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Bayesian inference with Monte Carlo I.
Integration/summation is a central operation in Bayesian statistics (c.f.
optimization in the frequentist approach)

f̄ = Eπ(X)[f(X)] (1)

For example

p(y|x,DN) = Ep(G|DN)[Ep(θ|G,DN)[p(y|x,θ,G)]]

LĜ|DN
= Ep(G|DN)[L(G, Ĝ)] =

∑
G

L(G, Ĝ)p(G|DN),

p(α(G)|DN) =
∑

G

1(α(G) is true)p(G|DN)

Idea:

1. sampling from π(X) to generate i.i.d random samples {Xt, t = 1..N};
2. computation of the estimate f̂N = 1/N

∑N
t=1 f(Xt);

3. providing confidence measure for |̄f − f̂N|, where f̄ = Eπ(X)[f(X)].
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Consistency and convergence speed I.

The estimate f̂N is strongly consistent (by the ”strong law of large number"),
that is

P(limN→∞ f̂N = f̄) = 1 (2)

The standardized of f̂N has asymptotically Gaussian distribution (by the
”central limit theorem"), that is

f̂N − f̄
σN

→ N(0, 1) as N →∞ where σN = Var(f(X))/
√

N. (3)

If f(X) is bounded, then non-asymptotic results about the speed of
convergence are also available by the Hoeffding’s inequality including the
bound and by the Bernstein’s inequality. Specifically, if f(X) is within [0, 1],
then

p(|̂fN − f̄ | ≥ ε) ≤ 2 exp(−2ε2N) ≤ δ (4)

E[ |̂fN − f̄ | ] ≤
√

c0/N. (5)
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Markov chains I.

Let X = {X0, X1, . . .} is a sequence of random variables. The values of Xt are
frequently interpreted as states from a state space, the index parameter
frequently has a temporal or in biological sequence analysis a location
interpretation.

Definition
A sequence of random variables X = {X0, X1, . . .} is called a (first-order)
Markov chain, if p(Xt|Xt−1, . . . , X0) = p(Xt|Xt−1). The Markov chain is
(time-)homogeneous, if the so called transition kernels p(Xt|Xt−1) does not
depend on t.

Let us assume that the values of Xt are discrete and finite, denoted by
nonnegative integers S = {0, 1, . . . ,K}. We use the notation p(t) for the
distribution of Xt and p(Xt = i) = p(t)

i . We always assume homogeneity and
these allows a shorthand notation pij for the transition probabilities as
pij = p(1)

ij = P(Xt+1 = j|Xt = i), which are forming the (one-step) transition
probability matrix P = P(1)[pij] (a stochastic matrix).
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Markov chains II.

The ”n-step" transition probability matrix P(n) containing
p(n)

ij = P(Xt+n = j|Xt = i) is the nth power of P and

p′(n) = p′(0)P(n), where P(n) = Pn. (6)

A special distribution is the so called invariant distribution pinv.

Definition
The distribution p′inv is called an invariant distribution of a homogeneous
Markov chain X with transition probability matrix P, if p′inv = p′invP
(Consequently, if p(0) = p′inv, then p(t) = p′inv for ∀ t.)

For a first-order Markov chain X the identical marginals p(t) = pinv implies
that X is strongly stationer, that is the distributions of time-shifted finite
marginals are identical, so the invariant distribution pinv is frequently called a
stationer distribution.
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Stability, irreducibility, aperiodicity

Definition
A Markov chain X is stable, if limt→∞ p(Xt) = p(∞) exists, independent of the
initial distribution p(X0) and it is a distribution (called limiting distribution or
equilibrium distribution).

Definition
The discrete and finite state space Markov chain X is called

1. irreducible, if there exists nij > 0 for all i, j that p
(nij)

ij > 0,

2. aperiodic, if for some i (and with irreducibility for all), there exists ni > 0
that for all n ≥ ni p(n)

ii > 0,

Theorem
If a discrete and finite state space Markov chain X is irreducible and aperiodic,
then the chain is stable and there is a unique invariant distribution that is also
the limiting distribution (i.e p′∞ is a unique, nonnegative solution of
p′∞ = p′∞P and

∑
i p(∞)

i = 1).
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(Strong) Law of large numbers for dependent samples

Theorem
If a discrete and finite state space Markov chain X is stable and
f̄ = Eπ(X)[f(X)] <∞, then

P(limN→∞ f̂N = f̄) = 1, (7)

where f̂N = 1/N
∑N

t=1 f(Xt).

PGMs Department of Measurement and Information Systems



Overview

Overview

Ergodicity

Definition
The discrete and finite state space Markov chain X is called geometrically
ergodic, if there exists 0 ≤ λ < 1 and function V(.) > 1 such that∑

j

|p(t)
ij − πj| ≤ V(i)λt for all i (8)
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Central limit theorem for dependent samples

Theorem
If a discrete and finite state space Markov chain X is geometrically ergodic (so
stable), started with its invariant distribution π(X) and for a real valued
function f f̄ = Eπ[f(X)], σ2 = Varπ(f(X)), Eπ[f(X)2+ε] ≤ ∞ with some ε > 0,
then for f̂N = 1/N

∑N
t=1 f(Xt)

τ 2 = σ2 + 2
∞∑

k=1

Eπ[(f(X0)− f̄)(f(Xk)− f̄)] (9)

exists, nonnegative and finite, and

√
N

f̂N − f̄
τ
→ N(0, 1) in distribution as N →∞. (10)
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Reversibility (detailed balance) and invariance

Definition
The discrete and finite state space Markov chain X with transition probability
matrix P and (invariant) distribution pinv is called reversible, if it satisfies the
detailed balance condition

∀ i, j pinv
i Pij = pinv

j Pji. (11)

By summation it gives pinvP.j = pinv
j , which is the defining equation of an

invariant distribution.
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Designing invariant and limiting distributions by detailed balance

If for a given P q satisfies detailed balance, then it is an invariant distribution
and vice versa, if for a given target distribution q we can construct a P such
that it satisfies detailed balance with q, then q is its invariant distribution.
Furthermore, if the constructed P is such that the corresponding reversible
Markov chain is irreducible and aperiodic as well, then q is its unique,
invariant, limiting distribution, so we can generate (dependent) samples by
sequential simulation and use it to estimate expectations and to provide
confidence measures.
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The Metropolis-Hastings Algorithm I.
Let π(X) denote the unnormalized, strictly positive target distribution over
S = {0, 1, . . . ,K} (πi = π(X = i) ≥ 0). Let Q be a transition probability matrix
(Q1 = 1), the so called proposal distribution (for transitions), such that
(qij ≥ 0) iff (qji ≥ 0). Define a Markov chain X with probability transition
matrix P such that

pij = qij min (1,
πjqji

πiqij
);∀i 6= j (12)

using 0/0 = 0 and define pii = 1−
∑

j 6=i pij. Note that the construction needs
only the ratios of the target distribution, which fits to the practical case of
unnormalized posterior in Bayesian analysis.
Now π(X) is the stationary distribution of the defined Markov chain, which
can be proved by showing that the detailed balance condition is satisfied. The
cases i = j and if qij = qji = 0 are trivially satisfied. For i 6= j with qij ≥ 0,
suppose that πiqij ≥ πjqji, then

πipij = πi
πjqji

πiqij
= πjqji = πjpji (13)
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The Metropolis-Hastings Algorithm II.
If Q is irreducible, so will be P and the same is true for aperiodicity.
Consequently, if we provide a proposal distribution Q that (its corresponding
Markov chain) is irreducible and aperiodic, then for a given target distribution
π(X) the construction above defines a stable and reversible Markov chain with
(invariant) limiting distribution π(X).
If Q is symmetric, then we fall back to the original Metropolis Algorithm
without ratio of the proposal distributions

pij = qij min (1,
πj

πi
);∀i 6= j. (14)

If Q depends on only some distance between the current state xt and a
proposed state x∗ (q(x∗|xt) = q(|x∗ − xt|)), then we get the random-walk
Metropolis Algorithm (the distance can be semantically defined in discrete
spaces). If Q is independent of the current state (q(x∗|xt) = q(x∗)), then we
get the independence sampler, which is geometrically convergent determined
by inf q(x)/π(x) (by the closeness to the target distribution) [?]. If Q is such
that changes at most one component of X based on its full conditional
distribution, then we get the Gibbs sampler, with an acceptance probability 1.
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The Metropolis-Hastings Algorithm III.

0. [ Construct an approximate distribution PS of the posterior using mixture
model around modes for checking and initialization of the MCMC. ]

1. Construct an irreducible and aperiodic proposal distribution Q specific to
the domain.

2. Draw an initial state x0 from PS.
3. For t = 1, 2, . . .

(a) Draw a candidate state x∗ from the proposal distribution Q given xt.
(b) Calculate the acceptance probability of a step from xt to x∗

α(xt, x∗) = min(1,
πx∗ qxtx∗
πxt qxtx∗

).

(c) Set xt+1 = x∗ with probability α(xt, x∗), otherwise xt+1 = xt.

4. Continue until convergence and specified confidence.

5. [ Evaluate speed of convergence and improve efficiency by redesigning Q.
Step back to 2.]

6. [ Compare against base-line method using importance resampling with
PS. Step back to 1.]
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Convergence diagnostic using a single chain

The first method related to burn in is based on a single chain and the mean. It
tests the convergence of a single realization from the sequence {Yi; i = 1..N}
exploiting that after burn-in (i.e. in case of convergence) the distribution of
an ergodic average is asymptotically Gaussian. Formally, define the averages
Ŷb after a (putative) burn-in m and Ŷa at the end of sequence

Ŷb =
1
Nb

m+Nb∑
i=m+1

Yi and Ŷa =
1
Na

N∑
i=N−Na+1

Yi (15)

with no overlap (m + Nb + Na < N). If Na/N and Nb/N are fixed, then

zG =
Ŷb − Ŷa√

V̂ar(Yb) + V̂ar(Ya)
→ N(0, 1) in distribution. (16)
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Convergence diagnostic using multiple chains

The second method is using independently initialized multiple chains and
analyze the variance. Its test is based on the relation of the estimators of the
(Monte Carlo) variance of the target quantity using a between-sequence
estimation (i.e. the variance of the (independent) estimates for the chains)
and a within-sequence estimation (i.e. average of the within-sequence
estimates of the variance).

PGMs Department of Measurement and Information Systems



Overview

Overview

Convergence diagnostic II.

Formally, for M chains with N samples {Yi, j; i = 1..N j = 1 . . . ,M} define

B =
N

M − 1

M∑
j=1

(Ȳ+,j − (̄Y)+,+)2, where Ȳ+,j =
1
N

N∑
i=1

Yij, Ȳ+,+ =
1
M

M∑
j=1

Y+,j

W =
1
M

M∑
j=1

s2
j where s2

j =
1

N − 1

N∑
i=1

(Ȳij − Ȳ+,j)
2.

If the simulations are started independently from an overdispersed starting
distribution, then the quantity

√
R̂ =

√
ˆvar+(Y)

W
, where v̂ar+(Y) =

N− 1
N

W +
1

NB
(17)

called ”potential scale reduction" can be used to monitor convergence, because
ˆvar+(Y) overestimates the variance as the chains are still overdispersed and W

underestimates the variance as they are still confined to small regions.
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Confidence estimation I.

The second task after the determination and elimination of the burn-in period
is to determine the stopping time and/or providing confidence measure(s) for
the estimate(s). The first method is related to the between-sequence variance
of the earlier method, though using a single chain {Yi; i = 1, . . . ,NM}. It
partitions a sufficiently long chain into M parts with length N such that the
ergodic averages are approximately independently Gaussian with mean
Eπ[f(X)] and variance τ 2/N (see Eq. 9). Then approximate τ 2 as follows

τ̂ 2 =
N

(M − 1)

M∑
j=1

(Ȳj − ¯̄Y)2, where Ȳj =
1
N

jN∑
i=(j−1)N+1

Yi,
¯̄Y =

1
M

M∑
j=1

Ȳj

PGMs Department of Measurement and Information Systems



Overview

Overview

Confidence estimation II.

Another method is based on the direct estimation of the autocovariance terms
γk = Eπ[(f(X0)− f̄)(f(Xk)− f̄)] in the Eq. 9 of the Monte Carlo variance with

γ̂k =
1

N − k

N−k∑
i=1

(Yi − f̄)(Yi+k − f̄) (18)

and use a special weighting to eliminate the not reliable autocorrelation terms
as follows

τ̂ 2
N = γ̂0 + 2

∞∑
i=1

wN(i)γ̂0, where 0 ≤ wN(i) ≤ 1. (19)
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Thank you for your attention!

Questions?
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