BME MIT Operating Systems Spring 2017.

Operating Systems — User interfaces and demos

Peter Gyorke

http://mww.mit.bme.hu/~gyorke/

gyorke@mit.bome.hu

Budapest University of Technology and Economics (BME)
Department of Measurement and Information Systems (MIT)

The slides of the latest lecture will be on the course page. (https://mww.mit.bme.hu/eng/oktatas/targyak/vimiab00)
These slides are under copyright.

User interfaces and demos 1/15

BME MIT Operating Systems Spring 2017.

The operating systems (recap)

e Serving user (and system) tasks

— Life-cycle (creation, operation, termination) and event
monitoring

— Providing computational and storage resources
— Providing access to the devices of the computer

* Types (incomplete list)
— Client OS: usually with GUI
— Server OS: usually with console only

e System applications and services
— User mode programs which comes with the OS
— Integrated commands and user interfaces, services

User interfaces and demos 2 /15

BME MIT Operating Systems Spring 2017.

The main blocks of the OS and the kernel

= System processes User processes
2
O
Q
)
S}
| -
c O System libraries
(@) (%)]
Systemcall interface
GE’ |/O operations Communications
R
o=
B E IT handler Memory manager
L2
[e) (%p]
S > _
a — Device managers Loader || Scheduler
Hardware devices

User interfaces and demos 3/15

BME MIT Operating Systems Spring 2017.

Requirements of a user interface

* Processing the commands of the user
— Preprocessing the command (find the executable program)

* Built-in commands: belongs to the user interface

* External commands: external programs for executing the user tasks
— These can be also part of the OS: system application
— Third party software installed on the system
— Maybe a software developed by the user

» Starting the program to execute the command
— The user interface creates a new process and starts the program

It may pass arguments to the process (e.g. argv[])

* Connecting the user with the task

When the task is running it is connected with the user

The user interface provides an environment to the tasks connected
with the user

The user interface manages the user’s session (a set of tasks)
It returns the results of the tasks, or the errors if there’s any
It shows the user interface of the task, if it has one

e User friendly behaviour

User interfaces and demos 4 /15

. o A A
e gt
MOEGYETEM 1782

BME MIT Operating Systems Spring 2017.

Session

» Set of tasks connected to an activity
— 0. session: set of OS services (see booting)

1+ sessions: sessions of the active users
* Usually one session per one user login

e The session

The goal is to group the tasks
* Example: if the user logs out, the user’s tasks can be closed

The session manager handles the process set
Usually there is a user interface (terminal) for the session manager
Some user interfaces are able to save and restore the previous state

It may has multiple process groups (e.g.: foreground and background
processes)

* Process group

For processes which are belongs together
It has a manager (controller), which initiates the processes

— The whole group is notified about certain events
— The user can control the whole group as one unit

User interfaces and demos 5/15

. g@m%w BME MIT Operating Systems Spring 2017.

User interface types: Graphical user interface

e Graphical user interface (GUI, windowing system)
— It shows visual elements (icons, menus, etc.) created by pixels
— The command interpreter has GUI
— |t can be controlled via keyboard, mouse or touchscreen

— The user interfaces of the applications are showed in windows
(windowing system)

— The windows are managed by the window manager

— The window manager is served by the display server

— Total user experience

— Not available in every system (economy, complexity reduction)

 QOthers
— Voice activated
— Controlled by natural language

User interfaces and demos 6/15

. g@m%w BME MIT Operating Systems Spring 2017.

GUI and windowing system

* Graphical user interface (GUI)
— Graphical version of the shell
— Complex, typically layered architecture with open interfaces

— Typical blocks: command interpreter, display server, window
manager

— Examples: Windows shell, Gnome Shell, Ubuntu Unity, KDE,
LXDE, etc.

 Window manager (WM)

— Controls the appearance and placement of the application
windows

— The user is able to change windows
— The visual appearance is customizable by the user

— Examples
* Windows Vista and later: Desktop Window Manager (dwm.exe)
* Linux: KDE-Kwin, Ghome2-Metacity, etc.

User interfaces and demos 7 /15

BME MIT Operating Systems Spring 2017.

User interface types: Character terminal

e Character terminal

— The user is connected to a shell (command
interpreter)

— The commands typically has an stdin input and stdout
output, or may have other interfaces

— It is available in every system

— The user can connect via: keyboard+monitor, from
network, from serial port, etc.

— The user experience is rather limited (not every
application is able to run in a char. terminal)

— It is an efficient interface for administration (it can be
programmed)

User interfaces and demos 8/15

BME MIT Operating Systems Spring 2017.

Character terminals

* Interpreting and executing commands
— UNIX: bash, csh, ksh, zsh, etc.
— Windows: cmd.exe (later powershell)

* Built-in commands
— Job control

— Simple text output and input
— Bash built-ins: 1logout, alias, echo, read, source, ulimit, etc.

— Powershell keywords, Cmdlets, core and external modules (for many applications)

e |t can be programmed!
— It is an efficient tool to manage the OS
— Powerful text managing (e.g.: log processing)
— The terminal’s interpreter provides standard programming language elements: if-else, loops,

functions, macros, etc.
— The ,programs” may use external commands: almost every installed application which has a

command line interface

e Built-in help
UNIX Windows

man <command> Get-Help <command>
<command> -h or--help <command> /h or /?

User interfaces and demos 9/15

https://www.gnu.org/software/bash/bash.html
http://www.gnu.org/software/bash/manual/html_node/Bash-Builtins.html
http://www.gnu.org/software/bash/manual/html_node/Bash-Builtins.html
http://www.gnu.org/software/bash/manual/html_node/Bash-Builtins.html
https://msdn.microsoft.com/powershell/reference/5.1/Microsoft.PowerShell.Core/about/about_Language_Keywords
https://msdn.microsoft.com/en-us/library/ms714395(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/dd878324.aspx
https://technet.microsoft.com/en-us/library/dd772285.aspx

. Fame s | BME MIT Operating Systems Spring 2017.
,What happens in the system?”

e Listing running tasks (UNIX)
— ps, ps -ef, ps axu, ps -u <user>, pstree,
— top, atop, htop andothers
* Administrative parameters of the tasks
— Unique PID (Process ID), PPID: PID of the parent
— The state of the process (running, waiting, etc.)
— Scheduling information (e.g.: priority, see later)
— Authenticators
— Memory management data
— Communication data
— TTY: which terminal (user login) is connected to the process
— STIME: when did the task started
— TIME: running time on the CPU
— CMD: the command (and arguments) which started the process

User interfaces and demos 10/ 15

BME MIT Operating Systems Spring 2017.

Programming the shell

* Interpreter (script) languages (no compile)
* Long evolution

— The functions are extended by the user demands
— In some cases they are overcomplicated

* Language elements of the shell

— Built-in elements:
* Programming structures (if-else, loops, etc.)
* Simple OS tasks (list files, task management, etc.)
— External commands
* Every installed application with a command line interface

* Many text processing tools (to process the outputs of the commands)
— grep, sed, awk, sort, uniq

— Extension modules

* Windows powershell cmdlets
* |t extends the abilities of the shell as a module

 Combining commands
— The commands can be connected via pipes

— Example:
du -s * | sort -n
Get-Service | Where-Object {$_.DependentServices -ne $null}

User interfaces and demos 11 /15

. I BME MIT Operating Systems Spring 2017.

Shell script examples

The command can be written in a file

Variables
#!/bin/bash
variable declaration
TEXT="scripts are fun"
writing the variable to the output
echo STEXT

* Getting IP address

ifconfig-for getting network interface status
ifconfig | awk '/inet addr/{print substr($2,6)},

(awk '/search pattern/ { action to take on matches; another action; }' file to parse)

Making it better: ifconfig | grep -A 1 "eth0" | awk '/inet addr/{print substr($2,6)},

* Sending the IP address to a (web) server
— For some kind of dynamic DNS service
— curl 91.82.85.156/ping/put.php?ip=12.12.12.12

e Scheduling this script to run periodically
— CRON

User interfaces and demos 12 /15

BME MIT Operating Systems Spring 2017.

How to try these at home?

e VirtualBox: www.virtualbox.org

— Download prepared boxes: www.virtualboxes.org

* Only for experimenting, for critical application a self
installed system should be set up, which is downloaded
from a trusted source (with MD5 or SHA check)

— Install new blank machine from ISO image

User interfaces and demos 13 /15

http://www.virtualbox.org/
http://www.virtualboxes.org/

BME MIT Operating Systems Spring 2017.

Inspecting kernel data structures (see task management)

* The kernel data structures can be accessed through the file system (read-

only)
— Thefield ctxt ofthefile /proc/stat shows the number of context

changes
— It can be listed for a specific process: /proc/<PID>/status
* voluntary ctxt switchesandnonvoluntary ctxt switches fields

* Performing Apache2 (webserver) load benchmark
— Observe the number of context changes of the apache?2 process

— What is the nature of the process apache?2?

* Observing the context changes of a CPU intensive process
For example: stress -c 1
— Check the context changes of the child process of stress
— How does the field nonvoluntary ctxt switches change?
— According to this: what is the scheduler type of the OS?

* These experiments can be performed under Windows also

User interfaces and demos 14 / 15

https://technet.microsoft.com/en-us/library/cc938606.aspx

BME MIT Operating Systems Spring 2017.

Commands for Apache Benchmarking

* apache?2 -V | grep -i 'version\ |mpm'
e /etc/apache2/mods-available/

* sudo aZdismod mpm event

* sudo aZenmod mpm prefork

* sudo systemctl restart apache?Z

* ab -n 9000 -c 300 http://localhost/

User interfaces and demos 15 /15

http://localhost/
http://localhost/
http://localhost/
http://localhost/

