BME MIT

Operating Systems – Virtualization

Péter Györke

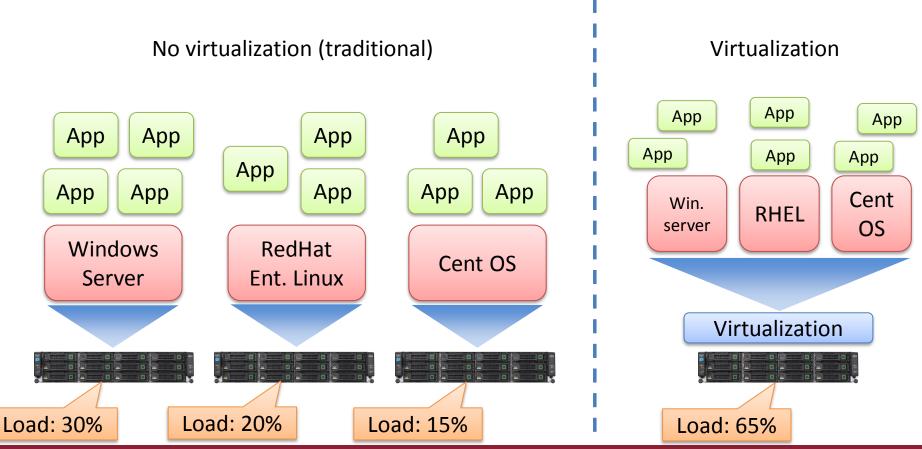
http://www.mit.bme.hu/~gyorke/

gyorke@mit.bme.hu

Budapest University of Technology and Economics (BME)

Department of Measurement and Information Systems (MIT)

The slides of the latest lecture will be on the course page. (https://www.mit.bme.hu/eng/oktatas/targyak/vimiab00)


These slides are under copyright.

Virtualization 1 / 31

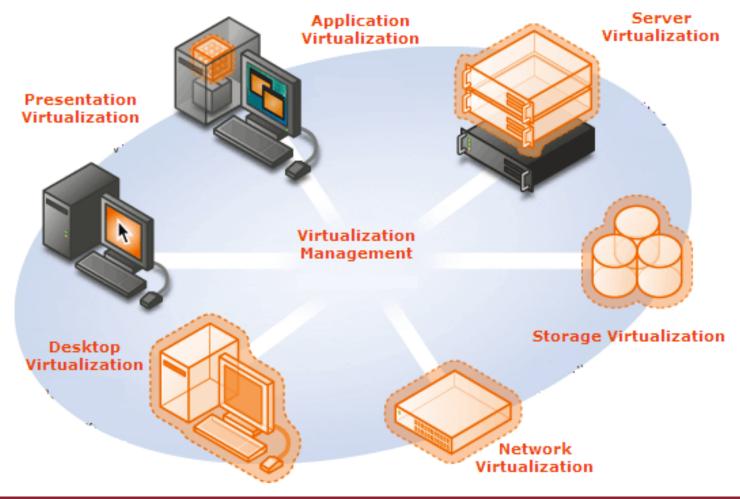
Why use virtualization?

- Separate users/tasks/OS-s
 - Depends of the type of the virtualization
- Better utilization of the HW
- Better compatibility?

Virtualization 2 / 31

Types of virtualization

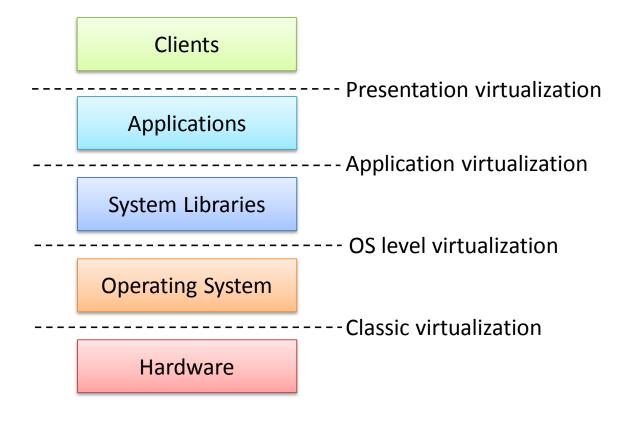
- Abstract virtual machine
 - virtual resources for the applications
 - Task separation
- Classic virtual machines
 - The HW components are shared between multiple OS-s, managed by the VMM (Virtual Machine Manager)
- Other (newer) concepts
 - OS level virtualization
 - Many users on the same OS, but they don't have to know about each other
 - Separate file systems, sytem libraries
 - Same kernel
 - E.g. Linux Containers
 - Application virtualization
 - Separate registry and file system for an application
 - More portable applications
 - Presentation virtualization
 - Remote monitor and input devices
 - Remote Desktop (RDP), VNC


Virtualization 3 / 31

Spring 2017.

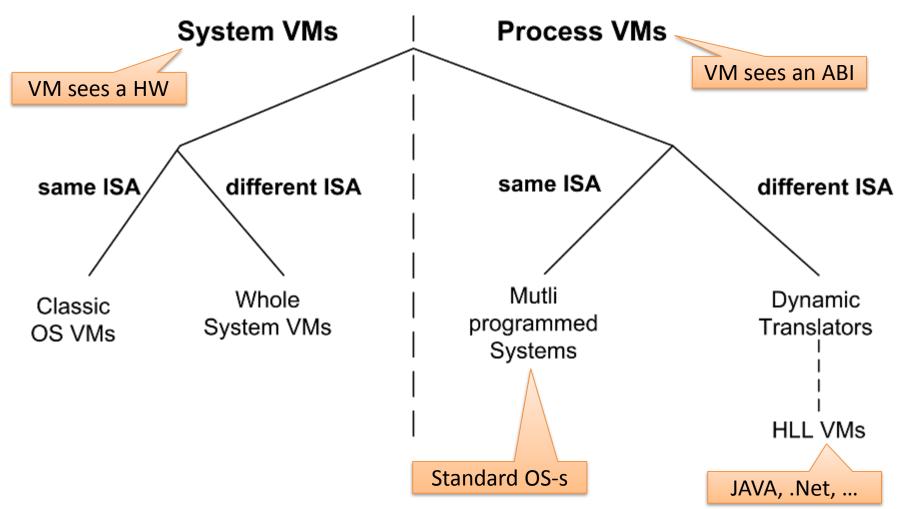
The types of virtualization in other words

Different vendors use different terminology...



Virtualization 4 / 31

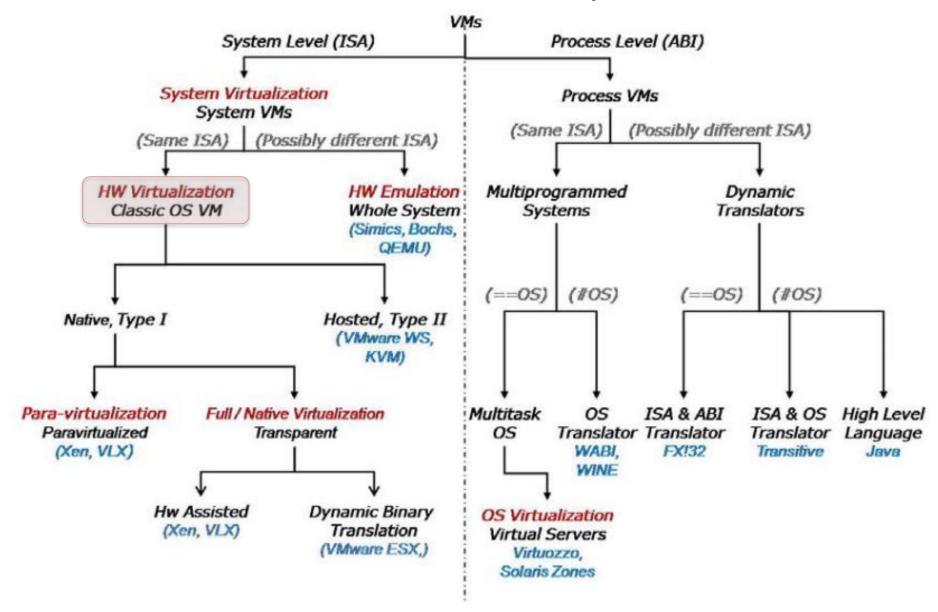
Types (levels) of virtualization


Where we draw the line of separation?

Virtualization 5 / 31

BME MIT

Virtual machine taxonomy*


Source: J. Smith and Ravi Nair, "The architecture of virtual machines," IEEE Computer, vol. 38, 2005, pp. 32-38.

Virtualization 6 / 31

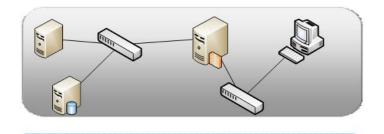
^{*} taxonomy ~ structure for presenting relationships between concepts

Virtual machine taxonomy detailed

Virtualization 7 / 31

Suggested terminology

- Platform virtualization: virtualizing a full computer, running multiple OS on one hardware
 - Also known as: server, computer, hardware virtualization...


- Definitions:
 - Host machine: physical computer
 - Guest machine: virtual computer
 - Virtual Machine Monitor (VMM): program managing the virtual machines

Virtualization 8 / 31

Why is platform virtualization good?

- Building test systems
 - Experimenting with other OS-s
 - Using a SW which is only runnable of a specific OS
- HW consolidation
- Legacy systems
 - Keeping them alive
- On-demand architectures
- High availability, disaster recovery
- Portable applications
- ...

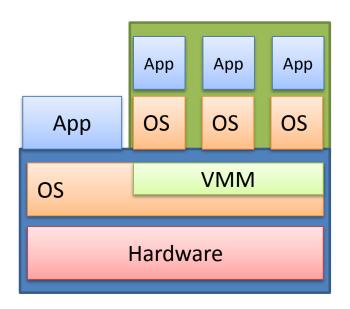


Virtualization 9 / 31

History of platform virtualization

- ~1960 IBM CP-40 system
 - in the mainframe products
- x86 virtualization
 - Seemed impossible
 - The instruction set wasn't prepared for virtualization
 - Only SW methods are possible → can be extremely slow
 - 1997: Stanford, Disco projects
 - 1998: VMware solution
 - 2000- Other solutions
- Now:
 - HW support
 - has its own business
 - becomes widely used
 - On the enterprise level, this is the common practice

Virtualization 10 / 31



Platform virtualization

Two main approaches

Hosted (VMM has kernel level parts)

Bare-metal (whole VMM runs at kernel level)

Mgmnt. app
Mgmnt. OS OS OS

VMM (hypervisor)

Hardware

Mainly desktop products: VMware Workstation, Server, Player, Oracle VirtualBox, MS VirtualPC, KVM, UML GUEST

Mainly server products: VMware ESX Server, Xen Enterprise, MS Hyper-V

Virtualization 11 / 31

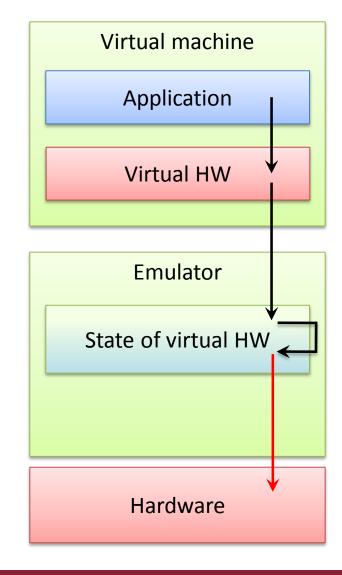
Requirements and challenges

- Requirements for a virtualization solution:
 - Equivalence: programs in a VM should perform indistinguishable from running on the hardware
 - Resource control: the VMM should handle all the physical resources
 - Efficiency: most of the VM's instructions should run directly on the hardware
- Challenges
 - The system have to be protected from the guest(s)
 - Not every operation is allowed
 - E.g.: HLT (Halt) instruction
 - Solution: the instructions must be monitored by the VMM
 - Privileged instructions should be handled differently no direct execution

Gerald J. Popek, Robert P. Goldberg: Formal Requirements for Virtualizable Third Generation Architectures. Commun. ACM 17(7): 412-421 (1974)

Virtualization 12 / 31

Theory behind platform virtualization

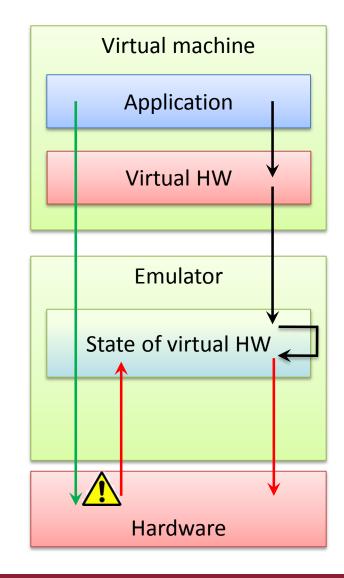

- CPU virtualization
 - How to translate the instructions?
 - Every instruction is translated emulation
 - Some instructions are translated, some executed directly
 - HW support?
 - Instruction privileges
- Memory virtualization
 - We have only 1 MMU
 - Context change between virtual machines has a high overhead
 - How to handle page tables and the TLB?
- I/O virtualization
 - How to manage a HW device? (e.g. a network adapter)
 - Use generic drivers
 - Use special virtual device drivers
 - Use special HW devices, which supports virtualization

Virtualization ______ 13 / 31

CPU virtualization – Full emulation

- The emulator
 - Stores the full state of the HW
 - Every instruction is inspected and translated, then executed
- Pro
 - Different CPU-s can be emulated
- Con
 - slow

Virtualization 14 / 31

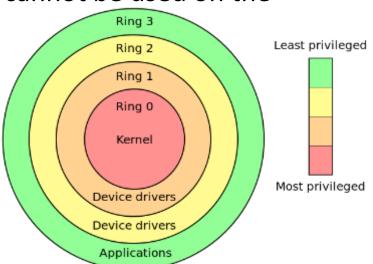

Spring 2017.

CPU virtualization – Trap and emulate

Trap

- HW exception handling, which resumes execution after the handler (VMM)
- HW support is required
 - Protection modes (x86 rings)
 - VM runs in a lower modes
 - Privileged instructions should case a trap when called from a nonprivileged mode

Virtualization 15 / 31

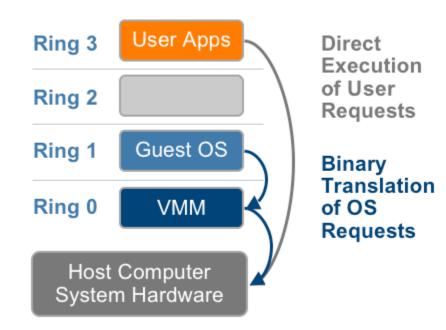


Issues with x86 virtualization

- Some architectures can be easily virtualized
 - x86 cannot
- From ~250 instructions 17 violate the classical requirements, e.g.
 - POPF instruction: modifies EFLAGS register
 - But if not executed in ring 0, doesn't throw an exception
- Privileged state can be detected
 - OS can detect whether it's running in a VM → violating the equvivalence requirement

Conclusion: the trap & emulate method cannot be used on the

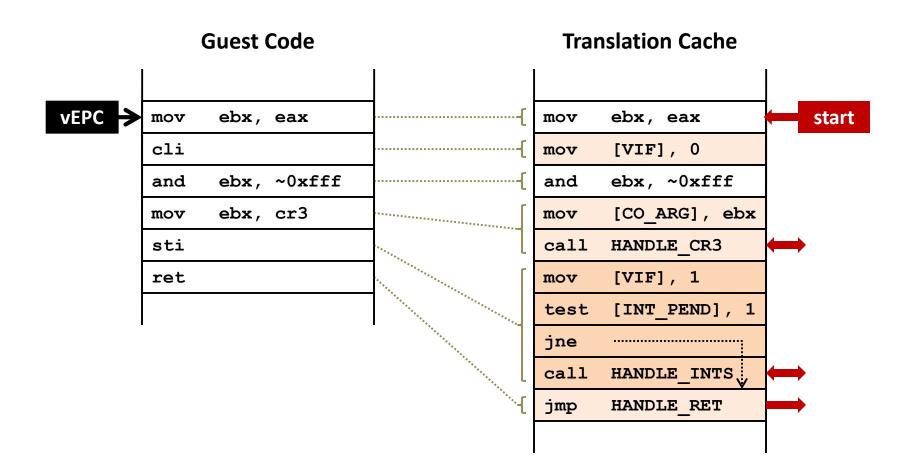
original x86



Virtualization 16 / 31

Solutions for x86 – binary translation

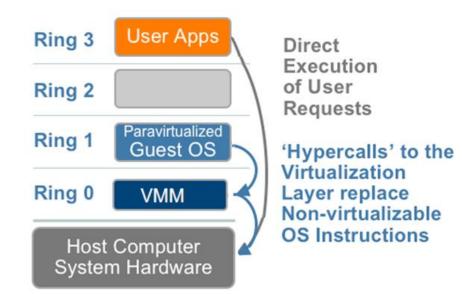
- Most of the instructions run directly
- The instructions are inspected in blocks
- Privileged instructions translated runtime
- Doesn't need source code
- Caches translated code
- Guest OS not aware of virtualization



Source: VMware, Understanding Full Virtualization, Paravirtualization, and Hardware Assisted Virtualization http://www.vmware.com/files/pdf/VMware paravirtualization.pdf

Virtualization 17 / 31

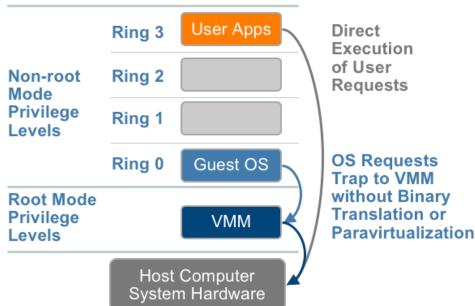
Binary translation – example


Source: Carl Waldspurger, Introduction to Virtual Machines

Virtualization 18 / 31

Solutions for x86 – paravirtualization

- Modifying the source of the guest OS
- Replacing
 "problematic"
 instructions
- Hypercall: calling the VMM directly


Source: VMware, Understanding Full Virtualization, Paravirtualization, and Hardware Assisted Virtualization http://www.vmware.com/files/pdf/VMware paravirtualization.pdf

Virtualization 19 / 31

Solutions after x86 – hardware-assisted virtualization

- ~2005: Intel Virtualization Technology (VT-x) and AMD AMD-V
- HW support: root mode, VMCS
 - Instructions: VMCALL, VMLAUNCH
- Trap & emulate now works
- Backward compatibility with the x86 ring system

Source: VMware, Understanding Full Virtualization, Paravirtualization, and Hardware Assisted Virtualization http://www.vmware.com/files/pdf/VMware_paravirtualization.pdf

Virtualization 20 / 31

Comparison between CPU virtualization methods

Which one is the best?

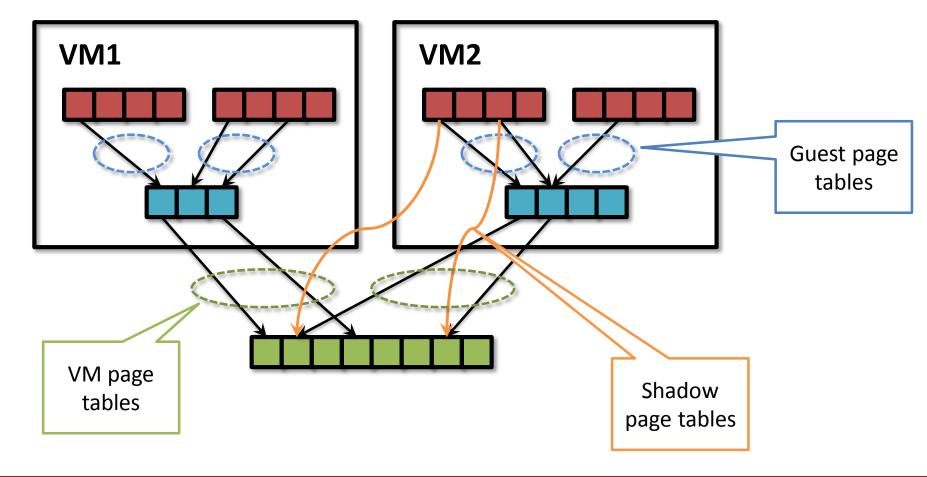
BME MIT

- The answer changing constantly
 - Depends on the environment, workload
- Most products mix several techniques

Examples

- 2006. VMware: <u>BT is better than HW assisted</u> <u>virtualization</u>
- 2008. <u>VMware: Paravirtalization + BT is better than</u> pure BT
- 2009. <u>Comparing Hardware Virtualization</u> <u>Performance Utilizing VMmark v1.1</u>

Virtualization 21 / 31



Memory virtualization (software)

 Double address translation has a high overherad Guest virtual memory

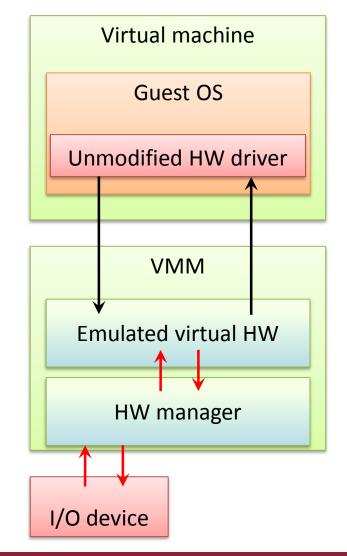
Guest "physical" memory

Machine physical memory

Virtualization 22 / 31

Memory virtualization – paravirtualization and hardware support

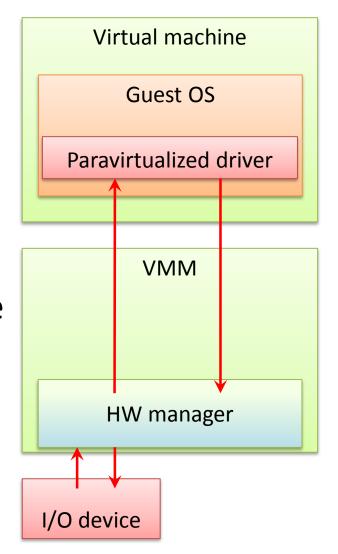
- Paravirtualization
 - Also uses shadow page tables
 - Modifying the guest OS source code
 - When the OS modifies it's page tables, it should notify the VMM also
- HW support for virtualization
 - HW support in the recent CPUs
 - AMD Rapid Virtualization Indexing, Intel Extended Page Tables
 - Nested page table
 - Storing guest physical -> machines physical translation
 - Traversed by HW address translation
 - Tagging TLB entries
 - Great performance increase:
 - 2008. 04., KVM: MMU paravirtualization is dead
 - 2009., VMware: <u>Performance Evaluation of AMD RVI Hardware Assist</u>, 42% improvement in some cases


Virtualization 23 / 31

I/O virtualization – software

- Emulating the whole real communication
 - No special drivers (compatibility)
 - Can be really slow

 E.g.: many VMM-s emulate a TRIO VGA card (or other legacy type), because every OS has drivers for it

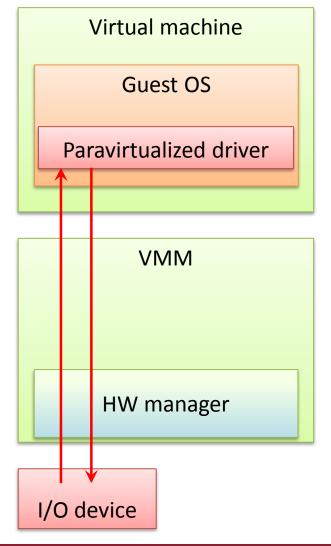

Virtualization 24 / 31

I/O virtualization – paravirtualization

Operation

- A special (virtual)driver is installed in the guest OS
- Simplified calls
- Communication through shared memory
- Efficient operation
- Special package installed in the VM:
 - VMware Tools, Virtual PC Additions
 - Always install these!

Virtualization 25 / 31



I/O virtualization – hardware support

- Allowing direct access to an I/O device are not safe without a supervisor
 - Shared address range

BME MIT

- More guest machines can cause conflicts
- Solutions
 - Using a HW level (fast) supervisor
 - Intel VT-d, AMD IOMMU
 - Using special I/O devices which are aware of the virtualized usage
 - PCI standard extensions: I/O Virtualization (IOV)
- Some I/O devices
 - can be shared between VMs
 - can be directly assigned to one VM
 - E.g.: GPU
 - Problems: VM context change

Virtualization 26 / 31

Products and companies

vmware^{*}

BME MIT

ESXi, vSphere...

open source hypervisor

XenServer, XenApp

Virtual PC, Hyper-V, System Center

Solaris Containers, Oracle VM, VirtualBox

Kernel based Virtual Machine (KVM)

mainframe, powerVM

• • •

Virtualization 27 / 31

Spring 2017.

Cloud computing

Virtualization 28 / 31

Types of cloud computing

laaS

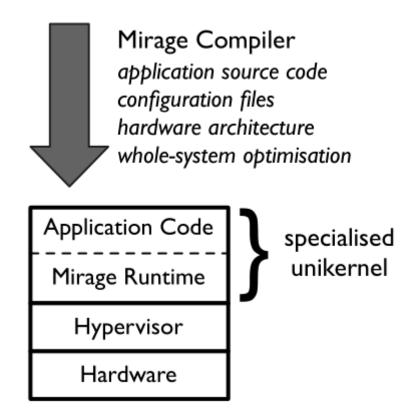
- Infrastructure-as-a-Service
- Getting a VM
- Amazon EC2, RackSpace...

PaaS

- Platform-as-a-Service
- Getting a runtime environment
 - Java container, .NET, database...
- MS Azure, Google AppEngine...

SaaS

- Software-as-a-Service
- Getting a service
- Google Docs, Microsoft Office 365, SalesForce CRM...


Virtualization 29 / 31

Current developements, future trends?

- Mirage OS
 - Idea: compile a lightweight OS for a specific task
 - E.g.: for running a webserver

Configuration Files Application Binary Language Runtime Parallel Threads User Processes OS Kernel Hypervisor Hardware

Virtualization 30 / 31

Summary

- Virtualization benefits
 - Better utilization, portability, sandboxing, ...
- Virtualization types (levels)
 - Platform (classic), OS, Application, Presentation
- Virtualizing
 - CPU
 - Memory
 - I/O devices
- Paravirtualization
 - Modify the existing OS or drivers to achie greater efficiency than pure VMM SW solutions
- Cloud computing
 - IaaS, PaaS, SaaS

Virtualization 31 / 31