Integration and Verification Techniques (VIMIACO04)

Static Verification Techniques

Akos Hajdu,
Zoltan Micskei, Istvan Majzik

Department of Measurement and Information Systems

Budapest University of Technology and Economics
Department of Measurement and Information Systems

Bd = P X

Feature e Aﬁ. Reviewer
h‘n'

Version control

system \
v

» Production

[]

<
Continuous
integration —u
Coding Static Unit tests Operation
guidelines analysis \/\\
N =5
vV
System test E2E test

Icons: icons8.com

Introduction

= Static verification techniques

o Analyze software without execution

= Advantage: can be performed even if
o The software is not executable
o Execution is expensive

o Input is not yet available

Motivation — Bad example

1 public class Classl

2 {

3 public decimal Calculate(decimal amount, int type, int years) {

4 decimal result = 0;

5 decimal disc = (years > 5) ? (decimal)5/100 : (decimal)years/100;

6 if (type == 1) result = amount;

7 else if (type == 2)

8 {

9 result = (amount - (0.1m * amount)) - disc * (amount - (©0.1m * amount));
10 }
11 else if (type == 3) { result = (0.7m * amount) - disc * (0.7m * amount); }
12 else if (type == 4) {
13 result = (amount - (0.5m * amount)) - disc * (amount - (©.5m * amount));
14 }
15 return result;
16 }
17 }

http://www.codeproject.com/Articles/1083348/Csharp-BAD-PRACTICES-Learn-how-to-make-a-good-code

http://www.codeproject.com/Articles/1083348/Csharp-BAD-PRACTICES-Learn-how-to-make-a-good-code

Properties of a good source code

Syntactically

e Checked by compiler
correct

e Readable, reusable maintainable, ...
e Coding guidelines help

Good quality

SN Mo II:{M - Static analysis, testing, ...

Adheres to

. : e Code review, testing, ...
specification

CODING GUIDELINES

Coding guidelines — Introduction

= Set of rules giving recommendations on

o Style: formatting, naming, structure

o Programming practices: constructs, architecture
= Main categories

o Industry/domain specific

* Automotive, railway, ...

o Platform specific
* C, C++, C#, Java, ...

o Organization specific
* Google, CERN, ...

Industry specific: MISRA C

= Motor Industry Software Reliability Association
" Focus on safety, security, reliability, portability
= 143 rules + 16 directives

" Tools: SonarQube, Coverity, ...

= Examples
o RHS of && and | | operators shall not contain side effects
o Test against zero should be made explicit for non-Booleans

o Body of if, else, while, do, for shall always be
enclosed in braces

Platform specific: .NET

* Framework Design Guidelines (C#)

o Focus on framework and AP| development

= Categories

o Naming, type design, member design, extensibility,
exceptions, usage, common design patterns

4

o, Do”, ,Consider”, ,, Avoid”, ,Do not”

= Tool: StyleCop

Framework
Design Guidelines

Conventions, Idioms, and Patterns
for Reusable .NET Libraries

https://msdn.microsoft.com/en-us/library/ms229042(v=vs.110).aspx

https://msdn.microsoft.com/en-us/library/ms229042(v=vs.110).aspx

Platform specific: .NET

= Examples

o DO NOT provide abstractions unless they are tested by
developing several concrete implementations and APIs
consuming the abstractions.

o CONSIDER making base classes abstract even if they
don’t contain any abstract members. This clearly
communicates to the users that the class is designed
solely to be inherited from.

o DO use the same name for constructor parameters and a
property if the constructor parameters are used to simply
set the property.

https://msdn.microsoft.com/en-us/library/ms229042(v=vs.110).aspx

10

https://msdn.microsoft.com/en-us/library/ms229042(v=vs.110).aspx

Organization specific: Google

= Java Style Guide
= Focus on hard-and-fast rules, avoids advices

= Categories
o Source file basics
o Source file structure
o Formatting
o Naming
o Programming practices
o Javadoc

https://google.github.io/styleguide/javaguide.html

11

https://google.github.io/styleguide/javaguide.html

Organization specific: Google

= Examples

o Never make your code less readable simply out of fear that
some programs might not handle non-ASCIl characters
properly. If that should happen, those programs are broken
and they must be fixed.

o In Google Style special prefixes or suffixes, like those seen
in the examples name_, mName, s _name and kName, are
not used.

o When a reference to a static class member must be
qualified, it is qualified with that class's name, not with a
reference or expression of that class'’s type.

o Local variable names are written in 1lowerCamelCase.
https://google.github.io/styleguide/javaguide.html

12

https://google.github.io/styleguide/javaguide.html

Organization specific: CERN

= ROOT: data analysis tool/framework
for high energy physics (C++)

= Categories
> Naming ROOT
O Exceptlons Data Analysis Framework
o Namespaces
o Comments
o Source layout

" Tool: Artistic Style (astyle)

https://root.cern/coding-conventions

https://root.cern/coding-conventions

Organization specific: CERN

= Examples

o Avoid the use of raw C types like int, long, float,
double when using data that might be written to disk.

o For naming conventions we follow the Taligent rules.
Types begin with a capital letter (Boolean), base
classes begin with ,T” (TContainerView) members
begin with ,f” (fViewlList), ...

o Each header file has the following layout: Module
identification line, Author line, Copyright notice,
Multiple inclusion protection macro, Headers file
includes, Forward declarations, Actual class definition.

https://root.cern/coding-conventions

https://root.cern/coding-conventions

Coding guidelines — Summary

" How to enforce
o Base functionality in many IDEs
o External tools
o Tool integrated in the workflow

= Important
o Always use a common guideline
o As a minimum, common IDE formatter settings

* Can usually be committed to version control as a settings file

Coding guidelines — Summary

= \WWhich one is the best? Which one to select?

" |n many cases it is already determined
o By the industry, platform or organization
o Consistency with the current code base

= Sometimes it can be determined
o There may be no single best one

* They can be even inconsistent with each other
* Combination is possible

o Do not reinvent the wheel

* Makes it harder for new developers

CODE REVIEW

Code review — Introduction

= Manual process performed by humans
o Reading, examining, reviewing the code
o Usually based on a structured checklist

= Different levels (informal = formal)

¢ Informal

Informal review
ormal revie e Performed by other team members or team lead

e Mostly informal

Walkthrough e Guided by the author of the code

e Well defined, documented process

Technical review)
¢ Including experts

e Formally defined, documented process

Inspection :
P ¢ Including external experts, moderators

http://www.istgb.org/downloads/syllabi/foundation-level-syllabus.html

http://www.istqb.org/downloads/syllabi/foundation-level-syllabus.html

Code review process

e Specifying documents, participants and criteria
e Distributing tasks

Planning

. e Introducing the process to participants
KI Ck_Off e Getting the code to the reviewer

e Reviewing the code
e Documenting problems

Preparation

e Discussing and documenting problems
e Suggestions for fixes

Review meeting

e Performing the fixes
e Documenting modifications

Rework

e Checking fixes
e Checking exit criteria

Follow up

Code review — Advantages

" Formal inspection
o Effective in finding errors
o Time consuming, tiresome work

= Modern techniques
o Less formal, more tool support
o Used in the industry (Microsoft, Google, Facebook, ...)

o Other advantages besides finding errors
* Knowledge transfer
* Team spirit
* Alternative solutions

http://dl.acm.org/citation.cfm?id=2486882

http://dl.acm.org/citation.cfm?id=2486882

Code review — Checklist

®» Checklist: structured enumeration of criteria

= Similar categories as in coding guidelines
o Readability, maintainability
o Security, vulnerability
o Performance
o Programming patterns and practices

= Advices
o Many code review checklists can be found online
o Strive for automation

* E.g., formatting can be checked by a tool

Code review — Tools

= Supporting code review
o Attach notes and conversations to code
o Integrated into development workflow

= GitHub: pull request reviews (- LAB)

o Comments, accepting, requesting changes

Q o octocat requested changes 28 days ago View changes

Submit your 3 pending comments

Review summary

This is looking ! I've left a few comments that should be addressed before this gets merged. &
| | Thisis looking ! I've left a few comments that should

| ra
| | be addressed before this gets merged. &

data/reusables/open-source.yml

y
Comment
. R Submit general feedback without explicit approval
+open-source-handbook-repositories: |
+ F informati ifically how t te and Approve
er more information on open source, specifically how to create and grow an opei Submit feedback and approve merging these changes.
© Reqguest changes
@ octocat 28 days ago Submit feedback that must be addressed before merging.
”proufde best practices relating to creating repositories for Your open source project.) |

https://help.github.com/articles/about-pull-request-reviews/

https://help.github.com/articles/about-pull-request-reviews/

Code review — Tools

= Gerrit
o Web-based code review
o Git support
o Managing workflow

private PatchSet patchSet;
private ChangeMessage changeMessage;
private Sshinfo ashinfo;
private ValidatePolicy validatePolicy = ValidatePolicy.GERRI
private boolean draft;
private boolean runHooks = £rue;
Stefan Beller Why do you move this out of the constructor? Initially | assumed this... Jan 28 2:55 PM
J) o
Dave Borowitz Because 11 would bo entical between the two constructors, so it sa... Jan 28 3:19 PM

-

.
.

private boolean sendMall = true;
private Account.Id uploader;
private BatchRetfUpdate batchRefUpdate;

fAssintedIinjiect
public PatchSetingserter(ChangeHooks hooks, °
ReviewDb db,

P

https://www.gerritcodereview.com/

UEGYETEM

https://www.gerritcodereview.com/

STATIC ANALYSIS

Static analysis — Example

OLoOoONOOUVT P WDNR

public class Sample {
public static void main(String[] args) {

String str = null;

try {
Scanner scanner = new Scanner("file.txt");

str = scanner.nextLine(); Scanner not closed
scanner.close(); in case of exception
} catch (Exception e) { e

System.out.println("Error opening file!");
}

str.replace(" ", ""); M
System.out.println(str); e e

Static analysis — Introduction

= Definition: analysis of software without execution
o Usually automated tools
o Human analysis (code review)

= Pattern-based

o Basic static properties with error patterns (mostly)

e E.g.,ignored return value, unused variable
o FindBugs, SonarQube, Coverity
" |nterpretation-based

o Dynamic properties
* E.g., null pointer dereference, index out of bounds

o Infer, PolySpace

FindBugs (Java)
= Large and extensible set of rules ;@\

= Command line, GUI, Eclipse plug-in

= Examples
o Bad practice: random object created and used only once
o Correctness: bitwise add of signed byte value

o Vulnerability: expose inner static state by storing mutable object
into a static field

o Multithreading: synchronization on Boolean could lead to
deadlock

o Performance: invoke toString() on a string
o Security: hardcoded constant database password

o Dodgy: useless assignment in return statement
http://findbugs.sourceforge.net/

http://findbugs.sourceforge.net/

FindBugs (Java)

indBugs:

File Edit Hawvigation Designation Help

Package | Priority | Category | Bug Kind | Bug Pattern | (—)I}'—““-ja""a in edu.umd.cs.findbugs.util
" a7 assert true;
o=] edu.umd.cs.findbugs.canfia (3 - ag y
o= 3 edu.umd.cs findbugs filter (13 99 }
o] eduumd.cs findbugs.util (13 §§ lono static final Fattern tag = Pattern.compile (™ =%\s%<(WWvu+)""
¢ [Medium (1) 101 public static 3tring getXMLType(Inputitrean in) throws I0
9 E Bad practice (13 10z if [l'in.markSupported())
¢ |j Strearn not closed on all paths (1) igi throw new IllegalidrgumentException(”Input stream
2 I Method may fail to close Stn.eaml 1 — §§ 105 in.mark (5000] ;
D edu.umd.cs.ﬂndbugs.utll.um.getKML'I_ 106 BuffercdReader r = null:
o=] edu.umd.cs.findbuns visitclass (1) T gg 107 try §
o] edu.urmd.cs findbugs workflow (2) | |i] 1o8 ¥ = new BufferedReader (Util.getReader (in), 20007 :
o [T jawa.util (2) ~|i 1o
1] IIl | o] String s; ||
it 1 111 int count = 0:
unclassified |"‘§§ 112 while [count < 4] § =
A 113 s = r.readLine(): -
114 if (2 == mull)
115 break;
: 11la Matcher m = tag.matcheri(s): -
i [[[+
|v ‘ 5: | | Find | ‘ Find Next | | Find Previous
L R Lt R T R L T Rt IR LR LU LR RN
edu.umd.cs findbugs.util Util get<MLTypednputStrearm) may fail to close stream sl
At Uil java:line 108]
In method edu.umd.cs findbugs. util Uil get<MLTypednputStream) [Lines 102 - 123] 5
mleed to close java.io Reader L.
-

Tt AR

Method may fail to close stream

The methad creates an Q0 stream ohject, does not assign itto any fields, pass it to other methods that might close it, ar return it, and does not appearto
close the stream an all paths out ofthe method. This may resultin a file descriptar leak. tis generally & good idea to use a £inally hlock to ensure that
streams are closed.

- UNIVERSITY OF
|‘ http:/findbugs.sourceforge.net/ @ NMRYIAND

= Code quality management platform sonarqubé{‘??
= 20+ programming languages (Java, C, C++, C#, ...)
= Features

o Examines coding standards, duplicated code, test
coverage, code complexity, potential bugs and
vulnerabilities, technical debt

o Produces reports, evolution graphs
o Integrates with external tools: IDEs, Cl tools, ...

http://www.sonarqube.org/

http://www.sonarqube.org/

SonarQube

sonarqubﬂ'

Leak Period: last 30 days
Bugs & Vulnerabilities b

1188 638 4 4

New

3Ugs Vuinerabilities New Bugs
Bug Bug Vulnerablities

Code Smells

12k @ 269d 664 18d

Code Smells Debt New Code Smells New Debt

Coverage

) 88.1% 9.3k 90.6%

Coverage on
16k New Lines of Code

Coverage Unit Tests

SonarQube

sonarqubﬂ'

£ SonarQube
L

Issues Measures Code Dashboards

2 Type £ SonarQube (5] SonarQube :: Plugin API

= sre/mainfji

u
‘ Bug Override this superclass' "equals”™ method.

Vuinerability Bug @ Major O Open Notassigned 30min effort

Code Smell 12k

-1 sre/mainfji

& Resolution) SonarQube (=] SonarQube :: Plugin API

‘ Unresolved 118 Fixed The retumn value of "parseDouble” must be used
False Paositive 0 Won't fix . Bug @ Critical O Open Notassigned 10min effort
Removed 41
(5 SonarQube () SonarQube :: Plugin APl [3) sra/mainiji
O Severity
() Status NullPointerException might be thrown as ‘value' is nuliable |

. Bug @ Blocker (O Open <= Simon Brandhof 10min effc

UEGYETEM

= Static analyzer of the Synopsys suite S‘/I'I[II?S‘/S
= C, C++, C#, Java, JavaScript
= Used by CERN, NASA, ...

= Examples: resource leaks, null pointers,
uninitialized data, concurrency issues, ...

= Coverity Scan: free service for open source
projects

o Integrated with GitHub and Travis CI

http://www.synopsys.com/software/coverity/Pages/default.aspx https://scan.coverity.com/

http://www.synopsys.com/software/coverity/Pages/default.aspx
https://scan.coverity.com/

Using static analysis tools efficiently

" |ntegrate to build process
o Perform check before/after each commit
o Generate reports, send e-mails

= Use from the start of a project
o Too many problems would discourage developers

= Configure the tools
o Filter based on severity or category

o Add custom rules

Using static analysis tools efficiently

= Review the results carefully
o False positives and false negatives are possible

" False negative

o No errors found does not mean correct software

" False positive
o An error found may not cause a real failure
o lgnore rule / one occurrence

* Always explain why it is not an error

Advantages of static analysis

= Analyzing software without execution

o Analysis before software is executable or input is
present

o Execution may be expensive

= Find subtle errors

o Interesting even for expert programmers

= Automatic process

o Integrated into development process

Static verification techniques — Summary

= Coding guidelines
o Industry, platform, organization specific

= Code review
o Manual inspection based on checklist

Detect more subtle errors

= Static analysis tools

o Code analysis without execution

