
BME MIT Operating Systems Spring 2017.

User interfaces and demos 1 / 15

Péter Györke
http://www.mit.bme.hu/~gyorke/

gyorke@mit.bme.hu

Budapest University of Technology and Economics (BME)

Department of Measurement and Information Systems (MIT)

The slides of the latest lecture will be on the course page. (https://www.mit.bme.hu/eng/oktatas/targyak/vimiab00)

These slides are under copyright.

Operating Systems – User interfaces and demos

BME MIT Operating Systems Spring 2017.

User interfaces and demos 2 / 15

The operating systems (recap)

• Serving user (and system) tasks
– Life-cycle (creation, operation, termination) and event

monitoring
– Providing computational and storage resources
– Providing access to the devices of the computer

• Types (incomplete list)

– Client OS: usually with GUI
– Server OS: usually with console only

• System applications and services

– User mode programs which comes with the OS
– Integrated commands and user interfaces, services

BME MIT Operating Systems Spring 2017.

User interfaces and demos 3 / 15

The main blocks of the OS and the kernel

Hardware devices

System libraries

System processes User processes
N

o
n

-p
ro

te
ct

ed

(u
se

r)

P
ro

te
ct

ed

(s
ys

te
m

/k
er

n
el

)

Device managers Loader Scheduler

IT handler

I/O operations

Systemcall interface

Memory manager

Communications

P
ro

ce
ss

m

an
ag

e
m

e
n

t

BME MIT Operating Systems Spring 2017.

User interfaces and demos 4 / 15

Requirements of a user interface

• Processing the commands of the user
– Preprocessing the command (find the executable program)

• Built-in commands: belongs to the user interface
• External commands: external programs for executing the user tasks

– These can be also part of the OS: system application
– Third party software installed on the system
– Maybe a software developed by the user

• Starting the program to execute the command
– The user interface creates a new process and starts the program
– It may pass arguments to the process (e.g. argv[])

• Connecting the user with the task
– When the task is running it is connected with the user
– The user interface provides an environment to the tasks connected

with the user
– The user interface manages the user’s session (a set of tasks)
– It returns the results of the tasks, or the errors if there’s any
– It shows the user interface of the task, if it has one

• User friendly behaviour

BME MIT Operating Systems Spring 2017.

User interfaces and demos 5 / 15

Session

• Set of tasks connected to an activity
– 0. session: set of OS services (see booting)
– 1+ sessions: sessions of the active users

• Usually one session per one user login

• The session
– The goal is to group the tasks

• Example: if the user logs out, the user’s tasks can be closed

– The session manager handles the process set
– Usually there is a user interface (terminal) for the session manager
– Some user interfaces are able to save and restore the previous state
– It may has multiple process groups (e.g.: foreground and background

processes)

• Process group
– For processes which are belongs together
– It has a manager (controller), which initiates the processes
– The whole group is notified about certain events
– The user can control the whole group as one unit

BME MIT Operating Systems Spring 2017.

User interfaces and demos 6 / 15

User interface types: Graphical user interface

• Graphical user interface (GUI, windowing system)
– It shows visual elements (icons, menus, etc.) created by pixels
– The command interpreter has GUI
– It can be controlled via keyboard, mouse or touchscreen
– The user interfaces of the applications are showed in windows

(windowing system)
– The windows are managed by the window manager
– The window manager is served by the display server
– Total user experience
– Not available in every system (economy, complexity reduction)

• Others
– Voice activated
– Controlled by natural language

BME MIT Operating Systems Spring 2017.

User interfaces and demos 7 / 15

GUI and windowing system

• Graphical user interface (GUI)
– Graphical version of the shell
– Complex, typically layered architecture with open interfaces
– Typical blocks: command interpreter, display server, window

manager
– Examples: Windows shell, Gnome Shell, Ubuntu Unity, KDE,

LXDE, etc.

• Window manager (WM)
– Controls the appearance and placement of the application

windows
– The user is able to change windows
– The visual appearance is customizable by the user
– Examples

• Windows Vista and later: Desktop Window Manager (dwm.exe)
• Linux: KDE-Kwin, Gnome2-Metacity, etc.

BME MIT Operating Systems Spring 2017.

User interfaces and demos 8 / 15

User interface types: Character terminal

• Character terminal
– The user is connected to a shell (command

interpreter)

– The commands typically has an stdin input and stdout
output, or may have other interfaces

– It is available in every system

– The user can connect via: keyboard+monitor, from
network, from serial port, etc.

– The user experience is rather limited (not every
application is able to run in a char. terminal)

– It is an efficient interface for administration (it can be
programmed)

BME MIT Operating Systems Spring 2017.

User interfaces and demos 9 / 15

Character terminals
• Interpreting and executing commands

– UNIX: bash, csh, ksh, zsh, etc.
– Windows: cmd.exe (later powershell)

• Built-in commands
– Job control
– Simple text output and input
– Bash built-ins: logout, alias, echo, read, source, ulimit, etc.
– Powershell keywords, Cmdlets, core and external modules (for many applications)

• It can be programmed!

– It is an efficient tool to manage the OS
– Powerful text managing (e.g.: log processing)
– The terminal’s interpreter provides standard programming language elements: if-else, loops,

functions, macros, etc.
– The „programs” may use external commands: almost every installed application which has a

command line interface

• Built-in help

UNIX Windows
man <command> Get-Help <command>
<command> -h or--help <command> /h or /?

https://www.gnu.org/software/bash/bash.html
http://www.gnu.org/software/bash/manual/html_node/Bash-Builtins.html
http://www.gnu.org/software/bash/manual/html_node/Bash-Builtins.html
http://www.gnu.org/software/bash/manual/html_node/Bash-Builtins.html
https://msdn.microsoft.com/powershell/reference/5.1/Microsoft.PowerShell.Core/about/about_Language_Keywords
https://msdn.microsoft.com/en-us/library/ms714395(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/dd878324.aspx
https://technet.microsoft.com/en-us/library/dd772285.aspx

BME MIT Operating Systems Spring 2017.

User interfaces and demos 10 / 15

„What happens in the system?”

• Listing running tasks (UNIX)
– ps, ps -ef, ps axu, ps -u <user>, pstree, ...

– top, atop, htop and others

• Administrative parameters of the tasks
– Unique PID (Process ID), PPID: PID of the parent
– The state of the process (running, waiting, etc.)
– Scheduling information (e.g.: priority, see later)
– Authenticators
– Memory management data
– Communication data
– TTY: which terminal (user login) is connected to the process
– STIME: when did the task started
– TIME: running time on the CPU
– CMD: the command (and arguments) which started the process
– …

BME MIT Operating Systems Spring 2017.

User interfaces and demos 11 / 15

Programming the shell

• Interpreter (script) languages (no compile)
• Long evolution

– The functions are extended by the user demands
– In some cases they are overcomplicated

• Language elements of the shell
– Built-in elements:

• Programming structures (if-else, loops, etc.)
• Simple OS tasks (list files, task management, etc.)

– External commands
• Every installed application with a command line interface
• Many text processing tools (to process the outputs of the commands)

– grep, sed, awk, sort, uniq

– Extension modules
• Windows powershell cmdlets
• It extends the abilities of the shell as a module

• Combining commands
– The commands can be connected via pipes
– Example:

du -s * | sort -n

Get-Service | Where-Object {$_.DependentServices -ne $null}

BME MIT Operating Systems Spring 2017.

User interfaces and demos 12 / 15

Shell script examples

• The command can be written in a file
• Variables

#!/bin/bash

variable declaration

TEXT="scripts are fun"

writing the variable to the output

echo $TEXT

• Getting IP address
 ifconfig – for getting network interface status
 ifconfig | awk '/inet addr/{print substr($2,6)}‚

• (awk '/search_pattern/ { action_to_take_on_matches; another_action; }' file_to_parse)

• Making it better: ifconfig | grep -A 1 "eth0" | awk '/inet addr/{print substr($2,6)}‚

• Sending the IP address to a (web) server

– For some kind of dynamic DNS service
– curl 91.82.85.156/ping/put.php?ip=12.12.12.12

• Scheduling this script to run periodically
– CRON

BME MIT Operating Systems Spring 2017.

User interfaces and demos 13 / 15

How to try these at home?

• VirtualBox: www.virtualbox.org

– Download prepared boxes: www.virtualboxes.org

• Only for experimenting, for critical application a self
installed system should be set up, which is downloaded
from a trusted source (with MD5 or SHA check)

– Install new blank machine from ISO image

http://www.virtualbox.org/
http://www.virtualboxes.org/

BME MIT Operating Systems Spring 2017.

User interfaces and demos 14 / 15

Inspecting kernel data structures (see task management)

• The kernel data structures can be accessed through the file system (read-
only)
– The field ctxt of the file /proc/stat shows the number of context

changes
– It can be listed for a specific process: /proc/<PID>/status

• voluntary_ctxt_switches and nonvoluntary_ctxt_switches fields

• Performing Apache2 (webserver) load benchmark

– Observe the number of context changes of the apache2 process
– What is the nature of the process apache2?

• Observing the context changes of a CPU intensive process
For example: stress -c 1
– Check the context changes of the child process of stress
– How does the field nonvoluntary_ctxt_switches change?
– According to this: what is the scheduler type of the OS?

• These experiments can be performed under Windows also

https://technet.microsoft.com/en-us/library/cc938606.aspx

BME MIT Operating Systems Spring 2017.

User interfaces and demos 15 / 15

Commands for Apache Benchmarking

• apache2 -V | grep -i 'version\|mpm'

• /etc/apache2/mods-available/

• sudo a2dismod mpm_event

• sudo a2enmod mpm_prefork

• sudo systemctl restart apache2

• ab -n 9000 -c 300 http://localhost/

http://localhost/
http://localhost/
http://localhost/
http://localhost/

