Learning probabilistic Graphical Models

Péter Antal

Department of Measurement and Information Systems

Intelligent Data Analysis, November 25, 2016

Department of Measurement and Information Systems

э.

イロト イポト イヨト イヨト

Overview	Assmptions 000000000000000000000000000000000000
Overview	

- Assumptions:
 - Stability
 - Causal Markov Assumption
- Parameter learning
 - Complete data: ML/MAP
- Asymptotic learning
 - Hardness of learning: NP
 - ► IC
- Score-based methods
 - An information theoretic approach
 - Score equivalence

Overview O	Assmptions
Basics	

Stable distributions

Definition

The distribution P is said to stable (or faithfull), if there exists a DAG called perfect map exactly representing its (in)dependencies (i.e.

 $(X \perp \!\!\!\perp Y | Z)_G \Leftrightarrow (X \perp \!\!\!\perp Y | Z)_P \forall X, Y, Z \subseteq V$). The distribution *P* is stable w.r.t. a DAG *G*, if *G* perfectly represents its (in)dependencies.

Numerically encoded independencies cannot be represented structurally, i.e. by d-separation, thus cannot be learned with standard BN representation.

- 1. Consider p(X, Y, Z) with binary X, Z and ternary Y. The conditionals p(Y|X) and p(Z|Y) can be selected such that $p(z|x) = p(z|\neg x)$. That is $(X \not\perp Y)$ and $(Y \not\perp Z)$, but $(X \perp Z)$, demonstrating that the "naturally" expected transitivity of dependency can be destroyed numerically.
- 2. Consider P(X, Y, Z) with binary variables, where p(x) = p(y) = 0.5 and p(Z|X, Y) = 1(Z = XOR(X, Y)). That is $(X \perp LZ)$ and $(Y \perp LZ)$, but $(\{X, Y\} \neq LZ)$, demonstrating that pairwise independence does not imply total independence.

・ロン ・四 と ・ ヨ と ・ ヨ

Overview O	Assmptions
Basics	

The Causal Markov Condition

Definition

A DAG *G* is called a causal structure over variables *V*, if each node represents a variable and edges denote direct influences. A causal model is a causal structure extended with local models $p(X_i|pa(X_i, G))$ for each node describing the dependency of variable X_i on its parents $pa(X_i, G)$. As the conditionals are frequently from a parametric family, they are parameterized by θ_i , and θ denotes the overall parameterezation, so a causal model is pair (*G*, θ .

Definition

A causal structure *G* and distribution *P* satisfies the Causal Markov Condition, if *P* obeys the local Markov condition w.r.t. *G*.

Note: Reichenbach's "common cause principle", i.e. hidden variables are allowed, only variables that influences two or more variables in V are necessary for causal sufficiency.

(The causal Markov condition implies sufficiency and stability implies necessity of G).

(日)

Overview	Acomptions
Oldiniew	
0	
Basics	

Constraint-based BN learning: IC

The Inductive Causation algorithm (assuming a stable distribution *P*):

- 1. *Skeleton:* Construct an undirected graph (skeleton), such that variables $X, Y \in \mathbf{V}$ are connected with an edge iff $\forall S(X \perp\!\!\perp Y | S)_p$, where $S \subseteq \mathbf{V} \setminus \{X, Y\}$.
- 2. *v-structures*: Orient $X \to Z \leftarrow Y$ iff X, Y are nonadjacent, Z is a common neighbour and $\neg \exists S$ that $(X \perp \!\!\!\perp Y | S)_p$, where $S \subseteq V \setminus \{X, Y\}$ and $Z \in S$.
- 3. *propagation:* Orient undirected edges without creating new v-structures and directed cycle.

Theorem

The following four rules are necessary and sufficient.

$$\begin{array}{l} R_{1} \ if \ (a \neq c) \land (a \rightarrow b) \land (b - c), \ then \ b \rightarrow c \\ R_{2} \ if \ (a \rightarrow c \rightarrow b) \land (a - b), \ then \ a \rightarrow b \\ R_{3} \ if \ (a - b) \land (a - c \rightarrow b) \land (a - d \rightarrow b) \land (c \neq d), \ then \ a \rightarrow b \\ R_{4} \ if \ (a - b) \land (a - c \rightarrow d) \land (c \rightarrow d \rightarrow b) \land (c \neq b) \land (a - d), \ then \ a \rightarrow b \end{array}$$

0	Overview O	Assmptions
1	Basics	

The complexity of BN learning

The NP-hardness of finding a Bayesian network for the observations (as minimal representation of the observed independencies, which is I-map).

Theorem

Let **V** be a set of variables with joint distribution $p(\mathbf{V})$. Assume that an oracle is available that reveals in $\mathcal{O}(1)$ time whether an independence statement holds in p. Let $0 < k \leq |\mathbf{V}|$ and $s = \frac{1}{2}n(n-1) - \frac{1}{2}k(k-1)$. Then, the problem of deciding whether or not there is a (non-minimal) Bayesian network that represents p with less or equal to s edges by consulting the oracle is NP-complete.

The NP-hardness of finding a best scoring Bayesian network (i.e. the NP-hardness of optimization over DAGs).

Theorem

Let **V** be a set of variables, D_N is a complete data set, $S(G, D_N)$ is a score function and a real value c. Then, the problem of deciding whether or not there exist a Bayesian network structure G_0 defined over the variables **V**, where each node in G_0 has at most 1 < k parents, such that $p \leq S(G_0, D_N)$ is NP-complete.

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Overview O	Assmptions
Basics	

Learning tree Bayesian networks: goal

Approximate the target distribution P with a tree-dependent distribution P^t using the Kullback-Leibler divergence (relative/cross-entropy measure).

Definition

For two discrete probability distributions P and Q with probabilities p_i and q_i the Kullback-Leibler divergence is

$$D_{KL}(P||Q) = KL(P||Q) = \sum_{i} p_i \log(p_i/q_i)$$
(1)

Lemma

The KL divergence is nonnegative:

$$-\operatorname{KL}(P||Q) = \sum_{i} p_{i} \log(q_{i}/p_{i}) \le \sum_{i} p_{i}((q_{i}/p_{i}) - 1) = 0$$
(2)

using $\log(x) \le x - 1$. It is 0, iff P and Q are identical.

(日)

Overview	Assmptions
O	○○○○○●○○○○○○○○○
Basics	

Entropy, mutual information, KL divergence

 \Rightarrow The KL divergence is not symmetric and it does not satisfy the triangle inequality, thus it is not a distance.

⇒The KL divergence dominates the L_1 distance, $L_1(P, Q) = \sum_i |p_i - q_i|$, and the L_2 distance, $L_2(P, Q) = (\sum_i (p_i - q_i)^2)^{1/2}$. ⇒The mutual information of *X* and *Y* with P(X, Y) can be written as

$$I(X,Y) = \sum_{x,y} P(x,y) [\log \frac{P(x,y)}{P(x)P(y)} = KL(P(X,Y)||P(X)P(Y)),$$
(3)

which is 0, iff X and Y are independent. \Rightarrow The joint entropy of X and Y with P(X, Y) can be written as

$$H(X,Y) = H(X|Y) + I(X,Y) + H(Y|X),$$
(4)

where H(Y|X) is the conditional entropy defined as

$$H(Y|X) = \sum_{x} P(x)H(Y|X=x) = \sum_{x} P(x) \sum_{y} P(y) \log P(y).$$
 (5)

イロト 不得 トイヨト イヨト

Overview O	Assmptions
Basics	

Learning tree Bayesian networks: parameter learning

If Q is a distribution defined by a tree Bayesian network t in learning P, then

$$\begin{aligned} \text{KL}(P||Q) &= -\sum_{x} P(x) \sum_{i=1}^{n} \log Q(x_i|x_{j(i)}) + \sum_{x} P(x) \log P(x) \\ &= -\sum_{i=1}^{n} \sum_{x_i, x_{j(i)}} P(x_i, x_{j(i)}) \log Q(x_i|x_{j(i)}) - H(X) \\ &= -\sum_{i=1}^{n} \sum_{x_{j(i)}} P(x_{j(i)}) \sum_{x_i} P(x_i|x_{j(i)}) \log Q(x_i|x_{j(i)}) - H(X) \end{aligned}$$

which is maximal if $Q(x_i|x_{j(i)}) = P(x_i|x_{j(i)})$ for all $x_{j(i)}$.

Department of Measurement and Information Systems

-

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Overview O	Assmptions
Basics	

Learning tree Bayesian networks: structure learning

Using the optimal parametrization in a tree Bayesian network t in learning P, we have

$$\begin{aligned} \text{KL}(P||Q) &= -\sum_{i=1}^{n} \sum_{x_{i}, x_{j(i)}} P(x_{i}, x_{j(i)}) [\log \frac{P(x_{i}, x_{j(i)})}{P(x_{i})P(x_{j(i)})} + \log P(x_{i})] - H(X) \\ &= -\sum_{i=1}^{n} I(X_{i}, X_{j(i)}) + \sum_{i=1}^{n} \sum_{x_{i}} P(x_{i}) \log P(x_{i}) - H(X) \end{aligned}$$

which is maximized (optimal) if the tree *t* is a maximum weight spanning tree with weights $I(X_i, X_{j(i)})$ (mutual information).

Corollary

If the P target distribution is tree-based (tree-dependent), then the projected distribution in an optimal tree will be identical.

= nar

Overview O	Assmptions
Basics	

Learning tree Bayesian networks: pseudocode

Either using data or a prior knowledge base:

- 1. Compute $P(x_i, x_j)$ for all pairs of values.
- 2. Compute $I(X_i, X_j)$ for all pairs of variables.
- 3. Select largest branch and add it to the tree unless create a loop, otherwise discard it.
- 4. Repeat until n 1 edges (or I() drops below a threshold \Rightarrow forest....)

Chow&Liu (1968): Maximum Weight Spanning Tree (MWST) learning, Pearl(1988).

Overview O	Assmptions 000000000000000000000000000000000000
Basias	
Dasics	

The ML learning: Optimality of relative frequencies

Theorem

Relative frequency is a ML estimator in multinomial sampling. Assume i = 1, ..., K outcomes assuming multinomial sampling with parameters $\theta = \{\theta_i\}$ and observed occurrencies $n = \{n_i\}$ ($N = \sum_i n_i$). Then

$$\log \frac{p(n|\hat{\theta})}{p(n|\theta)} = \log \frac{\prod_i (\hat{\theta}_i)^{n_i}}{\prod_i (\theta_i)^{n_i}} = \sum_i n_i \log \frac{\hat{\theta}_i}{\theta_i} = N \sum_i \hat{\theta}_i \log \frac{\hat{\theta}_i}{\theta_i} > 0.$$

where the last quantity is the KL divergence, which is always positive.

Overview O	Assmptions
Basics	

The ML learning I.

1

Using the optimal parameter selection of $\theta_{ijk}^* = N_{ijk}/N_{ij+}$ in structure *G*, where N_{ijk} are the occurrences of value x_k and parental configuration q_j for variable X_i and its parental set $Pa(X_i)$ (N_{ij+} is the appropriate sum), we get for the likelihood of structure *G*,

$$ML(G;D_N) = p(D_N|G, \theta^*) = \prod_{l=1}^N \prod_{i=1}^n p(x_i^{(l)}|pa_i^{(l)})$$
(6)
$$= \prod_{i=1}^n \prod_{j=1}^{q_i} \prod_{k=1}^{r_i} \frac{N_{ijk}}{N_{ij+}}$$
(7)

by taking logarithm, rearranging and expanding with N

$$\log(ML(G;D_N)) = N \sum_{i=1}^{n} \sum_{j=1}^{q_i} \frac{N_{ij+}}{N} \sum_{k=1}^{r_i} \frac{N_{ijk}}{N_{ij+}} \log(N_{ijk}/N_{ij+})$$
(8)

イロト 不得 トイヨト イヨト

Overview O	Assmptions
Basics	

The ML Learning II

Using conditional entropy $H(Y|X) = \sum_{x} p(x) \sum_{y} p(y|x) \log(p(y|x))$, the chain rule H(X, Y) = H(Y|X) + H(X) and the definition of mutual information I(Y;X) = H(Y) - H(Y|X), it can be rewritten as

$$\log(ML(G;D_N)) = -N\sum_{i=1}^{n} H(X_i|Pa(X_i,G))$$
(9)

$$= N \sum_{i=1}^{n} I(X_i; Pa(X_i, G)) - N \sum_{i=1}^{n} H(X_i)$$
(10)

(11)

This shows that the maximization of the ML score is equivalent with finding a BN parameterized with the observed frequencies that has minimum entropy or that we are finding a BN parameterized with the observed frequencies that has maximum mutual information between its children and their parents (10,

イロト 不得 トイヨト イヨト

Overview O	Assmptions
Basics	

Complexity regularization

Because of the monotonicity of mutual information — if $Pa(X_i) \subset Pa(X_i)'$, then $I(X_i; Pa(X_i)) \leq I(X_i; Pa'(X_i))$ — so the complete network maximizes the maximum likelihood score. However score functions such as the MDL-score derived from the minimum description length (MDL) principle or the Bayesian information criterion (BIC)-score derived with a non-informative Bayesian approach contains various complexity penalty terms. We shall use only the BIC-score defined as follows

$$BIC(G; D_N) = \log(ML(G; D_N)) - 1/2dim(G)\log(N)$$
(12)

where dim(G) denotes the number of free parameters.

イロト イポト イヨト イヨト

Overview O	Assmptions
Basics	

Score equivalence

Definition

A score function $S(G; D_N)$ is called score equivalent, if for each pair of observationally equivalent Bayesian network structure G_1, G_2 the scores are equal $S(G_1; D_N) = S(G_2; D_N)$ for all D_N .

Theorem

The $BIC(G; D_N)$ scoring metric is score equivalent.

The score equivalence of the *BIC* score is the direct consequence of the result that the number of free parameters (that is the term dim(G)) are equal in observationally equivalent Bayesian networks.

Overview O	Assmptions
Basics	

Asymptotic consistency

Theorem

Let V be a set of variables. Let the prior distribution p(G) over Bayesian network structures be positive. Let p(V) be a positive and stable distribution and G_0 is a corresponding perfect map (i.e. a Bayesian network representing exactly all the independencies in p(V), see Def. ??). Now, let D_N is an i.i.d. data set generated from p(V). Then, for any network structure G over V that is not a perfect map of p(V) we have that

$$\lim_{N \to \infty} BD_e(G_0; D_N) - BD_e(G; D_N) = -\infty \text{ and also}$$
(13)

$$\lim_{N \to \infty} BIC_e(G_0; D_N) - BIC_e(G; D_N) = -\infty$$
(14)

Overview	Assmptions
O	000000000000000000000000000000000000
Basics	

Rate of convergence

Furthermore, a rate of convergence result is also derived and a corresponding sample complexity $N(\epsilon, \delta)$ to select an appropriate sample size for a given accuracy between the target distribution p_0 and the distribution p_{BN} represented by the learned Bayesian network with a given confidence

$$p(D_N: KL(p_0|p_{BN}) > \epsilon) < \delta$$
(15)

Overview O	Assmptions
Basics	

Thank you for your attention!

Questions?

Department of Measurement and Information Systems