
BME MIT Operating Systems Spring 2017.

File systems 1. 1 / 32

Péter Györke
http://www.mit.bme.hu/~gyorke/

gyorke@mit.bme.hu

Budapest University of Technology and Economics (BME)

Department of Measurement and Information Systems (MIT)

The slides of the latest lecture will be on the course page. (https://www.mit.bme.hu/eng/oktatas/targyak/vimiab00)
These slides are under copyright.

Operating Systems – File systems part 1

BME MIT Operating Systems Spring 2017.

File systems 1. 2 / 32

The main blocks of the OS and the kernel (recap)

Hardware devices

System libraries

System processes User processes
N

o
n

-p
ro

te
ct

ed
(u

se
r)

P
ro

te
ct

ed
(s

ys
te

m
)

Device managers Loader Scheduler

IT handler

I/O operations

Systemcall interface

Memory manager

Communications

P
ro

ce
ss

m

an
ag

e
m

e
n

t

BME MIT Operating Systems Spring 2017.

File systems 1. 3 / 32

What we learned until now?

• I/O operations – usually file operations

• The nature of tasks
– There are I/O intensive tasks (memory intensive tasks may become I/O

intensive, see virtual memory)
– Most of the tasks on a client machine are I/O intensive

• Scheduling
– Tasks usually spent a lot of time in waiting state, because I/O

operations are slow

• Memory management
– The physical memory is extended with swap space on disk (much

slower)
– Background data can be loaded into physical memory (mmap)

• Synchronization
– Waiting for others isn’t a good thing, especially the busy waiting

BME MIT Operating Systems Spring 2017.

File systems 1. 4 / 32

Overview of the topic

• User interfaces
– User
– Administrator
– Programmer

• File systems
– Kernel data structures
– File system interfaces
– Data arranged in blocks on

disks

• Storing the data
– Physical storages (HDD, SSD)
– I/O scheduling
– Local storage system

virtualization (RAID, LVM)
– Network and distributed file

systems

BME MIT Operating Systems Spring 2017.

File systems 1. 5 / 32

File systems from the user’s point of view

• Standard user of the OS
– Command line and GUI file managers

• Windows explorer, Nautilus, Dolphin, Total commander, mc

– Volumes, folder structure, special folders/directories
– Managing files and folders, owner and group, permissions, attributes

• Administrator
– Managing file systems (creation, maintenance, deletion)
– Mounting local or remote file systems
– Performance tuning
– Managing disk usage
– Performing back-ups

• Programmer
– Application programming interfaces (system libraries, system calls)
– File descriptors, handles: handling open file objects
– File operations: open, create, write, read, seek, close, delete, …
– Locking files for exclusive usage

BME MIT Operating Systems Spring 2017.

File systems 1. 6 / 32

Physical and logical units (definitions)

• File
– Logical unit of storage
– It is referenced by its name (by user)
– Some systems use extensions to define the type of the data (*.abc)

• Directory
– Logical organization structure for files
– It can contain files and other directories
– A file or directory may be accessed from different paths (OS dependent)

• Volume
– A set of related files and directories
– It is assigned to a physical storage unit (e.g.: partition)
– On windows it is also called „drive”

• File system
– Physical storage unit of files and directories, organization system of them

• Partition
– Organization unit of the disk, it can contain one file system

BME MIT Operating Systems Spring 2017.

File systems 1. 7 / 32

Directory structures, volumes and drives

• Files and directories can be assigned in different ways
• The basic structure is a directed tree

– A directory can contain files and other directories
– The direction of the edges is determined by the containment relation
– Path: a place of a file or a directory in the tree

• Absolute: the path from the root of the tree
• Relative: the path from a specific node in the tree

– Usually the actual working directory of the user

• Some systems (e.g. UNIX) use further edges
– These edges can connect nodes which are not neighboring
– With the introduction of these edges,
– the tree becomes a graph (directed)
– Hard link

• More nodes (files) linked to the same data

– Symbolic link (symlink, soft link, shortcut)
• It references a file or directory which is linked to the physical data (it’s another file)

– How can we delete the link or data? What happens if there is directed circle
in the graph?

• Typically there are more than one trees in a system
– There can be more volumes in the system, each one contains one tree
– On Windows, the drives are named with C, D, E, etc. letters

BME MIT Operating Systems Spring 2017.

File systems 1. 8 / 32

Overview of the Windows 10 folder structure

• More than one folder structures (trees)
– Physical storages are assigned with logical units, drives

• The boot drive (usually C:) is the starting point (C:\)
– \Program Files – installed applications
– \Program Files (x86) – installed applications (32-bit)
– \ProgramData – user independent data of the applications
– \Users – user folders (files, folders, user dependent application data, …)
– \Windows – the OS files and directories

• Further drives (D:, E:, …)
– CD/DVD/USB drives
– Further partitions on the disk
– Network file systems

• Versions, trends
– In the newer Windows systems the physical storages can be assigned to

folders also (not just to volumes), but it isn’t a widely-used feature

BME MIT Operating Systems Spring 2017.

File systems 1. 9 / 32

Overview of the UNIX directory structure

• It is organized into one structure (tree)
• The root directory is the starting point (/)

– /bin – binary files for the system
– /sbin – similar to /bin, usually programs with root permissions
– /dev – hardware devices
– /etc – system and application configuration files
– /home – user directories and files
– /lib – basic shared system libraries
– /mnt – the mount point of physical partitions
– /tmp – temporary files (for apps. and users)
– /usr – user programs and libraries, documentation, etc.
– /var – dynamic files of the system, logs, databases, …

• More details: man hier
• Disk usage: df, du, xdu, baobab, kdiskstat, filelight
• File system „standards”, changes

– Between the different UNIX systems, there are significant differences in the
detailed operation

– Filesystem Hierarchy Standard (FHS) is just a recommendation
– UsrMove: the /bin, /sbin is moved under /usr (Solaris11, Fedora)

BME MIT Operating Systems Spring 2017.

File systems 1. 10 / 32

Overview of the Android directory structure

• To a certain point it has inherited the UNIX structure, additional
directories
– /cache – cache for applications
– /data – user programs and data
– /data/app – applications installed by the user
– /data/anr – app-not-responding: error logs
– /data/tombstones – memory dumps of the terminated apps.
– /data/dalvik-cache – optimized binary files of the apps.
– /data/misc – user configuration files
– /data/local – temporary files
– /mnt or /storage – mounted file systems, e.g. SD card
– /mnt/asec – unsecured copies of the apps. running from SD card
– /system – preinstalled apps., system libraries, configuration files

• Remarks
– Full access to file is system is limited, only root user has full access, the

vendors are limiting this. Becoming root is not part of the normal usage.
– The apps. stored on the SD card are encrypted (.android_secure), these

are mounted under the /mnt/asec directory when running

BME MIT Operating Systems Spring 2017.

File systems 1. 11 / 32

File properties (with UNIX examples)

• List the content of the actual directory (ls -la)
drwx------ 6 root root 4096 Feb 23 14:20 .

drwxr-xr-x 22 root root 4096 Nov 21 2014 ..

-rw-r--r-- 1 root root 570 Jan 31 2010 .bashrc

-rw-r--r-- 1 vps vps 71103 Nov 5 2013 package.xml

-rwxrwxrwx 1 root root 35 Feb 23 14:21 test.sh

lrwxrwxrwx 1 root root 8 Nov 24 2014 www -> /var/www

• What is in the list?
– Type of the entry: - d p l b c s

– POSIX permissions (see next slide)
– Number of links
– Owner and group
– Size
– Timestamp (ctime: change of the metadata, mtime: data

modification, atime: access time)
– Name of the entry

• The OS also stores
– Unique identifier (for internal identification)
– Location (where the file is stored on the disk)

BME MIT Operating Systems Spring 2017.

File systems 1. 12 / 32

The UNIX permission systems

• POSIX access permissions
– 3x3 bits: owner, group, others X read, write, execute
– Values: read-4, write-2, execute-1, no access-0

• E.g.: 740 = owner: RWX, group: R, others: no access

– In the case of directories, the execute means „list”
– Setting: chmod <permissions> <file/directory>

• E.g.: chmod 750 /home/me chmod u+rwx,g+rx,o-
rwx /home/me

• Special permissions: SETUID, SETGID, StickyBit
– SETUID/GID: set user ID upon execution" and "set group ID

upon execution
• The executed file will have the same permission as the owner (not the

user which executed the file)
• It is usually set to files which require root permissions

– StickyBit: only the owner (and root) can delete/rename the files
or directories

BME MIT Operating Systems Spring 2017.

File systems 1. 13 / 32

Administration of file systems

• Creating and configuring a file system
– Select a type
– Configure the data storage properties
– The name of the volume (for users)
– Selecting the partition and disk for the physical storage (determines the size)
– Set up encryption (if the system supports it)

• Mounting a file system to a drive or directory
– Mount and unmount

• Mounting the physical storage to a given point of the logical structure

– Mount point
• a directory (typically an empty one) in the currently accessible filesystem on which an

additional filesystem is mounted

• Checking, modifying, tuning the file system
– Checking status and repair errors
– Modify the size (not every file system makes this possible)
– Performance tuning (accommodation for the storage device, compression, …)

• Sharing file systems on the network and mounting network file systems
• Back-ups

BME MIT Operating Systems Spring 2017.

File systems 1. 14 / 32

An overview of the widely used file systems
• FAT32

– Typically used on portable storage devices because the compatibility
– Originally 8+3 character file names extended to 255 characters, maximum file size: 4GiB (!)

• NTFS
– Default file system in Windows

• UFS/ Berkeley FFS
– Traditional UNIX file system, currently rarely used

• ext2,3,4 (cased on UFS)
– Currently used file systems in Linux systems

• XFS
– Default in RedHat Linux 7

• HFS+
– Default in MacOS

• Integrated file + virtual storage systems (see later)
– ZFS: Designed for Solaris, later it become open source, popular in BSD-s also
– Linux btrfs: newer, currently under development

• Many more file systems
– CD/DVD file systems
– ISO9660 and extensions: filename and sizes are limited

BME MIT Operating Systems Spring 2017.

File systems 1. 15 / 32

Practice in Linux

• Basic file and directory operations
– cp, mv, cd, pwd, mkdir

• How to rename a file?

• File attributes: ls -la
• Managing file systems: mount, umount, df, mkfs, fsck
• Example: create a file system in a file

dd if=/dev/zero of=filesystem.img bs=1k count=1000
losetup /dev/loop0 filesystem.img
mke2fs /dev/loop0
mount /dev/loop0 /mnt

– A typical annoying error: device is busy
• While unmounting a currently used file system (e.g.: unmounting portable

drives)
• Check what is used: lsof /mnt

• What’s happening in the file system?
– iotop, sar, dstat, vmstat, …

BME MIT Operating Systems Spring 2017.

File systems 1. 16 / 32

Backing up and restoring data

• Multiple causes of data loss
– Uncorrectable fault in the file systems

• The error in the physical storage (disk error)
• Inconsistency caused by power failure or other HW error

– User mistakes (not rare)
• Accidental deleting of files or whole file systems, partitions

– Malwares (sadly these are also not rare)
• Deleting or encrypting data (ransomware)

• The type of data loss
– Limited (e.g.: disk error, user mistakes, …)
– Total (e.g.: SSD sudden death)

• Creating a backup
– How: automated (regular), manual (casual)
– What: files or whole file system

• A consistent state has to be backed up – problematic when the FS is in use

– Where: high capacity disks, CD/DVD, tape systems

• Restoring the system from a backup (recovery)
– Bare metal recovery: restoring the whole system
– Data recovery: only recovering specific files

BME MIT Operating Systems Spring 2017.

File systems 1. 17 / 32

Programming interfaces

• Opening (creating) files
– open() system call and its arguments
– File descriptor and the opened file object (next slide)
– File opened by multiple processes?

• Read, write, seek: read(), write(), fseek()
– Sequential access: the data is accessed in the stored order
– Direct access: given sized blocks can be read in any order

• Close files: close()

• Managing directories:
– opendir(), readdir(), rewinddir(),
closedir()

BME MIT Operating Systems Spring 2017.

File systems 1. 18 / 32

What happens when a program opens a file?

• Calling the open() system call…
– A session is started to manage the file operations
– The kernel locates the file on the disk
– The location and metadata are loaded into a kernel object
– A kernel data structure is created: open file object

• Opening mode (read, write, append)
• The pointer of the next read or write operation (file pointer)
• The address of the related kernel object
• The set of operations which can be performed on this file
• The kernel returns the address of this object: the file descriptor

• During the further operations the file is accessed with
the file descriptor

• When the session is closed, the kernel liquidates the
date structures

BME MIT Operating Systems Spring 2017.

File systems 1. 19 / 32

Locking files

• Locking files
– It is also a synchronization problem, to conserve the consistency

of the file (as a shared resource)
– It can be managed with classic synchronization methods
– But it is more simple and safe on kernel level (level of file op.-s)
– Deadlocks are also possible

• Advisory locking
– OS provides tools for implementation
– The file should be only accessed with using these tools
– Usually system libraries contain the tools

• Mandatory locking
– Kernel level mechanism
– The system calls (e.g.: open()) checks the lock states, the lock is

mandatory for every task

• The scope of locking: The whole file or just a part of it

BME MIT Operating Systems Spring 2017.

File systems 1. 20 / 32

Shared access to files through memory (mmap)

• Communicate through a file
– It is problematic with the standard op.-s (read(), write(),
fseek())

– Can we use a file like the shared memory?

• UNIX mmap (Windows: CreateFileMapping)
– An open file object (open()) can assigned to an address:
mmap(addr, size, prot, flags, fd, offset)

• addr: the assigned address, 0: the kernel choses
• size: the accessed data range
• prot: the mode of access: R, W, X
• flags: own or shared file, etc.
• fd: file descriptor returned by the open() systemcall
• offset: the start position

– Return value: the assigned virtual memory address
– Close the assignment: munmap(addr, len)

• Multiple access, consistency, mutual exclusion
– Using the shared file is based on the PRAM model

• It is usable for simple file operations when there are many readers

https://msdn.microsoft.com/en-us/library/windows/desktop/aa366556

BME MIT Operating Systems Spring 2017.

File systems 1. 21 / 32

I/O operations without waiting

• If the program can perform other instructions, it don’t has to enter
into waiting state
– There are two approaches: non-blocking, asynchronous

• Non blocking I/O operations
– When calling the read() system call, there is an option: non-blocking
– In this case, the call will return immediately

• With the data
• Or with „no data” error code

– If there are no data the program can perform other instructions and
later retry the read()

• Asynchronous I/O operations
– The program initiates the I/O operation and set a buffer for the data
– The asynchronous I/O request is sent

• In the background the I/O operation is performed
• The system call returns immediately

– Meanwhile the program can perform other instructions
– When the I/O op. is done, the kernel notifies the caller

• E.g.: with a signal with custom handler

BME MIT Operating Systems Spring 2017.

File systems 1. 22 / 32

Implementation of file systems (overview)

• Operation from the user’s point of view (already discussed)
– Files, directories, tree/graph structure
– Format, mount, unmount
– Check, repair, create, modify, tune

• Operation on the disk (data organization in the storage system)
– The logical units are assigned to physical devices
– The data is stored in blocks
– Beside the file contents, metadata is also stored
– Managing the free (unused) blocks in the storage device

• Operation in the memory (during runtime)
– File system descriptors (metadata of the mounted file systems)
– Descriptors (metadata) of the files

• Access to opened files

– Managing the data in the memory, buffering

BME MIT Operating Systems Spring 2017.

File systems 1. 23 / 32

Storing file system data on disk

• Recap: the boot process
– Level 0 (ROM) loader: loads the RAM loader from the disk
– Level 1 (RAM) loader: loaded from the master boot record (MBR),

loads the OS loader
– Level 2 (OS) loader: it loaded from partition boot record, knows the

file system
– Kernel loader: initiates the kernel

• It mounts the root file system (read-only in Linux)

– User mode OS start: starting services and sessions
• Mounting user file systems

• Many types of data are stored on the disk
– Metadata

• Partition types and location on the disk
• File system descriptors (type, size, usage, etc.)
• File (directory) descriptors (name, location, etc.)

– Data
• Bootloaders
• File data (the actual data)

BME MIT Operating Systems Spring 2017.

File systems 1. 24 / 32

Organization of the file systems on the disk

• The stored data
– File system metadata (superblock, master file table, partition control block)
– File metadata (inode, file control block, on Windows: it is part of master file

table)
– Stored data

• The file system metadata
– On disk

• Type and size
• List of free blocks
• The location of the file metadata
• State
• Modification information
• …

• The file system is sensitive to metadata loss (e.g. block error)
– Therefore backups are made
– See: dumpe2fs /dev/sda1 | grep -i superblock

superblock file metadata data blocks

– In the memory
• Everything from the disk
• Mounting information
• Dirty bit
• Locking state
• …

BME MIT Operating Systems Spring 2017.

File systems 1. 25 / 32

Location of the file metadata

• On disk
– Authentication information (UID, GID)
– Type
– Permissions
– Timestamps
– Size
– Data block locations
– Example: UNIX inode (index node), Windows Master File Table entry

• In memory – runtime extensions
– The contents of the open file object – which is created by the open()

system call
• State (locked, modified, etc.)
• Disk/file system identifier
• Reference counter (file descriptors)
• Mounting point descriptor

BME MIT Operating Systems Spring 2017.

File systems 1. 26 / 32

Storing data blocks (allocation methods)

• It would be simple to store the blocks (files) continuously on the disk…
– But when files are deleted, different sized „holes” are created – like memory

fragmentation
– With many small holes, storing large files are impossible

• Chained list allocation (sequential access storage)
– The file data is stored in smaller parts
– The specific parts are linked to the next part
– Simple chained list

• The address of the first part is in the metadata
• Every part contains the address of the next part
• The parts can be located anywhere – slow to access the umpteenth part

– Efficient for sequential access, sensitive to errors
– Multiple variants, e.g.: FAT

• Indexed storage (direct access storage)
– The file data are stored in equal sized block (determined by the FS or the HW)
– The location/map of the blocks: the index
– If it’s possible, the blocks are located in a sequential order (it can accessed in

sequential or direct way)
– If the index is too big, it can be stored in multiple blocks with the chained list

allocation

BME MIT Operating Systems Spring 2017.

File systems 1. 27 / 32

Example: Multiple indexed data block address table

• Address table for a file
– 12 direct block address
– Single and double indirect block address
– 4 kB block size
– 4 byte address

12 direct block address

Data block (4k)
Data block (4k)

Data block (4k)12

1x indirect address 4k/4 direct block address

Data block (4k)
Data block (4k)

Data block (4k)

2x indirect address 4k/4 indirect block address
4k/4 direct block

address

4k/4 direct block
address

4k/4 direct block
address

Data block
(4k)

Data block
(4k)

Data block
(4k)

1

1

1024

1024

What is the maximal file size?

BME MIT Operating Systems Spring 2017.

File systems 1. 28 / 32

How to determine the block size?

Source: Andrew S. Tanenbaum, Jorrit N. Herder, Herbert Bos

File size distribution on UNIX systems: then and now. Operating Systems Review 40(1): 100-104 (2006)

BME MIT Operating Systems Spring 2017.

File systems 1. 29 / 32

Managing the free blocks

• Registering free blocks for new allocations
• Bitmap, bit-vector description

– Every block is represented by a bit
– 1=free, 0=used
– Simple method, easy to find a free block

• The map can be stored in the memory for smaller FS
• Typically there is a CPU instruction for getting the first non zero bit location

– It uses more memory for a larger file system

• Chained list storage
– The free blocks are marked and the address of the next free block is written

there
– Only the address of the first free block has to be stored
– Simple, but not so efficient method
– It can be combined with the chained list block allocation method

• Hierarchical methods
– Managing the group of (free) blocks
– The groups can be created based on the size of the FS
– Within a group, a simpler structure can be used (e.g.: bitmap)

BME MIT Operating Systems Spring 2017.

File systems 1. 30 / 32

Accelerating data access

• Recap: the virtual memory management (VM) extends the memory with
the disk

• From the opposite side: load the file system data to the physical memory
– To accelerate the access to frequently used data
– This is called disk buffering
– The frames which are used for this is called buffer cache (see free Linux

command)

• The organization of the buffer cache
– Basic idea: the VM and the FS can use the same mechanisms

• Virtual addresses makes it simple
• The data is loaded into frames by the VM mechanism
• This can be beneficial for mmap also
• This is called the unified buffer cache (Linux: page cache)

– Accelerating the reads: read ahead
– Deleting buffered blocks from the RAM: the standard page replacement

algorithms do it
– Managing write operations (when to write the modified data to the disk)

• Write through cache: it writes immediately (slow)
• Buffered write: it writes the data periodically (flush, sync) (faster)

BME MIT Operating Systems Spring 2017.

File systems 1. 31 / 32

Consistency of metadata and journaling file systems

• Disc buffering may introduce consistency problems
– It can cause file data loss also, but the inconsistency in the metadata can lead

to larger scale data loss (storage leak)
– Solutions

• Write through cache can solve the problem, the price is the slower operation
• Use it only for the metadata

• Journaling file systems
– The changes are saved to a journal, which is always stored on the disk

• The operations on the metadata is grouped into transactions
• The transaction is finished when the data is also stored in the journal (commit)
• The journal is sequential access circular buffer

– If the operation is performed on the file system, the journal entry can be
deleted

– What happed if the system crashes? At the re-boot the journal is processed

• Log-structured file system: the FS is the log (e.g. BSD LFS)
– The data and metadata are written sequentially to a circular buffer (log)

• Copy-on-write file system (ZFS, btrfs)
– The write operation is performed on a copy of the original data, then the

metadata is updated

https://en.wikipedia.org/wiki/Log-structured_File_System_(BSD)

BME MIT Operating Systems Spring 2017.

File systems 1. 32 / 32

Overview of the topic

• User interfaces
– User
– Administrator
– Programmer

• Operation of the file systems
– Kernel data structures
– File system interfaces
– Data arranged in blocks on

disks

• Storing the data
– Physical storages (HDD, SSD)
– I/O scheduling
– Local storage system

virtualization (RAID, LVM)
– Network and distributed file

systems

