
Version Control Systems, Build Automation and
Continuous Integration
Integration and Verification Techniques

Systematic methods and automation can highly enhance the teamwork on software projects.
During this laboratory we will learn the basics of the following techniques:

• Version control systems to support efficient teamwork.
• Build automation to ensure stable and consistent builds.
• Continuous Integration to provide automatic and systematic build, test execution and

also deployments.

1 Version Control Systems

Version control systems allow to keep all the historical versions of your software for easy
tracking. Using version control also benefits team collaboration and improves the efficiency of
the development team. In addition, it can be used as a central repository for the data, making
build automation and continuous integration possible.

There are historically two different approaches for managing the repositories:

• Centralized model (CVS and Subversion/SVN): there is one server that contains
“the repository” and everyone else checks code into and out of that repository. An important
feature of these systems is that only the repository has the full history of all changes made.
A checkout from this central repository will place a “working copy” on the user’s machine.
This is a snapshot from a certain version of the project on his/her disk.

• Distributed model (Git): In a distributed version control system, instead of a checkout,
a user will clone a repository from a remote server. In return, he/she receives a full-fledged
repository, not just a working copy. The user then has his/her own repository on the local
machine – including all of the project’s history. A user can do everything on the local
machine: commit, inspect history, restore older revisions, etc. Only if the user wants to
share the work with the world he/she has to connect to a remote server and push the
changes of the repository.

Currently, Git is the most popular version control system, we’ll use it during the lab.

1



Integration and Verification Techniques
λ λ λ

μ μ μ

1.1 Git basics

A Git branch is an active line of development. Working on a branch means creating, deleting and
modifying files, adding/removing these changes to the index and finally committing them.

Multiple branches can be used during the development. Git has a complex branching model,
where branches can be created, changes can be done on the branches and finally the branches
can be merged.

Committed changes in the local and remote repositories may be synchronized by pulling (fetching
and merging) the remote changes into the local repository or pushing the local changes to the
remote repository.

For additional detailed information and command line examples please read the Git Lectures
Page or Basic Git Tutorial (Reading one of these two tutorials is required for the Lab).

1.2 Git workflows

There are multiple workflow models proposed for collaboration purposes. A development team
should follow one of these workflow models in order to do a systematic development.

• Git Flow is a complex workflow model for large development project and large teams with
release, hotfix and feature branches.

• GitHub Flow is a simplified model for small projects and is good for educational purposes.

During the laboratory we’ll use the GitHub Flow workflow that proposes the following steps:

1. Creating a new branch for the new features.
2. Doing the changes in the code and committing to the branch.
3. Creating a pull request (sometimes referred to as merge request), that can be checked by

the team.
4. Doing some discussion and changes on the pull request.
5. Merging the pull request back to the master branch.

2 Build Automation

Building complex software projects is a challenging task. Building the different modules and
artifacts, tracking the dependencies and doing the integration build requires systematic solution.

In the beginning there was Make as the only build tool available. Later, Ant introduced more
control on the build process and by integrating Ivy introduced the dependency management over
the network. Ant was the first “modern” build tool, but its XML description language usually
didn’t fit to the procedural build descriptions.

Maven was the next build automation tool used primarily for Java projects. It addressed two
aspects of building software: First, it describes how software is built, and second, it describes its
dependencies. Comparing with Apache Ant, Maven uses conventions for the build procedure,

2

http://git-lectures.github.io/
http://git-lectures.github.io/
https://try.github.io/
http://nvie.com/posts/a-successful-git-branching-model/
https://guides.github.com/introduction/flow/


Integration and Verification Techniques
λ λ λ

μ μ μ

and only exceptions need to be written down, while Ant requires developers to write all the
commands that lead to the successful execution of some task. Maven introduced first the ability
to download dependencies over the network (later on adopted by Ant through Ivy). That in itself
revolutionized the way we deliver software.

Gradle is designed for large multi-project builds. Gradle builds upon the concepts of Ant and
Maven, combines good parts of both tools, and introduced a Groovy-based (one of JVM languages)
domain-specific language (DSL) instead of traditional XML form for configurations. As a result,
Gradle build scripts tend to be more succinct than those written for Ant or Maven. Gradle
supports incremental builds and intelligently determines when not to re-execute up-to-date parts
of the build tree and dependencies.

In this laboratory we’ll use Maven to build Java projects. To prepare for the laboratory, please
read the following Maven tutorial:

• Maven in five minutes

3 Continuous Integration

Continuous Integration (CI) usually refers to integrating, building, and testing code frequently.
It means a pipeline, that starts at the version control system and goes through on the building,
testing and also deployment phases (sometimes called also continuous delivery or continuous
deployment).

A continuous integration framework provides support to execute the required tools in the
continuous integration pipeline and manages the build artifacts.

• Hudson and its fork Jenkins share the same code base and very similar set of features.
Both are easy to extend, powerful and free. Their main advantage is in the number of
plugins and community support. They are a self-hosted solution and use a web-based GUI
to configure and execute the pipelines. Starting from version 2 they provide also support
for declarative pipeline description by using a Jenkinsfile.

• Travis CI is a hosted continuous integration service for the open source community and
is very well integrated with GitHub. The main strength of Travis is its simplicity. Unlike
Jenkins, which allows almost unlimited plugins, complicated flows, etc., Travis is based on
a single file, .travis.yml, that resides in the root of your code and describes the build
pipeline.

During the laboratory we’ll use Travis to learn the basics of the CI frameworks.

3.1 Travis

For most of the time, Travis knows what should be done without any need to explicitly define
the flow. For example, if there is the build.gradle file, Travis will understand that it should be
compiled, tested, etc. using Gradle. It inspects your code and acts accordingly. One can switch
from Ant to Maven to Gradle without making any changes to Travis or the configuration file.

3

http://maven.apache.org/guides/getting-started/maven-in-five-minutes.html


Integration and Verification Techniques
λ λ λ

μ μ μ

Travis has a strong dependency with Git. In cases when some other version controls system is
used, Travis is not a good option. If, on the other hand, you are using Git, working with Travis
is like forgetting that CI even exists. Whenever the code is pushed to the repo Travis will detect
it and act depending on changes in the code (including .travis.yml). If there is a problem, you
will be notified by email. Travis notifications can also be integrated to other services such as
Slack.

Keeping CI configuration (.travis.yml) as integral part of the code brings advantages. Through
that configuration, you tell it what to do and it does it.

To use Travis CI four steps are needed:

1. Register to Travis CI.
2. Activate your GitHub Repositories in your Travis profile.
3. Add .travis.yml file to your repository.
4. Trigger your first build with a git push.

To prepare for the laboratory, please read the following Travis tutorials:

• Travis CI for Complete Beginners
• Getting started

3.2 Additional materials (optional)

• Git Book
• Evolution of Popular Build Automation Tools
• Gradle User Guide
• Continuous Delivery: Introduction to concepts and tools

4

https://travis-ci.org
https://docs.travis-ci.com/user/for-beginners
https://docs.travis-ci.com/user/getting-started/
https://git-scm.com/book/en/v2
http://javajee.com/evolution-of-popular-build-automation-tools-ant-ivy-maven-and-gradle
https://docs.gradle.org/1.11/userguide/userguide.html
https://technologyconversations.com/2014/04/29/continuous-delivery-introduction-to-concepts-and-tools/

	Version Control Systems
	Git basics
	Git workflows

	Build Automation
	Continuous Integration
	Travis
	Additional materials (optional)


