
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Department of Measurement and Information Systems

Static Verification Techniques

Ákos Hajdu,
Zoltán Micskei, István Majzik

1

Integration and Verification Techniques (VIMIAC04)

Overview

2

Version control
system

Continuous
integration

Developer

Unit tests

Feature Reviewer

E2E test

Production

System test

OperationCoding
guidelines

Static
analysis

Icons: icons8.com

Introduction

▪ Static verification techniques

o Analyze software without execution

▪ Advantage: can be performed even if

o The software is not executable

o Execution is expensive

o Input is not yet available

3

Motivation – Bad example

4

public class Class1
{
public decimal Calculate(decimal amount, int type, int years) {

decimal result = 0;
decimal disc = (years > 5) ? (decimal)5/100 : (decimal)years/100;
if (type == 1) result = amount;
else if (type == 2)
{
result = (amount - (0.1m * amount)) - disc * (amount - (0.1m * amount));

}
else if (type == 3) { result = (0.7m * amount) - disc * (0.7m * amount); }
else if (type == 4) {
result = (amount - (0.5m * amount)) - disc * (amount - (0.5m * amount));

}
return result;

}
}

http://www.codeproject.com/Articles/1083348/Csharp-BAD-PRACTICES-Learn-how-to-make-a-good-code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

http://www.codeproject.com/Articles/1083348/Csharp-BAD-PRACTICES-Learn-how-to-make-a-good-code

Properties of a good source code

5

• Checked by compiler
Syntactically

correct

• Readable, reusable maintainable, …

• Coding guidelines help
Good quality

• Static analysis, testing, …Free of bugs

• Code review, testing, …
Adheres to

specification

CODING GUIDELINES

6

Coding guidelines – Introduction

▪ Set of rules giving recommendations on

o Style: formatting, naming, structure

o Programming practices: constructs, architecture

▪ Main categories

o Industry/domain specific

• Automotive, railway, …

o Platform specific

• C, C++, C#, Java, …

o Organization specific

• Google, CERN, …

7

Industry specific: MISRA C

▪ Motor Industry Software Reliability Association

▪ Focus on safety, security, reliability, portability

▪ 143 rules + 16 directives

▪ Tools: SonarQube, Coverity, …

▪ Examples

o RHS of && and || operators shall not contain side effects

o Test against zero should be made explicit for non-Booleans

o Body of if, else, while, do, for shall always be
enclosed in braces

8

Platform specific: .NET

▪ Framework Design Guidelines (C#)

o Focus on framework and API development

▪ Categories

o Naming, type design, member design, extensibility,
exceptions, usage, common design patterns

o „Do”, „Consider”, „Avoid”, „Do not”

▪ Tool: StyleCop

9

https://msdn.microsoft.com/en-us/library/ms229042(v=vs.110).aspx

https://msdn.microsoft.com/en-us/library/ms229042(v=vs.110).aspx

Platform specific: .NET

▪ Examples

o DO NOT provide abstractions unless they are tested by
developing several concrete implementations and APIs
consuming the abstractions.

o CONSIDER making base classes abstract even if they
don’t contain any abstract members. This clearly
communicates to the users that the class is designed
solely to be inherited from.

o DO use the same name for constructor parameters and a
property if the constructor parameters are used to simply
set the property.

10

https://msdn.microsoft.com/en-us/library/ms229042(v=vs.110).aspx

https://msdn.microsoft.com/en-us/library/ms229042(v=vs.110).aspx

Organization specific: Google

▪ Java Style Guide

▪ Focus on hard-and-fast rules, avoids advices

▪ Categories

o Source file basics

o Source file structure

o Formatting

o Naming

o Programming practices

o Javadoc

11

https://google.github.io/styleguide/javaguide.html

https://google.github.io/styleguide/javaguide.html

Organization specific: Google

▪ Examples
o Never make your code less readable simply out of fear that

some programs might not handle non-ASCII characters
properly. If that should happen, those programs are broken
and they must be fixed.

o In Google Style special prefixes or suffixes, like those seen
in the examples name_, mName, s_name and kName, are
not used.

o When a reference to a static class member must be
qualified, it is qualified with that class's name, not with a
reference or expression of that class's type.

o Local variable names are written in lowerCamelCase.

12

https://google.github.io/styleguide/javaguide.html

https://google.github.io/styleguide/javaguide.html

Organization specific: CERN

▪ ROOT: data analysis tool/framework
for high energy physics (C++)

▪ Categories

o Naming

o Exceptions

o Namespaces

o Comments

o Source layout

▪ Tool: Artistic Style (astyle)

13

https://root.cern/coding-conventions

https://root.cern/coding-conventions

Organization specific: CERN

▪ Examples

o Avoid the use of raw C types like int, long, float,
double when using data that might be written to disk.

o For naming conventions we follow the Taligent rules.
Types begin with a capital letter (Boolean), base
classes begin with „T” (TContainerView), members
begin with „f” (fViewList), …

o Each header file has the following layout: Module
identification line, Author line, Copyright notice,
Multiple inclusion protection macro, Headers file
includes, Forward declarations, Actual class definition.

14

https://root.cern/coding-conventions

https://root.cern/coding-conventions

Coding guidelines – Summary

▪ How to enforce

o Base functionality in many IDEs

o External tools

o Tool integrated in the workflow

▪ Important

o Always use a common guideline

o As a minimum, common IDE formatter settings

• Can usually be committed to version control as a settings file

15

Coding guidelines – Summary

▪ Which one is the best? Which one to select?

▪ In many cases it is already determined

o By the industry, platform or organization

o Consistency with the current code base

▪ Sometimes it can be determined

o There may be no single best one

• They can be even inconsistent with each other

• Combination is possible

o Do not reinvent the wheel

• Makes it harder for new developers

16

CODE REVIEW

17

Code review – Introduction

▪ Manual process performed by humans

o Reading, examining, reviewing the code

o Usually based on a structured checklist

▪ Different levels (informal → formal)

18

• Informal

• Performed by other team members or team lead
Informal review

• Mostly informal

• Guided by the author of the code
Walkthrough

• Well defined, documented process

• Including experts
Technical review

• Formally defined, documented process

• Including external experts, moderators
Inspection

http://www.istqb.org/downloads/syllabi/foundation-level-syllabus.html

http://www.istqb.org/downloads/syllabi/foundation-level-syllabus.html

Code review process

• Specifying documents, participants and criteria

• Distributing tasksPlanning

• Introducing the process to participants

• Getting the code to the reviewerKick-off

• Reviewing the code

• Documenting problemsPreparation

• Discussing and documenting problems

• Suggestions for fixesReview meeting

• Performing the fixes

• Documenting modificationsRework

• Checking fixes

• Checking exit criteriaFollow up

19

Code review – Advantages

▪ Formal inspection

o Effective in finding errors

o Time consuming, tiresome work

▪ Modern techniques

o Less formal, more tool support

o Used in the industry (Microsoft, Google, Facebook, …)

o Other advantages besides finding errors

• Knowledge transfer

• Team spirit

• Alternative solutions

20

http://dl.acm.org/citation.cfm?id=2486882

http://dl.acm.org/citation.cfm?id=2486882

Code review – Checklist

▪ Checklist: structured enumeration of criteria

▪ Similar categories as in coding guidelines

o Readability, maintainability

o Security, vulnerability

o Performance

o Programming patterns and practices

▪ Advices

oMany code review checklists can be found online

o Strive for automation

• E.g., formatting can be checked by a tool

21

Code review – Tools

▪ Supporting code review

o Attach notes and conversations to code

o Integrated into development workflow

▪ GitHub: pull request reviews (→ LAB)

o Comments, accepting, requesting changes

22

https://help.github.com/articles/about-pull-request-reviews/

https://help.github.com/articles/about-pull-request-reviews/

Code review – Tools

▪ Gerrit

o Web-based code review

o Git support

o Managing workflow

23

https://www.gerritcodereview.com/

https://www.gerritcodereview.com/

STATIC ANALYSIS

24

Static analysis – Example

25

public class Sample {
public static void main(String[] args) {

String str = null;
try {

Scanner scanner = new Scanner("file.txt");
str = scanner.nextLine();
scanner.close();

} catch (Exception e) {
System.out.println("Error opening file!");

}
str.replace(" ", "");
System.out.println(str);

}
}

Scanner not closed
in case of exception

str may be null

str immutable

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Static analysis – Introduction

▪ Definition: analysis of software without execution

o Usually automated tools

o Human analysis (code review)

▪ Pattern-based

o Basic static properties with error patterns (mostly)
• E.g., ignored return value, unused variable

o FindBugs, SonarQube, Coverity

▪ Interpretation-based

o Dynamic properties
• E.g., null pointer dereference, index out of bounds

o Infer, PolySpace

26

FindBugs (Java)

▪ Large and extensible set of rules

▪ Command line, GUI, Eclipse plug-in

▪ Examples

o Bad practice: random object created and used only once

o Correctness: bitwise add of signed byte value

o Vulnerability: expose inner static state by storing mutable object
into a static field

o Multithreading: synchronization on Boolean could lead to
deadlock

o Performance: invoke toString() on a string

o Security: hardcoded constant database password

o Dodgy: useless assignment in return statement

27

http://findbugs.sourceforge.net/

http://findbugs.sourceforge.net/

FindBugs (Java)

28

SonarQube

▪ Code quality management platform

▪ 20+ programming languages (Java, C, C++, C#, …)

▪ Features

o Examines coding standards, duplicated code, test
coverage, code complexity, potential bugs and
vulnerabilities, technical debt

o Produces reports, evolution graphs

o Integrates with external tools: IDEs, CI tools, …

29

http://www.sonarqube.org/

http://www.sonarqube.org/

SonarQube

30

SonarQube

31

Coverity

▪ Static analyzer of the Synopsys suite

▪ C, C++, C#, Java, JavaScript

▪ Used by CERN, NASA, …

▪ Examples: resource leaks, null pointers,
uninitialized data, concurrency issues, …

▪ Coverity Scan: free service for open source
projects

o Integrated with GitHub and Travis CI

32

http://www.synopsys.com/software/coverity/Pages/default.aspx https://scan.coverity.com/

http://www.synopsys.com/software/coverity/Pages/default.aspx
https://scan.coverity.com/

Using static analysis tools efficiently

▪ Integrate to build process

o Perform check before/after each commit

o Generate reports, send e-mails

▪ Use from the start of a project

o Too many problems would discourage developers

▪ Configure the tools

o Filter based on severity or category

o Add custom rules

33

Using static analysis tools efficiently

▪ Review the results carefully

o False positives and false negatives are possible

▪ False negative

o No errors found does not mean correct software

▪ False positive

o An error found may not cause a real failure

o Ignore rule / one occurrence

• Always explain why it is not an error

34

Advantages of static analysis

▪ Analyzing software without execution

o Analysis before software is executable or input is
present

o Execution may be expensive

▪ Find subtle errors

o Interesting even for expert programmers

▪ Automatic process

o Integrated into development process

35

Static verification techniques – Summary

▪ Coding guidelines

o Industry, platform, organization specific

▪ Code review

o Manual inspection based on checklist

▪ Static analysis tools

o Code analysis without execution

36

D
et

ec
t

m
o

re
 s

u
b

tl
e

er
ro

rs

D
if

fi
cu

lt
y,

 c
o

st

