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DECISION PROBLEM, ERROR PROBABILITY

@ Decide for not (yet) observable Y based on an observable
X

@ X, Y r.v.s, with domains X (e.g. CR% and Y = {0, 1}
labels, resp., and with joint distr. v

@ g: X — Y decision function or classifier is used to decide
from Xto Y

@ Goodness of g(X) decision is measured by 0-1 cost: 1, if
g(X) differs from true Y, else 0 =

@ Performance of g is measured by its error probability
(global risk): R(g) £ P(Y # g(X))
@ g’s minimizing R(g): optimal
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HYPOTHESIS, DECISION DOMAIN

For i =0,1: {Y = i}: i hypothesis. Y a posteriori distribution
is given by 7;(x) Ep (Y = i|X = x) a posteriori probabilities.
Preimages of 0 and 1 by g form a partition of X, its classes

D; = {x € X : g(x) = i} are the decision domains.

Note: 1 —no(x) = n1(x) = E[Y|X = X] défn(x) (regression or a

posteriori probability function).
If X ~ u, v may be given, e.g., by (i, n). VCy,C1 C X

B((X.Y) € Co x {0} UG, ><{1})=/(1—77)du+/ 0.

0 Cy

(Do, Dy) < g, since Iigx)=j} = H{XED,} (Ia: indicator func. of A).
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LOCAL RISK

(X)|X = x): local risk function
E[r(g. X)] = and

rg.x) EP(Y #g
R(9)
r(g.x)

L{g(x)=13M0(X) + L{g(x)=03m (X)
= 1 —Txeppymo(X) — Lixep,ym(X).

Minimized by g which puts Vx into D; with the greater 7;(x).
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g* picks the more likely j given X.
X € Dj‘ = nj(x) = max(no(x),n1(x)).

DEFINITION

Bayes decision (maximum a posteriori decision): g* corresp. to
(D, Dy) above, i.e. g*(x) =1 < x € D} & n(x) > 1/2.

|

THEOREM
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BAYES DECISION

o Let{D;} bes.t. Vx
x € Df & (1(x) > m—j(x) V. j = 0,m0(x) = n1(x))
g* picks the more likely j given X.
X € Dj‘ = nj(x) = max(no(x),n1(x)).

DEFINITION

Bayes decision (maximum a posteriori decision): g* corresp. to
(D, Dy) above, i.e. g*(x) =1 < x € D} & n(x) > 1/2.

|

THEOREM

The Bayes decision minimizes r(g, x) VX, and so optimal. The
minimum is r(g*, x) = min(no(x), n1(x)).

(optimal) global risk of g*: Bayes risk/ Bayes error
R* < R(g") = E[min(no(X), 11 (X))] = E [min(n(X), 1 = n(X))].
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OTHER FORMULAS FOR BAYES RISK

1
2

R = inf P(g(X)#Y)=
L B(a(X) £ )

If X has density f:

— TEl20(X) 1]

R = / min(n(x). 1—1(x))f(x)x = / min (1 — p)o(x). P (x)) dx,

where p =P (Y = 1), 1 — p are the class probabilities, f; is the
class-conditional density of X given Y = i. If fy and f; are
nonoverlapping, i.e., [ fofy =0= R*=0.

lfp=1/2
R = ;/min (fo(x), fi(x)) dx = % — l/m (x) — fo(x)|dx,

i.e. is related to the L, distance between fy,f;.
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APPROXIMATION OF BAYES DECISION

@ 7 is typically unknown.
@ Assume that n; can be estimated by some 7; : X — [0, 1].

@ Bayes decision: (ng,n1) = g*.
Analogy: (jo, 711) = g defines a plug-in decision:

9(x) = J = jj(x) = max(ijo(x), 711 (x))

(if 7jo(x) = 71(x), choose arbitrarily, e.g., 0.)

@ Expectation: 7j;’s are good estimates = g’s error ~ g*’s
error (always >). Diff. of their risks < estimation errors of
fii's
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APPROXIMATION OF BAYES DECISION 2

THEOREM

Fori=0,1 letij : X — [0, 1] be estimate of n; and g be the
plug-in decision function defined by (7jo, 71). Then

r(g,x) —r(g*,x) < H{g(x);ég*(x)}zie{m}|ﬁi(X) — ni(x)]

and R(g) — R* <

E[H{Q(X);ég*(X)} > (%) —ni(X)q < ]E[ > 17i(X) = ni(X)1|.
ie{0,1} ie{0,1}
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APPROXIMATION OF BAYES DECISION 2

THEOREM

Fori=0,1 letij : X — [0, 1] be estimate of n; and g be the
plug-in decision function defined by (7jo, 71). Then

r(g,x) —r(g*,x) < H{g(x);ég*(x)}zie{m}|ﬁi(X) — ni(x)]

and R(g) — R* <

E[H{Q(X);ég*(X)} Z |77i(x) —ni(X)q < ]E[ Z |77 (X) —Ui(X)q-
ie{0,1} ie{0,1}

o If1—ijp =7 & ijthen (g x) - r(g*,x) =
Lig)2g- (0311 = 2n(X)| < 20 (g(x)£g+ ()3 171(X) — n(x)| and
R(G)—R" = E[I(gx)2e- 00y [1-2n(0)I]| < 2E[[i(X)-n(X)].

@ Good 7 estimate = good decision function
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APPROXIMATION OF BAYES DECISION 3

If X has a density, fy, f; are estimated by densities f, f;, and p,
1 — p are estimated by py, po, respectively, then for the plug-in
decision function

_ [ 1 itprh(x) > Bofo(x)
9(x) = { 0 otherwise,

R(g) —
/ (1= P)o(x) ~ Bob()lax + [ Ipf(x) ~ By (0.
X
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SAMPLE BASED CLASSIFICATION

n is unknown. Assumption: we have i.i.d. data (sample,
observations) D = ((X1, Y1), ..,(Xn, Yn)) ~ v from experiment
or experts (strong, but can be extended for slightly dependent
data).

An approximating classifier g, is constructed based on D, (Y is
guessed by gn(X; Dp)). So gn: X x {X x {0,1}}" — {0,1}.
= Classification, Pattern Recognition, or (Supervised) Learning
(with a teacher)

Performance of g, is measured by conditional error prob.

Rn % R(gn) = P (gn(X; Dy) # Y|Dy)), it depends on the data =

random variable! But bounded: R, € [0, 1]
A sequence {gn,n > 1} is a (discrimination) rule.
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CONSISTENT RULES

When is {gn} good?

{gn} is (weakly) consistent if R, — R* in probability
(equivalently, lim,_, E[Ry] = R*), and strongly consistent if
R, — R*as.,ie. P(R,— R*)=1.Ifaruleis
(weekly/strongly) consistent for all v on X x {0, 1}, then itis
universally (weekly/strongly) consistent.

Consistency assures that taking more samples suffices to
roughly reconstruct needed aspects of n (actually, g*).

1%t universal consistency proof: Stone’77, k-NN rule (k(n) — oo
and k(n)/n — 0). k-NN: gn(x) takes majority vote over Y;’s in
the subset of k pairs from D, for which X; is nearest to x. Since
then many rules have been shown to be universally consistent.
For most well-behaved {g,} (e.g. k-NN), weak and strong
consistency are equivalent <= concentration inequalities
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HOEFFDING INEQUALITY

See lecture01_ucb.pdf Sec.4 p.15!
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NO RATE - SLOW RATE OF CONVERGENCE

How good can {gn} be? Convergence < explicit inequality
R, > R*. Desire: bounds on E[Ry] — R*and P (R, — R* > ¢)
Rate of convergence But! Such bound has to depend on v. E.g:

Ve >0,n,andgn, I(X,Y)~vwithR*=0st E[R)] >1/2—¢.

Universal convergence rate guarantees do not exist. They must
involve certain subclasses of distributions of (X, Y).
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NO RATE - SLOW RATE OF CONVERGENCE

How good can {gn} be? Convergence < explicit inequality
R, > R*. Desire: bounds on E[Ry] — R*and P (R, — R* > ¢)
Rate of convergence But! Such bound has to depend on v. E.g:

THEOREM
Ve >0,n,andgn, I(X,Y)~vwithR*=0st E[R)] >1/2—¢.

THEOREM

Let{a,} be a real sequence with a, — 0,1/16 > a1 > a, >
...>0.Y{gn}, IX,Y) ~vwithR* =0, s.t. YnE[Ry] > ap.

V{gn},E, liminfp oo SUPai v with R*<1/2_5]P)(Rn — R* > 6) > 0.

Universal convergence rate guarantees do not exist. They must
involve certain subclasses of distributions of (X, Y).
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RESTICTED CLASS - EMPIRICAL RISK MINIMIZATION

Change the setting: limit the classifiers to class F such as, e.g.,
neural networks with k node in 1 hidden layes. Then picking g,
from F, R > Rr & infger R(). Typically, Rr > R".

How to find a good g, € F? Pick a g;; with minimal estimated
error, e.g. minimize empirical risk over F:

~

n
def 1
Rn(9) = £ D haxoviy
i=1

(Algorithmic complexity?! - not here)

R(g;,) — Rr > 0, but expected to become small. Can we give
convergence rate on it for such classes? Yes! Distribution free
bounds, 1% by Vapnik & Chervonenkis, 1971.

R(g;) — R* = (R(g;) — Rr) + (Rr — R*) decomposition
estimation error + approximation error = trade-off!
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FINITE CLASS

Let|F| < oo and Rr =0. Thenv¥n, e > 0,

_ log(elF]).

P(R(gn) >€) < |Fle™™ and  E[R(gp)] < —

PROOF. R = 0= 3g € F: R(g) =0 = Ra(g) =0 =
Rn(g;) =0 a.s.

P(R(gs) > €) < P (maxy_r70)—0 A(9) > ¢)

= E |:H{maxge]-‘:ﬁn(g)_0 R(g)>e}:| =E |:g]ea]):(H{ﬁn(g)ZO}H{R(g)>E}:|

> P(Rulg)=0) <|FI(1 )" < |Fle™™
geF:R(g)>e

(P (AXi, Y e{(x,¥):9(x) # y}) < (1 —€)"if P(g(X) # Y) > ¢)

IN
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FINITE CLASS PROOF - CONT.

Yu > 0,

[e.9]

/OOP(R(g;;) > &) de < u+/ P(R(g:) > €) de
0 u

E[R(gn)]
< u+]}"]/ ef”ede:qu@e*”“.
u n

Set u = log|F|/n = bound log(e|F|)/n. O
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