! FFT is the abbreviation for Fast Fourier Transform, and is actually an 

algorithm efficiently implementing the DFT. Thus, the results of the FFT and DFT are 

equivalent. We also know that the instrument is designed to analyze periodic signals, so it 
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does not actually display the DFT but the Fourier series values, i.e. it includes 1/N scaling we 

described above. The complex Fourier series shows an amplitude of 0.5 V for a sine wave 

with a peak value of 1 V, since a sine signal with amplitude 1 is generated from a positive- 

and a negative-frequency complex exponential with amplitude 0.5. Therefore, to display the 

peak value of sine waves correctly, the values obtained by the Fourier series must be 

multiplied by two. However, the oscilloscope's instruction manual says that the instrument 

displays the amplitude of the sinusoidal components as 0 dB when their voltage is 1 VRMS, 

which implies an additional scaling of 2/1 , since the RMS value of a sine wave is 2/1  

times compared to its amplitude. It can be concluded that the instrument scales the results of 

the FFT by a factor of )2/(2 N  before displaying it in dB scale. 

When a spectrum analyzer is used to display the spectrum of a signal, generally one-sided 

spectrum is displayed, i.e., only the positive (right) frequency axis is shown (note that in 

Table 4-II both negative and positive frequency axes are displayed). This means no loss of 

information since the spectrum lines at the negative axis are the complex conjugates of the 

positive ones, so the amplitude spectrum is symmetric, and positive part is enough for most 

of the analysis.  

Since digital oscilloscopes work on sampled signals, so sampling theorem should be hold, 

i.e., the bandwidth of the observed signal should be less than the half of the sampling 

frequency.  

The spectrum is calculated from N time-domain samples, leading to N frequency points after 

FFT. Since the width of the computed spectrum equals the sampling frequency fs, and this is 

divided to N points, each frequency point (or bin) represents a frequency range of  

Nff s /= . This is the resolution of the DFT or FFT. 

An important aspect of FFT-based spectrum analysis is that a real instrument can process 

samples of finite length. It is called windowing, i.e., the processing of finite number of 

samples of a signal means that we select a finite time window from the whole signal. Two 

phenomena result from this fact: leakage and picket fence. Leakage means that spectrum 

components may appear at such frequencies where no signal is present, and picket fence 

means that the amplitude of a signal obtained after FFT may smaller than its real amplitude. 
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Figure 4–1. Illustration of the effect of windowing. The first row contains the time functions 

while the second row contains corresponding spectrums. Left column: ideal sine wave and 

its spectrum. Center column: the observed (windowed) part of a sine wave and its spectrum. 

Right column: the FFT of the observed signal. Circles indicate the spectrum calculated by 

FFT, the dotted line is the spectrum of the windowed signal. Both picket fence and leakage 

can be observed. The frequency of the signal is 0.025 Hz and sampling frequency is 1 Hz. 

The complete explanation of the phenomenon of windowing is out of the scope of this guide 

but a short illustration of the leakage and picket fence can be seen in Fig. 4–10. for the case 

of a pure sine wave. 

The left column of Fig. 4–1. shows the time function of a rather long observation of a sine 

wave (it is a good approximation of an infinite long observation). The spectrum is a spike at 

the frequency of the signal (0.025 Hz), as expected.  

In the center column, a finite interval is selected from the time function. This operation can 

be mathematically modeled as if the signal were multiplied by a window function w(t) which 

is zero where the signal is not observed and it is one where the signal can be observed. This 

kind of window function is called rectangular window. The spectrum of such a truncated sine 

wave is not a Dirac pulse, but the spectrum of the window function at the frequency of the 

sine wave (in the case of a rectangular window, it is a discrete sinc function). The reason is 

that multiplication in time domain corresponds to convolution in frequency domain: let the 

Fourier transform of the window function be W(f) and the spectrum of the sine wave is δ(f–

f0), hence their convolution  is W(f)×δ(f–f0) = W(f–f0).  

Finally, the FFT can be interpreted as if the continuous spectrum were sampled at discrete 

frequency values (it is a discrete Fourier transform). The values calculated by the FFT from 

the windowed signal are indicated by circles in the right column of Fig. 4–1 (these values are 

displayed on a spectrum analyzer). As one can see, in worst case the spectrum is calculated 

not at the peak of the windowed spectrum, so the peak value displayed by the spectrum 

analyzer is smaller than the peak value of the original spectrum. This phenomenon is called 

picket fence. The leakage can also be recognized in the figure, since the spectrum calculated 

by FFT contains nonzero values around the peak of the spectrum, where the spectrum of an 

ideal sine wave is zero.  

The effect of picket fence and leakage can be reduced by applying different window 

functions before computing the FFT. There are several window functions, most commonly 
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used windows are: rectangular window (basically, no windowing), Hanning window and 

flat-top window.  
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Figure 4–2. Spectrums with different window functions: rectangular, Hanning, flat-top. 

Frequency of the signal is 0.025 Hz and sampling frequency is 1 Hz. 

Fig. 4–2. shows the spectrum of a sine wave with different window functions. The leakage is 

the largest in the case of the rectangular window. In the worst case, the amplitude of the 

signal read from the spectrum analyzer can be approximately 65% (approx. 4 dB) of the 

original amplitude (see left columns). In the case of a flat-top window (right column), the 

amplitude of the signal is displayed correctly, i.e., picket fence practically disappears, so it is 

advantageous when amplitude is measured. Its disadvantage is that the peak at the frequency 

of the sine wave becomes rather wide. A good trade-off is Hanning window which is often 

used for general investigations.  

Let’s note that windowing occurs even we do not use it intentionally, but we process a data 

set of finite length without explicitly windowing it. In this case we use rectangular window 

implicitly.  

It is also important to note that picket fence and leakage can disappear even for the case of 

using a rectangular window (in other words, when using no window at all) in the ideal case 

called coherent sampling. Coherent sampling means that we are observing integer periods of 

the periodic signal, meaning that the FFT is sampling the sinc function at its peak and zero 

crossings. This can be seen in Figure 4-3. left column, showing exactly one peak with correct 

frequency and amplitude. It can also be seen that in the case of coherent sampling widowing 

(being Hann or flat top window) does not improve the spectrum, but actually makes it worse, 

since the spectral peaks becomes wider. So in the ideal case whenever coherent sampling can 

be used - meaning that we can set the signal frequency or the spectrum analyzer such that the 

spectrum is computed from integer periods - no window function (or, rect window) should 

be used. Note however that this rarely happens in practice since we usually do not have any 

control over the frequency of the signal we are measuring. And for non-coherent sampling, 

where leakage and picket fence do occur for rectangular window, other window functions, 

such as Hann or flat top can decrease the measurement error.  
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Figure 4–3. Spectrums with different window functions: rectangular, Hanning, flat-top. 

Frequency of the signal is 0.024 Hz and sampling frequency is 1 Hz. There is no picket fence 

and leakage.  

Application of periodic signals as excitation signals 

The most often used excitation signals are the sine wave and the square wave. In some 

applications, (e.g., measurement of static nonlinear characteristics) triangular or sawtooth 

waves are also used.  

Square wave is often used as excitation signal since it is easy to generate even with simple 

circuits, and it can be used to measure the step response of a system. When a square wave is 

applied as an excitation signal, it is important that its half period should hold considerable 

longer (at least 5 or 10 times) than the largest time constant of the system to be investigated. 

In other words, the transient should vanish, and the steady state should be achieved before a 

new edge of the square wave. If this condition is fulfilled, the excitation signal can be 

regarded as a good approximation of a periodic step signal, so the response of the system can 

be regarded as its step response.  

The shape of a signal in time domain allows us to make some important qualitative 

conclusions about its frequency-domain behavior. Since the square wave is not continuous (it 

contains steps at every level transition), so its spectrum is wide, i.e., it contains harmonic 

components of significant power in wide frequency range. It is an advantageous property 

when the square wave is used as excitation signal, since it excites the system in wide 

frequency range. Square wave is often used to test the frequency response of filters, 

amplifiers, etc. If the output of these systems is a clear square wave, then their transfer 

functions are frequency independent in a wide frequency range, so they cause small linear 

distortion on their input signals.  

When an excitation signal is selected, both its time- and frequency-domain behavior should 

be considered. Some simple rules of thumb allow us to qualitatively determine the 

frequency-domain properties of a signal from its time-domain shape. The bandwidth of a 

signal is in close connection with its smoothness. The smoother a signal is, the faster its 

Fourier coefficients (or amplitude spectrum) tend to zero, i.e., its bandwidth is small. The 

smoothness of a signal is characterized by its derivative functions. Generally, if the k-th 

derivative of a function is not continuous, then its amplitude spectra decreases 

asymptotically as 
)1( +− k

 . For example, the square wave is not continuous, i.e., k  = 0, so 

its spectrum decreases as 1 . The spectrum of the triangular wave tends to zero faster than 

that of the square wave, since it is a continuous function, and its first derivative is not 

continuous (k = 1), so its spectrum decreases with envelope 
21  . Intuitively speaking, high 
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frequency spectral components are required to generate steep slopes and discontinuities in a 

function. E.g., a triangular wave is “smoother” than a square wave, so its bandwidth is lower 

if their frequencies are identical.  

Measurement of the transfer function 

It is well known that a linear time-invariant system can change only the phase and amplitude 

of a sine wave applied to its input. Hence, the system can be characterized at each frequency 

by a complex number (complex gain) whose phase is the phase shift of the system, and its 

magnitude is the gain of the system. The transfer function is the complex gain of the linear 

system as function of frequency.  

Several methods are known which allow the measurement of the transfer function of linear 

systems. In the following, some of these methods are summarized (the emphasis is put on the 

measurement of magnitude characteristics).  

A well-known method of measurement of amplitude characteristics is performed using a sine 

wave generator and an AC multimeter that was done in laboratory measurement 2 “Time-

domain measurement”. Its disadvantage is that the measurement is relatively time 

consuming, since the amplitude characteristics should be measured point-by-point along the 

whole frequency range.  

In order to speed up the measurement, wideband signals and frequency selective instruments 

(like a spectrum analyzer or FFT analyzer) can be used to measure the entire amplitude 

characteristics in one step. Typical wideband excitation signals are multisine, swept sine 

(i.e., chirp), periodic sinc function, and noise.  

The multisine is a periodic excitation signal which consists of the sum of sine waves with 

different frequencies. The frequencies are generally integral multiples of a fundamental 

frequency. The amplitudes of the sine wave components can be set to an arbitrary level, 

however, it is practical to set the levels of the sine components to the same value. The phases 

of the components should be set to different values (often randomly) in order to ensure small 

crest factor (crest factor = peak value / RMS value). A given measurement setup limits the 

peak value of the excitation signal in order to avoid saturation, so if the crest factor is small, 

the given peak value ensures high RMS value, i.e., good signal-to-noise ratio.  
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Figure 4–4. Multisine in time and frequency domain 
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The multisine is defined in time domain as follows: 
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where F is the number of frequency components, and Tkf
k
= , where T is the period of the 

multisine. 

With the generator used in the lab, the random-phase multisine can only be achieved with 

cumbersome settings. Therefore we will use the periodic sinc function instead. The periodic 

sinc function is also a multisine, but here the components have not only the same amplitudes 

but also the same phases. This leads to a large crest factor which is not ideal for 

measurement, but as said, unfortunately the generator cannot do better with simple settings. 

Since the Fourier transform of the sinc function is the rectangular window, the periodic sinc 

function is obtained from the sampling of the rectangular window, so that the amplitude of 

each harmonic is the same up to the sinc bandwidth and zero thereafter. 

Nonlinear distortion 

Nonlinear distortion is caused by systems whose output is not a linear function of their 

inputs. If this static nonlinear characteristics is approximated with its Taylor series, it is 

apparent that if a sinusoidal excitation signal is used, the output signal will contain spectral 

components not only at the fundamental frequency but also at integral multiple of it (at other 

harmonic frequencies). This phenomenon is called nonlinear distortion.  

Several instruments (e.g., function generators, amplifiers) are often characterized by their 

nonlinear distortion. Distortion is mainly caused by the internal circuits of the instrument 

which results in the increase of spurious harmonic components. However, distortion may 

also occur using an incorrect measurement arrangement, e.g., by overdriving either the 

device under test or any of the instruments. The signal levels are often limited by the 

measurement range of the instrument and the supply voltage of the devices. Conversely, 

measurement range of an instrument (e.g., an oscilloscope) should be set every time such 

that no saturation is caused. In the figure below one can see a case when a sine wave is 

distorted, so its spectrum is contaminated by harmonic components. Frequency domain 

investigation is more suitable to detect distortion than time domain measurements, since the 

frequency selectivity of the spectrum analysis allows the detection even very small spurious 

spectral components that appear due to the distortion. The figure below shows that even a 

small distortion can cause the increase of harmonic components in the spectrum.  
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Figure 4–5. First row of graphs: undistorted sine wave (time function and spectrum);  

second row of graphs: distorted sine wave (saturation at 0.95). Parameters: 1 V amplitude, 

1 kHz frequency, 50 kHz sampling frequency.  

Distortion can be quantitatively characterized by the Total Harmonic Distortion (THD). Two 

definitions are also used to calculate THD: 
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where iX  is the i-th harmonic component of the signal.  

Web Links 

http://en.wikipedia.org/wiki/Cutoff_frequency 

http://en.wikipedia.org/wiki/Oscilloscope 

http://en.wikipedia.org/wiki/Frequency_domain 

http://en.wikipedia.org/wiki/Fourier_transform 

 

http://en.wikipedia.org/wiki/Cutoff_frequency
http://en.wikipedia.org/wiki/Oscilloscope
http://en.wikipedia.org/wiki/Frequency_domain
http://en.wikipedia.org/wiki/Fourier_transform
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Measurement Instruments 

Digital multimeter Agilent 34401A  

Power supply Agilent E3630 

Function generator Agilent 33220A 

Oscilloscope Agilent 54622A 

Test Board 

The board VIK-05-01 contains objects to be measured. The RC networks are configurable by 

allowing to select the resistance. The time constants for both the low- and high-pass 

networks are can be set by knobs.  

 

Figure 4–11. Circuit diagram of the variable first-order, low-pass filter 
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Figure 4–12. Circuit diagram of the variable first-order, high-pass filter 

Additional remarks 

Bandwidth 

Every real measurement device has a finite input bandwidth, so does the oscilloscope. 

Within the  bandwidth, input signals are handled unbiased. In the case of DC coupling the 

input characteristic can be modeled by a first-order, low-pass filter. The definition of the 

bandwidth is the frequency where the power has dropped by half (-3 dB). If the input signal 

contains frequency components larger than this, then the measured signal will be distorted. 

The error can be detected in both frequency (assuming that the device has FFT function) and 

time domains, because the FFT is based on time-domain measured data. In case of sine 

waves checking this condition is simple. However, before measuring complex signals 

(square, triangular signals) the frequency bandwidth which guarantees undistorted transfer 

has to be estimated. 

Dynamic range 

Applying frequency domain measurements two important parameters of the measurement 

devices have to be considered: bandwidth and dynamic range. The dynamic range is not 

equivalent with the resolution of the AD converter. The former gives the difference between 

the largest and smallest signals that can be measured. The later one defines the smallest step 

size. The smallest signal that can be measured is typically determined by the noise floor, 

which may coincide with error derived by resolution of the AD converter or may be greater 

because of analog noise sources or may be decreased by using averaging. The dynamic range 

of a common measurement device is 50-60 dB. In the case of a high quality spectrum 

analyzer it can be even 90 dB. 
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Sampling frequency 

In digital devices the sampling frequency is one of the most important parameters. 

Unfortunately, the requirement in time domain differs from the requirement in frequency 

domain. Measurement in frequency domain needs only the sampling theorem to be fulfilled. 

For example, in the case of sine waves 4-5 samples from one period are well enough. In the 

case of time domain analysis more samples are necessary. To observe small changes in 

waves we should set the sampling frequency as high as possible. On the contrary, in 

frequency domain the frequency resolution should be increased. In the case of FFT analyzers 

distance between two adjacent frequencies (the resolution) depends on the size of FFT and 

the sampling frequency ( Nff
s

= ). According to the expression increasing the sampling 

frequency decreases the resolution. A good strategy in frequency domain analysis is when 

we decrease the sampling frequency as much as possible (until we still do not get aliasing) 

while we increase the size of FFT. It is worth noting that the device in the laboratory works 

with fixed size of FFT. Therefore, only the sampling frequency can be adjusted.  

Test questions 

1. How can be the frequency resolution of the DFT or FFT calculated based on the 

sampling rate and sample size? 

2. What are the spectrums of the sine and square waves? At which frequencies can we find 

the components and what can we say about their amplitudes? 

3. What happens to the spectrum of a sine wave when the input of the spectrum analyzer is 

overdriven? 

4. What is the DFT of a periodic signal calculated from exactly ten periods of the signal? 

5. What does it mean to sample a periodic signal coherently or non-coherently? 

6. When measuring a sine wave, what are the undesirable effects of non-coherent sampling 

and how can we mitigate them? 

7. What window function should be used for coherent sampling? 

8. What are the advantages and disadvantages of using a flat top window? 

9. What kind of excitation signals should be used if we aim to measure the frequency 

response (amplitude characteristic) of a system at multiple frequencies simultaneously? 

10. How does the spectrum of a periodic sinc function look like? At which frequencies can 

we find the components and what can we say about their amplitudes? 

 


