PGMs

Hidden Markov Models: learning and extensions

March 22, 2017

u]
o)
1l
n
it
)
»
i)

PGMs

Topics

» Basics:

> Concepts from information theory

> Relative frequency as maximum likelihood estimates
» Hidden Markov Models

> Basic inference methods

> Learning and inference
» Parameter learning in HMMs

> Approaches for incomplete data

> Data imputation (completion) by most probable values (Viterbi)
> Data imputation (completion) by random values (Gibbs)

> Exact calculations and analytic usage of expectations (E-M)
> The Expectation-Maximization method
> The Baum-Welch method

Entropy and mutual information

If p; is a discrete probability distribution, its entropy is

H(p) = - ZPi log(pi), €Y

Conditional entropy H(Y|X) is defined as , p(x) >_ p(y|x) log(p(y|x)).
Mutual information is defined as I(Y;X) = H(Y) — H(Y|X). The (conditional)
mutual information can be written as

MI,(X;Y|Z) = KL(p(X, Y|2)|p(X|Z)p(Y|Z)).)

The chain rule for (joint distributions) and entropies:
pXy, ... X)) = [[,pXilXa, ..., Xi1)
H(X], L. ,Xn) = ZiH(Xi|X1, .. ,Xi_l)

And also
= HXi,...,Xn) 3
= Y HX) - Y IXsXi,....Xi). @
i=1 i=1
o <« - = =

PGMs

Optimality of relative frequencies
Relative frequency is a maximum likelihood estimator in multinomial
sampling: Assume i = 1, ... K outcomes assuming multinomial sampling with
parameters § = {6;} and observed occurrencies n = {n;} (N =3 . n;). Then

p(nje™) IT,(6")"
log ple) logT anlog

We are ready, because the last quantity is the “KL-divergence”, which is always
positive. Proof: if p;, p; are discrete probability distributions, the cross-entropy
H and the Kullback-Leibler (semi)distance KL are as follows

H(p|p) = —>_;pilog(p:)

KL(p|p) = >_; pilog(pi/p:)

0 < KL(6M|6):

ML
0 _NZH loga > (5)

—KL(pllq) = Zpi log(qi/p:) < Zpi((qi/pi) -1)=0 6)

using log(x) <x — 1.
Frequently pseudocounts are used to avoid imprecise estimates (e.g. divison by 0)
and prior counts to incorporate bias/expertise.

PGMs

HMM: definition

Hidden Markov Models (definitions/notations following DEKM)

1. w denotes a state sequence (of a Markov chain), 7; is the ith state

2. ay the transition probabilities p(m; = [|m_1 = k) in the MC (extra state O
for start/end)

3. ex(b) are the emission probabilities p(x; = b|m; = k)

[m] = = =
PGMs

Inferences in HMMs

Note |7| = O(|S|")
-L p(x,m) = aor, Hf=1 e (X0) Ay
?,L ”decoding™: 7* = arg max. p(x,)

?,L sequence probability:p(x) = > _p(x,) (or p(x|M) "model likelihood" or
filtering)

?,L. smoothing/posterior decoding:p(m; = k|x)
?,0K? parametric inference (training/parameteresation)
?,0K? structural inference (model selection)

PGMs

HMM: Viterbi algorithm

Goal: "decoding": 7* = arg max, p(x, 7)

Note: ”best joint-state-sequence explanation'# ”joint sequence of best-state-explanations”
Inductive idea: extend most probable paths with length i to i+1

vk (i) denotes the probability of the most probable path ending in state k with observation i
Then

vi(i+1) = e(xiy1) me(Vk(i)akz) (7)

Algorithm 1 Algorithm: Viterbi
Require: HMM,x
Ensure: 7" = arg max, p(x,)
1: Ini: (i=0): vo(0) = 1,v¢(0) = 0 for 0<k
: fori=1toL do
Vl(i) = el(xi) man(Vk(i — 1)ak1)
ptri(l) = arg maxy (Vi (i — 1)ax)
: End: p(x, 7*) = maxk(vk(L)ako), 77 = arg maxy (vi(L)ako)
: fori =L to 1 do {Traceback}
w1 = ptri(m’)

Note, small probabilities may cause positive underflow (length can be up to 10° <)=> log.
Note, 7* = arg max, p(x, w) = arg max, p(m|x)

[m] = =
;

PGMs

00

HMM: forward algorithm

Goal: sequence probability:p(x) = > p(x, w) (or p(x|M) "model likelihood" or filtering)

Approximation: p(x) = > _p(x,7) R p(x, ") = Aor [T, eqx (xi)a,,_*,r_*_*_l (7™ by Viterbi)
3 t I3

Inductive idea(dynamic programming): extend the probability of generating observations x;.; being in state k at i
toi+1

By introducing fi (i) = p(x1.;, m = k), we can proceed

fili+1) = elxipa) Y (e(an) (8)
k

Algorithm 2 Algorithm: forward
Require: HMM M,x
Ensure: p(x|M)
1: Ini: (i=0): fo(0) = 1,£x(0) = 0 for O<k
: fori=1toL do
fi@) = er() 2o, (e — 1)aw)
. End: p(x|M) = Ek(fk(L)ako)

IS

Note, we have to sum small probabilities! => log transformation is not enough, scaling methods..

o F

PGMs

HMM: backward algorithm

Goal: smoothing/posterior decoding p(m; = k|x)

Idea: p(m; = k|x) = }% (p(x) can be computed by the forward algorithm)
p(mi = k,x) = p(m = k,x1.)p(Xiy1:L|mi =k, x1:1) = fie(D) p(xir:|mi = k)

by (D)

Ensure: bi(i) = p(Xit1.L|m = k)

1

2
3:
4

: Ini: (i=L): bx(L) = ayo for all k
:fori=L—-1to1do

bi(i) = > ane(Xip1)bi(i + 1)
: End: p(X|M) = Zl aolel(xl)bl(l)

Note, conditionally most probable state at i # state in most probable explanation at i.

PGMs

HMM parameter learning

Assume n independent/exhangeable sequences x(, ... x™

px, . x™0) =] px?0)
i=1

from counts

9
1. structure known, state sequences are known: ML parameter computation
2. structure known, state sequences are unknown

from counts"

2.1 manual/heuristic matching: ML parameter computation from counts

2.2 : Viterbi training: iterative "multiple alignment-ML parameter computation

3. structure unknown, state is unknown

2.3 : Baum-Welch training: iterative computation of mean counts and improved
parameters from mean counts (EM-based)
PGMs

sampling.
Assumei =1

Estimation using known state sequences

Recall relative frequency is a maximum likelihood estimator in multinomial
e

K outcomes assuming multinomial sampling with
parameters 6 = {6;} and observed occurrencies n = {n;} (N =, nl) Then
p(n|g™) IL(6")"

lo = lo

® p(nl0) ¢

[1;(0:)
because 0 < KL(6™"||0)

—KL(pllq) =

ML
E nllog o —NE 0; log o >((DO)
using log(x) <x—1

> _piloglai/p) < > pil(ai/p) = 1) =0

Thus using the counts of state transitions Ay and emissions Ej(b)

(1D
! Ey (b)
ay = and ex(b) = (12)
T A «b) >y Ex(b')
So called pseudocounts to avoid imprecise estimates (e.g. divison by 0) and

prior counts to incorporate bias/expertise.

= Alii‘ = A/ii‘ + ' E;l((b) k(b) + T‘k(b) o = = = = Qe |
PGMs

HMM parameter learning: Viterbi

Idea: using the actual parameters compute the most probable paths 7* (x(l)), R (x(")) for the sequences
and select ML parameters based on these.

Require: HMM structure, xV, ... x™

Ensure: ~ argmaxyp(x™,...,x™|0,7*(x1,0),...,7*(x™, 0))
1: Ini: draw random model parameters 6, (e.g. from Dirichlet)
2: repeat

3: set A and E values to their pseudocount
fori=1tondo
Compute 7*(x) using 0, with the Viterbi algorithm
Set new ML parameters 6.1 based on current counts A and E from
P ,x("),ﬂ*(x(l)), e ,Tr*(x(”))
7. Compute model likelihood L1 = p(x™, ..., x™[6e11)
8: until NoImprovement(L¢41,Le,t)

AN

Note, that this finds a 6 maximizing p(x", ..., x™ |0, 7*x™,0),...,x* (x™, 0)) and not the original goal
peD, . x™g).

u]
o)
I
ul
it
N
»
i)

PGMs

HMM parameter learning: Baum-Welch

Idea: compute the expected number of transitions/emissions A¢,E: based on 6;,
then update to 611 based on A,E;

p(mi =k, mip1 =1x)

The probability of k — [transition at position i in sequence x is
fie (@)

(13)
by(i+1)
p(X1, Xi, T = k7xi+1’7ri+1 =L Xi42,.
p(x)

ey XL)
The mean of the number of this transition and the mean of the number of
emission b from state k is

_ fe@ape (xig1)bi(i+1),
p(x) (14)

Aq = Z xO) Z

aklel(xO)

Db+ 1) (15)
Ex(b) = Z xm > f0p)

)
ilx;’=b
Apply the same iteration as in Viterbi tralnlng O — A,Er — 01 — .
PGMs

(16)

Why does it converge? Baum-Welch is an Expectation-Maximization algorlthm

-

[m]

=

Derivation of Baum-Welch I: Expectation-Maximization (E-M)
Goal: from observed x, missing 7: 6™ = arg maxg log(p(x|6))

Idea: improve "expected data log-likelihood" Q(6]6;) = > p(w|x, 6;) log(p(x, |60))

Using p(x, w|0) = p(=|x, 0)p(x|0) we can write that

log(p(x|6)) = log(p(x, w|0)) — log(p(r|x, #)) an
Multiplying with p(7|x, 6;) and summing over = gives
log(p(x]6)) = > p(rlx, 6,) log(p(x, |6)) — > _ p(w|x, 6:) log(p(r|x, 6)) (18)
Q(016y)
We want to increase the likelihood, i.e. want this difference to be positive
7 |x, 0,
log(p(x10)) — log(p(x/6)) = Q(616,) — Q(0:16,) + 3 p(rlx, 0,) log(%> 19
Because 0 > KL(pl|q), so KL(p(relx,00) | Ip (e x,0))
log(p(x[0)) — log(p(x|0:)) > Q(0]6) — Q(6:]0¢). (20)
E-M, Expectation-Maximization: using expectations, select the best:
041 = argmeax Q(016r) @2n

Generalised E-M: if we can select a better 6 w.r.t. Q(0]0,) then asymptotically it converges to a local or global
maximum (note that the target 0 has to be continuous).
=] F = = DA
: :

PGMs
e

Derivation of Baum-Welch II: E-M

The probability of a given path = and observation x is

p(x,w|0) = H H
k=1 b
using this we can rewrite Q(0|0;)
Q(016,) =

Ek(b ™) Akl(‘“’)
e

k=1 b

> p(mlx, 6:) log(p(x, w|0))
Zp mlx, 0¢) ZZE" (b,) log(ex(b)) +22Ak1

(22)

k=0 I=1
PGMs

Zp 7|x, 0c)Ex (b,) Ay =

) log(ax)
Note that the expected value of Ay and Ex(b)over s for a given x is

(23)

k=1 b

ZP(ﬂX 00)Awa(),

(24)

Doing the sum first over 7s gives (also over multlple sequences in general)

k=0 [=1_,

Q(816,) = Z > " Ex(b)log(ex(b)) + Z ZAM log(akl

Derivation of Baum-Welch III: E-M

Recall that Ay and Ex(b) are computable with forward/backward algorithms

using current 6;, whereas the ay and by (I) parameters form the new candidate
0.

The Q(66;) is maximized by a¥ = ﬁ, because the difference for example
for the A term is

M M
> Au 1og(“k;) = Z(ZAH,) Z o, log (%) (26)

k=0 I=1 k=0 U

which is a KL distance, so not negative.

PGMs

Summary

» Expectations by inference methods

» Maximization by maximum likelihood optimization

PGMs

DA

