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Machine-learning technology powers many aspects of modern 
society: from web searches to content filtering on social net-
works to recommendations on e-commerce websites, and 

it is increasingly present in consumer products such as cameras and 
smartphones. Machine-learning systems are used to identify objects 
in images, transcribe speech into text, match news items, posts or 
products with users’ interests, and select relevant results of search. 
Increasingly, these applications make use of a class of techniques called 
deep learning. 

Conventional machine-learning techniques were limited in their 
ability to process natural data in their raw form. For decades, con-
structing a pattern-recognition or machine-learning system required 
careful engineering and considerable domain expertise to design a fea-
ture extractor that transformed the raw data (such as the pixel values 
of an image) into a suitable internal representation or feature vector 
from which the learning subsystem, often a classifier, could detect or 
classify patterns in the input. 

Representation learning is a set of methods that allows a machine to 
be fed with raw data and to automatically discover the representations 
needed for detection or classification. Deep-learning methods are 
representation-learning methods with multiple levels of representa-
tion, obtained by composing simple but non-linear modules that each 
transform the representation at one level (starting with the raw input) 
into a representation at a higher, slightly more abstract level. With the 
composition of enough such transformations, very complex functions 
can be learned. For classification tasks, higher layers of representation 
amplify aspects of the input that are important for discrimination and 
suppress irrelevant variations. An image, for example, comes in the 
form of an array of pixel values, and the learned features in the first 
layer of representation typically represent the presence or absence of 
edges at particular orientations and locations in the image. The second 
layer typically detects motifs by spotting particular arrangements of 
edges, regardless of small variations in the edge positions. The third 
layer may assemble motifs into larger combinations that correspond 
to parts of familiar objects, and subsequent layers would detect objects 
as combinations of these parts. The key aspect of deep learning is that 
these layers of features are not designed by human engineers: they 
are learned from data using a general-purpose learning procedure. 

Deep learning is making major advances in solving problems that 
have resisted the best attempts of the artificial intelligence commu-
nity for many years. It has turned out to be very good at discovering 

intricate structures in high-dimensional data and is therefore applica-
ble to many domains of science, business and government. In addition 
to beating records in image recognition1–4 and speech recognition5–7, it 
has beaten other machine-learning techniques at predicting the activ-
ity of potential drug molecules8, analysing particle accelerator data9,10, 
reconstructing brain circuits11, and predicting the effects of mutations 
in non-coding DNA on gene expression and disease12,13. Perhaps more 
surprisingly, deep learning has produced extremely promising results 
for various tasks in natural language understanding14, particularly 
topic classification, sentiment analysis, question answering15 and lan-
guage translation16,17. 

We think that deep learning will have many more successes in the 
near future because it requires very little engineering by hand, so it 
can easily take advantage of increases in the amount of available com-
putation and data. New learning algorithms and architectures that are 
currently being developed for deep neural networks will only acceler-
ate this progress. 

Supervised learning 
The most common form of machine learning, deep or not, is super-
vised learning. Imagine that we want to build a system that can classify 
images as containing, say, a house, a car, a person or a pet. We first 
collect a large data set of images of houses, cars, people and pets, each 
labelled with its category. During training, the machine is shown an 
image and produces an output in the form of a vector of scores, one 
for each category. We want the desired category to have the highest 
score of all categories, but this is unlikely to happen before training. 
We compute an objective function that measures the error (or dis-
tance) between the output scores and the desired pattern of scores. The 
machine then modifies its internal adjustable parameters to reduce 
this error. These adjustable parameters, often called weights, are real 
numbers that can be seen as ‘knobs’ that define the input–output func-
tion of the machine. In a typical deep-learning system, there may be 
hundreds of millions of these adjustable weights, and hundreds of 
millions of labelled examples with which to train the machine. 

To properly adjust the weight vector, the learning algorithm com-
putes a gradient vector that, for each weight, indicates by what amount 
the error would increase or decrease if the weight were increased by a 
tiny amount. The weight vector is then adjusted in the opposite direc-
tion to the gradient vector. 

The objective function, averaged over all the training examples, can 

Deep learning allows computational models that are composed of multiple processing layers to learn representations of 
data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech rec-
ognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep 
learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine 
should change its internal parameters that are used to compute the representation in each layer from the representation in 
the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and 
audio, whereas recurrent nets have shone light on sequential data such as text and speech. 
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The key idea behind the probabilistic framework to machine learn-
ing is that learning can be thought of as inferring plausible models 
to explain observed data. A machine can use such models to make 

predictions about future data, and take decisions that are rational given 
these predictions. Uncertainty plays a fundamental part in all of this. 
Observed data can be consistent with many models, and therefore which 
model is appropriate, given the data, is uncertain. Similarly, predictions 
about future data and the future consequences of actions are uncertain. 
Probability theory provides a framework for modelling uncertainty.

This Review starts with an introduction to the probabilistic approach 
to machine learning and Bayesian inference, and then discusses some of 
the state-of-the-art advances in the field. Many aspects of learning and 
intelligence crucially depend on the careful probabilistic representation of 
uncertainty. Probabilistic approaches have only recently become a main-
stream approach to artificial intelligence1, robotics2 and machine learn-
ing3,4. Even now, there is controversy in these fields about how important 
it is to fully represent uncertainty. For example, advances using deep neural 
networks to solve challenging pattern-recognition problems such as speech 
recognition5, image classification6,7, and prediction of words in text8, do not 
overtly represent the uncertainty in the structure or parameters of those 
neural networks. However, my focus will not be on these types of pattern-
recognition problems, characterized by the availability of large amounts 
of data, but on problems for which uncertainty is really a key ingredient, 
for example where a decision may depend on the amount of uncertainty. 

I highlight five areas of current research at the frontier of probabilistic 
machine learning, emphasizing areas that are of broad relevance to sci-
entists across many fields: probabilistic programming, which is a general 
framework for expressing probabilistic models as computer programs 
and which could have a major impact on scientific modelling; Bayes-
ian optimization, which is an approach to globally optimizing unknown 
functions; probabilistic data compression; automating the discovery of 
plausible and interpretable models from data; and hierarchical modelling 
for learning many related models, for example for personalized medicine 
or recommendation. Although considerable challenges remain, the com-
ing decade promises substantial advances in artificial intelligence and 
machine learning based on the probabilistic framework.

Probabilistic modelling and representing uncertainty
At the most basic level, machine learning seeks to develop methods for 
computers to improve their performance at certain tasks on the basis of 

observed data. Typical examples of such tasks might include detecting 
pedestrians in images taken from an autonomous vehicle, classifying 
gene-expression patterns from leukaemia patients into subtypes by clin-
ical outcome, or translating English sentences into French. However, as 
I discuss, the scope of machine-learning tasks is even broader than these 
pattern classification or mapping tasks, and can include optimization 
and decision making, compressing data and automatically extracting 
interpretable models from data.

Data are the key ingredients of all machine-learning systems. But 
data, even so-called big data, are useless on their own until one extracts 
knowledge or inferences from them. Almost all machine-learning 
tasks can be formulated as making inferences about missing or latent 
data from the observed data — I will variously use the terms inference, 
prediction or forecasting to refer to this general task. Elaborating the 
example mentioned, consider classifying people with leukaemia into 
one of the four main subtypes of this disease on the basis of each person’s 
measured gene-expression patterns. Here, the observed data are pairs of 
gene-expression patterns and labelled subtypes, and the unobserved or 
missing data to be inferred are the subtypes for new patients. To make 
inferences about unobserved data from the observed data, the learning 
system needs to make some assumptions; taken together these assump-
tions constitute a model. A model can be very simple and rigid, such as a 
classic statistical linear regression model, or complex and flexible, such 
as a large and deep neural network, or even a model with infinitely many 
parameters. I return to this point in the next section. A model is con-
sidered to be well defined if it can make forecasts or predictions about 
unobserved data having been trained on observed data (otherwise, if 
the model cannot make predictions it cannot be falsified, in the sense 
of the philosopher Karl Popper’s proposal for evaluating hypotheses, or 
as the theoretical physicist Wolfgang Pauli said the model is “not even 
wrong”). For example, in the classification setting, a well-defined model 
should be able to provide predictions of class labels for new patients. 
Since any sensible model will be uncertain when predicting unobserved 
data, uncertainty plays a fundamental part in modelling.

There are many forms of uncertainty in modelling. At the lowest 
level, model uncertainty is introduced from measurement noise, for 
example, pixel noise or blur in images. At higher levels, a model may 
have many parameters, such as the coefficients of a linear regression, 
and there is uncertainty about which values of these parameters will 
be good at predicting new data. Finally, at the highest levels, there is 

How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learn-
ing is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines 
that learn from data acquired through experience. The probabilistic framework, which describes how to represent and 
manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, 
robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and dis-
cusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, 
data compression and automatic model discovery. 
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the doors of perception” Jim Morrison

“

& memory & learning & …

http://www.eng.cam.ac.uk/~m.lengyel


Máté Lengyel  |  A Bayesian approach to internal models http://www.eng.cam.ac.uk/~m.lengyelBME MIT, 22 March 2018

THE BAYESIAN BRAIN

 6

Hermann von Helmholtz 
1821-1894

position of  
lighting source

convexity  
of shape

shading shadow
x1 x2

y1 y2

“perception is unconscious inference”

hidden variables

observed variables

There are things known and there are things unknown, and between are
the doors of perception”

“

& memory & learning & …

Aldous Huxley

http://www.eng.cam.ac.uk/~m.lengyel


Máté Lengyel  |  A Bayesian approach to internal models http://www.eng.cam.ac.uk/~m.lengyelBME MIT, 22 March 2018

THE BAYESIAN BRAIN

 6

Hermann von Helmholtz 
1821-1894

position of  
lighting source

convexity  
of shape

shading shadow
x1 x2

y1 y2

“perception is unconscious inference”

hidden variables

observed variables

There are things known and there are things unknown, and between are
the rules of probability

& memory & learning & …

http://www.eng.cam.ac.uk/~m.lengyel


Máté Lengyel  |  A Bayesian approach to internal models http://www.eng.cam.ac.uk/~m.lengyelBME MIT, 22 March 2018

THE BAYESIAN BRAIN

 6

Hermann von Helmholtz 
1821-1894

position of  
lighting source

convexity  
of shape

shading shadow
x1 x2

y1 y2

“perception is unconscious inference”

hidden variables

observed variables

There are things known and there are things unknown, and between are

P(X,Y ) = P(Y,X) = P(X|Y ) P(Y )

the rules of probability

product:

& memory & learning & …

http://www.eng.cam.ac.uk/~m.lengyel


Máté Lengyel  |  A Bayesian approach to internal models http://www.eng.cam.ac.uk/~m.lengyelBME MIT, 22 March 2018

THE BAYESIAN BRAIN

 6

Hermann von Helmholtz 
1821-1894

position of  
lighting source

convexity  
of shape

shading shadow
x1 x2

y1 y2

“perception is unconscious inference”

hidden variables

observed variables

There are things known and there are things unknown, and between are

P(X,Y ) = P(Y,X) = P(X|Y ) P(Y )

P(Y |X) =
P(X|Y ) P(Y )

P(X)

the rules of probability

product:

Bayes’ rule:

Rev. Thomas Bayes 
1702-1761

& memory & learning & …

http://www.eng.cam.ac.uk/~m.lengyel


Máté Lengyel  |  A Bayesian approach to internal models http://www.eng.cam.ac.uk/~m.lengyelBME MIT, 22 March 2018

THE BAYESIAN BRAIN

 6

Hermann von Helmholtz 
1821-1894

position of  
lighting source

convexity  
of shape

shading shadow
x1 x2

y1 y2

“perception is unconscious inference”

hidden variables

observed variables

There are things known and there are things unknown, and between are

P(X,Y ) = P(Y,X) = P(X|Y ) P(Y )

P(Y |X) =
P(X|Y ) P(Y )

P(X)

the rules of probability

product:

Bayes’ rule:

iff X and Y are independent!P(X,Y ) = P(X) P(Y )

Rev. Thomas Bayes 
1702-1761

& memory & learning & …

http://www.eng.cam.ac.uk/~m.lengyel


Máté Lengyel  |  A Bayesian approach to internal models http://www.eng.cam.ac.uk/~m.lengyelBME MIT, 22 March 2018

THE BAYESIAN BRAIN

 6

Hermann von Helmholtz 
1821-1894

position of  
lighting source

convexity  
of shape

shading shadow
x1 x2

y1 y2

“perception is unconscious inference”

hidden variables

observed variables

There are things known and there are things unknown, and between are

P(X,Y ) = P(Y,X) = P(X|Y ) P(Y )

P(Y |X) =
P(X|Y ) P(Y )

P(X)

P(X) =
X

Y

P(X,Y )

the rules of probability

product:

Bayes’ rule:

iff X and Y are independent!

sum:  
(marginalisation)

P(X,Y ) = P(X) P(Y )

Rev. Thomas Bayes 
1702-1761

& memory & learning & …

http://www.eng.cam.ac.uk/~m.lengyel


Máté Lengyel  |  A Bayesian approach to internal models http://www.eng.cam.ac.uk/~m.lengyelBME MIT, 22 March 2018

THE BAYESIAN BRAIN

 6

Hermann von Helmholtz 
1821-1894

position of  
lighting source

convexity  
of shape

shading shadow
x1 x2

y1 y2

“perception is unconscious inference”

hidden variables

observed variables

There are things known and there are things unknown, and between are

P(X,Y ) = P(Y,X) = P(X|Y ) P(Y )

P(Y |X) =
P(X|Y ) P(Y )

P(X)

P(X) =
X

Y

P(X,Y )

the rules of probability

product:

Bayes’ rule:

iff X and Y are independent!

sum:  
(marginalisation)

P(X,Y ) = P(X) P(Y )

Rev. Thomas Bayes 
1702-1761

& memory & learning & …

http://www.eng.cam.ac.uk/~m.lengyel


Máté Lengyel  |  A Bayesian approach to internal models http://www.eng.cam.ac.uk/~m.lengyelBME MIT, 22 March 2018

BAYESIAN DECISION THEORY 
(and how to make point estimates)

 7

http://www.eng.cam.ac.uk/~m.lengyel


Máté Lengyel  |  A Bayesian approach to internal models http://www.eng.cam.ac.uk/~m.lengyelBME MIT, 22 March 2018

BAYESIAN DECISION THEORY 
(and how to make point estimates)

 7

state of the world
y1 y2 y3

action

a1 L(a1,y1) L(a1,y2) L(a1,y3)
a2 L(a2,y1) L(a2,y2) L(a2,y3)
a3 L(a3,y1) L(a3,y2) L(a3,y3)

...

..
.

loss function
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y1 y2 y3

action
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a3 L(a3,y1) L(a3,y2) L(a3,y3)

...

..
.

action to choose:

note: a and y need not live in the same space

loss function

a⇤(x) = argmin
a

X

y

L(a, y) P(y | x)
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a⇤(x) = argmin
a

X

y
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a = ŷ
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posterior mean

loss function

a⇤(x) = argmin
a

X

y

L(a, y) P(y | x)

a = ŷ
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adaptation to natural image statistics?
W.S. Geisler et al. / Vision Research41 (2001) 711–724 715

Fig. 3. Statistical analysis of edge co-occurrence in natural images. For each image, edge elements were extracted, and then each edge element was
compared with other edge elements. (A) Edge elements. Each red pixel in this image indicates the location of the center of a significant edge
element; the orientations of the elements are not shown. (B) First edge cooccurrence property. The line segments show the most frequently
occurring orientation difference for each given distance and direction from the central reference element. The color of a line segment indicates the
relative probability. (C) Second edge co-occurrence property. The line segments show the most frequently occurring direction for each given
distance and orientation difference from the central reference element. (D) Bayesian likelihood-ratio function. Each line segment shows a possible
geometrical relationship between an element and the reference element. The color of a line segment indicates the likelihood that the element and
reference belong to the same physical contour divided by the likelihood they belong to different physical contours. (E) A thresholded local
grouping function derived from the edge co-occurrence plot in C. (F) A thresholded local grouping function derived from the Bayesian
likelihood-ratio function in D.

(r = 0.98). Note that the increased scatter at small
log-likelihood values is expected because log probabil-
ities are generally more variable when the estimated
probabilities are small.

As can be seen in Fig. 3D, edge elements that are
co-circular (i.e. consistent with a smooth continuous
contour) are more likely to belong to the same physi-
cal contour. These results support our interpre-
tation of the absolute statistics in Fig. 3C, and

provide further evidence that the Gestalt principle of
good continuation has a physical basis in the statis-
tics of the natural world. Most importantly, these re-
sults allow us to determine a maximum likelihood
(optimal) local grouping function for contour group-
ing in natural scenes. Given the fundamental impor-
tance of contour grouping for useful vision, it is
possible that the human local grouping function is
near this optimum.

http://www.eng.cam.ac.uk/~m.lengyel


Máté Lengyel  |  A Bayesian approach to internal models http://www.eng.cam.ac.uk/~m.lengyelBME MIT, 22 March 2018

STATISTICAL ADAPTATION IN LOW LEVEL VISION

 8

adaptation to natural image statistics?
W.S. Geisler et al. / Vision Research41 (2001) 711–724 715

Fig. 3. Statistical analysis of edge co-occurrence in natural images. For each image, edge elements were extracted, and then each edge element was
compared with other edge elements. (A) Edge elements. Each red pixel in this image indicates the location of the center of a significant edge
element; the orientations of the elements are not shown. (B) First edge cooccurrence property. The line segments show the most frequently
occurring orientation difference for each given distance and direction from the central reference element. The color of a line segment indicates the
relative probability. (C) Second edge co-occurrence property. The line segments show the most frequently occurring direction for each given
distance and orientation difference from the central reference element. (D) Bayesian likelihood-ratio function. Each line segment shows a possible
geometrical relationship between an element and the reference element. The color of a line segment indicates the likelihood that the element and
reference belong to the same physical contour divided by the likelihood they belong to different physical contours. (E) A thresholded local
grouping function derived from the edge co-occurrence plot in C. (F) A thresholded local grouping function derived from the Bayesian
likelihood-ratio function in D.

(r = 0.98). Note that the increased scatter at small
log-likelihood values is expected because log probabil-
ities are generally more variable when the estimated
probabilities are small.

As can be seen in Fig. 3D, edge elements that are
co-circular (i.e. consistent with a smooth continuous
contour) are more likely to belong to the same physi-
cal contour. These results support our interpre-
tation of the absolute statistics in Fig. 3C, and

provide further evidence that the Gestalt principle of
good continuation has a physical basis in the statis-
tics of the natural world. Most importantly, these re-
sults allow us to determine a maximum likelihood
(optimal) local grouping function for contour group-
ing in natural scenes. Given the fundamental impor-
tance of contour grouping for useful vision, it is
possible that the human local grouping function is
near this optimum.

http://www.eng.cam.ac.uk/~m.lengyel


Máté Lengyel  |  A Bayesian approach to internal models http://www.eng.cam.ac.uk/~m.lengyelBME MIT, 22 March 2018

STATISTICAL ADAPTATION IN LOW LEVEL VISION

 8

adaptation to natural image statistics?
W.S. Geisler et al. / Vision Research41 (2001) 711–724 715

Fig. 3. Statistical analysis of edge co-occurrence in natural images. For each image, edge elements were extracted, and then each edge element was
compared with other edge elements. (A) Edge elements. Each red pixel in this image indicates the location of the center of a significant edge
element; the orientations of the elements are not shown. (B) First edge cooccurrence property. The line segments show the most frequently
occurring orientation difference for each given distance and direction from the central reference element. The color of a line segment indicates the
relative probability. (C) Second edge co-occurrence property. The line segments show the most frequently occurring direction for each given
distance and orientation difference from the central reference element. (D) Bayesian likelihood-ratio function. Each line segment shows a possible
geometrical relationship between an element and the reference element. The color of a line segment indicates the likelihood that the element and
reference belong to the same physical contour divided by the likelihood they belong to different physical contours. (E) A thresholded local
grouping function derived from the edge co-occurrence plot in C. (F) A thresholded local grouping function derived from the Bayesian
likelihood-ratio function in D.

(r = 0.98). Note that the increased scatter at small
log-likelihood values is expected because log probabil-
ities are generally more variable when the estimated
probabilities are small.

As can be seen in Fig. 3D, edge elements that are
co-circular (i.e. consistent with a smooth continuous
contour) are more likely to belong to the same physi-
cal contour. These results support our interpre-
tation of the absolute statistics in Fig. 3C, and

provide further evidence that the Gestalt principle of
good continuation has a physical basis in the statis-
tics of the natural world. Most importantly, these re-
sults allow us to determine a maximum likelihood
(optimal) local grouping function for contour group-
ing in natural scenes. Given the fundamental impor-
tance of contour grouping for useful vision, it is
possible that the human local grouping function is
near this optimum.
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sults allow us to determine a maximum likelihood
(optimal) local grouping function for contour group-
ing in natural scenes. Given the fundamental impor-
tance of contour grouping for useful vision, it is
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As can be seen in Fig. 3D, edge elements that are
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cal contour. These results support our interpre-
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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Figure 1 The experiment and models. a, As the finger moves from the starting circle, the

cursor is extinguished and shifted laterally from the true finger location. The hand is never

visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability

distribution of possible visually experienced shifts under the clear and the two blurred

feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
estimate of the lateral shift for an optimal observer that combines the prior with the

evidence. e, The average lateral deviation from the target as a function of the true lateral

shift for the models (for jL the green shading shows the variability of the lateral deviation).

Left, the full compensation model; middle, the bayesian probabilistic model; right, the

mapping model (see the text for details).
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability
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feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
estimate of the lateral shift for an optimal observer that combines the prior with the
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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Figure 1 The experiment and models. a, As the finger moves from the starting circle, the

cursor is extinguished and shifted laterally from the true finger location. The hand is never

visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability

distribution of possible visually experienced shifts under the clear and the two blurred

feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
estimate of the lateral shift for an optimal observer that combines the prior with the

evidence. e, The average lateral deviation from the target as a function of the true lateral

shift for the models (for jL the green shading shows the variability of the lateral deviation).

Left, the full compensation model; middle, the bayesian probabilistic model; right, the

mapping model (see the text for details).

letters to nature

NATURE | VOL 427 | 15 JANUARY 2004 | www.nature.com/nature244 ©  2004 Nature  Publishing Group

Kö
rd

in
g 

&
 W

ol
pe

rt
, 

20
04

..............................................................

Bayesian integration in
sensorimotor learning
Konrad P. Körding & Daniel M. Wolpert

Sobell Department of Motor Neuroscience, Institute of Neurology,
University College London, Queen Square, London WC1N 3BG, UK
.............................................................................................................................................................................

Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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cursor is extinguished and shifted laterally from the true finger location. The hand is never
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the target, thereby compensating for the lateral shift. The finger paths illustrate typical
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability

distribution of possible visually experienced shifts under the clear and the two blurred

feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
estimate of the lateral shift for an optimal observer that combines the prior with the

evidence. e, The average lateral deviation from the target as a function of the true lateral

shift for the models (for jL the green shading shows the variability of the lateral deviation).
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability

distribution of possible visually experienced shifts under the clear and the two blurred

feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
estimate of the lateral shift for an optimal observer that combines the prior with the

evidence. e, The average lateral deviation from the target as a function of the true lateral

shift for the models (for jL the green shading shows the variability of the lateral deviation).
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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Figure 1 The experiment and models. a, As the finger moves from the starting circle, the

cursor is extinguished and shifted laterally from the true finger location. The hand is never

visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability

distribution of possible visually experienced shifts under the clear and the two blurred

feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
estimate of the lateral shift for an optimal observer that combines the prior with the

evidence. e, The average lateral deviation from the target as a function of the true lateral

shift for the models (for jL the green shading shows the variability of the lateral deviation).

Left, the full compensation model; middle, the bayesian probabilistic model; right, the

mapping model (see the text for details).
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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Figure 1 The experiment and models. a, As the finger moves from the starting circle, the

cursor is extinguished and shifted laterally from the true finger location. The hand is never

visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability

distribution of possible visually experienced shifts under the clear and the two blurred

feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
estimate of the lateral shift for an optimal observer that combines the prior with the

evidence. e, The average lateral deviation from the target as a function of the true lateral

shift for the models (for jL the green shading shows the variability of the lateral deviation).

Left, the full compensation model; middle, the bayesian probabilistic model; right, the

mapping model (see the text for details).
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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Figure 1 The experiment and models. a, As the finger moves from the starting circle, the

cursor is extinguished and shifted laterally from the true finger location. The hand is never

visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability

distribution of possible visually experienced shifts under the clear and the two blurred

feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
estimate of the lateral shift for an optimal observer that combines the prior with the

evidence. e, The average lateral deviation from the target as a function of the true lateral

shift for the models (for jL the green shading shows the variability of the lateral deviation).
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mapping model (see the text for details).

letters to nature

NATURE | VOL 427 | 15 JANUARY 2004 | www.nature.com/nature244 ©  2004 Nature  Publishing Group

..............................................................

Bayesian integration in
sensorimotor learning
Konrad P. Körding & Daniel M. Wolpert

Sobell Department of Motor Neuroscience, Institute of Neurology,
University College London, Queen Square, London WC1N 3BG, UK
.............................................................................................................................................................................

Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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the target, thereby compensating for the lateral shift. The finger paths illustrate typical
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correspond to two of the feedback conditions). b, The experimentally imposed prior
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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Figure 1 The experiment and models. a, As the finger moves from the starting circle, the

cursor is extinguished and shifted laterally from the true finger location. The hand is never

visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability

distribution of possible visually experienced shifts under the clear and the two blurred

feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
estimate of the lateral shift for an optimal observer that combines the prior with the

evidence. e, The average lateral deviation from the target as a function of the true lateral

shift for the models (for jL the green shading shows the variability of the lateral deviation).

Left, the full compensation model; middle, the bayesian probabilistic model; right, the

mapping model (see the text for details).
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability

distribution of possible visually experienced shifts under the clear and the two blurred

feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
estimate of the lateral shift for an optimal observer that combines the prior with the

evidence. e, The average lateral deviation from the target as a function of the true lateral

shift for the models (for jL the green shading shows the variability of the lateral deviation).

Left, the full compensation model; middle, the bayesian probabilistic model; right, the

mapping model (see the text for details).
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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Figure 1 The experiment and models. a, As the finger moves from the starting circle, the

cursor is extinguished and shifted laterally from the true finger location. The hand is never

visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability

distribution of possible visually experienced shifts under the clear and the two blurred

feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
estimate of the lateral shift for an optimal observer that combines the prior with the

evidence. e, The average lateral deviation from the target as a function of the true lateral

shift for the models (for jL the green shading shows the variability of the lateral deviation).

Left, the full compensation model; middle, the bayesian probabilistic model; right, the

mapping model (see the text for details).
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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Figure 1 The experiment and models. a, As the finger moves from the starting circle, the

cursor is extinguished and shifted laterally from the true finger location. The hand is never

visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability

distribution of possible visually experienced shifts under the clear and the two blurred

feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
estimate of the lateral shift for an optimal observer that combines the prior with the

evidence. e, The average lateral deviation from the target as a function of the true lateral

shift for the models (for jL the green shading shows the variability of the lateral deviation).

Left, the full compensation model; middle, the bayesian probabilistic model; right, the

mapping model (see the text for details).
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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Figure 1 The experiment and models. a, As the finger moves from the starting circle, the

cursor is extinguished and shifted laterally from the true finger location. The hand is never

visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability

distribution of possible visually experienced shifts under the clear and the two blurred

feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
estimate of the lateral shift for an optimal observer that combines the prior with the

evidence. e, The average lateral deviation from the target as a function of the true lateral

shift for the models (for jL the green shading shows the variability of the lateral deviation).

Left, the full compensation model; middle, the bayesian probabilistic model; right, the

mapping model (see the text for details).
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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Figure 1 The experiment and models. a, As the finger moves from the starting circle, the

cursor is extinguished and shifted laterally from the true finger location. The hand is never

visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability

distribution of possible visually experienced shifts under the clear and the two blurred

feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
estimate of the lateral shift for an optimal observer that combines the prior with the
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the

8
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cursor is extinguished and shifted laterally from the true finger location. The hand is never

visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability

distribution of possible visually experienced shifts under the clear and the two blurred

feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
estimate of the lateral shift for an optimal observer that combines the prior with the

evidence. e, The average lateral deviation from the target as a function of the true lateral

shift for the models (for jL the green shading shows the variability of the lateral deviation).

Left, the full compensation model; middle, the bayesian probabilistic model; right, the

mapping model (see the text for details).
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability

distribution of possible visually experienced shifts under the clear and the two blurred

feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
estimate of the lateral shift for an optimal observer that combines the prior with the

evidence. e, The average lateral deviation from the target as a function of the true lateral

shift for the models (for jL the green shading shows the variability of the lateral deviation).

Left, the full compensation model; middle, the bayesian probabilistic model; right, the

mapping model (see the text for details).
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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Figure 1 The experiment and models. a, As the finger moves from the starting circle, the

cursor is extinguished and shifted laterally from the true finger location. The hand is never

visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability

distribution of possible visually experienced shifts under the clear and the two blurred

feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
estimate of the lateral shift for an optimal observer that combines the prior with the

evidence. e, The average lateral deviation from the target as a function of the true lateral

shift for the models (for jL the green shading shows the variability of the lateral deviation).

Left, the full compensation model; middle, the bayesian probabilistic model; right, the

mapping model (see the text for details).
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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Figure 1 The experiment and models. a, As the finger moves from the starting circle, the

cursor is extinguished and shifted laterally from the true finger location. The hand is never

visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability

distribution of possible visually experienced shifts under the clear and the two blurred

feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
estimate of the lateral shift for an optimal observer that combines the prior with the

evidence. e, The average lateral deviation from the target as a function of the true lateral

shift for the models (for jL the green shading shows the variability of the lateral deviation).

Left, the full compensation model; middle, the bayesian probabilistic model; right, the

mapping model (see the text for details).
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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Figure 1 The experiment and models. a, As the finger moves from the starting circle, the

cursor is extinguished and shifted laterally from the true finger location. The hand is never

visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability

distribution of possible visually experienced shifts under the clear and the two blurred

feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
estimate of the lateral shift for an optimal observer that combines the prior with the

evidence. e, The average lateral deviation from the target as a function of the true lateral

shift for the models (for jL the green shading shows the variability of the lateral deviation).

Left, the full compensation model; middle, the bayesian probabilistic model; right, the

mapping model (see the text for details).
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
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evidence. e, The average lateral deviation from the target as a function of the true lateral

shift for the models (for jL the green shading shows the variability of the lateral deviation).

Left, the full compensation model; middle, the bayesian probabilistic model; right, the

mapping model (see the text for details).
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the

8

Figure 1 The experiment and models. a, As the finger moves from the starting circle, the

cursor is extinguished and shifted laterally from the true finger location. The hand is never

visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability

distribution of possible visually experienced shifts under the clear and the two blurred

feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
estimate of the lateral shift for an optimal observer that combines the prior with the

evidence. e, The average lateral deviation from the target as a function of the true lateral

shift for the models (for jL the green shading shows the variability of the lateral deviation).

Left, the full compensation model; middle, the bayesian probabilistic model; right, the

mapping model (see the text for details).
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the

8

Figure 1 The experiment and models. a, As the finger moves from the starting circle, the

cursor is extinguished and shifted laterally from the true finger location. The hand is never

visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability

distribution of possible visually experienced shifts under the clear and the two blurred

feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
estimate of the lateral shift for an optimal observer that combines the prior with the

evidence. e, The average lateral deviation from the target as a function of the true lateral

shift for the models (for jL the green shading shows the variability of the lateral deviation).

Left, the full compensation model; middle, the bayesian probabilistic model; right, the

mapping model (see the text for details).
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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Figure 1 The experiment and models. a, As the finger moves from the starting circle, the

cursor is extinguished and shifted laterally from the true finger location. The hand is never

visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability

distribution of possible visually experienced shifts under the clear and the two blurred

feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
estimate of the lateral shift for an optimal observer that combines the prior with the

evidence. e, The average lateral deviation from the target as a function of the true lateral

shift for the models (for jL the green shading shows the variability of the lateral deviation).

Left, the full compensation model; middle, the bayesian probabilistic model; right, the

mapping model (see the text for details).
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the

8

Figure 1 The experiment and models. a, As the finger moves from the starting circle, the

cursor is extinguished and shifted laterally from the true finger location. The hand is never

visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability

distribution of possible visually experienced shifts under the clear and the two blurred

feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
estimate of the lateral shift for an optimal observer that combines the prior with the

evidence. e, The average lateral deviation from the target as a function of the true lateral

shift for the models (for jL the green shading shows the variability of the lateral deviation).

Left, the full compensation model; middle, the bayesian probabilistic model; right, the

mapping model (see the text for details).
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the

8

Figure 1 The experiment and models. a, As the finger moves from the starting circle, the

cursor is extinguished and shifted laterally from the true finger location. The hand is never

visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability

distribution of possible visually experienced shifts under the clear and the two blurred

feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
estimate of the lateral shift for an optimal observer that combines the prior with the

evidence. e, The average lateral deviation from the target as a function of the true lateral

shift for the models (for jL the green shading shows the variability of the lateral deviation).

Left, the full compensation model; middle, the bayesian probabilistic model; right, the

mapping model (see the text for details).

letters to nature

NATURE | VOL 427 | 15 JANUARY 2004 | www.nature.com/nature244 ©  2004 Nature  Publishing Group

..............................................................

Bayesian integration in
sensorimotor learning
Konrad P. Körding & Daniel M. Wolpert

Sobell Department of Motor Neuroscience, Institute of Neurology,
University College London, Queen Square, London WC1N 3BG, UK
.............................................................................................................................................................................

Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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Figure 1 The experiment and models. a, As the finger moves from the starting circle, the

cursor is extinguished and shifted laterally from the true finger location. The hand is never

visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability

distribution of possible visually experienced shifts under the clear and the two blurred

feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
estimate of the lateral shift for an optimal observer that combines the prior with the

evidence. e, The average lateral deviation from the target as a function of the true lateral

shift for the models (for jL the green shading shows the variability of the lateral deviation).

Left, the full compensation model; middle, the bayesian probabilistic model; right, the

mapping model (see the text for details).
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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Figure 1 The experiment and models. a, As the finger moves from the starting circle, the

cursor is extinguished and shifted laterally from the true finger location. The hand is never

visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability

distribution of possible visually experienced shifts under the clear and the two blurred

feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
estimate of the lateral shift for an optimal observer that combines the prior with the

evidence. e, The average lateral deviation from the target as a function of the true lateral

shift for the models (for jL the green shading shows the variability of the lateral deviation).

Left, the full compensation model; middle, the bayesian probabilistic model; right, the

mapping model (see the text for details).
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Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the

8

Figure 1 The experiment and models. a, As the finger moves from the starting circle, the

cursor is extinguished and shifted laterally from the true finger location. The hand is never

visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability

distribution of possible visually experienced shifts under the clear and the two blurred

feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
estimate of the lateral shift for an optimal observer that combines the prior with the

evidence. e, The average lateral deviation from the target as a function of the true lateral

shift for the models (for jL the green shading shows the variability of the lateral deviation).

Left, the full compensation model; middle, the bayesian probabilistic model; right, the

mapping model (see the text for details).
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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Figure 1 The experiment and models. a, As the finger moves from the starting circle, the

cursor is extinguished and shifted laterally from the true finger location. The hand is never

visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability

distribution of possible visually experienced shifts under the clear and the two blurred

feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
estimate of the lateral shift for an optimal observer that combines the prior with the

evidence. e, The average lateral deviation from the target as a function of the true lateral

shift for the models (for jL the green shading shows the variability of the lateral deviation).

Left, the full compensation model; middle, the bayesian probabilistic model; right, the

mapping model (see the text for details).
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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Figure 1 The experiment and models. a, As the finger moves from the starting circle, the

cursor is extinguished and shifted laterally from the true finger location. The hand is never

visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability

distribution of possible visually experienced shifts under the clear and the two blurred

feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
estimate of the lateral shift for an optimal observer that combines the prior with the

evidence. e, The average lateral deviation from the target as a function of the true lateral

shift for the models (for jL the green shading shows the variability of the lateral deviation).

Left, the full compensation model; middle, the bayesian probabilistic model; right, the

mapping model (see the text for details).
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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Figure 1 The experiment and models. a, As the finger moves from the starting circle, the

cursor is extinguished and shifted laterally from the true finger location. The hand is never

visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability

distribution of possible visually experienced shifts under the clear and the two blurred

feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
estimate of the lateral shift for an optimal observer that combines the prior with the

evidence. e, The average lateral deviation from the target as a function of the true lateral

shift for the models (for jL the green shading shows the variability of the lateral deviation).

Left, the full compensation model; middle, the bayesian probabilistic model; right, the

mapping model (see the text for details).
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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Figure 1 The experiment and models. a, As the finger moves from the starting circle, the

cursor is extinguished and shifted laterally from the true finger location. The hand is never

visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability

distribution of possible visually experienced shifts under the clear and the two blurred

feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
estimate of the lateral shift for an optimal observer that combines the prior with the

evidence. e, The average lateral deviation from the target as a function of the true lateral

shift for the models (for jL the green shading shows the variability of the lateral deviation).

Left, the full compensation model; middle, the bayesian probabilistic model; right, the

mapping model (see the text for details).
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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Figure 1 The experiment and models. a, As the finger moves from the starting circle, the

cursor is extinguished and shifted laterally from the true finger location. The hand is never

visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability

distribution of possible visually experienced shifts under the clear and the two blurred

feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
estimate of the lateral shift for an optimal observer that combines the prior with the

evidence. e, The average lateral deviation from the target as a function of the true lateral

shift for the models (for jL the green shading shows the variability of the lateral deviation).

Left, the full compensation model; middle, the bayesian probabilistic model; right, the

mapping model (see the text for details).
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability

distribution of possible visually experienced shifts under the clear and the two blurred

feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
estimate of the lateral shift for an optimal observer that combines the prior with the

evidence. e, The average lateral deviation from the target as a function of the true lateral

shift for the models (for jL the green shading shows the variability of the lateral deviation).
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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correspond to two of the feedback conditions). b, The experimentally imposed prior
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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correspond to two of the feedback conditions). b, The experimentally imposed prior
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability
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feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
estimate of the lateral shift for an optimal observer that combines the prior with the
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability
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feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
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evidence. e, The average lateral deviation from the target as a function of the true lateral
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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cursor is extinguished and shifted laterally from the true finger location. The hand is never
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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Figure 1 The experiment and models. a, As the finger moves from the starting circle, the

cursor is extinguished and shifted laterally from the true finger location. The hand is never

visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability

distribution of possible visually experienced shifts under the clear and the two blurred

feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
estimate of the lateral shift for an optimal observer that combines the prior with the

evidence. e, The average lateral deviation from the target as a function of the true lateral

shift for the models (for jL the green shading shows the variability of the lateral deviation).

Left, the full compensation model; middle, the bayesian probabilistic model; right, the

mapping model (see the text for details).
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visual estimate of the lateral shift. In this model, increasing the
uncertainty of the feedback for a particular lateral shift (by increas-
ing the blur) would affect the variability of the pointing but not the
average location. Crucially, this model does not require subjects to
estimate their visual uncertainty or the prior distribution of shifts.
Second (model 2), subjects could optimally use information about
the prior distribution and the uncertainty of the visual feedback to
estimate the lateral shift. We can see intuitively why model 1 is sub-
optimal. If, on a given trial, the subject sensed a lateral shift of 2 cm,
there are many true lateral shifts that can give rise to such a
perception. For example, the true lateral shift could be 1.8 cm
with a visual error of þ0.2 cm, or it could be a lateral shift of
2.2 cmwith a visual error of20.2 cm.Which of the two possibilities
is more probable? Given gaussian noise on the visual feedback,
visual errors of þ0.2 cm and 20.2 cm are equally probable. How-
ever, a true lateral shift of 1.8 cm is more probable than a shift of
2.2 cm given that the prior distribution has amean of 1 cm (Fig. 1b).
If we consider all possible shifts and visual errors that can give rise to
a sensed shift of 2 cm, we find that themost probable true shift is less
than 2 cm. The amount by which it is less depends on two factors,
the prior distribution and the degree of uncertainty in the visual
feedback. As we increase the blur, and thus the degree of uncertainty,
the estimate moves away from the visually sensed shift towards the
mean of the prior distribution (Fig. 1d).Without any feedback (j1)
the estimate should be the mean of the prior. Such a strategy can be
derived from bayesian statistics and minimizes the subject’s mean
squared error.

A third computational strategy (model 3) is to learn a mapping
from the visual feedback to an estimate of the lateral shift. By
minimizing the error over repeated trials, subjects could achieve a
combination similar to model 2 but without any explicit represen-
tation of the prior distribution or visual uncertainty. However, to
learn such a mapping requires knowledge of the error at the end of
the movement. In our experiment we only revealed the shifted
position of the finger at the end of the movement on the clear
feedback trials (j0). Therefore, if subjects learn a mapping, they can
only do so for these trials and apply the samemapping to the blurred
conditions (jM, jL). This model therefore predicts that the average
shift of the response towards the mean of the prior should be the
same for all amounts of blur.

By examining the influence of the visual feedback on the final
deviation from the target we can distinguish between these three
models (Fig. 1e). If subjects compensate fully for the visual feedback
(model 1), the average lateral deviation of the cursor from the target
should be zero for all conditions. If subjects combine the prior and
the evidence provided by sensory feedback (model 2), the estimated
lateral shift should move towards the mean of the prior by an
amount that depends on the sensory uncertainty. For a gaussian
distribution of sensory uncertainty, this predicts a linear relation-
ship between lateral deviation and the true lateral shift, which
should intercept the abscissa at the mean of the prior (1 cm) and
with a slope that increases with uncertainty. Finally, the mapping
model (model 3) predicts that subjects should compensate for the
seen position independently of the degree of uncertainty. Thus, all
conditions should exhibit the same slope as the clear feedback
condition (j0) of model 2. An examination of the theoretically
determined mean squared error for the three models shows that it is
minimal for model 2. Even though model 1 is on average on target,
the variability in the response is higher than in model 2 (green
shading in Fig. 1e shows the variability for the jL condition),
leading to a larger mean squared error.
The lateral deviation from the target as a function of the lateral

shift is shown for a representative subject in Fig. 2a. This shows a
slope that increases with increasing uncertainty and is, therefore,
incompatible with models 1 and 3. As predicted by model 2, the
influence of the feedback on the final pointing location decreases
with increasing uncertainty. The slope increases significantly with
uncertainty in the visual feedback over the subjects tested (Fig. 2b).
The bias and the slope should have a fixed relationship if we assume
that subjects do bayesian estimation. We expect no deviation from
the target if the true lateral shift is at the mean of the prior (1 cm).
This predicts that the sum of the slope and offset should be zero, as
observed in Fig. 2c. Subjects thus combine prior knowledge of the
distribution with sensory evidence to generate appropriate com-
pensatory movements.
Assuming that subjects use a bayesian strategy, we can further-

more use the errors that the subjects made during the trials to infer
their degree of uncertainty in the feedback. For the three levels of
imposed uncertainty, j0, jM and jL, we find that subjects’ estimates
of their visual uncertainty are 0.36 ^ 0.04, 0.67 ^ 0.1 and
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Figure 2 Results for a gaussian distribution. Colour codes as in Fig. 1. a, The lateral
deviation of the cursor at the end of the trial as a function of the imposed lateral shift for a

typical subject. Error bars denote s.e.m. The horizontal dotted lines indicate the prediction

from the full compensation model and the dashed line is the fit for a model that ignores

sensory feedback on the current trial and corrects only for the mean over all trials. The

solid line is the bayesian model with the level of uncertainty fitted to the data. b, The
slopes for the linear fits are shown for the full population of subjects. On the basis of the

hypothesis that the slope should increase with increasing visual uncertainty, we

performed a repeated-measures analysis of variance on the slope, with visual uncertainty

as a factor (main effect of visual uncertainty F 3,27 ¼ 82.7; p , 0.001). Planned

comparisons of the slopes between adjacent uncertainty levels were all significant

(asterisk, p , 0.05; three asterisks, p , 0.001). c, The bias against gain for the linear
fits for each subjects and condition. The solid line shows the bayesian solutions. d, The
inferred priors and the true prior (red) for each subject and condition.
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the

8

Figure 1 The experiment and models. a, As the finger moves from the starting circle, the

cursor is extinguished and shifted laterally from the true finger location. The hand is never

visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability

distribution of possible visually experienced shifts under the clear and the two blurred

feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
estimate of the lateral shift for an optimal observer that combines the prior with the

evidence. e, The average lateral deviation from the target as a function of the true lateral

shift for the models (for jL the green shading shows the variability of the lateral deviation).

Left, the full compensation model; middle, the bayesian probabilistic model; right, the

mapping model (see the text for details).
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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Figure 1 The experiment and models. a, As the finger moves from the starting circle, the

cursor is extinguished and shifted laterally from the true finger location. The hand is never

visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability

distribution of possible visually experienced shifts under the clear and the two blurred

feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
estimate of the lateral shift for an optimal observer that combines the prior with the

evidence. e, The average lateral deviation from the target as a function of the true lateral

shift for the models (for jL the green shading shows the variability of the lateral deviation).

Left, the full compensation model; middle, the bayesian probabilistic model; right, the

mapping model (see the text for details).
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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Figure 1 The experiment and models. a, As the finger moves from the starting circle, the

cursor is extinguished and shifted laterally from the true finger location. The hand is never

visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability

distribution of possible visually experienced shifts under the clear and the two blurred

feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
estimate of the lateral shift for an optimal observer that combines the prior with the

evidence. e, The average lateral deviation from the target as a function of the true lateral

shift for the models (for jL the green shading shows the variability of the lateral deviation).

Left, the full compensation model; middle, the bayesian probabilistic model; right, the

mapping model (see the text for details).
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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Figure 1 The experiment and models. a, As the finger moves from the starting circle, the

cursor is extinguished and shifted laterally from the true finger location. The hand is never

visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability

distribution of possible visually experienced shifts under the clear and the two blurred

feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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Figure 1 The experiment and models. a, As the finger moves from the starting circle, the

cursor is extinguished and shifted laterally from the true finger location. The hand is never

visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability
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feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different
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the target, thereby compensating for the lateral shift. The finger paths illustrate typical
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correspond to two of the feedback conditions). b, The experimentally imposed prior
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours
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visual estimate of the lateral shift. In this model, increasing the
uncertainty of the feedback for a particular lateral shift (by increas-
ing the blur) would affect the variability of the pointing but not the
average location. Crucially, this model does not require subjects to
estimate their visual uncertainty or the prior distribution of shifts.
Second (model 2), subjects could optimally use information about
the prior distribution and the uncertainty of the visual feedback to
estimate the lateral shift. We can see intuitively why model 1 is sub-
optimal. If, on a given trial, the subject sensed a lateral shift of 2 cm,
there are many true lateral shifts that can give rise to such a
perception. For example, the true lateral shift could be 1.8 cm
with a visual error of þ0.2 cm, or it could be a lateral shift of
2.2 cmwith a visual error of20.2 cm.Which of the two possibilities
is more probable? Given gaussian noise on the visual feedback,
visual errors of þ0.2 cm and 20.2 cm are equally probable. How-
ever, a true lateral shift of 1.8 cm is more probable than a shift of
2.2 cm given that the prior distribution has amean of 1 cm (Fig. 1b).
If we consider all possible shifts and visual errors that can give rise to
a sensed shift of 2 cm, we find that themost probable true shift is less
than 2 cm. The amount by which it is less depends on two factors,
the prior distribution and the degree of uncertainty in the visual
feedback. As we increase the blur, and thus the degree of uncertainty,
the estimate moves away from the visually sensed shift towards the
mean of the prior distribution (Fig. 1d).Without any feedback (j1)
the estimate should be the mean of the prior. Such a strategy can be
derived from bayesian statistics and minimizes the subject’s mean
squared error.

A third computational strategy (model 3) is to learn a mapping
from the visual feedback to an estimate of the lateral shift. By
minimizing the error over repeated trials, subjects could achieve a
combination similar to model 2 but without any explicit represen-
tation of the prior distribution or visual uncertainty. However, to
learn such a mapping requires knowledge of the error at the end of
the movement. In our experiment we only revealed the shifted
position of the finger at the end of the movement on the clear
feedback trials (j0). Therefore, if subjects learn a mapping, they can
only do so for these trials and apply the samemapping to the blurred
conditions (jM, jL). This model therefore predicts that the average
shift of the response towards the mean of the prior should be the
same for all amounts of blur.

By examining the influence of the visual feedback on the final
deviation from the target we can distinguish between these three
models (Fig. 1e). If subjects compensate fully for the visual feedback
(model 1), the average lateral deviation of the cursor from the target
should be zero for all conditions. If subjects combine the prior and
the evidence provided by sensory feedback (model 2), the estimated
lateral shift should move towards the mean of the prior by an
amount that depends on the sensory uncertainty. For a gaussian
distribution of sensory uncertainty, this predicts a linear relation-
ship between lateral deviation and the true lateral shift, which
should intercept the abscissa at the mean of the prior (1 cm) and
with a slope that increases with uncertainty. Finally, the mapping
model (model 3) predicts that subjects should compensate for the
seen position independently of the degree of uncertainty. Thus, all
conditions should exhibit the same slope as the clear feedback
condition (j0) of model 2. An examination of the theoretically
determined mean squared error for the three models shows that it is
minimal for model 2. Even though model 1 is on average on target,
the variability in the response is higher than in model 2 (green
shading in Fig. 1e shows the variability for the jL condition),
leading to a larger mean squared error.
The lateral deviation from the target as a function of the lateral

shift is shown for a representative subject in Fig. 2a. This shows a
slope that increases with increasing uncertainty and is, therefore,
incompatible with models 1 and 3. As predicted by model 2, the
influence of the feedback on the final pointing location decreases
with increasing uncertainty. The slope increases significantly with
uncertainty in the visual feedback over the subjects tested (Fig. 2b).
The bias and the slope should have a fixed relationship if we assume
that subjects do bayesian estimation. We expect no deviation from
the target if the true lateral shift is at the mean of the prior (1 cm).
This predicts that the sum of the slope and offset should be zero, as
observed in Fig. 2c. Subjects thus combine prior knowledge of the
distribution with sensory evidence to generate appropriate com-
pensatory movements.
Assuming that subjects use a bayesian strategy, we can further-

more use the errors that the subjects made during the trials to infer
their degree of uncertainty in the feedback. For the three levels of
imposed uncertainty, j0, jM and jL, we find that subjects’ estimates
of their visual uncertainty are 0.36 ^ 0.04, 0.67 ^ 0.1 and
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8

Figure 2 Results for a gaussian distribution. Colour codes as in Fig. 1. a, The lateral
deviation of the cursor at the end of the trial as a function of the imposed lateral shift for a

typical subject. Error bars denote s.e.m. The horizontal dotted lines indicate the prediction

from the full compensation model and the dashed line is the fit for a model that ignores

sensory feedback on the current trial and corrects only for the mean over all trials. The

solid line is the bayesian model with the level of uncertainty fitted to the data. b, The
slopes for the linear fits are shown for the full population of subjects. On the basis of the

hypothesis that the slope should increase with increasing visual uncertainty, we

performed a repeated-measures analysis of variance on the slope, with visual uncertainty

as a factor (main effect of visual uncertainty F 3,27 ¼ 82.7; p , 0.001). Planned

comparisons of the slopes between adjacent uncertainty levels were all significant

(asterisk, p , 0.05; three asterisks, p , 0.001). c, The bias against gain for the linear
fits for each subjects and condition. The solid line shows the bayesian solutions. d, The
inferred priors and the true prior (red) for each subject and condition.
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possible models

0.8 ^ 0.1 cm (means ^ s.e.m. across subjects), respectively. We
have also developed a novel technique that uses these estimates to
infer the priors used by the subjects. Figure 2d shows the priors
inferred for each subject and condition. This shows that the true
prior (red line) was reliably learned by each subject.
To examine whether subjects can learn complex distributions, a

new group of subjects were exposed to a bimodal distribution
(Fig. 3a) consisting of a mixture of two gaussians separated by
4 cm. Here, the bayesian model predicts a nonlinear relationship
between true shift and lateral deviation, with the precise shape
depending on the uncertainty of the visual feedback. Figure 3b
shows a single subject’s lateral deviation together with the fit of a
bayesian model (solid line) in which we fit two parameters: the
separation of the two gaussians and the variance of the visual
uncertainty. The nonlinear properties are reflected in the empirical
data and are consistent over the subjects (Fig. 3c) with a fitted
separation of 4.8 ^ 0.8 cm (mean ^ s.e.m. across subjects), close to
the true value of 4 cm, suggesting that subjects represent the
bimodal prior. Taken together, our results demonstrate that subjects
implicitly use bayesian statistics.
Many technically challenging problems have been addressed

successfully within the bayesian framework7,8. It has been proposed
that the architecture of the nervous system is well suited for bayesian
inference9–13 and that some visual illusions can be understood
within the bayesian framework14. However, most models of the
sensorimotor system consider a cascade of mappings from sensory
inputs to the motor output15–17. These models consider input–
output relationships and do not explicitly take into account the
probabilistic nature of either the sensors or the task. Recent models
of motor control have begun to emphasize probabilistic proper-
ties18–24. Unlike the visual system, which loses much of its plasticity
once it has passed its critical period, the motor system retains much
of its plasticity throughout adult life. We could therefore impose a
novel prior on the subjects and measure its influence on sensor-
imotor processing. To show quantitatively that the system performs
optimally would require a direct measure of sensory uncertainty
before it is integrated with the prior. However, such a measure
cannot easily be obtained as even a naive subject would integrate
feedback with their natural, but unknown, prior. However, by
imposing experimentally controlled priors we have shown that
our results qualitatively match a bayesian integration process. A
bayesian view of sensorimotor learning is consistent with neuro-
physiological studies showing that the brain represents the degree of
uncertainty when estimating rewards25–27 and with psychophysical
studies addressing the timing of movements28,29. Although we have
shown only the use of a prior in learning hand trajectories during a
visuomotor displacement, we expect that such a bayesian process
might be fundamental to all aspects of sensorimotor control and
learning. For example, representing the distribution of dynamics of

objects, such as their mass, would facilitate our interactions with
them. Similarly, although the possible configurations of the human
body are immense, they are not all equally likely and knowledge of
their distribution could be used to refine estimates of our current
state. Taking into account a priori knowledge might be key to
winning a tennis match. Tennis professionals spend a great deal
of time studying their opponent before playing an important
match, ensuring that they start the match with correct a priori
knowledge. A

Methods
Experimental details
Six male and four female subjects participated in this study after giving informed consent.
Subjects made reaching movements on a table during which an Optotrak 3020 tracking
system (Northern Digital) measured the position of their right index finger. A projection–
mirror system prevented direct view of their arm and allowed us to generate a cursor
representing their finger position that could be displayed in the plane of the movement
(for details of the set-up see ref. 30). Subjects saw a blue sphere representing the starting
location, a green sphere representing the target and a white sphere representing the
position of their finger (Fig. 1a). Subjects were requested to point accurately to the target.
When the finger left the start position, the cursor representing the finger was extinguished
and displaced to the right by an amount that was drawn each trial from a gaussian
distribution with mean of 1 cm and standard deviation of 0.5 cm. Midway through the
movement (10 cm), feedback of the cursor centred at the displaced finger position was
flashed for 100ms. On each trial one of four types of feedback (j0, jM, jL, j1) was
displayed; the selection of the feedback was random, with the relative frequencies of the
four types being (3, 1, 1, 1) respectively. The j0 feedback was a small white sphere. The jM

feedback was 25 small translucent spheres, distributed as a two-dimensional gaussian with
a standard deviation of 1 cm, giving a cloud-type impression. The jL feedback was
analogous but had a standard deviation of 2 cm. No feedback was provided in the j1 case.
After another 10 cm of movement the trial was finished; feedback of the final cursor
location was provided only in the j0 condition. The experiment consisted of 2,000 trials
for each subject. On post-experimental questioning, all subjects reported being unaware of
the displacement of the visual feedback. Only the last 1,000 trials were used for analysis.
Subjects were instructed to take into account what they saw at the midpoint and to get as
close to the target as possible; we took the lateral deviation of the finger from the target as a
measure of subjects’ estimate of the lateral shift. By averaging over trials we could obtain
this estimate uncorrupted by any motor output noise, which we assumed to have mean of
zero.

Bayesian estimation
Wewish to estimate the lateral shift x true of the current trial given a sensed shift x sensed (also
known as the evidence) and the prior distribution of lateral shifts p(x true). FromBayes rule
we can obtain the posterior distribution, that is the probability of each possible lateral shift
taking into account both the prior and the evidence,

pðxtruejxsensedÞ ¼ pðxsensedjxtrueÞ
pðxtrueÞ
pðxsensedÞ

where pðxsensedjxtrueÞ is the likelihood of perceiving x sensed when the lateral shift really is
x true.We assume that visual estimation is unbiased and corrupted by gaussian noise so that

pðxtruejxsensedÞ ¼
1

jsensed
ffiffiffiffiffiffi

2p
p e2ðxtrue2xsensed Þ2=2j2sensed

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

pðxsensed jxtrueÞ

1

jprior
ffiffiffiffiffiffi

2p
p e2ðxtrue21cmÞ2=2j2prior

.

pðxsensedÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

pðxtrue Þ=pðxsensed Þ

For the optimal estimate we can find themaximum bydifferentiation, which represents
the most probable lateral shift. For gaussian distributions such an estimate also has the

Figure 3 Results for a mixture of gaussian distributions. a, The experimentally imposed
prior distribution of lateral shifts is a mixture of two gaussians. b, The lateral deviation of
the cursor at the end of the trial as a function of the true lateral shift for a typical

subject. Error bars denote s.e.m. The horizontal dotted lines indicate the prediction from

the full compensation model, the dashed line is the fit for a bayesian model with a single

gaussian prior, and the solid line is the fit for a bayesian model with a prior that is a mixture

of two gaussians. c, The lateral deviation across subjects (mean ^ s.e.m. across

subjects) is shown with a linear regression fit, demonstrating the nonlinearity of the data.
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the

8

Figure 1 The experiment and models. a, As the finger moves from the starting circle, the

cursor is extinguished and shifted laterally from the true finger location. The hand is never

visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability

distribution of possible visually experienced shifts under the clear and the two blurred

feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
estimate of the lateral shift for an optimal observer that combines the prior with the

evidence. e, The average lateral deviation from the target as a function of the true lateral

shift for the models (for jL the green shading shows the variability of the lateral deviation).

Left, the full compensation model; middle, the bayesian probabilistic model; right, the

mapping model (see the text for details).
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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Figure 1 The experiment and models. a, As the finger moves from the starting circle, the

cursor is extinguished and shifted laterally from the true finger location. The hand is never

visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability

distribution of possible visually experienced shifts under the clear and the two blurred

feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
estimate of the lateral shift for an optimal observer that combines the prior with the

evidence. e, The average lateral deviation from the target as a function of the true lateral

shift for the models (for jL the green shading shows the variability of the lateral deviation).

Left, the full compensation model; middle, the bayesian probabilistic model; right, the

mapping model (see the text for details).
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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Figure 1 The experiment and models. a, As the finger moves from the starting circle, the

cursor is extinguished and shifted laterally from the true finger location. The hand is never

visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability

distribution of possible visually experienced shifts under the clear and the two blurred

feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
estimate of the lateral shift for an optimal observer that combines the prior with the

evidence. e, The average lateral deviation from the target as a function of the true lateral

shift for the models (for jL the green shading shows the variability of the lateral deviation).

Left, the full compensation model; middle, the bayesian probabilistic model; right, the

mapping model (see the text for details).
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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Figure 1 The experiment and models. a, As the finger moves from the starting circle, the
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degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours
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Whenwe learn a newmotor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
sowe can only estimate it. Combining information frommultiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.
Subjects reached to a visual target with their right index finger in a

virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, inwhich the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.
Subjects were trained for 1,000 trials on the task, to ensure that

they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^
s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
inwhich feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cmwith a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the

8

Figure 1 The experiment and models. a, As the finger moves from the starting circle, the

cursor is extinguished and shifted laterally from the true finger location. The hand is never

visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior
distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability

distribution of possible visually experienced shifts under the clear and the two blurred

feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The
estimate of the lateral shift for an optimal observer that combines the prior with the

evidence. e, The average lateral deviation from the target as a function of the true lateral

shift for the models (for jL the green shading shows the variability of the lateral deviation).

Left, the full compensation model; middle, the bayesian probabilistic model; right, the

mapping model (see the text for details).
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gous to the Copernican anthropic principle in Bayesian cos-

mology (Buch, 1994; Caves, 2000; Garrett & Coles, 1993; Gott,
1993, 1994; Ledford, Marriott, & Crowder, 2001) and the ge-

neric-view principle in Bayesian models of visual perception
(Freeman, 1994; Knill & Richards, 1996). The prior probability

p(ttotal) reflects our general expectations about the relevant class
of events—in this case, about how likely it is that a man’s life
span will be ttotal. Analysis of actuarial data shows that the

distribution of life spans in our society is (ignoring infant mor-
tality) approximately Gaussian—normally distributed—with a

mean, m, of about 75 years and a standard deviation, s, of about
16 years.

Combining the prior with the likelihood according to Equation
1 yields a probability distribution p(ttotal|t) over all possible total
life spans ttotal for a man encountered at age t. A good guess for

ttotal is the median of this distribution—that is, the point at which
it is equally likely that the true life span is longer or shorter.

Taking the median of p(ttotal|t) defines a Bayesian prediction
function, specifying a predicted value of ttotal for each observed
value of t. Prediction functions for events with Gaussian priors

are nonlinear: For values of t much less than the mean of the
prior, the predicted value of ttotal is approximately the mean;

once t approaches the mean, the predicted value of ttotal in-
creases slowly, converging to t as t increases but always re-

maining slightly higher, as shown in Figure 1. Although its
mathematical form is complex, this prediction function makes
intuitive sense for human life spans: A predicted life span of

about 75 years would be reasonable for aman encountered at age
18, 39, or 51; if we met a man at age 75, we might be inclined to

give him several more years at least; but if wemet someone at age
96, we probably would not expect him to live much longer.
This approach to prediction is quite general, applicable to any

problem that requires estimating the upper limit of a duration,
extent, or other numerical quantity given a sample drawn from

that interval (Buch, 1994; Caves, 2000; Garrett & Coles, 1993;
Gott, 1993, 1994; Jaynes, 2003; Jeffreys, 1961; Ledford et al.,

2001; Leslie, 1996; Maddox, 1994; Shepard, 1987; Tenenbaum
& Griffiths, 2001). However, different priors will be appropriate
for different kinds of phenomena, and the prediction function

will vary substantially as a result. For example, imagine trying to
predict the total box-office gross of a movie given its take so far.

The total gross of movies follows a power-law distribution, with
p(ttotal) / ttotal

!g for some g> 0.1 This distribution has a highly

non-Gaussian shape (see Fig. 1), with most movies taking in only
modest amounts, but occasional blockbusters making huge
amounts of money. In the appendix, we show that for power-law

priors, the Bayesian prediction function picks a value for ttotal
that is a multiple of the observed sample t. The exact multiple
depends on the parameter g. For the particular power law that
best fits the actual distribution of movie grosses, an optimal

Bayesian observer would estimate the total gross to be approx-
imately 50% greater than the current gross: Thus, if we observe a
movie has made $40 million to date, we should guess a total

gross of around $60 million; if we observe a current gross of only
$6 million, we should guess about $9 million for the total.

Although such constant-multiple prediction rules are optimal
for event classes that follow power-law priors, they are clearly

inappropriate for predicting life spans or other kinds of events
with Gaussian priors. For instance, upon meeting a 10-year-old
girl and her 75-year-old grandfather, we would never predict

that the girl will live a total of 15 years (1.5 " 10) and the
grandfather will live to be 112 (1.5" 75). Other classes of priors,

such as the exponential-tailed Erlang distribution, p(ttotal) /
ttotalexp(!ttotal/b) for b> 0,2 are also associated with distinctive
optimal prediction functions. For the Erlang distribution, the

Fig. 1. Bayesian prediction functions and their associated prior distri-
butions. The three columns represent qualitatively different statistical
models appropriate for different kinds of events. The top row of plots
shows three parametric families of prior distributions for the total dura-
tion or extent, ttotal, that could describe events in a particular class. Lines
of different styles represent different parameter values (e.g., different
mean durations) within each family. The bottom row of plots shows the
optimal predictions for ttotal as a function of t, the observed duration or
extent of an event so far, assuming the prior distributions shown in the top
panel. For Gaussian priors (left column), the prediction function always
has a slope less than 1 and an intercept near the mean m: Predictions are
never much smaller than the mean of the prior distribution, nor much
larger than the observed duration. Power-law priors (middle column)
result in linear prediction functions with variable slope and a zero inter-
cept. Erlang priors (right column) yield a linear prediction function that
always has a slope equal to 1 and a nonzero intercept.

1When g > 1, a power-law distribution is often referred to in statistics and
economics as a Pareto distribution.

2The Erlang distribution is a special case of the gamma distribution. The
gamma distribution is p(ttotal) / ttotal

k!1exp(!ttotal/b), where k > 0 and b > 0
are real numbers. The Erlang distribution assumes that k is an integer. Following
Shepard (1987), we use a one-parameter Erlang distribution, fixing k at 2.
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best guess of ttotal is simply t plus a constant determined by
the parameter b, as shown in the appendix and illustrated in

Figure 1.
Our experiment compared these ideal Bayesian analyses with

the judgments of a large sample of human participants, exam-

ining whether people’s predictions were sensitive to the distri-
butions of different quantities that arise in everyday contexts.

We used publicly available data to identify the true prior dis-
tributions for several classes of events (the sources of these data

are given in Table 1). For example, as shown in Figure 2, human
life spans and the run time of movies are approximately
Gaussian, the gross of movies and the length of poems are ap-

proximately power-law distributed, and the distributions of the
number of years in office for members of the U.S. House of

Representatives and of the length of the reigns of pharaohs are

approximately Erlang. The experiment examined how well
people’s predictions corresponded to optimal statistical infer-

ence in these different settings.

METHOD

Participants and Procedure
Participants were tested in two groups, with each group making
predictions about five different phenomena. One group of 208
undergraduates made predictions about movie grosses, poem

lengths, life spans, reigns of pharaohs, and lengths of marriages.
A second group of 142 undergraduates made predictions about

movie run times, terms of U.S. representatives, baking times for
cakes, waiting times, and lengths of marriages. The surveys were

TABLE 1

Sources of Data for Estimating Prior Distributions

Data set Source (number of data points)

Movie grosses http://www.worldwideboxoffice.com/ (5,302)
Poem lengths http://www.emule.com/ (1,000)
Life spans http://www.demog.berkeley.edu/wilmoth/mortality/states.html (complete life table)
Movie run times http://www.imdb.com/charts/usboxarchive/ (233 top-10 movies from 1998 through 2003)
U.S. representatives’ terms http://www.bioguide.congress.gov/ (2,150 members since 1945)
Cake baking times http://www.allrecipes.com/ (619)
Pharaohs’ reigns http://www.touregypt.com/ (126)

Note. Data were collected from these Web sites between July and December 2003.

Fig. 2.People’s predictions for various everyday phenomena.The top row of plots shows the empirical distributions of the total duration or extent, ttotal,
for each of these phenomena. The first two distributions are approximately Gaussian, the third and fourth are approximately power-law, and the fifth
and sixth are approximatelyErlang.The bottom row shows participants’ predicted values of ttotal for a single observed sample t of a duration or extent for
each phenomenon. Black dots show the participants’ median predictions of ttotal. Error bars indicate 68% confidence intervals (estimated by a 1,000-
sample bootstrap). Solid lines show the optimal Bayesian predictions based on the empirical prior distributions shown above. Dashed lines show pre-
dictions made by estimating a subjective prior, for the pharaohs and waiting-times stimuli, as explained in the main text. Dotted lines show predictions
based on a fixed uninformative prior (Gott, 1993).
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best guess of ttotal is simply t plus a constant determined by
the parameter b, as shown in the appendix and illustrated in

Figure 1.
Our experiment compared these ideal Bayesian analyses with

the judgments of a large sample of human participants, exam-

ining whether people’s predictions were sensitive to the distri-
butions of different quantities that arise in everyday contexts.

We used publicly available data to identify the true prior dis-
tributions for several classes of events (the sources of these data

are given in Table 1). For example, as shown in Figure 2, human
life spans and the run time of movies are approximately
Gaussian, the gross of movies and the length of poems are ap-

proximately power-law distributed, and the distributions of the
number of years in office for members of the U.S. House of

Representatives and of the length of the reigns of pharaohs are

approximately Erlang. The experiment examined how well
people’s predictions corresponded to optimal statistical infer-

ence in these different settings.

METHOD

Participants and Procedure
Participants were tested in two groups, with each group making
predictions about five different phenomena. One group of 208
undergraduates made predictions about movie grosses, poem

lengths, life spans, reigns of pharaohs, and lengths of marriages.
A second group of 142 undergraduates made predictions about

movie run times, terms of U.S. representatives, baking times for
cakes, waiting times, and lengths of marriages. The surveys were

TABLE 1

Sources of Data for Estimating Prior Distributions

Data set Source (number of data points)

Movie grosses http://www.worldwideboxoffice.com/ (5,302)
Poem lengths http://www.emule.com/ (1,000)
Life spans http://www.demog.berkeley.edu/wilmoth/mortality/states.html (complete life table)
Movie run times http://www.imdb.com/charts/usboxarchive/ (233 top-10 movies from 1998 through 2003)
U.S. representatives’ terms http://www.bioguide.congress.gov/ (2,150 members since 1945)
Cake baking times http://www.allrecipes.com/ (619)
Pharaohs’ reigns http://www.touregypt.com/ (126)

Note. Data were collected from these Web sites between July and December 2003.

Fig. 2.People’s predictions for various everyday phenomena.The top row of plots shows the empirical distributions of the total duration or extent, ttotal,
for each of these phenomena. The first two distributions are approximately Gaussian, the third and fourth are approximately power-law, and the fifth
and sixth are approximatelyErlang.The bottom row shows participants’ predicted values of ttotal for a single observed sample t of a duration or extent for
each phenomenon. Black dots show the participants’ median predictions of ttotal. Error bars indicate 68% confidence intervals (estimated by a 1,000-
sample bootstrap). Solid lines show the optimal Bayesian predictions based on the empirical prior distributions shown above. Dashed lines show pre-
dictions made by estimating a subjective prior, for the pharaohs and waiting-times stimuli, as explained in the main text. Dotted lines show predictions
based on a fixed uninformative prior (Gott, 1993).
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the observer model (Fig. 3a), we solved for a nonparametric descrip-
tion of the prior distribution and the likelihood width (as a separable
function of speed and contrast) that maximized the probability of the
observed data for each subject (Methods).

The prior distribution recovered for all subjects is maximal at the
lowest stimulus speed tested and decreases monotonically with stimu-
lus speed (Fig. 4). But the shape differs significantly from that of the
Gaussian distribution assumed in previous Bayesian models3,4,15. The

central portion of best fitting prior distributions can be approximated
by a power law function of speed. But all subjects tested showed a
flattening at low speeds, and three of the five subjects showed a
flattening at high speeds (for example, subject 1, Fig. 4). The remaining
two did not show this tendency, at least not over the range of speeds
tested (for example, subject 2, Fig. 4).

For all subjects, the width of the likelihood is roughly constant with
respect to speed (Fig. 4, middle column) when considered in a

logarithmic speed domain, suggesting that a
fixed-width Gaussian in this domain (that is, a
log-Normal distribution) might provide an
adequate functional description (Methods).
The recovered dependence of the likelihood
width on contrast is monotonically decreasing
(Fig. 4, right column). We found that this
relationship may be fit by a simple parametric
function derived from assumptions about
noise and contrast response models of cortical
neurons19 (Methods). This is consistent with
previous findings that the introduction of
contrast saturation improves the ability of a
Bayesian model to fit subjective data15. Note
that the sensitivity of speed perception on
contrast varies from subject to subject.

Comparison of perceptual data and model
To examine how well the fitted Bayesian
observer model accounts for human visual
speed perception, we used the model to gen-
erate predictions of both average perceived
speed and thresholds for speed discrimina-
tion. We compared these to values extracted
directly by fitting a Weibull function to the
psychometric function associated with each
stimulus combination (for each subject, there
are a total of 72 such functions; provided in
Supplementary Fig. 1 online together with
model and Weibull fits). Data for all subjects
show that lower-contrast stimuli appeared to
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Figure 3 Bayesian observer model for 2AFC speed discrimination experiment. (a) On each trial, the observer independently performs an optimal estimate of
the speed of each of the two stimuli based on measurements ð~m1; ~m2Þ. These estimates are passed to a decision stage, which selects the grating with the
higher estimate. Over many trials, the estimates for each stimulus pair will vary due to noise fluctuations in the measurements, and the average response of the
decision stage can be computed using standard methods from signal detection theory (Methods). Plotting this average response as a function of, say, v1, yields
a psychometric function. (b) Illustration depicting the relationship between the model parameters and the psychometric function. The slope of the prior affects
the position of the distribution of estimates and thus influences only the position of the psychometric function. However, the width of the likelihood affects
both the width and the position of the distribution of estimates and thus influences both the position and the slope of the psychometric function.
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best guess of ttotal is simply t plus a constant determined by
the parameter b, as shown in the appendix and illustrated in

Figure 1.
Our experiment compared these ideal Bayesian analyses with

the judgments of a large sample of human participants, exam-

ining whether people’s predictions were sensitive to the distri-
butions of different quantities that arise in everyday contexts.

We used publicly available data to identify the true prior dis-
tributions for several classes of events (the sources of these data

are given in Table 1). For example, as shown in Figure 2, human
life spans and the run time of movies are approximately
Gaussian, the gross of movies and the length of poems are ap-

proximately power-law distributed, and the distributions of the
number of years in office for members of the U.S. House of

Representatives and of the length of the reigns of pharaohs are

approximately Erlang. The experiment examined how well
people’s predictions corresponded to optimal statistical infer-

ence in these different settings.

METHOD

Participants and Procedure
Participants were tested in two groups, with each group making
predictions about five different phenomena. One group of 208
undergraduates made predictions about movie grosses, poem

lengths, life spans, reigns of pharaohs, and lengths of marriages.
A second group of 142 undergraduates made predictions about

movie run times, terms of U.S. representatives, baking times for
cakes, waiting times, and lengths of marriages. The surveys were

TABLE 1

Sources of Data for Estimating Prior Distributions

Data set Source (number of data points)

Movie grosses http://www.worldwideboxoffice.com/ (5,302)
Poem lengths http://www.emule.com/ (1,000)
Life spans http://www.demog.berkeley.edu/wilmoth/mortality/states.html (complete life table)
Movie run times http://www.imdb.com/charts/usboxarchive/ (233 top-10 movies from 1998 through 2003)
U.S. representatives’ terms http://www.bioguide.congress.gov/ (2,150 members since 1945)
Cake baking times http://www.allrecipes.com/ (619)
Pharaohs’ reigns http://www.touregypt.com/ (126)

Note. Data were collected from these Web sites between July and December 2003.

Fig. 2.People’s predictions for various everyday phenomena.The top row of plots shows the empirical distributions of the total duration or extent, ttotal,
for each of these phenomena. The first two distributions are approximately Gaussian, the third and fourth are approximately power-law, and the fifth
and sixth are approximatelyErlang.The bottom row shows participants’ predicted values of ttotal for a single observed sample t of a duration or extent for
each phenomenon. Black dots show the participants’ median predictions of ttotal. Error bars indicate 68% confidence intervals (estimated by a 1,000-
sample bootstrap). Solid lines show the optimal Bayesian predictions based on the empirical prior distributions shown above. Dashed lines show pre-
dictions made by estimating a subjective prior, for the pharaohs and waiting-times stimuli, as explained in the main text. Dotted lines show predictions
based on a fixed uninformative prior (Gott, 1993).
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the observer model (Fig. 3a), we solved for a nonparametric descrip-
tion of the prior distribution and the likelihood width (as a separable
function of speed and contrast) that maximized the probability of the
observed data for each subject (Methods).

The prior distribution recovered for all subjects is maximal at the
lowest stimulus speed tested and decreases monotonically with stimu-
lus speed (Fig. 4). But the shape differs significantly from that of the
Gaussian distribution assumed in previous Bayesian models3,4,15. The

central portion of best fitting prior distributions can be approximated
by a power law function of speed. But all subjects tested showed a
flattening at low speeds, and three of the five subjects showed a
flattening at high speeds (for example, subject 1, Fig. 4). The remaining
two did not show this tendency, at least not over the range of speeds
tested (for example, subject 2, Fig. 4).

For all subjects, the width of the likelihood is roughly constant with
respect to speed (Fig. 4, middle column) when considered in a

logarithmic speed domain, suggesting that a
fixed-width Gaussian in this domain (that is, a
log-Normal distribution) might provide an
adequate functional description (Methods).
The recovered dependence of the likelihood
width on contrast is monotonically decreasing
(Fig. 4, right column). We found that this
relationship may be fit by a simple parametric
function derived from assumptions about
noise and contrast response models of cortical
neurons19 (Methods). This is consistent with
previous findings that the introduction of
contrast saturation improves the ability of a
Bayesian model to fit subjective data15. Note
that the sensitivity of speed perception on
contrast varies from subject to subject.

Comparison of perceptual data and model
To examine how well the fitted Bayesian
observer model accounts for human visual
speed perception, we used the model to gen-
erate predictions of both average perceived
speed and thresholds for speed discrimina-
tion. We compared these to values extracted
directly by fitting a Weibull function to the
psychometric function associated with each
stimulus combination (for each subject, there
are a total of 72 such functions; provided in
Supplementary Fig. 1 online together with
model and Weibull fits). Data for all subjects
show that lower-contrast stimuli appeared to
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Figure 3 Bayesian observer model for 2AFC speed discrimination experiment. (a) On each trial, the observer independently performs an optimal estimate of
the speed of each of the two stimuli based on measurements ð~m1; ~m2Þ. These estimates are passed to a decision stage, which selects the grating with the
higher estimate. Over many trials, the estimates for each stimulus pair will vary due to noise fluctuations in the measurements, and the average response of the
decision stage can be computed using standard methods from signal detection theory (Methods). Plotting this average response as a function of, say, v1, yields
a psychometric function. (b) Illustration depicting the relationship between the model parameters and the psychometric function. The slope of the prior affects
the position of the distribution of estimates and thus influences only the position of the psychometric function. However, the width of the likelihood affects
both the width and the position of the distribution of estimates and thus influences both the position and the slope of the psychometric function.
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Figure 4 Parameters of the Bayesian observer model fitted to perceptual data of two representative
subjects. The extracted prior, p(v), exhibits a much heavier tail than the best-fitting Gaussian distribution
(dash-dotted lines), for both subjects. The speed and contrast dependence of the likelihood width
(g(v) and h(c)) indicate that likelihood is approximately constant in a logarithmic speed domain and
decreases monotonically with contrast in a manner consistent with a simple model for neural response
characteristics (dashed line; Methods). Shaded areas represent the two standard deviation intervals
computed from 30 bootstrapped data sets. Subject 1 was aware of the purpose of the experiment but
subject 2 was not. Among all subjects, subject 2 shows the strongest contrast dependence as well as
the broadest likelihoods.
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A = 28.5-; and reflectance: 2 = j2.6-, A = 24.7-.
Although the average light-prior was to the left of vertical
in all three experiments, none deviated significantly from
0 (shape: t25 = j1.8, p = .07; search: t26 = j0.14, p = .89;
reflectance: t19 = j0.47, p = .64). A single light-prior was
calculated for each observer by averaging across the three
tasks (2 = j5.1-, A = 28.3-), again providing little support
for a leftward bias in the population (t26 = j0.93, p = .36)
especially of the size previously reported (j26- and j16-
by Sun & Perona, 1998, and Mamassian & Goutcher,
2001).
The primary aim of this study was to discover whether

behavior in the three distinct tasks reflects a common
light-prior. Significant correlations were found between
the measured light-priors for the three tasks (Figure 3).
These were shape/search: r = .74, p G .001; shape/
reflectance: r = .55, p = .006; and search/reflectance: r =
.53, p = .008.

Discussion

A strong relationship was found between shape percep-
tion and visual search. We know that three-dimensional
shape is, in general, more readily perceived from vertical
shading gradients than horizontal gradients (Adams et al.,
2004; Curran & Johnston, 1996). Similarly, visual search
is more efficient with vertically shaded objects. However,
what the current study demonstrates is that individuals
deviate substantially from these rules, and that such
deviations reflect a single lighting prior affecting both
shape perception and visual search behavior. In other
words, observers that interpret shading patterns as though
lit from the side when estimating shape also detect targets
more efficiently in a scene that is consistent with side
lighting. This finding strongly supports the notion that
shape (or reflectance derived from shape) is a preattentive
feature and is inconsistent with the notion that visual
search is based on orientation per se, in SFS displays. This
confirms experimental findings from Enns and Rensink
(1990) who found pop-out in displays with a three-
dimensional interpretation but serial search with stimuli
containing similar spatial changes in luminance yet giving
rise to two-dimensional interpretations. Hanazawa and
Komatsu (2001) showed that this preference for overhead
lighting can be seen in the tuning of V4 cell responses to
shaded surfaces under varying illumination directions.
Lee, Yang, Romero, and Mumford (2002) found that weak
neural correlates of pop-out with SFS stimuli in V1 and
stronger correlates in V2 were affected by trained
behavioral relevance. Early processing of cast shadows
has also been observed: Rensink and Cavanagh (2004)
demonstrated that cast shadows can be processed (and
discounted) preattentively, but only in scenes consistent
with overhead lighting.

A novel stimulus (with unambiguous shape) was
developed to measure the effect of assumed light position
on reflectance judgments. Most observers judged reflec-
tance in a way roughly consistent with overhead lighting;
however, a quarter did not appear to use any assumed
directional light source to interpret these stimuli. The
light-from-above prior appears to have a weaker role
when making reflectance rather than shape judgments.
The data may also reflect a greater willingness to abandon
the assumption of surface homogeneity when abrupt rather
than gradual luminance changes are present (compare
Figure 1c with Figure 1a, and for a discussion of abrupt
vs. gradual luminance changes, see Adelson, 2000).
Significant correlations were found between reflectance

and shape judgments and between reflectance and search
behavior, suggesting that all three of the tasks used here
reflect a single light-prior. These latter two correlations
were weaker than the relationship between the search
prior and the shape prior. However, the difference
between the correlation coefficients was not significant
and to some extent reflects the difference in precision with
which the priors could be measured from the data for the
three tasks. To gain a more accurate measure of the

Figure 3. Scatterplots showing the relationship between the light-
priors from the three tasks. Errors give T1 SE from bootstrapping.
The diagonal (dotted line) gives the prediction for identical light-
priors across tasks. The dashed line gives the best-fit for the data,
treating errors in X and Y equally. Observers were excluded from
the correlation calculations if a reliable light-prior estimate could
not be recovered (SE 9 25-, n = 7). Under a conservative
approach of replacing these missing data points by the mean, all
correlations remained significant (shape/search: r = .72, p G .001;
shape/reflectance: r = .49, p = .005; search/reflectance: r = .4,
p = .019).
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best guess of ttotal is simply t plus a constant determined by
the parameter b, as shown in the appendix and illustrated in

Figure 1.
Our experiment compared these ideal Bayesian analyses with

the judgments of a large sample of human participants, exam-

ining whether people’s predictions were sensitive to the distri-
butions of different quantities that arise in everyday contexts.

We used publicly available data to identify the true prior dis-
tributions for several classes of events (the sources of these data

are given in Table 1). For example, as shown in Figure 2, human
life spans and the run time of movies are approximately
Gaussian, the gross of movies and the length of poems are ap-

proximately power-law distributed, and the distributions of the
number of years in office for members of the U.S. House of

Representatives and of the length of the reigns of pharaohs are

approximately Erlang. The experiment examined how well
people’s predictions corresponded to optimal statistical infer-

ence in these different settings.

METHOD

Participants and Procedure
Participants were tested in two groups, with each group making
predictions about five different phenomena. One group of 208
undergraduates made predictions about movie grosses, poem

lengths, life spans, reigns of pharaohs, and lengths of marriages.
A second group of 142 undergraduates made predictions about

movie run times, terms of U.S. representatives, baking times for
cakes, waiting times, and lengths of marriages. The surveys were

TABLE 1

Sources of Data for Estimating Prior Distributions

Data set Source (number of data points)

Movie grosses http://www.worldwideboxoffice.com/ (5,302)
Poem lengths http://www.emule.com/ (1,000)
Life spans http://www.demog.berkeley.edu/wilmoth/mortality/states.html (complete life table)
Movie run times http://www.imdb.com/charts/usboxarchive/ (233 top-10 movies from 1998 through 2003)
U.S. representatives’ terms http://www.bioguide.congress.gov/ (2,150 members since 1945)
Cake baking times http://www.allrecipes.com/ (619)
Pharaohs’ reigns http://www.touregypt.com/ (126)

Note. Data were collected from these Web sites between July and December 2003.

Fig. 2.People’s predictions for various everyday phenomena.The top row of plots shows the empirical distributions of the total duration or extent, ttotal,
for each of these phenomena. The first two distributions are approximately Gaussian, the third and fourth are approximately power-law, and the fifth
and sixth are approximatelyErlang.The bottom row shows participants’ predicted values of ttotal for a single observed sample t of a duration or extent for
each phenomenon. Black dots show the participants’ median predictions of ttotal. Error bars indicate 68% confidence intervals (estimated by a 1,000-
sample bootstrap). Solid lines show the optimal Bayesian predictions based on the empirical prior distributions shown above. Dashed lines show pre-
dictions made by estimating a subjective prior, for the pharaohs and waiting-times stimuli, as explained in the main text. Dotted lines show predictions
based on a fixed uninformative prior (Gott, 1993).
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the observer model (Fig. 3a), we solved for a nonparametric descrip-
tion of the prior distribution and the likelihood width (as a separable
function of speed and contrast) that maximized the probability of the
observed data for each subject (Methods).

The prior distribution recovered for all subjects is maximal at the
lowest stimulus speed tested and decreases monotonically with stimu-
lus speed (Fig. 4). But the shape differs significantly from that of the
Gaussian distribution assumed in previous Bayesian models3,4,15. The

central portion of best fitting prior distributions can be approximated
by a power law function of speed. But all subjects tested showed a
flattening at low speeds, and three of the five subjects showed a
flattening at high speeds (for example, subject 1, Fig. 4). The remaining
two did not show this tendency, at least not over the range of speeds
tested (for example, subject 2, Fig. 4).

For all subjects, the width of the likelihood is roughly constant with
respect to speed (Fig. 4, middle column) when considered in a

logarithmic speed domain, suggesting that a
fixed-width Gaussian in this domain (that is, a
log-Normal distribution) might provide an
adequate functional description (Methods).
The recovered dependence of the likelihood
width on contrast is monotonically decreasing
(Fig. 4, right column). We found that this
relationship may be fit by a simple parametric
function derived from assumptions about
noise and contrast response models of cortical
neurons19 (Methods). This is consistent with
previous findings that the introduction of
contrast saturation improves the ability of a
Bayesian model to fit subjective data15. Note
that the sensitivity of speed perception on
contrast varies from subject to subject.

Comparison of perceptual data and model
To examine how well the fitted Bayesian
observer model accounts for human visual
speed perception, we used the model to gen-
erate predictions of both average perceived
speed and thresholds for speed discrimina-
tion. We compared these to values extracted
directly by fitting a Weibull function to the
psychometric function associated with each
stimulus combination (for each subject, there
are a total of 72 such functions; provided in
Supplementary Fig. 1 online together with
model and Weibull fits). Data for all subjects
show that lower-contrast stimuli appeared to
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Figure 3 Bayesian observer model for 2AFC speed discrimination experiment. (a) On each trial, the observer independently performs an optimal estimate of
the speed of each of the two stimuli based on measurements ð~m1; ~m2Þ. These estimates are passed to a decision stage, which selects the grating with the
higher estimate. Over many trials, the estimates for each stimulus pair will vary due to noise fluctuations in the measurements, and the average response of the
decision stage can be computed using standard methods from signal detection theory (Methods). Plotting this average response as a function of, say, v1, yields
a psychometric function. (b) Illustration depicting the relationship between the model parameters and the psychometric function. The slope of the prior affects
the position of the distribution of estimates and thus influences only the position of the psychometric function. However, the width of the likelihood affects
both the width and the position of the distribution of estimates and thus influences both the position and the slope of the psychometric function.
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Figure 4 Parameters of the Bayesian observer model fitted to perceptual data of two representative
subjects. The extracted prior, p(v), exhibits a much heavier tail than the best-fitting Gaussian distribution
(dash-dotted lines), for both subjects. The speed and contrast dependence of the likelihood width
(g(v) and h(c)) indicate that likelihood is approximately constant in a logarithmic speed domain and
decreases monotonically with contrast in a manner consistent with a simple model for neural response
characteristics (dashed line; Methods). Shaded areas represent the two standard deviation intervals
computed from 30 bootstrapped data sets. Subject 1 was aware of the purpose of the experiment but
subject 2 was not. Among all subjects, subject 2 shows the strongest contrast dependence as well as
the broadest likelihoods.
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A = 28.5-; and reflectance: 2 = j2.6-, A = 24.7-.
Although the average light-prior was to the left of vertical
in all three experiments, none deviated significantly from
0 (shape: t25 = j1.8, p = .07; search: t26 = j0.14, p = .89;
reflectance: t19 = j0.47, p = .64). A single light-prior was
calculated for each observer by averaging across the three
tasks (2 = j5.1-, A = 28.3-), again providing little support
for a leftward bias in the population (t26 = j0.93, p = .36)
especially of the size previously reported (j26- and j16-
by Sun & Perona, 1998, and Mamassian & Goutcher,
2001).
The primary aim of this study was to discover whether

behavior in the three distinct tasks reflects a common
light-prior. Significant correlations were found between
the measured light-priors for the three tasks (Figure 3).
These were shape/search: r = .74, p G .001; shape/
reflectance: r = .55, p = .006; and search/reflectance: r =
.53, p = .008.

Discussion

A strong relationship was found between shape percep-
tion and visual search. We know that three-dimensional
shape is, in general, more readily perceived from vertical
shading gradients than horizontal gradients (Adams et al.,
2004; Curran & Johnston, 1996). Similarly, visual search
is more efficient with vertically shaded objects. However,
what the current study demonstrates is that individuals
deviate substantially from these rules, and that such
deviations reflect a single lighting prior affecting both
shape perception and visual search behavior. In other
words, observers that interpret shading patterns as though
lit from the side when estimating shape also detect targets
more efficiently in a scene that is consistent with side
lighting. This finding strongly supports the notion that
shape (or reflectance derived from shape) is a preattentive
feature and is inconsistent with the notion that visual
search is based on orientation per se, in SFS displays. This
confirms experimental findings from Enns and Rensink
(1990) who found pop-out in displays with a three-
dimensional interpretation but serial search with stimuli
containing similar spatial changes in luminance yet giving
rise to two-dimensional interpretations. Hanazawa and
Komatsu (2001) showed that this preference for overhead
lighting can be seen in the tuning of V4 cell responses to
shaded surfaces under varying illumination directions.
Lee, Yang, Romero, and Mumford (2002) found that weak
neural correlates of pop-out with SFS stimuli in V1 and
stronger correlates in V2 were affected by trained
behavioral relevance. Early processing of cast shadows
has also been observed: Rensink and Cavanagh (2004)
demonstrated that cast shadows can be processed (and
discounted) preattentively, but only in scenes consistent
with overhead lighting.

A novel stimulus (with unambiguous shape) was
developed to measure the effect of assumed light position
on reflectance judgments. Most observers judged reflec-
tance in a way roughly consistent with overhead lighting;
however, a quarter did not appear to use any assumed
directional light source to interpret these stimuli. The
light-from-above prior appears to have a weaker role
when making reflectance rather than shape judgments.
The data may also reflect a greater willingness to abandon
the assumption of surface homogeneity when abrupt rather
than gradual luminance changes are present (compare
Figure 1c with Figure 1a, and for a discussion of abrupt
vs. gradual luminance changes, see Adelson, 2000).
Significant correlations were found between reflectance

and shape judgments and between reflectance and search
behavior, suggesting that all three of the tasks used here
reflect a single light-prior. These latter two correlations
were weaker than the relationship between the search
prior and the shape prior. However, the difference
between the correlation coefficients was not significant
and to some extent reflects the difference in precision with
which the priors could be measured from the data for the
three tasks. To gain a more accurate measure of the

Figure 3. Scatterplots showing the relationship between the light-
priors from the three tasks. Errors give T1 SE from bootstrapping.
The diagonal (dotted line) gives the prediction for identical light-
priors across tasks. The dashed line gives the best-fit for the data,
treating errors in X and Y equally. Observers were excluded from
the correlation calculations if a reliable light-prior estimate could
not be recovered (SE 9 25-, n = 7). Under a conservative
approach of replacing these missing data points by the mean, all
correlations remained significant (shape/search: r = .72, p G .001;
shape/reflectance: r = .49, p = .005; search/reflectance: r = .4,
p = .019).
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best guess of ttotal is simply t plus a constant determined by
the parameter b, as shown in the appendix and illustrated in

Figure 1.
Our experiment compared these ideal Bayesian analyses with

the judgments of a large sample of human participants, exam-

ining whether people’s predictions were sensitive to the distri-
butions of different quantities that arise in everyday contexts.

We used publicly available data to identify the true prior dis-
tributions for several classes of events (the sources of these data

are given in Table 1). For example, as shown in Figure 2, human
life spans and the run time of movies are approximately
Gaussian, the gross of movies and the length of poems are ap-

proximately power-law distributed, and the distributions of the
number of years in office for members of the U.S. House of

Representatives and of the length of the reigns of pharaohs are

approximately Erlang. The experiment examined how well
people’s predictions corresponded to optimal statistical infer-

ence in these different settings.

METHOD

Participants and Procedure
Participants were tested in two groups, with each group making
predictions about five different phenomena. One group of 208
undergraduates made predictions about movie grosses, poem

lengths, life spans, reigns of pharaohs, and lengths of marriages.
A second group of 142 undergraduates made predictions about

movie run times, terms of U.S. representatives, baking times for
cakes, waiting times, and lengths of marriages. The surveys were

TABLE 1

Sources of Data for Estimating Prior Distributions

Data set Source (number of data points)

Movie grosses http://www.worldwideboxoffice.com/ (5,302)
Poem lengths http://www.emule.com/ (1,000)
Life spans http://www.demog.berkeley.edu/wilmoth/mortality/states.html (complete life table)
Movie run times http://www.imdb.com/charts/usboxarchive/ (233 top-10 movies from 1998 through 2003)
U.S. representatives’ terms http://www.bioguide.congress.gov/ (2,150 members since 1945)
Cake baking times http://www.allrecipes.com/ (619)
Pharaohs’ reigns http://www.touregypt.com/ (126)

Note. Data were collected from these Web sites between July and December 2003.

Fig. 2.People’s predictions for various everyday phenomena.The top row of plots shows the empirical distributions of the total duration or extent, ttotal,
for each of these phenomena. The first two distributions are approximately Gaussian, the third and fourth are approximately power-law, and the fifth
and sixth are approximatelyErlang.The bottom row shows participants’ predicted values of ttotal for a single observed sample t of a duration or extent for
each phenomenon. Black dots show the participants’ median predictions of ttotal. Error bars indicate 68% confidence intervals (estimated by a 1,000-
sample bootstrap). Solid lines show the optimal Bayesian predictions based on the empirical prior distributions shown above. Dashed lines show pre-
dictions made by estimating a subjective prior, for the pharaohs and waiting-times stimuli, as explained in the main text. Dotted lines show predictions
based on a fixed uninformative prior (Gott, 1993).
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Figure 4: Task and results for an experiment exploring natural categories of animals using stick
figure stimuli. (A) Screen capture from the experiment, where people make a choice between the
current state of the Markov chain and a proposed state. (B) States of the Markov chain for the subject
when estimating the distribution for giraffes. The nine-dimensional space characterizing the stick
figures is projected onto the two dimensions that best discriminate the different animal distributions
using linear discriminant analysis. Each chain is a different color and the start states of the chains
are indicated by the filled circle. The dotted lines are samples that were discarded to ensure that the
Markov chains had converged, and the solid lines are the samples that were retained. (C) Samples
from distributions associated with all four animals for the subject, projected onto the same plane
used in B. Two samples from each distribution are displayed in the bubbles. The samples capture
the similarities and differences between the four categories of animals, and reveal the variation in
the members of those categories.(D) Mean of the samples for each animal condition.

7

Sanborn & Griffiths, 2008

Adams et al, 2004

the observer model (Fig. 3a), we solved for a nonparametric descrip-
tion of the prior distribution and the likelihood width (as a separable
function of speed and contrast) that maximized the probability of the
observed data for each subject (Methods).

The prior distribution recovered for all subjects is maximal at the
lowest stimulus speed tested and decreases monotonically with stimu-
lus speed (Fig. 4). But the shape differs significantly from that of the
Gaussian distribution assumed in previous Bayesian models3,4,15. The

central portion of best fitting prior distributions can be approximated
by a power law function of speed. But all subjects tested showed a
flattening at low speeds, and three of the five subjects showed a
flattening at high speeds (for example, subject 1, Fig. 4). The remaining
two did not show this tendency, at least not over the range of speeds
tested (for example, subject 2, Fig. 4).

For all subjects, the width of the likelihood is roughly constant with
respect to speed (Fig. 4, middle column) when considered in a

logarithmic speed domain, suggesting that a
fixed-width Gaussian in this domain (that is, a
log-Normal distribution) might provide an
adequate functional description (Methods).
The recovered dependence of the likelihood
width on contrast is monotonically decreasing
(Fig. 4, right column). We found that this
relationship may be fit by a simple parametric
function derived from assumptions about
noise and contrast response models of cortical
neurons19 (Methods). This is consistent with
previous findings that the introduction of
contrast saturation improves the ability of a
Bayesian model to fit subjective data15. Note
that the sensitivity of speed perception on
contrast varies from subject to subject.

Comparison of perceptual data and model
To examine how well the fitted Bayesian
observer model accounts for human visual
speed perception, we used the model to gen-
erate predictions of both average perceived
speed and thresholds for speed discrimina-
tion. We compared these to values extracted
directly by fitting a Weibull function to the
psychometric function associated with each
stimulus combination (for each subject, there
are a total of 72 such functions; provided in
Supplementary Fig. 1 online together with
model and Weibull fits). Data for all subjects
show that lower-contrast stimuli appeared to
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Figure 3 Bayesian observer model for 2AFC speed discrimination experiment. (a) On each trial, the observer independently performs an optimal estimate of
the speed of each of the two stimuli based on measurements ð~m1; ~m2Þ. These estimates are passed to a decision stage, which selects the grating with the
higher estimate. Over many trials, the estimates for each stimulus pair will vary due to noise fluctuations in the measurements, and the average response of the
decision stage can be computed using standard methods from signal detection theory (Methods). Plotting this average response as a function of, say, v1, yields
a psychometric function. (b) Illustration depicting the relationship between the model parameters and the psychometric function. The slope of the prior affects
the position of the distribution of estimates and thus influences only the position of the psychometric function. However, the width of the likelihood affects
both the width and the position of the distribution of estimates and thus influences both the position and the slope of the psychometric function.
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Figure 4 Parameters of the Bayesian observer model fitted to perceptual data of two representative
subjects. The extracted prior, p(v), exhibits a much heavier tail than the best-fitting Gaussian distribution
(dash-dotted lines), for both subjects. The speed and contrast dependence of the likelihood width
(g(v) and h(c)) indicate that likelihood is approximately constant in a logarithmic speed domain and
decreases monotonically with contrast in a manner consistent with a simple model for neural response
characteristics (dashed line; Methods). Shaded areas represent the two standard deviation intervals
computed from 30 bootstrapped data sets. Subject 1 was aware of the purpose of the experiment but
subject 2 was not. Among all subjects, subject 2 shows the strongest contrast dependence as well as
the broadest likelihoods.
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A = 28.5-; and reflectance: 2 = j2.6-, A = 24.7-.
Although the average light-prior was to the left of vertical
in all three experiments, none deviated significantly from
0 (shape: t25 = j1.8, p = .07; search: t26 = j0.14, p = .89;
reflectance: t19 = j0.47, p = .64). A single light-prior was
calculated for each observer by averaging across the three
tasks (2 = j5.1-, A = 28.3-), again providing little support
for a leftward bias in the population (t26 = j0.93, p = .36)
especially of the size previously reported (j26- and j16-
by Sun & Perona, 1998, and Mamassian & Goutcher,
2001).
The primary aim of this study was to discover whether

behavior in the three distinct tasks reflects a common
light-prior. Significant correlations were found between
the measured light-priors for the three tasks (Figure 3).
These were shape/search: r = .74, p G .001; shape/
reflectance: r = .55, p = .006; and search/reflectance: r =
.53, p = .008.

Discussion

A strong relationship was found between shape percep-
tion and visual search. We know that three-dimensional
shape is, in general, more readily perceived from vertical
shading gradients than horizontal gradients (Adams et al.,
2004; Curran & Johnston, 1996). Similarly, visual search
is more efficient with vertically shaded objects. However,
what the current study demonstrates is that individuals
deviate substantially from these rules, and that such
deviations reflect a single lighting prior affecting both
shape perception and visual search behavior. In other
words, observers that interpret shading patterns as though
lit from the side when estimating shape also detect targets
more efficiently in a scene that is consistent with side
lighting. This finding strongly supports the notion that
shape (or reflectance derived from shape) is a preattentive
feature and is inconsistent with the notion that visual
search is based on orientation per se, in SFS displays. This
confirms experimental findings from Enns and Rensink
(1990) who found pop-out in displays with a three-
dimensional interpretation but serial search with stimuli
containing similar spatial changes in luminance yet giving
rise to two-dimensional interpretations. Hanazawa and
Komatsu (2001) showed that this preference for overhead
lighting can be seen in the tuning of V4 cell responses to
shaded surfaces under varying illumination directions.
Lee, Yang, Romero, and Mumford (2002) found that weak
neural correlates of pop-out with SFS stimuli in V1 and
stronger correlates in V2 were affected by trained
behavioral relevance. Early processing of cast shadows
has also been observed: Rensink and Cavanagh (2004)
demonstrated that cast shadows can be processed (and
discounted) preattentively, but only in scenes consistent
with overhead lighting.

A novel stimulus (with unambiguous shape) was
developed to measure the effect of assumed light position
on reflectance judgments. Most observers judged reflec-
tance in a way roughly consistent with overhead lighting;
however, a quarter did not appear to use any assumed
directional light source to interpret these stimuli. The
light-from-above prior appears to have a weaker role
when making reflectance rather than shape judgments.
The data may also reflect a greater willingness to abandon
the assumption of surface homogeneity when abrupt rather
than gradual luminance changes are present (compare
Figure 1c with Figure 1a, and for a discussion of abrupt
vs. gradual luminance changes, see Adelson, 2000).
Significant correlations were found between reflectance

and shape judgments and between reflectance and search
behavior, suggesting that all three of the tasks used here
reflect a single light-prior. These latter two correlations
were weaker than the relationship between the search
prior and the shape prior. However, the difference
between the correlation coefficients was not significant
and to some extent reflects the difference in precision with
which the priors could be measured from the data for the
three tasks. To gain a more accurate measure of the

Figure 3. Scatterplots showing the relationship between the light-
priors from the three tasks. Errors give T1 SE from bootstrapping.
The diagonal (dotted line) gives the prediction for identical light-
priors across tasks. The dashed line gives the best-fit for the data,
treating errors in X and Y equally. Observers were excluded from
the correlation calculations if a reliable light-prior estimate could
not be recovered (SE 9 25-, n = 7). Under a conservative
approach of replacing these missing data points by the mean, all
correlations remained significant (shape/search: r = .72, p G .001;
shape/reflectance: r = .49, p = .005; search/reflectance: r = .4,
p = .019).
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best guess of ttotal is simply t plus a constant determined by
the parameter b, as shown in the appendix and illustrated in

Figure 1.
Our experiment compared these ideal Bayesian analyses with

the judgments of a large sample of human participants, exam-

ining whether people’s predictions were sensitive to the distri-
butions of different quantities that arise in everyday contexts.

We used publicly available data to identify the true prior dis-
tributions for several classes of events (the sources of these data

are given in Table 1). For example, as shown in Figure 2, human
life spans and the run time of movies are approximately
Gaussian, the gross of movies and the length of poems are ap-

proximately power-law distributed, and the distributions of the
number of years in office for members of the U.S. House of

Representatives and of the length of the reigns of pharaohs are

approximately Erlang. The experiment examined how well
people’s predictions corresponded to optimal statistical infer-

ence in these different settings.

METHOD

Participants and Procedure
Participants were tested in two groups, with each group making
predictions about five different phenomena. One group of 208
undergraduates made predictions about movie grosses, poem

lengths, life spans, reigns of pharaohs, and lengths of marriages.
A second group of 142 undergraduates made predictions about

movie run times, terms of U.S. representatives, baking times for
cakes, waiting times, and lengths of marriages. The surveys were

TABLE 1

Sources of Data for Estimating Prior Distributions

Data set Source (number of data points)

Movie grosses http://www.worldwideboxoffice.com/ (5,302)
Poem lengths http://www.emule.com/ (1,000)
Life spans http://www.demog.berkeley.edu/wilmoth/mortality/states.html (complete life table)
Movie run times http://www.imdb.com/charts/usboxarchive/ (233 top-10 movies from 1998 through 2003)
U.S. representatives’ terms http://www.bioguide.congress.gov/ (2,150 members since 1945)
Cake baking times http://www.allrecipes.com/ (619)
Pharaohs’ reigns http://www.touregypt.com/ (126)

Note. Data were collected from these Web sites between July and December 2003.

Fig. 2.People’s predictions for various everyday phenomena.The top row of plots shows the empirical distributions of the total duration or extent, ttotal,
for each of these phenomena. The first two distributions are approximately Gaussian, the third and fourth are approximately power-law, and the fifth
and sixth are approximatelyErlang.The bottom row shows participants’ predicted values of ttotal for a single observed sample t of a duration or extent for
each phenomenon. Black dots show the participants’ median predictions of ttotal. Error bars indicate 68% confidence intervals (estimated by a 1,000-
sample bootstrap). Solid lines show the optimal Bayesian predictions based on the empirical prior distributions shown above. Dashed lines show pre-
dictions made by estimating a subjective prior, for the pharaohs and waiting-times stimuli, as explained in the main text. Dotted lines show predictions
based on a fixed uninformative prior (Gott, 1993).
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Figure 4: Task and results for an experiment exploring natural categories of animals using stick
figure stimuli. (A) Screen capture from the experiment, where people make a choice between the
current state of the Markov chain and a proposed state. (B) States of the Markov chain for the subject
when estimating the distribution for giraffes. The nine-dimensional space characterizing the stick
figures is projected onto the two dimensions that best discriminate the different animal distributions
using linear discriminant analysis. Each chain is a different color and the start states of the chains
are indicated by the filled circle. The dotted lines are samples that were discarded to ensure that the
Markov chains had converged, and the solid lines are the samples that were retained. (C) Samples
from distributions associated with all four animals for the subject, projected onto the same plane
used in B. Two samples from each distribution are displayed in the bubbles. The samples capture
the similarities and differences between the four categories of animals, and reveal the variation in
the members of those categories.(D) Mean of the samples for each animal condition.
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the observer model (Fig. 3a), we solved for a nonparametric descrip-
tion of the prior distribution and the likelihood width (as a separable
function of speed and contrast) that maximized the probability of the
observed data for each subject (Methods).

The prior distribution recovered for all subjects is maximal at the
lowest stimulus speed tested and decreases monotonically with stimu-
lus speed (Fig. 4). But the shape differs significantly from that of the
Gaussian distribution assumed in previous Bayesian models3,4,15. The

central portion of best fitting prior distributions can be approximated
by a power law function of speed. But all subjects tested showed a
flattening at low speeds, and three of the five subjects showed a
flattening at high speeds (for example, subject 1, Fig. 4). The remaining
two did not show this tendency, at least not over the range of speeds
tested (for example, subject 2, Fig. 4).

For all subjects, the width of the likelihood is roughly constant with
respect to speed (Fig. 4, middle column) when considered in a

logarithmic speed domain, suggesting that a
fixed-width Gaussian in this domain (that is, a
log-Normal distribution) might provide an
adequate functional description (Methods).
The recovered dependence of the likelihood
width on contrast is monotonically decreasing
(Fig. 4, right column). We found that this
relationship may be fit by a simple parametric
function derived from assumptions about
noise and contrast response models of cortical
neurons19 (Methods). This is consistent with
previous findings that the introduction of
contrast saturation improves the ability of a
Bayesian model to fit subjective data15. Note
that the sensitivity of speed perception on
contrast varies from subject to subject.

Comparison of perceptual data and model
To examine how well the fitted Bayesian
observer model accounts for human visual
speed perception, we used the model to gen-
erate predictions of both average perceived
speed and thresholds for speed discrimina-
tion. We compared these to values extracted
directly by fitting a Weibull function to the
psychometric function associated with each
stimulus combination (for each subject, there
are a total of 72 such functions; provided in
Supplementary Fig. 1 online together with
model and Weibull fits). Data for all subjects
show that lower-contrast stimuli appeared to
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Figure 3 Bayesian observer model for 2AFC speed discrimination experiment. (a) On each trial, the observer independently performs an optimal estimate of
the speed of each of the two stimuli based on measurements ð~m1; ~m2Þ. These estimates are passed to a decision stage, which selects the grating with the
higher estimate. Over many trials, the estimates for each stimulus pair will vary due to noise fluctuations in the measurements, and the average response of the
decision stage can be computed using standard methods from signal detection theory (Methods). Plotting this average response as a function of, say, v1, yields
a psychometric function. (b) Illustration depicting the relationship between the model parameters and the psychometric function. The slope of the prior affects
the position of the distribution of estimates and thus influences only the position of the psychometric function. However, the width of the likelihood affects
both the width and the position of the distribution of estimates and thus influences both the position and the slope of the psychometric function.
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Figure 4 Parameters of the Bayesian observer model fitted to perceptual data of two representative
subjects. The extracted prior, p(v), exhibits a much heavier tail than the best-fitting Gaussian distribution
(dash-dotted lines), for both subjects. The speed and contrast dependence of the likelihood width
(g(v) and h(c)) indicate that likelihood is approximately constant in a logarithmic speed domain and
decreases monotonically with contrast in a manner consistent with a simple model for neural response
characteristics (dashed line; Methods). Shaded areas represent the two standard deviation intervals
computed from 30 bootstrapped data sets. Subject 1 was aware of the purpose of the experiment but
subject 2 was not. Among all subjects, subject 2 shows the strongest contrast dependence as well as
the broadest likelihoods.
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A = 28.5-; and reflectance: 2 = j2.6-, A = 24.7-.
Although the average light-prior was to the left of vertical
in all three experiments, none deviated significantly from
0 (shape: t25 = j1.8, p = .07; search: t26 = j0.14, p = .89;
reflectance: t19 = j0.47, p = .64). A single light-prior was
calculated for each observer by averaging across the three
tasks (2 = j5.1-, A = 28.3-), again providing little support
for a leftward bias in the population (t26 = j0.93, p = .36)
especially of the size previously reported (j26- and j16-
by Sun & Perona, 1998, and Mamassian & Goutcher,
2001).
The primary aim of this study was to discover whether

behavior in the three distinct tasks reflects a common
light-prior. Significant correlations were found between
the measured light-priors for the three tasks (Figure 3).
These were shape/search: r = .74, p G .001; shape/
reflectance: r = .55, p = .006; and search/reflectance: r =
.53, p = .008.

Discussion

A strong relationship was found between shape percep-
tion and visual search. We know that three-dimensional
shape is, in general, more readily perceived from vertical
shading gradients than horizontal gradients (Adams et al.,
2004; Curran & Johnston, 1996). Similarly, visual search
is more efficient with vertically shaded objects. However,
what the current study demonstrates is that individuals
deviate substantially from these rules, and that such
deviations reflect a single lighting prior affecting both
shape perception and visual search behavior. In other
words, observers that interpret shading patterns as though
lit from the side when estimating shape also detect targets
more efficiently in a scene that is consistent with side
lighting. This finding strongly supports the notion that
shape (or reflectance derived from shape) is a preattentive
feature and is inconsistent with the notion that visual
search is based on orientation per se, in SFS displays. This
confirms experimental findings from Enns and Rensink
(1990) who found pop-out in displays with a three-
dimensional interpretation but serial search with stimuli
containing similar spatial changes in luminance yet giving
rise to two-dimensional interpretations. Hanazawa and
Komatsu (2001) showed that this preference for overhead
lighting can be seen in the tuning of V4 cell responses to
shaded surfaces under varying illumination directions.
Lee, Yang, Romero, and Mumford (2002) found that weak
neural correlates of pop-out with SFS stimuli in V1 and
stronger correlates in V2 were affected by trained
behavioral relevance. Early processing of cast shadows
has also been observed: Rensink and Cavanagh (2004)
demonstrated that cast shadows can be processed (and
discounted) preattentively, but only in scenes consistent
with overhead lighting.

A novel stimulus (with unambiguous shape) was
developed to measure the effect of assumed light position
on reflectance judgments. Most observers judged reflec-
tance in a way roughly consistent with overhead lighting;
however, a quarter did not appear to use any assumed
directional light source to interpret these stimuli. The
light-from-above prior appears to have a weaker role
when making reflectance rather than shape judgments.
The data may also reflect a greater willingness to abandon
the assumption of surface homogeneity when abrupt rather
than gradual luminance changes are present (compare
Figure 1c with Figure 1a, and for a discussion of abrupt
vs. gradual luminance changes, see Adelson, 2000).
Significant correlations were found between reflectance

and shape judgments and between reflectance and search
behavior, suggesting that all three of the tasks used here
reflect a single light-prior. These latter two correlations
were weaker than the relationship between the search
prior and the shape prior. However, the difference
between the correlation coefficients was not significant
and to some extent reflects the difference in precision with
which the priors could be measured from the data for the
three tasks. To gain a more accurate measure of the

Figure 3. Scatterplots showing the relationship between the light-
priors from the three tasks. Errors give T1 SE from bootstrapping.
The diagonal (dotted line) gives the prediction for identical light-
priors across tasks. The dashed line gives the best-fit for the data,
treating errors in X and Y equally. Observers were excluded from
the correlation calculations if a reliable light-prior estimate could
not be recovered (SE 9 25-, n = 7). Under a conservative
approach of replacing these missing data points by the mean, all
correlations remained significant (shape/search: r = .72, p G .001;
shape/reflectance: r = .49, p = .005; search/reflectance: r = .4,
p = .019).
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best guess of ttotal is simply t plus a constant determined by
the parameter b, as shown in the appendix and illustrated in

Figure 1.
Our experiment compared these ideal Bayesian analyses with

the judgments of a large sample of human participants, exam-

ining whether people’s predictions were sensitive to the distri-
butions of different quantities that arise in everyday contexts.

We used publicly available data to identify the true prior dis-
tributions for several classes of events (the sources of these data

are given in Table 1). For example, as shown in Figure 2, human
life spans and the run time of movies are approximately
Gaussian, the gross of movies and the length of poems are ap-

proximately power-law distributed, and the distributions of the
number of years in office for members of the U.S. House of

Representatives and of the length of the reigns of pharaohs are

approximately Erlang. The experiment examined how well
people’s predictions corresponded to optimal statistical infer-

ence in these different settings.

METHOD

Participants and Procedure
Participants were tested in two groups, with each group making
predictions about five different phenomena. One group of 208
undergraduates made predictions about movie grosses, poem

lengths, life spans, reigns of pharaohs, and lengths of marriages.
A second group of 142 undergraduates made predictions about

movie run times, terms of U.S. representatives, baking times for
cakes, waiting times, and lengths of marriages. The surveys were

TABLE 1

Sources of Data for Estimating Prior Distributions

Data set Source (number of data points)

Movie grosses http://www.worldwideboxoffice.com/ (5,302)
Poem lengths http://www.emule.com/ (1,000)
Life spans http://www.demog.berkeley.edu/wilmoth/mortality/states.html (complete life table)
Movie run times http://www.imdb.com/charts/usboxarchive/ (233 top-10 movies from 1998 through 2003)
U.S. representatives’ terms http://www.bioguide.congress.gov/ (2,150 members since 1945)
Cake baking times http://www.allrecipes.com/ (619)
Pharaohs’ reigns http://www.touregypt.com/ (126)

Note. Data were collected from these Web sites between July and December 2003.

Fig. 2.People’s predictions for various everyday phenomena.The top row of plots shows the empirical distributions of the total duration or extent, ttotal,
for each of these phenomena. The first two distributions are approximately Gaussian, the third and fourth are approximately power-law, and the fifth
and sixth are approximatelyErlang.The bottom row shows participants’ predicted values of ttotal for a single observed sample t of a duration or extent for
each phenomenon. Black dots show the participants’ median predictions of ttotal. Error bars indicate 68% confidence intervals (estimated by a 1,000-
sample bootstrap). Solid lines show the optimal Bayesian predictions based on the empirical prior distributions shown above. Dashed lines show pre-
dictions made by estimating a subjective prior, for the pharaohs and waiting-times stimuli, as explained in the main text. Dotted lines show predictions
based on a fixed uninformative prior (Gott, 1993).
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Figure 4: Task and results for an experiment exploring natural categories of animals using stick
figure stimuli. (A) Screen capture from the experiment, where people make a choice between the
current state of the Markov chain and a proposed state. (B) States of the Markov chain for the subject
when estimating the distribution for giraffes. The nine-dimensional space characterizing the stick
figures is projected onto the two dimensions that best discriminate the different animal distributions
using linear discriminant analysis. Each chain is a different color and the start states of the chains
are indicated by the filled circle. The dotted lines are samples that were discarded to ensure that the
Markov chains had converged, and the solid lines are the samples that were retained. (C) Samples
from distributions associated with all four animals for the subject, projected onto the same plane
used in B. Two samples from each distribution are displayed in the bubbles. The samples capture
the similarities and differences between the four categories of animals, and reveal the variation in
the members of those categories.(D) Mean of the samples for each animal condition.
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the observer model (Fig. 3a), we solved for a nonparametric descrip-
tion of the prior distribution and the likelihood width (as a separable
function of speed and contrast) that maximized the probability of the
observed data for each subject (Methods).

The prior distribution recovered for all subjects is maximal at the
lowest stimulus speed tested and decreases monotonically with stimu-
lus speed (Fig. 4). But the shape differs significantly from that of the
Gaussian distribution assumed in previous Bayesian models3,4,15. The

central portion of best fitting prior distributions can be approximated
by a power law function of speed. But all subjects tested showed a
flattening at low speeds, and three of the five subjects showed a
flattening at high speeds (for example, subject 1, Fig. 4). The remaining
two did not show this tendency, at least not over the range of speeds
tested (for example, subject 2, Fig. 4).

For all subjects, the width of the likelihood is roughly constant with
respect to speed (Fig. 4, middle column) when considered in a

logarithmic speed domain, suggesting that a
fixed-width Gaussian in this domain (that is, a
log-Normal distribution) might provide an
adequate functional description (Methods).
The recovered dependence of the likelihood
width on contrast is monotonically decreasing
(Fig. 4, right column). We found that this
relationship may be fit by a simple parametric
function derived from assumptions about
noise and contrast response models of cortical
neurons19 (Methods). This is consistent with
previous findings that the introduction of
contrast saturation improves the ability of a
Bayesian model to fit subjective data15. Note
that the sensitivity of speed perception on
contrast varies from subject to subject.

Comparison of perceptual data and model
To examine how well the fitted Bayesian
observer model accounts for human visual
speed perception, we used the model to gen-
erate predictions of both average perceived
speed and thresholds for speed discrimina-
tion. We compared these to values extracted
directly by fitting a Weibull function to the
psychometric function associated with each
stimulus combination (for each subject, there
are a total of 72 such functions; provided in
Supplementary Fig. 1 online together with
model and Weibull fits). Data for all subjects
show that lower-contrast stimuli appeared to
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Figure 3 Bayesian observer model for 2AFC speed discrimination experiment. (a) On each trial, the observer independently performs an optimal estimate of
the speed of each of the two stimuli based on measurements ð~m1; ~m2Þ. These estimates are passed to a decision stage, which selects the grating with the
higher estimate. Over many trials, the estimates for each stimulus pair will vary due to noise fluctuations in the measurements, and the average response of the
decision stage can be computed using standard methods from signal detection theory (Methods). Plotting this average response as a function of, say, v1, yields
a psychometric function. (b) Illustration depicting the relationship between the model parameters and the psychometric function. The slope of the prior affects
the position of the distribution of estimates and thus influences only the position of the psychometric function. However, the width of the likelihood affects
both the width and the position of the distribution of estimates and thus influences both the position and the slope of the psychometric function.
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Figure 4 Parameters of the Bayesian observer model fitted to perceptual data of two representative
subjects. The extracted prior, p(v), exhibits a much heavier tail than the best-fitting Gaussian distribution
(dash-dotted lines), for both subjects. The speed and contrast dependence of the likelihood width
(g(v) and h(c)) indicate that likelihood is approximately constant in a logarithmic speed domain and
decreases monotonically with contrast in a manner consistent with a simple model for neural response
characteristics (dashed line; Methods). Shaded areas represent the two standard deviation intervals
computed from 30 bootstrapped data sets. Subject 1 was aware of the purpose of the experiment but
subject 2 was not. Among all subjects, subject 2 shows the strongest contrast dependence as well as
the broadest likelihoods.
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A = 28.5-; and reflectance: 2 = j2.6-, A = 24.7-.
Although the average light-prior was to the left of vertical
in all three experiments, none deviated significantly from
0 (shape: t25 = j1.8, p = .07; search: t26 = j0.14, p = .89;
reflectance: t19 = j0.47, p = .64). A single light-prior was
calculated for each observer by averaging across the three
tasks (2 = j5.1-, A = 28.3-), again providing little support
for a leftward bias in the population (t26 = j0.93, p = .36)
especially of the size previously reported (j26- and j16-
by Sun & Perona, 1998, and Mamassian & Goutcher,
2001).
The primary aim of this study was to discover whether

behavior in the three distinct tasks reflects a common
light-prior. Significant correlations were found between
the measured light-priors for the three tasks (Figure 3).
These were shape/search: r = .74, p G .001; shape/
reflectance: r = .55, p = .006; and search/reflectance: r =
.53, p = .008.

Discussion

A strong relationship was found between shape percep-
tion and visual search. We know that three-dimensional
shape is, in general, more readily perceived from vertical
shading gradients than horizontal gradients (Adams et al.,
2004; Curran & Johnston, 1996). Similarly, visual search
is more efficient with vertically shaded objects. However,
what the current study demonstrates is that individuals
deviate substantially from these rules, and that such
deviations reflect a single lighting prior affecting both
shape perception and visual search behavior. In other
words, observers that interpret shading patterns as though
lit from the side when estimating shape also detect targets
more efficiently in a scene that is consistent with side
lighting. This finding strongly supports the notion that
shape (or reflectance derived from shape) is a preattentive
feature and is inconsistent with the notion that visual
search is based on orientation per se, in SFS displays. This
confirms experimental findings from Enns and Rensink
(1990) who found pop-out in displays with a three-
dimensional interpretation but serial search with stimuli
containing similar spatial changes in luminance yet giving
rise to two-dimensional interpretations. Hanazawa and
Komatsu (2001) showed that this preference for overhead
lighting can be seen in the tuning of V4 cell responses to
shaded surfaces under varying illumination directions.
Lee, Yang, Romero, and Mumford (2002) found that weak
neural correlates of pop-out with SFS stimuli in V1 and
stronger correlates in V2 were affected by trained
behavioral relevance. Early processing of cast shadows
has also been observed: Rensink and Cavanagh (2004)
demonstrated that cast shadows can be processed (and
discounted) preattentively, but only in scenes consistent
with overhead lighting.

A novel stimulus (with unambiguous shape) was
developed to measure the effect of assumed light position
on reflectance judgments. Most observers judged reflec-
tance in a way roughly consistent with overhead lighting;
however, a quarter did not appear to use any assumed
directional light source to interpret these stimuli. The
light-from-above prior appears to have a weaker role
when making reflectance rather than shape judgments.
The data may also reflect a greater willingness to abandon
the assumption of surface homogeneity when abrupt rather
than gradual luminance changes are present (compare
Figure 1c with Figure 1a, and for a discussion of abrupt
vs. gradual luminance changes, see Adelson, 2000).
Significant correlations were found between reflectance

and shape judgments and between reflectance and search
behavior, suggesting that all three of the tasks used here
reflect a single light-prior. These latter two correlations
were weaker than the relationship between the search
prior and the shape prior. However, the difference
between the correlation coefficients was not significant
and to some extent reflects the difference in precision with
which the priors could be measured from the data for the
three tasks. To gain a more accurate measure of the

Figure 3. Scatterplots showing the relationship between the light-
priors from the three tasks. Errors give T1 SE from bootstrapping.
The diagonal (dotted line) gives the prediction for identical light-
priors across tasks. The dashed line gives the best-fit for the data,
treating errors in X and Y equally. Observers were excluded from
the correlation calculations if a reliable light-prior estimate could
not be recovered (SE 9 25-, n = 7). Under a conservative
approach of replacing these missing data points by the mean, all
correlations remained significant (shape/search: r = .72, p G .001;
shape/reflectance: r = .49, p = .005; search/reflectance: r = .4,
p = .019).
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best guess of ttotal is simply t plus a constant determined by
the parameter b, as shown in the appendix and illustrated in

Figure 1.
Our experiment compared these ideal Bayesian analyses with

the judgments of a large sample of human participants, exam-

ining whether people’s predictions were sensitive to the distri-
butions of different quantities that arise in everyday contexts.

We used publicly available data to identify the true prior dis-
tributions for several classes of events (the sources of these data

are given in Table 1). For example, as shown in Figure 2, human
life spans and the run time of movies are approximately
Gaussian, the gross of movies and the length of poems are ap-

proximately power-law distributed, and the distributions of the
number of years in office for members of the U.S. House of

Representatives and of the length of the reigns of pharaohs are

approximately Erlang. The experiment examined how well
people’s predictions corresponded to optimal statistical infer-

ence in these different settings.

METHOD

Participants and Procedure
Participants were tested in two groups, with each group making
predictions about five different phenomena. One group of 208
undergraduates made predictions about movie grosses, poem

lengths, life spans, reigns of pharaohs, and lengths of marriages.
A second group of 142 undergraduates made predictions about

movie run times, terms of U.S. representatives, baking times for
cakes, waiting times, and lengths of marriages. The surveys were

TABLE 1

Sources of Data for Estimating Prior Distributions

Data set Source (number of data points)

Movie grosses http://www.worldwideboxoffice.com/ (5,302)
Poem lengths http://www.emule.com/ (1,000)
Life spans http://www.demog.berkeley.edu/wilmoth/mortality/states.html (complete life table)
Movie run times http://www.imdb.com/charts/usboxarchive/ (233 top-10 movies from 1998 through 2003)
U.S. representatives’ terms http://www.bioguide.congress.gov/ (2,150 members since 1945)
Cake baking times http://www.allrecipes.com/ (619)
Pharaohs’ reigns http://www.touregypt.com/ (126)

Note. Data were collected from these Web sites between July and December 2003.

Fig. 2.People’s predictions for various everyday phenomena.The top row of plots shows the empirical distributions of the total duration or extent, ttotal,
for each of these phenomena. The first two distributions are approximately Gaussian, the third and fourth are approximately power-law, and the fifth
and sixth are approximatelyErlang.The bottom row shows participants’ predicted values of ttotal for a single observed sample t of a duration or extent for
each phenomenon. Black dots show the participants’ median predictions of ttotal. Error bars indicate 68% confidence intervals (estimated by a 1,000-
sample bootstrap). Solid lines show the optimal Bayesian predictions based on the empirical prior distributions shown above. Dashed lines show pre-
dictions made by estimating a subjective prior, for the pharaohs and waiting-times stimuli, as explained in the main text. Dotted lines show predictions
based on a fixed uninformative prior (Gott, 1993).
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Figure 4: Task and results for an experiment exploring natural categories of animals using stick
figure stimuli. (A) Screen capture from the experiment, where people make a choice between the
current state of the Markov chain and a proposed state. (B) States of the Markov chain for the subject
when estimating the distribution for giraffes. The nine-dimensional space characterizing the stick
figures is projected onto the two dimensions that best discriminate the different animal distributions
using linear discriminant analysis. Each chain is a different color and the start states of the chains
are indicated by the filled circle. The dotted lines are samples that were discarded to ensure that the
Markov chains had converged, and the solid lines are the samples that were retained. (C) Samples
from distributions associated with all four animals for the subject, projected onto the same plane
used in B. Two samples from each distribution are displayed in the bubbles. The samples capture
the similarities and differences between the four categories of animals, and reveal the variation in
the members of those categories.(D) Mean of the samples for each animal condition.
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the observer model (Fig. 3a), we solved for a nonparametric descrip-
tion of the prior distribution and the likelihood width (as a separable
function of speed and contrast) that maximized the probability of the
observed data for each subject (Methods).

The prior distribution recovered for all subjects is maximal at the
lowest stimulus speed tested and decreases monotonically with stimu-
lus speed (Fig. 4). But the shape differs significantly from that of the
Gaussian distribution assumed in previous Bayesian models3,4,15. The

central portion of best fitting prior distributions can be approximated
by a power law function of speed. But all subjects tested showed a
flattening at low speeds, and three of the five subjects showed a
flattening at high speeds (for example, subject 1, Fig. 4). The remaining
two did not show this tendency, at least not over the range of speeds
tested (for example, subject 2, Fig. 4).

For all subjects, the width of the likelihood is roughly constant with
respect to speed (Fig. 4, middle column) when considered in a

logarithmic speed domain, suggesting that a
fixed-width Gaussian in this domain (that is, a
log-Normal distribution) might provide an
adequate functional description (Methods).
The recovered dependence of the likelihood
width on contrast is monotonically decreasing
(Fig. 4, right column). We found that this
relationship may be fit by a simple parametric
function derived from assumptions about
noise and contrast response models of cortical
neurons19 (Methods). This is consistent with
previous findings that the introduction of
contrast saturation improves the ability of a
Bayesian model to fit subjective data15. Note
that the sensitivity of speed perception on
contrast varies from subject to subject.

Comparison of perceptual data and model
To examine how well the fitted Bayesian
observer model accounts for human visual
speed perception, we used the model to gen-
erate predictions of both average perceived
speed and thresholds for speed discrimina-
tion. We compared these to values extracted
directly by fitting a Weibull function to the
psychometric function associated with each
stimulus combination (for each subject, there
are a total of 72 such functions; provided in
Supplementary Fig. 1 online together with
model and Weibull fits). Data for all subjects
show that lower-contrast stimuli appeared to
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Figure 3 Bayesian observer model for 2AFC speed discrimination experiment. (a) On each trial, the observer independently performs an optimal estimate of
the speed of each of the two stimuli based on measurements ð~m1; ~m2Þ. These estimates are passed to a decision stage, which selects the grating with the
higher estimate. Over many trials, the estimates for each stimulus pair will vary due to noise fluctuations in the measurements, and the average response of the
decision stage can be computed using standard methods from signal detection theory (Methods). Plotting this average response as a function of, say, v1, yields
a psychometric function. (b) Illustration depicting the relationship between the model parameters and the psychometric function. The slope of the prior affects
the position of the distribution of estimates and thus influences only the position of the psychometric function. However, the width of the likelihood affects
both the width and the position of the distribution of estimates and thus influences both the position and the slope of the psychometric function.
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Figure 4 Parameters of the Bayesian observer model fitted to perceptual data of two representative
subjects. The extracted prior, p(v), exhibits a much heavier tail than the best-fitting Gaussian distribution
(dash-dotted lines), for both subjects. The speed and contrast dependence of the likelihood width
(g(v) and h(c)) indicate that likelihood is approximately constant in a logarithmic speed domain and
decreases monotonically with contrast in a manner consistent with a simple model for neural response
characteristics (dashed line; Methods). Shaded areas represent the two standard deviation intervals
computed from 30 bootstrapped data sets. Subject 1 was aware of the purpose of the experiment but
subject 2 was not. Among all subjects, subject 2 shows the strongest contrast dependence as well as
the broadest likelihoods.
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A = 28.5-; and reflectance: 2 = j2.6-, A = 24.7-.
Although the average light-prior was to the left of vertical
in all three experiments, none deviated significantly from
0 (shape: t25 = j1.8, p = .07; search: t26 = j0.14, p = .89;
reflectance: t19 = j0.47, p = .64). A single light-prior was
calculated for each observer by averaging across the three
tasks (2 = j5.1-, A = 28.3-), again providing little support
for a leftward bias in the population (t26 = j0.93, p = .36)
especially of the size previously reported (j26- and j16-
by Sun & Perona, 1998, and Mamassian & Goutcher,
2001).
The primary aim of this study was to discover whether

behavior in the three distinct tasks reflects a common
light-prior. Significant correlations were found between
the measured light-priors for the three tasks (Figure 3).
These were shape/search: r = .74, p G .001; shape/
reflectance: r = .55, p = .006; and search/reflectance: r =
.53, p = .008.

Discussion

A strong relationship was found between shape percep-
tion and visual search. We know that three-dimensional
shape is, in general, more readily perceived from vertical
shading gradients than horizontal gradients (Adams et al.,
2004; Curran & Johnston, 1996). Similarly, visual search
is more efficient with vertically shaded objects. However,
what the current study demonstrates is that individuals
deviate substantially from these rules, and that such
deviations reflect a single lighting prior affecting both
shape perception and visual search behavior. In other
words, observers that interpret shading patterns as though
lit from the side when estimating shape also detect targets
more efficiently in a scene that is consistent with side
lighting. This finding strongly supports the notion that
shape (or reflectance derived from shape) is a preattentive
feature and is inconsistent with the notion that visual
search is based on orientation per se, in SFS displays. This
confirms experimental findings from Enns and Rensink
(1990) who found pop-out in displays with a three-
dimensional interpretation but serial search with stimuli
containing similar spatial changes in luminance yet giving
rise to two-dimensional interpretations. Hanazawa and
Komatsu (2001) showed that this preference for overhead
lighting can be seen in the tuning of V4 cell responses to
shaded surfaces under varying illumination directions.
Lee, Yang, Romero, and Mumford (2002) found that weak
neural correlates of pop-out with SFS stimuli in V1 and
stronger correlates in V2 were affected by trained
behavioral relevance. Early processing of cast shadows
has also been observed: Rensink and Cavanagh (2004)
demonstrated that cast shadows can be processed (and
discounted) preattentively, but only in scenes consistent
with overhead lighting.

A novel stimulus (with unambiguous shape) was
developed to measure the effect of assumed light position
on reflectance judgments. Most observers judged reflec-
tance in a way roughly consistent with overhead lighting;
however, a quarter did not appear to use any assumed
directional light source to interpret these stimuli. The
light-from-above prior appears to have a weaker role
when making reflectance rather than shape judgments.
The data may also reflect a greater willingness to abandon
the assumption of surface homogeneity when abrupt rather
than gradual luminance changes are present (compare
Figure 1c with Figure 1a, and for a discussion of abrupt
vs. gradual luminance changes, see Adelson, 2000).
Significant correlations were found between reflectance

and shape judgments and between reflectance and search
behavior, suggesting that all three of the tasks used here
reflect a single light-prior. These latter two correlations
were weaker than the relationship between the search
prior and the shape prior. However, the difference
between the correlation coefficients was not significant
and to some extent reflects the difference in precision with
which the priors could be measured from the data for the
three tasks. To gain a more accurate measure of the

Figure 3. Scatterplots showing the relationship between the light-
priors from the three tasks. Errors give T1 SE from bootstrapping.
The diagonal (dotted line) gives the prediction for identical light-
priors across tasks. The dashed line gives the best-fit for the data,
treating errors in X and Y equally. Observers were excluded from
the correlation calculations if a reliable light-prior estimate could
not be recovered (SE 9 25-, n = 7). Under a conservative
approach of replacing these missing data points by the mean, all
correlations remained significant (shape/search: r = .72, p G .001;
shape/reflectance: r = .49, p = .005; search/reflectance: r = .4,
p = .019).
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best guess of ttotal is simply t plus a constant determined by
the parameter b, as shown in the appendix and illustrated in

Figure 1.
Our experiment compared these ideal Bayesian analyses with

the judgments of a large sample of human participants, exam-

ining whether people’s predictions were sensitive to the distri-
butions of different quantities that arise in everyday contexts.

We used publicly available data to identify the true prior dis-
tributions for several classes of events (the sources of these data

are given in Table 1). For example, as shown in Figure 2, human
life spans and the run time of movies are approximately
Gaussian, the gross of movies and the length of poems are ap-

proximately power-law distributed, and the distributions of the
number of years in office for members of the U.S. House of

Representatives and of the length of the reigns of pharaohs are

approximately Erlang. The experiment examined how well
people’s predictions corresponded to optimal statistical infer-

ence in these different settings.

METHOD

Participants and Procedure
Participants were tested in two groups, with each group making
predictions about five different phenomena. One group of 208
undergraduates made predictions about movie grosses, poem

lengths, life spans, reigns of pharaohs, and lengths of marriages.
A second group of 142 undergraduates made predictions about

movie run times, terms of U.S. representatives, baking times for
cakes, waiting times, and lengths of marriages. The surveys were

TABLE 1

Sources of Data for Estimating Prior Distributions

Data set Source (number of data points)

Movie grosses http://www.worldwideboxoffice.com/ (5,302)
Poem lengths http://www.emule.com/ (1,000)
Life spans http://www.demog.berkeley.edu/wilmoth/mortality/states.html (complete life table)
Movie run times http://www.imdb.com/charts/usboxarchive/ (233 top-10 movies from 1998 through 2003)
U.S. representatives’ terms http://www.bioguide.congress.gov/ (2,150 members since 1945)
Cake baking times http://www.allrecipes.com/ (619)
Pharaohs’ reigns http://www.touregypt.com/ (126)

Note. Data were collected from these Web sites between July and December 2003.

Fig. 2.People’s predictions for various everyday phenomena.The top row of plots shows the empirical distributions of the total duration or extent, ttotal,
for each of these phenomena. The first two distributions are approximately Gaussian, the third and fourth are approximately power-law, and the fifth
and sixth are approximatelyErlang.The bottom row shows participants’ predicted values of ttotal for a single observed sample t of a duration or extent for
each phenomenon. Black dots show the participants’ median predictions of ttotal. Error bars indicate 68% confidence intervals (estimated by a 1,000-
sample bootstrap). Solid lines show the optimal Bayesian predictions based on the empirical prior distributions shown above. Dashed lines show pre-
dictions made by estimating a subjective prior, for the pharaohs and waiting-times stimuli, as explained in the main text. Dotted lines show predictions
based on a fixed uninformative prior (Gott, 1993).
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Figure 4: Task and results for an experiment exploring natural categories of animals using stick
figure stimuli. (A) Screen capture from the experiment, where people make a choice between the
current state of the Markov chain and a proposed state. (B) States of the Markov chain for the subject
when estimating the distribution for giraffes. The nine-dimensional space characterizing the stick
figures is projected onto the two dimensions that best discriminate the different animal distributions
using linear discriminant analysis. Each chain is a different color and the start states of the chains
are indicated by the filled circle. The dotted lines are samples that were discarded to ensure that the
Markov chains had converged, and the solid lines are the samples that were retained. (C) Samples
from distributions associated with all four animals for the subject, projected onto the same plane
used in B. Two samples from each distribution are displayed in the bubbles. The samples capture
the similarities and differences between the four categories of animals, and reveal the variation in
the members of those categories.(D) Mean of the samples for each animal condition.
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the observer model (Fig. 3a), we solved for a nonparametric descrip-
tion of the prior distribution and the likelihood width (as a separable
function of speed and contrast) that maximized the probability of the
observed data for each subject (Methods).

The prior distribution recovered for all subjects is maximal at the
lowest stimulus speed tested and decreases monotonically with stimu-
lus speed (Fig. 4). But the shape differs significantly from that of the
Gaussian distribution assumed in previous Bayesian models3,4,15. The

central portion of best fitting prior distributions can be approximated
by a power law function of speed. But all subjects tested showed a
flattening at low speeds, and three of the five subjects showed a
flattening at high speeds (for example, subject 1, Fig. 4). The remaining
two did not show this tendency, at least not over the range of speeds
tested (for example, subject 2, Fig. 4).

For all subjects, the width of the likelihood is roughly constant with
respect to speed (Fig. 4, middle column) when considered in a

logarithmic speed domain, suggesting that a
fixed-width Gaussian in this domain (that is, a
log-Normal distribution) might provide an
adequate functional description (Methods).
The recovered dependence of the likelihood
width on contrast is monotonically decreasing
(Fig. 4, right column). We found that this
relationship may be fit by a simple parametric
function derived from assumptions about
noise and contrast response models of cortical
neurons19 (Methods). This is consistent with
previous findings that the introduction of
contrast saturation improves the ability of a
Bayesian model to fit subjective data15. Note
that the sensitivity of speed perception on
contrast varies from subject to subject.

Comparison of perceptual data and model
To examine how well the fitted Bayesian
observer model accounts for human visual
speed perception, we used the model to gen-
erate predictions of both average perceived
speed and thresholds for speed discrimina-
tion. We compared these to values extracted
directly by fitting a Weibull function to the
psychometric function associated with each
stimulus combination (for each subject, there
are a total of 72 such functions; provided in
Supplementary Fig. 1 online together with
model and Weibull fits). Data for all subjects
show that lower-contrast stimuli appeared to
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Figure 3 Bayesian observer model for 2AFC speed discrimination experiment. (a) On each trial, the observer independently performs an optimal estimate of
the speed of each of the two stimuli based on measurements ð~m1; ~m2Þ. These estimates are passed to a decision stage, which selects the grating with the
higher estimate. Over many trials, the estimates for each stimulus pair will vary due to noise fluctuations in the measurements, and the average response of the
decision stage can be computed using standard methods from signal detection theory (Methods). Plotting this average response as a function of, say, v1, yields
a psychometric function. (b) Illustration depicting the relationship between the model parameters and the psychometric function. The slope of the prior affects
the position of the distribution of estimates and thus influences only the position of the psychometric function. However, the width of the likelihood affects
both the width and the position of the distribution of estimates and thus influences both the position and the slope of the psychometric function.
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Figure 4 Parameters of the Bayesian observer model fitted to perceptual data of two representative
subjects. The extracted prior, p(v), exhibits a much heavier tail than the best-fitting Gaussian distribution
(dash-dotted lines), for both subjects. The speed and contrast dependence of the likelihood width
(g(v) and h(c)) indicate that likelihood is approximately constant in a logarithmic speed domain and
decreases monotonically with contrast in a manner consistent with a simple model for neural response
characteristics (dashed line; Methods). Shaded areas represent the two standard deviation intervals
computed from 30 bootstrapped data sets. Subject 1 was aware of the purpose of the experiment but
subject 2 was not. Among all subjects, subject 2 shows the strongest contrast dependence as well as
the broadest likelihoods.
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A = 28.5-; and reflectance: 2 = j2.6-, A = 24.7-.
Although the average light-prior was to the left of vertical
in all three experiments, none deviated significantly from
0 (shape: t25 = j1.8, p = .07; search: t26 = j0.14, p = .89;
reflectance: t19 = j0.47, p = .64). A single light-prior was
calculated for each observer by averaging across the three
tasks (2 = j5.1-, A = 28.3-), again providing little support
for a leftward bias in the population (t26 = j0.93, p = .36)
especially of the size previously reported (j26- and j16-
by Sun & Perona, 1998, and Mamassian & Goutcher,
2001).
The primary aim of this study was to discover whether

behavior in the three distinct tasks reflects a common
light-prior. Significant correlations were found between
the measured light-priors for the three tasks (Figure 3).
These were shape/search: r = .74, p G .001; shape/
reflectance: r = .55, p = .006; and search/reflectance: r =
.53, p = .008.

Discussion

A strong relationship was found between shape percep-
tion and visual search. We know that three-dimensional
shape is, in general, more readily perceived from vertical
shading gradients than horizontal gradients (Adams et al.,
2004; Curran & Johnston, 1996). Similarly, visual search
is more efficient with vertically shaded objects. However,
what the current study demonstrates is that individuals
deviate substantially from these rules, and that such
deviations reflect a single lighting prior affecting both
shape perception and visual search behavior. In other
words, observers that interpret shading patterns as though
lit from the side when estimating shape also detect targets
more efficiently in a scene that is consistent with side
lighting. This finding strongly supports the notion that
shape (or reflectance derived from shape) is a preattentive
feature and is inconsistent with the notion that visual
search is based on orientation per se, in SFS displays. This
confirms experimental findings from Enns and Rensink
(1990) who found pop-out in displays with a three-
dimensional interpretation but serial search with stimuli
containing similar spatial changes in luminance yet giving
rise to two-dimensional interpretations. Hanazawa and
Komatsu (2001) showed that this preference for overhead
lighting can be seen in the tuning of V4 cell responses to
shaded surfaces under varying illumination directions.
Lee, Yang, Romero, and Mumford (2002) found that weak
neural correlates of pop-out with SFS stimuli in V1 and
stronger correlates in V2 were affected by trained
behavioral relevance. Early processing of cast shadows
has also been observed: Rensink and Cavanagh (2004)
demonstrated that cast shadows can be processed (and
discounted) preattentively, but only in scenes consistent
with overhead lighting.

A novel stimulus (with unambiguous shape) was
developed to measure the effect of assumed light position
on reflectance judgments. Most observers judged reflec-
tance in a way roughly consistent with overhead lighting;
however, a quarter did not appear to use any assumed
directional light source to interpret these stimuli. The
light-from-above prior appears to have a weaker role
when making reflectance rather than shape judgments.
The data may also reflect a greater willingness to abandon
the assumption of surface homogeneity when abrupt rather
than gradual luminance changes are present (compare
Figure 1c with Figure 1a, and for a discussion of abrupt
vs. gradual luminance changes, see Adelson, 2000).
Significant correlations were found between reflectance

and shape judgments and between reflectance and search
behavior, suggesting that all three of the tasks used here
reflect a single light-prior. These latter two correlations
were weaker than the relationship between the search
prior and the shape prior. However, the difference
between the correlation coefficients was not significant
and to some extent reflects the difference in precision with
which the priors could be measured from the data for the
three tasks. To gain a more accurate measure of the

Figure 3. Scatterplots showing the relationship between the light-
priors from the three tasks. Errors give T1 SE from bootstrapping.
The diagonal (dotted line) gives the prediction for identical light-
priors across tasks. The dashed line gives the best-fit for the data,
treating errors in X and Y equally. Observers were excluded from
the correlation calculations if a reliable light-prior estimate could
not be recovered (SE 9 25-, n = 7). Under a conservative
approach of replacing these missing data points by the mean, all
correlations remained significant (shape/search: r = .72, p G .001;
shape/reflectance: r = .49, p = .005; search/reflectance: r = .4,
p = .019).
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best guess of ttotal is simply t plus a constant determined by
the parameter b, as shown in the appendix and illustrated in

Figure 1.
Our experiment compared these ideal Bayesian analyses with

the judgments of a large sample of human participants, exam-

ining whether people’s predictions were sensitive to the distri-
butions of different quantities that arise in everyday contexts.

We used publicly available data to identify the true prior dis-
tributions for several classes of events (the sources of these data

are given in Table 1). For example, as shown in Figure 2, human
life spans and the run time of movies are approximately
Gaussian, the gross of movies and the length of poems are ap-

proximately power-law distributed, and the distributions of the
number of years in office for members of the U.S. House of

Representatives and of the length of the reigns of pharaohs are

approximately Erlang. The experiment examined how well
people’s predictions corresponded to optimal statistical infer-

ence in these different settings.

METHOD

Participants and Procedure
Participants were tested in two groups, with each group making
predictions about five different phenomena. One group of 208
undergraduates made predictions about movie grosses, poem

lengths, life spans, reigns of pharaohs, and lengths of marriages.
A second group of 142 undergraduates made predictions about

movie run times, terms of U.S. representatives, baking times for
cakes, waiting times, and lengths of marriages. The surveys were

TABLE 1

Sources of Data for Estimating Prior Distributions

Data set Source (number of data points)

Movie grosses http://www.worldwideboxoffice.com/ (5,302)
Poem lengths http://www.emule.com/ (1,000)
Life spans http://www.demog.berkeley.edu/wilmoth/mortality/states.html (complete life table)
Movie run times http://www.imdb.com/charts/usboxarchive/ (233 top-10 movies from 1998 through 2003)
U.S. representatives’ terms http://www.bioguide.congress.gov/ (2,150 members since 1945)
Cake baking times http://www.allrecipes.com/ (619)
Pharaohs’ reigns http://www.touregypt.com/ (126)

Note. Data were collected from these Web sites between July and December 2003.

Fig. 2.People’s predictions for various everyday phenomena.The top row of plots shows the empirical distributions of the total duration or extent, ttotal,
for each of these phenomena. The first two distributions are approximately Gaussian, the third and fourth are approximately power-law, and the fifth
and sixth are approximatelyErlang.The bottom row shows participants’ predicted values of ttotal for a single observed sample t of a duration or extent for
each phenomenon. Black dots show the participants’ median predictions of ttotal. Error bars indicate 68% confidence intervals (estimated by a 1,000-
sample bootstrap). Solid lines show the optimal Bayesian predictions based on the empirical prior distributions shown above. Dashed lines show pre-
dictions made by estimating a subjective prior, for the pharaohs and waiting-times stimuli, as explained in the main text. Dotted lines show predictions
based on a fixed uninformative prior (Gott, 1993).

Volume 17—Number 9 769

Thomas L. Griffiths and Joshua B. Tenenbaum

Griffiths &  
Tenenbaum, 2006

animal shapes

direction of light visuomotor transformations

speed of visual motion
box office phone  
waiting times

http://www.eng.cam.ac.uk/~m.lengyel


Máté Lengyel  |  A Bayesian approach to internal models http://www.eng.cam.ac.uk/~m.lengyelBME MIT, 22 March 2018

‣ adapted to ‘natural’ statistics

‣ pool data across subjects

‣ simple scalar measures

‣ simple low-level psychophysics

‣ limited to one task

WHAT ARE NATURAL PRIORS LIKE?

 12

Figure 4: Task and results for an experiment exploring natural categories of animals using stick
figure stimuli. (A) Screen capture from the experiment, where people make a choice between the
current state of the Markov chain and a proposed state. (B) States of the Markov chain for the subject
when estimating the distribution for giraffes. The nine-dimensional space characterizing the stick
figures is projected onto the two dimensions that best discriminate the different animal distributions
using linear discriminant analysis. Each chain is a different color and the start states of the chains
are indicated by the filled circle. The dotted lines are samples that were discarded to ensure that the
Markov chains had converged, and the solid lines are the samples that were retained. (C) Samples
from distributions associated with all four animals for the subject, projected onto the same plane
used in B. Two samples from each distribution are displayed in the bubbles. The samples capture
the similarities and differences between the four categories of animals, and reveal the variation in
the members of those categories.(D) Mean of the samples for each animal condition.
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the observer model (Fig. 3a), we solved for a nonparametric descrip-
tion of the prior distribution and the likelihood width (as a separable
function of speed and contrast) that maximized the probability of the
observed data for each subject (Methods).

The prior distribution recovered for all subjects is maximal at the
lowest stimulus speed tested and decreases monotonically with stimu-
lus speed (Fig. 4). But the shape differs significantly from that of the
Gaussian distribution assumed in previous Bayesian models3,4,15. The

central portion of best fitting prior distributions can be approximated
by a power law function of speed. But all subjects tested showed a
flattening at low speeds, and three of the five subjects showed a
flattening at high speeds (for example, subject 1, Fig. 4). The remaining
two did not show this tendency, at least not over the range of speeds
tested (for example, subject 2, Fig. 4).

For all subjects, the width of the likelihood is roughly constant with
respect to speed (Fig. 4, middle column) when considered in a

logarithmic speed domain, suggesting that a
fixed-width Gaussian in this domain (that is, a
log-Normal distribution) might provide an
adequate functional description (Methods).
The recovered dependence of the likelihood
width on contrast is monotonically decreasing
(Fig. 4, right column). We found that this
relationship may be fit by a simple parametric
function derived from assumptions about
noise and contrast response models of cortical
neurons19 (Methods). This is consistent with
previous findings that the introduction of
contrast saturation improves the ability of a
Bayesian model to fit subjective data15. Note
that the sensitivity of speed perception on
contrast varies from subject to subject.

Comparison of perceptual data and model
To examine how well the fitted Bayesian
observer model accounts for human visual
speed perception, we used the model to gen-
erate predictions of both average perceived
speed and thresholds for speed discrimina-
tion. We compared these to values extracted
directly by fitting a Weibull function to the
psychometric function associated with each
stimulus combination (for each subject, there
are a total of 72 such functions; provided in
Supplementary Fig. 1 online together with
model and Weibull fits). Data for all subjects
show that lower-contrast stimuli appeared to
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Figure 3 Bayesian observer model for 2AFC speed discrimination experiment. (a) On each trial, the observer independently performs an optimal estimate of
the speed of each of the two stimuli based on measurements ð~m1; ~m2Þ. These estimates are passed to a decision stage, which selects the grating with the
higher estimate. Over many trials, the estimates for each stimulus pair will vary due to noise fluctuations in the measurements, and the average response of the
decision stage can be computed using standard methods from signal detection theory (Methods). Plotting this average response as a function of, say, v1, yields
a psychometric function. (b) Illustration depicting the relationship between the model parameters and the psychometric function. The slope of the prior affects
the position of the distribution of estimates and thus influences only the position of the psychometric function. However, the width of the likelihood affects
both the width and the position of the distribution of estimates and thus influences both the position and the slope of the psychometric function.
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Figure 4 Parameters of the Bayesian observer model fitted to perceptual data of two representative
subjects. The extracted prior, p(v), exhibits a much heavier tail than the best-fitting Gaussian distribution
(dash-dotted lines), for both subjects. The speed and contrast dependence of the likelihood width
(g(v) and h(c)) indicate that likelihood is approximately constant in a logarithmic speed domain and
decreases monotonically with contrast in a manner consistent with a simple model for neural response
characteristics (dashed line; Methods). Shaded areas represent the two standard deviation intervals
computed from 30 bootstrapped data sets. Subject 1 was aware of the purpose of the experiment but
subject 2 was not. Among all subjects, subject 2 shows the strongest contrast dependence as well as
the broadest likelihoods.
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A = 28.5-; and reflectance: 2 = j2.6-, A = 24.7-.
Although the average light-prior was to the left of vertical
in all three experiments, none deviated significantly from
0 (shape: t25 = j1.8, p = .07; search: t26 = j0.14, p = .89;
reflectance: t19 = j0.47, p = .64). A single light-prior was
calculated for each observer by averaging across the three
tasks (2 = j5.1-, A = 28.3-), again providing little support
for a leftward bias in the population (t26 = j0.93, p = .36)
especially of the size previously reported (j26- and j16-
by Sun & Perona, 1998, and Mamassian & Goutcher,
2001).
The primary aim of this study was to discover whether

behavior in the three distinct tasks reflects a common
light-prior. Significant correlations were found between
the measured light-priors for the three tasks (Figure 3).
These were shape/search: r = .74, p G .001; shape/
reflectance: r = .55, p = .006; and search/reflectance: r =
.53, p = .008.

Discussion

A strong relationship was found between shape percep-
tion and visual search. We know that three-dimensional
shape is, in general, more readily perceived from vertical
shading gradients than horizontal gradients (Adams et al.,
2004; Curran & Johnston, 1996). Similarly, visual search
is more efficient with vertically shaded objects. However,
what the current study demonstrates is that individuals
deviate substantially from these rules, and that such
deviations reflect a single lighting prior affecting both
shape perception and visual search behavior. In other
words, observers that interpret shading patterns as though
lit from the side when estimating shape also detect targets
more efficiently in a scene that is consistent with side
lighting. This finding strongly supports the notion that
shape (or reflectance derived from shape) is a preattentive
feature and is inconsistent with the notion that visual
search is based on orientation per se, in SFS displays. This
confirms experimental findings from Enns and Rensink
(1990) who found pop-out in displays with a three-
dimensional interpretation but serial search with stimuli
containing similar spatial changes in luminance yet giving
rise to two-dimensional interpretations. Hanazawa and
Komatsu (2001) showed that this preference for overhead
lighting can be seen in the tuning of V4 cell responses to
shaded surfaces under varying illumination directions.
Lee, Yang, Romero, and Mumford (2002) found that weak
neural correlates of pop-out with SFS stimuli in V1 and
stronger correlates in V2 were affected by trained
behavioral relevance. Early processing of cast shadows
has also been observed: Rensink and Cavanagh (2004)
demonstrated that cast shadows can be processed (and
discounted) preattentively, but only in scenes consistent
with overhead lighting.

A novel stimulus (with unambiguous shape) was
developed to measure the effect of assumed light position
on reflectance judgments. Most observers judged reflec-
tance in a way roughly consistent with overhead lighting;
however, a quarter did not appear to use any assumed
directional light source to interpret these stimuli. The
light-from-above prior appears to have a weaker role
when making reflectance rather than shape judgments.
The data may also reflect a greater willingness to abandon
the assumption of surface homogeneity when abrupt rather
than gradual luminance changes are present (compare
Figure 1c with Figure 1a, and for a discussion of abrupt
vs. gradual luminance changes, see Adelson, 2000).
Significant correlations were found between reflectance

and shape judgments and between reflectance and search
behavior, suggesting that all three of the tasks used here
reflect a single light-prior. These latter two correlations
were weaker than the relationship between the search
prior and the shape prior. However, the difference
between the correlation coefficients was not significant
and to some extent reflects the difference in precision with
which the priors could be measured from the data for the
three tasks. To gain a more accurate measure of the

Figure 3. Scatterplots showing the relationship between the light-
priors from the three tasks. Errors give T1 SE from bootstrapping.
The diagonal (dotted line) gives the prediction for identical light-
priors across tasks. The dashed line gives the best-fit for the data,
treating errors in X and Y equally. Observers were excluded from
the correlation calculations if a reliable light-prior estimate could
not be recovered (SE 9 25-, n = 7). Under a conservative
approach of replacing these missing data points by the mean, all
correlations remained significant (shape/search: r = .72, p G .001;
shape/reflectance: r = .49, p = .005; search/reflectance: r = .4,
p = .019).
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best guess of ttotal is simply t plus a constant determined by
the parameter b, as shown in the appendix and illustrated in

Figure 1.
Our experiment compared these ideal Bayesian analyses with

the judgments of a large sample of human participants, exam-

ining whether people’s predictions were sensitive to the distri-
butions of different quantities that arise in everyday contexts.

We used publicly available data to identify the true prior dis-
tributions for several classes of events (the sources of these data

are given in Table 1). For example, as shown in Figure 2, human
life spans and the run time of movies are approximately
Gaussian, the gross of movies and the length of poems are ap-

proximately power-law distributed, and the distributions of the
number of years in office for members of the U.S. House of

Representatives and of the length of the reigns of pharaohs are

approximately Erlang. The experiment examined how well
people’s predictions corresponded to optimal statistical infer-

ence in these different settings.

METHOD

Participants and Procedure
Participants were tested in two groups, with each group making
predictions about five different phenomena. One group of 208
undergraduates made predictions about movie grosses, poem

lengths, life spans, reigns of pharaohs, and lengths of marriages.
A second group of 142 undergraduates made predictions about

movie run times, terms of U.S. representatives, baking times for
cakes, waiting times, and lengths of marriages. The surveys were

TABLE 1

Sources of Data for Estimating Prior Distributions

Data set Source (number of data points)

Movie grosses http://www.worldwideboxoffice.com/ (5,302)
Poem lengths http://www.emule.com/ (1,000)
Life spans http://www.demog.berkeley.edu/wilmoth/mortality/states.html (complete life table)
Movie run times http://www.imdb.com/charts/usboxarchive/ (233 top-10 movies from 1998 through 2003)
U.S. representatives’ terms http://www.bioguide.congress.gov/ (2,150 members since 1945)
Cake baking times http://www.allrecipes.com/ (619)
Pharaohs’ reigns http://www.touregypt.com/ (126)

Note. Data were collected from these Web sites between July and December 2003.

Fig. 2.People’s predictions for various everyday phenomena.The top row of plots shows the empirical distributions of the total duration or extent, ttotal,
for each of these phenomena. The first two distributions are approximately Gaussian, the third and fourth are approximately power-law, and the fifth
and sixth are approximatelyErlang.The bottom row shows participants’ predicted values of ttotal for a single observed sample t of a duration or extent for
each phenomenon. Black dots show the participants’ median predictions of ttotal. Error bars indicate 68% confidence intervals (estimated by a 1,000-
sample bootstrap). Solid lines show the optimal Bayesian predictions based on the empirical prior distributions shown above. Dashed lines show pre-
dictions made by estimating a subjective prior, for the pharaohs and waiting-times stimuli, as explained in the main text. Dotted lines show predictions
based on a fixed uninformative prior (Gott, 1993).
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Figure 4: Task and results for an experiment exploring natural categories of animals using stick
figure stimuli. (A) Screen capture from the experiment, where people make a choice between the
current state of the Markov chain and a proposed state. (B) States of the Markov chain for the subject
when estimating the distribution for giraffes. The nine-dimensional space characterizing the stick
figures is projected onto the two dimensions that best discriminate the different animal distributions
using linear discriminant analysis. Each chain is a different color and the start states of the chains
are indicated by the filled circle. The dotted lines are samples that were discarded to ensure that the
Markov chains had converged, and the solid lines are the samples that were retained. (C) Samples
from distributions associated with all four animals for the subject, projected onto the same plane
used in B. Two samples from each distribution are displayed in the bubbles. The samples capture
the similarities and differences between the four categories of animals, and reveal the variation in
the members of those categories.(D) Mean of the samples for each animal condition.
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the observer model (Fig. 3a), we solved for a nonparametric descrip-
tion of the prior distribution and the likelihood width (as a separable
function of speed and contrast) that maximized the probability of the
observed data for each subject (Methods).

The prior distribution recovered for all subjects is maximal at the
lowest stimulus speed tested and decreases monotonically with stimu-
lus speed (Fig. 4). But the shape differs significantly from that of the
Gaussian distribution assumed in previous Bayesian models3,4,15. The

central portion of best fitting prior distributions can be approximated
by a power law function of speed. But all subjects tested showed a
flattening at low speeds, and three of the five subjects showed a
flattening at high speeds (for example, subject 1, Fig. 4). The remaining
two did not show this tendency, at least not over the range of speeds
tested (for example, subject 2, Fig. 4).

For all subjects, the width of the likelihood is roughly constant with
respect to speed (Fig. 4, middle column) when considered in a

logarithmic speed domain, suggesting that a
fixed-width Gaussian in this domain (that is, a
log-Normal distribution) might provide an
adequate functional description (Methods).
The recovered dependence of the likelihood
width on contrast is monotonically decreasing
(Fig. 4, right column). We found that this
relationship may be fit by a simple parametric
function derived from assumptions about
noise and contrast response models of cortical
neurons19 (Methods). This is consistent with
previous findings that the introduction of
contrast saturation improves the ability of a
Bayesian model to fit subjective data15. Note
that the sensitivity of speed perception on
contrast varies from subject to subject.

Comparison of perceptual data and model
To examine how well the fitted Bayesian
observer model accounts for human visual
speed perception, we used the model to gen-
erate predictions of both average perceived
speed and thresholds for speed discrimina-
tion. We compared these to values extracted
directly by fitting a Weibull function to the
psychometric function associated with each
stimulus combination (for each subject, there
are a total of 72 such functions; provided in
Supplementary Fig. 1 online together with
model and Weibull fits). Data for all subjects
show that lower-contrast stimuli appeared to
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Figure 3 Bayesian observer model for 2AFC speed discrimination experiment. (a) On each trial, the observer independently performs an optimal estimate of
the speed of each of the two stimuli based on measurements ð~m1; ~m2Þ. These estimates are passed to a decision stage, which selects the grating with the
higher estimate. Over many trials, the estimates for each stimulus pair will vary due to noise fluctuations in the measurements, and the average response of the
decision stage can be computed using standard methods from signal detection theory (Methods). Plotting this average response as a function of, say, v1, yields
a psychometric function. (b) Illustration depicting the relationship between the model parameters and the psychometric function. The slope of the prior affects
the position of the distribution of estimates and thus influences only the position of the psychometric function. However, the width of the likelihood affects
both the width and the position of the distribution of estimates and thus influences both the position and the slope of the psychometric function.
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Figure 4 Parameters of the Bayesian observer model fitted to perceptual data of two representative
subjects. The extracted prior, p(v), exhibits a much heavier tail than the best-fitting Gaussian distribution
(dash-dotted lines), for both subjects. The speed and contrast dependence of the likelihood width
(g(v) and h(c)) indicate that likelihood is approximately constant in a logarithmic speed domain and
decreases monotonically with contrast in a manner consistent with a simple model for neural response
characteristics (dashed line; Methods). Shaded areas represent the two standard deviation intervals
computed from 30 bootstrapped data sets. Subject 1 was aware of the purpose of the experiment but
subject 2 was not. Among all subjects, subject 2 shows the strongest contrast dependence as well as
the broadest likelihoods.
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A = 28.5-; and reflectance: 2 = j2.6-, A = 24.7-.
Although the average light-prior was to the left of vertical
in all three experiments, none deviated significantly from
0 (shape: t25 = j1.8, p = .07; search: t26 = j0.14, p = .89;
reflectance: t19 = j0.47, p = .64). A single light-prior was
calculated for each observer by averaging across the three
tasks (2 = j5.1-, A = 28.3-), again providing little support
for a leftward bias in the population (t26 = j0.93, p = .36)
especially of the size previously reported (j26- and j16-
by Sun & Perona, 1998, and Mamassian & Goutcher,
2001).
The primary aim of this study was to discover whether

behavior in the three distinct tasks reflects a common
light-prior. Significant correlations were found between
the measured light-priors for the three tasks (Figure 3).
These were shape/search: r = .74, p G .001; shape/
reflectance: r = .55, p = .006; and search/reflectance: r =
.53, p = .008.

Discussion

A strong relationship was found between shape percep-
tion and visual search. We know that three-dimensional
shape is, in general, more readily perceived from vertical
shading gradients than horizontal gradients (Adams et al.,
2004; Curran & Johnston, 1996). Similarly, visual search
is more efficient with vertically shaded objects. However,
what the current study demonstrates is that individuals
deviate substantially from these rules, and that such
deviations reflect a single lighting prior affecting both
shape perception and visual search behavior. In other
words, observers that interpret shading patterns as though
lit from the side when estimating shape also detect targets
more efficiently in a scene that is consistent with side
lighting. This finding strongly supports the notion that
shape (or reflectance derived from shape) is a preattentive
feature and is inconsistent with the notion that visual
search is based on orientation per se, in SFS displays. This
confirms experimental findings from Enns and Rensink
(1990) who found pop-out in displays with a three-
dimensional interpretation but serial search with stimuli
containing similar spatial changes in luminance yet giving
rise to two-dimensional interpretations. Hanazawa and
Komatsu (2001) showed that this preference for overhead
lighting can be seen in the tuning of V4 cell responses to
shaded surfaces under varying illumination directions.
Lee, Yang, Romero, and Mumford (2002) found that weak
neural correlates of pop-out with SFS stimuli in V1 and
stronger correlates in V2 were affected by trained
behavioral relevance. Early processing of cast shadows
has also been observed: Rensink and Cavanagh (2004)
demonstrated that cast shadows can be processed (and
discounted) preattentively, but only in scenes consistent
with overhead lighting.

A novel stimulus (with unambiguous shape) was
developed to measure the effect of assumed light position
on reflectance judgments. Most observers judged reflec-
tance in a way roughly consistent with overhead lighting;
however, a quarter did not appear to use any assumed
directional light source to interpret these stimuli. The
light-from-above prior appears to have a weaker role
when making reflectance rather than shape judgments.
The data may also reflect a greater willingness to abandon
the assumption of surface homogeneity when abrupt rather
than gradual luminance changes are present (compare
Figure 1c with Figure 1a, and for a discussion of abrupt
vs. gradual luminance changes, see Adelson, 2000).
Significant correlations were found between reflectance

and shape judgments and between reflectance and search
behavior, suggesting that all three of the tasks used here
reflect a single light-prior. These latter two correlations
were weaker than the relationship between the search
prior and the shape prior. However, the difference
between the correlation coefficients was not significant
and to some extent reflects the difference in precision with
which the priors could be measured from the data for the
three tasks. To gain a more accurate measure of the

Figure 3. Scatterplots showing the relationship between the light-
priors from the three tasks. Errors give T1 SE from bootstrapping.
The diagonal (dotted line) gives the prediction for identical light-
priors across tasks. The dashed line gives the best-fit for the data,
treating errors in X and Y equally. Observers were excluded from
the correlation calculations if a reliable light-prior estimate could
not be recovered (SE 9 25-, n = 7). Under a conservative
approach of replacing these missing data points by the mean, all
correlations remained significant (shape/search: r = .72, p G .001;
shape/reflectance: r = .49, p = .005; search/reflectance: r = .4,
p = .019).

Journal of Vision (2007) 7(11):11, 1–7 Adams 4

Adams, 2007

best guess of ttotal is simply t plus a constant determined by
the parameter b, as shown in the appendix and illustrated in

Figure 1.
Our experiment compared these ideal Bayesian analyses with

the judgments of a large sample of human participants, exam-

ining whether people’s predictions were sensitive to the distri-
butions of different quantities that arise in everyday contexts.

We used publicly available data to identify the true prior dis-
tributions for several classes of events (the sources of these data

are given in Table 1). For example, as shown in Figure 2, human
life spans and the run time of movies are approximately
Gaussian, the gross of movies and the length of poems are ap-

proximately power-law distributed, and the distributions of the
number of years in office for members of the U.S. House of

Representatives and of the length of the reigns of pharaohs are

approximately Erlang. The experiment examined how well
people’s predictions corresponded to optimal statistical infer-

ence in these different settings.

METHOD

Participants and Procedure
Participants were tested in two groups, with each group making
predictions about five different phenomena. One group of 208
undergraduates made predictions about movie grosses, poem

lengths, life spans, reigns of pharaohs, and lengths of marriages.
A second group of 142 undergraduates made predictions about

movie run times, terms of U.S. representatives, baking times for
cakes, waiting times, and lengths of marriages. The surveys were

TABLE 1

Sources of Data for Estimating Prior Distributions

Data set Source (number of data points)

Movie grosses http://www.worldwideboxoffice.com/ (5,302)
Poem lengths http://www.emule.com/ (1,000)
Life spans http://www.demog.berkeley.edu/wilmoth/mortality/states.html (complete life table)
Movie run times http://www.imdb.com/charts/usboxarchive/ (233 top-10 movies from 1998 through 2003)
U.S. representatives’ terms http://www.bioguide.congress.gov/ (2,150 members since 1945)
Cake baking times http://www.allrecipes.com/ (619)
Pharaohs’ reigns http://www.touregypt.com/ (126)

Note. Data were collected from these Web sites between July and December 2003.

Fig. 2.People’s predictions for various everyday phenomena.The top row of plots shows the empirical distributions of the total duration or extent, ttotal,
for each of these phenomena. The first two distributions are approximately Gaussian, the third and fourth are approximately power-law, and the fifth
and sixth are approximatelyErlang.The bottom row shows participants’ predicted values of ttotal for a single observed sample t of a duration or extent for
each phenomenon. Black dots show the participants’ median predictions of ttotal. Error bars indicate 68% confidence intervals (estimated by a 1,000-
sample bootstrap). Solid lines show the optimal Bayesian predictions based on the empirical prior distributions shown above. Dashed lines show pre-
dictions made by estimating a subjective prior, for the pharaohs and waiting-times stimuli, as explained in the main text. Dotted lines show predictions
based on a fixed uninformative prior (Gott, 1993).
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how do humans learn a statistical model of their environment?

• associative learning (fitting 2nd order max-entropy model)
• Bayesian model selection (inferring hidden causal structure)
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the pen (Fig. 3A, ii). To construct a new character
type, first themodel samples the number of parts
k and the number of subparts ni, for each part
i = 1, ..., k, from their empirical distributions as

measured from the background set. Second, a
template for a part Si is constructed by sampling
subparts from a set of discrete primitive actions
learned from the background set (Fig. 3A, i),

such that the probability of the next action
depends on the previous. Third, parts are then
grounded as parameterized curves (splines) by
sampling the control points and scale parameters

1334 11 DECEMBER 2015 • VOL 350 ISSUE 6266 sciencemag.org SCIENCE

Fig. 3. A generative model of handwritten characters. (A) New types are generated by choosing primitive actions (color coded) from a library (i),
combining these subparts (ii) to make parts (iii), and combining parts with relations to define simple programs (iv). New tokens are generated by running
these programs (v), which are then rendered as raw data (vi). (B) Pseudocode for generating new types y and new token images I(m) for m = 1, ..., M. The
function f (·, ·) transforms a subpart sequence and start location into a trajectory.

Human parses Machine parsesHuman drawings

-505 -593 -655 -695 -723

-1794-646 -1276

Training item with model’s five best parses

Test items

 

1 2 3 4 5stroke order:

Fig. 4. Inferringmotor programs from images. Parts are distinguished
by color, with a colored dot indicating the beginning of a stroke and an
arrowhead indicating the end. (A) The top row shows the five best pro-
grams discovered for an image along with their log-probability scores
(Eq. 1). Subpart breaks are shown as black dots. For classification, each
program was refit to three new test images (left in image triplets), and
the best-fitting parse (top right) is shown with its image reconstruction
(bottom right) and classification score (log posterior predictive probability).
The correctly matching test item receives a much higher classification
score and is also more cleanly reconstructed by the best programs induced
from the training item. (B) Nine human drawings of three characters
(left) are shown with their ground truth parses (middle) and best model
parses (right).
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Human-level concept learning
through probabilistic
program induction
Brenden M. Lake,1* Ruslan Salakhutdinov,2 Joshua B. Tenenbaum3

People learning new concepts can often generalize successfully from just a single example,
yet machine learning algorithms typically require tens or hundreds of examples to
perform with similar accuracy. People can also use learned concepts in richer ways than
conventional algorithms—for action, imagination, and explanation. We present a
computational model that captures these human learning abilities for a large class of
simple visual concepts: handwritten characters from the world’s alphabets. The model
represents concepts as simple programs that best explain observed examples under a
Bayesian criterion. On a challenging one-shot classification task, the model achieves
human-level performance while outperforming recent deep learning approaches. We also
present several “visual Turing tests” probing the model’s creative generalization abilities,
which in many cases are indistinguishable from human behavior.

D
espite remarkable advances in artificial
intelligence and machine learning, two
aspects of human conceptual knowledge
have eluded machine systems. First, for
most interesting kinds of natural andman-

made categories, people can learn a new concept

from just one or a handful of examples, whereas
standard algorithms in machine learning require
tens or hundreds of examples to perform simi-
larly. For instance, people may only need to see
one example of a novel two-wheeled vehicle
(Fig. 1A) in order to grasp the boundaries of the

new concept, and even children canmake mean-
ingful generalizations via “one-shot learning”
(1–3). In contrast, many of the leading approaches
inmachine learning are also themost data-hungry,
especially “deep learning” models that have
achieved new levels of performance on object
and speech recognition benchmarks (4–9). Sec-
ond, people learn richer representations than
machines do, even for simple concepts (Fig. 1B),
using them for a wider range of functions, in-
cluding (Fig. 1, ii) creating new exemplars (10),
(Fig. 1, iii) parsing objects into parts and rela-
tions (11), and (Fig. 1, iv) creating new abstract
categories of objects based on existing categories
(12, 13). In contrast, the best machine classifiers
do not perform these additional functions, which
are rarely studied and usually require special-
ized algorithms. A central challenge is to ex-
plain these two aspects of human-level concept
learning: How do people learn new concepts
from just one or a few examples? And how do
people learn such abstract, rich, and flexible rep-
resentations? An even greater challenge arises
when putting them together: How can learning
succeed from such sparse data yet also produce
such rich representations? For any theory of

RESEARCH

1332 11 DECEMBER 2015 • VOL 350 ISSUE 6266 sciencemag.org SCIENCE

1Center for Data Science, New York University, 726
Broadway, New York, NY 10003, USA. 2Department of
Computer Science and Department of Statistics, University
of Toronto, 6 King’s College Road, Toronto, ON M5S 3G4,
Canada. 3Department of Brain and Cognitive Sciences,
Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, MA 02139, USA.
*Corresponding author. E-mail: brenden@nyu.edu

Fig. 1. People can learn rich concepts from limited data. (A and B) A single example of a new concept (red boxes) can be enough information to support
the (i) classification of new examples, (ii) generation of new examples, (iii) parsing an object into parts and relations (parts segmented by color), and (iv)
generation of new concepts from related concepts. [Image credit for (A), iv, bottom: With permission from Glenn Roberts and Motorcycle Mojo Magazine]
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(12, 13). In contrast, the best machine classifiers
do not perform these additional functions, which
are rarely studied and usually require special-
ized algorithms. A central challenge is to ex-
plain these two aspects of human-level concept
learning: How do people learn new concepts
from just one or a few examples? And how do
people learn such abstract, rich, and flexible rep-
resentations? An even greater challenge arises
when putting them together: How can learning
succeed from such sparse data yet also produce
such rich representations? For any theory of
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Fig. 1. People can learn rich concepts from limited data. (A and B) A single example of a new concept (red boxes) can be enough information to support
the (i) classification of new examples, (ii) generation of new examples, (iii) parsing an object into parts and relations (parts segmented by color), and (iv)
generation of new concepts from related concepts. [Image credit for (A), iv, bottom: With permission from Glenn Roberts and Motorcycle Mojo Magazine]
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conditions of the visual Turing test, examining
the necessity of key model ingredients in BPL.
Two lesions, learning to learn (token-level only)
and compositionality, resulted in significantly
easier Turing test tasks (80% ID level with 17 of 19
judges above chance and 65% with 14 of 26, re-
spectively), indicating that this task is a nontrivial
one to pass and that these two principles each
contribute to BPL’s human-like generative profi-
ciency. To evaluate parsing more directly (Fig. 4B),
we ran a dynamic version of this task with a dif-
ferent set of judges (N = 143), where each trial
showed paired movies of a person and BPL draw-
ing the same character. BPL performance on this
visual Turing test was not perfect (59% average
ID level; new exemplars (dynamic) in Fig. 6B),
although randomizing the learned prior on stroke
order and direction significantly raises the ID level
(71%), showing the importance of capturing the
right causal dynamics for BPL.
Although learning to learn new characters from

30 background alphabets proved effective, many
human learners will have much less experience:
perhaps familiarity with only one or a few alpha-
bets, along with related drawing tasks. To see
how themodels performwithmore limited expe-
rience, we retrained several of them by using two
different subsets of only five background alpha-
bets. BPL achieved similar performance for one-
shot classification as with 30 alphabets (4.3%
and 4.0% errors, for the two sets, respectively); in
contrast, the deep convolutional net performed
notably worse than before (24.0% and 22.3%
errors). BPL performance on a visual Turing test
of exemplar generation (N = 59) was also similar
on the first set [52% average ID level that was
not significantly different from chance t(26) = 1.04,
P > 0.05], with only 3 of 27 judges reliably above
chance, although performance on the second set
was slightly worse [57% ID level; t(31) = 4.35, P <
0.001; 7 of 32 judges reliably above chance].
These results suggest that although learning to
learn is important for BPL’s success, the model’s
structure allows it to take nearly full advantage
of comparatively limited background training.
The human productive capacity goes beyond

generating new examples of a given concept:
People can also generate whole new concepts.
We tested this by showing a few example char-
acters from 1 of 10 foreign alphabets and asking
participants to quickly create a new character
that appears to belong to the same alphabet (Fig.
7A). The BPLmodel can capture this behavior by
placing a nonparametric prior on the type level,
which favors reusing strokes inferred from the
example characters to produce stylistically con-
sistent new characters (section S7). Human judges
compared people versus BPL in a visual Turing
test (N = 117), viewing a series of displays in the
format of Fig. 7A, i and iii. The judges had only a
49% ID level on average [Fig. 6B, new concepts
(from type)], which is not significantly different
from chance [t(34) = 0.45, P > 0.05]. Individually,
only 8 of 35 judges had an ID level significantly
above chance. In contrast, a model with a lesion
to (type-level) learning to learn was successfully
detected by judges on 69% of trials in a separate

condition of the visual Turing test, and was sig-
nificantly easier to detect thanBPL (18 of 25 judges
above chance). Further comparisons in section
S6 suggested that the model’s ability to produce
plausible novel characters, rather than stylistic
consistency per se, was the crucial factor for
passing this test. We also found greater variation
in individual judges’ comparisons of people and
the BPL model on this task, as reflected in their
ID levels: 10 of 35 judges had individual ID levels
significantly below chance; in contrast, only two
participants had below-chance ID levels for BPL
across all the other experiments shown in Fig. 6B.
Last, judges (N = 124) compared people and

models on an entirely free-form task of generat-
ing novel character concepts, unconstrained by a
particular alphabet (Fig. 7B). Sampling from the
prior distribution on character types P(y) in BPL
led to an average ID level of 57% correct in a visual
Turing test (11 of 32 judges above chance); with
the nonparametric prior that reuses inferred parts
frombackground characters, BPL achieved a 51%
ID level [Fig. 7B and new concepts (unconstrained)
in Fig. 6B; ID level not significantly different
from chance t(24) = 0.497, P > 0.05; 2 of 25 judges
above chance]. A lesion analysis revealed that both
compositionality (68% and 15 of 22) and learning
to learn (64% and 22 of 45)were crucial in passing
this test.

Discussion

Despite a changing artificial intelligence land-
scape, people remain far better thanmachines at

learning new concepts: They require fewer exam-
ples and use their concepts in richer ways. Our
work suggests that the principles of composi-
tionality, causality, and learning to learn will be
critical in buildingmachines that narrow this gap.
Machine learning and computer vision research-
ers are beginning to explore methods based on
simple program induction (36–41), andour results
show that this approach can perform one-shot
learning in classification tasks at human-level ac-
curacy and fool most judges in visual Turing tests
of itsmore creative abilities. For each visual Turing
test, fewer than 25% of judges performed signif-
icantly better than chance.
Although successful on these tasks, BPL still

sees less structure in visual concepts than people
do. It lacks explicit knowledge of parallel lines,
symmetry, optional elements such as cross bars
in “7”s, and connections between the ends of
strokes and other strokes. Moreover, people
use their concepts for other abilities that were
not studied here, including planning (42), expla-
nation (43), communication (44), and conceptual
combination (45). Probabilistic programs could
capture these richer aspects of concept learning
and use, but only withmore abstract and complex
structure than the programs studied here. More-
sophisticated programs could also be suitable for
learning compositional, causal representations of
manyconceptsbeyondsimpleperceptual categories.
Examples include concepts for physical artifacts,
such as tools, vehicles, or furniture, that are well
described by parts, relations, and the functions
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Fig. 6. Human and machine performance was compared on (A) one-shot classification and (B)
four generative tasks.The creative outputs for humans and models were compared by the percent of
human judges to correctly identify the machine. Ideal performance is 50%, where the machine is
perfectly confusable with humans in these two-alternative forced choice tasks (pink dotted line). Bars
show the mean ± SEM [N = 10 alphabets in (A)]. The no learning-to-learn lesion is applied at different
levels (bars left to right): (A) token; (B) token, stroke order, type, and type.
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conditions of the visual Turing test, examining
the necessity of key model ingredients in BPL.
Two lesions, learning to learn (token-level only)
and compositionality, resulted in significantly
easier Turing test tasks (80% ID level with 17 of 19
judges above chance and 65% with 14 of 26, re-
spectively), indicating that this task is a nontrivial
one to pass and that these two principles each
contribute to BPL’s human-like generative profi-
ciency. To evaluate parsing more directly (Fig. 4B),
we ran a dynamic version of this task with a dif-
ferent set of judges (N = 143), where each trial
showed paired movies of a person and BPL draw-
ing the same character. BPL performance on this
visual Turing test was not perfect (59% average
ID level; new exemplars (dynamic) in Fig. 6B),
although randomizing the learned prior on stroke
order and direction significantly raises the ID level
(71%), showing the importance of capturing the
right causal dynamics for BPL.
Although learning to learn new characters from

30 background alphabets proved effective, many
human learners will have much less experience:
perhaps familiarity with only one or a few alpha-
bets, along with related drawing tasks. To see
how themodels performwithmore limited expe-
rience, we retrained several of them by using two
different subsets of only five background alpha-
bets. BPL achieved similar performance for one-
shot classification as with 30 alphabets (4.3%
and 4.0% errors, for the two sets, respectively); in
contrast, the deep convolutional net performed
notably worse than before (24.0% and 22.3%
errors). BPL performance on a visual Turing test
of exemplar generation (N = 59) was also similar
on the first set [52% average ID level that was
not significantly different from chance t(26) = 1.04,
P > 0.05], with only 3 of 27 judges reliably above
chance, although performance on the second set
was slightly worse [57% ID level; t(31) = 4.35, P <
0.001; 7 of 32 judges reliably above chance].
These results suggest that although learning to
learn is important for BPL’s success, the model’s
structure allows it to take nearly full advantage
of comparatively limited background training.
The human productive capacity goes beyond

generating new examples of a given concept:
People can also generate whole new concepts.
We tested this by showing a few example char-
acters from 1 of 10 foreign alphabets and asking
participants to quickly create a new character
that appears to belong to the same alphabet (Fig.
7A). The BPLmodel can capture this behavior by
placing a nonparametric prior on the type level,
which favors reusing strokes inferred from the
example characters to produce stylistically con-
sistent new characters (section S7). Human judges
compared people versus BPL in a visual Turing
test (N = 117), viewing a series of displays in the
format of Fig. 7A, i and iii. The judges had only a
49% ID level on average [Fig. 6B, new concepts
(from type)], which is not significantly different
from chance [t(34) = 0.45, P > 0.05]. Individually,
only 8 of 35 judges had an ID level significantly
above chance. In contrast, a model with a lesion
to (type-level) learning to learn was successfully
detected by judges on 69% of trials in a separate

condition of the visual Turing test, and was sig-
nificantly easier to detect thanBPL (18 of 25 judges
above chance). Further comparisons in section
S6 suggested that the model’s ability to produce
plausible novel characters, rather than stylistic
consistency per se, was the crucial factor for
passing this test. We also found greater variation
in individual judges’ comparisons of people and
the BPL model on this task, as reflected in their
ID levels: 10 of 35 judges had individual ID levels
significantly below chance; in contrast, only two
participants had below-chance ID levels for BPL
across all the other experiments shown in Fig. 6B.
Last, judges (N = 124) compared people and

models on an entirely free-form task of generat-
ing novel character concepts, unconstrained by a
particular alphabet (Fig. 7B). Sampling from the
prior distribution on character types P(y) in BPL
led to an average ID level of 57% correct in a visual
Turing test (11 of 32 judges above chance); with
the nonparametric prior that reuses inferred parts
frombackground characters, BPL achieved a 51%
ID level [Fig. 7B and new concepts (unconstrained)
in Fig. 6B; ID level not significantly different
from chance t(24) = 0.497, P > 0.05; 2 of 25 judges
above chance]. A lesion analysis revealed that both
compositionality (68% and 15 of 22) and learning
to learn (64% and 22 of 45)were crucial in passing
this test.

Discussion

Despite a changing artificial intelligence land-
scape, people remain far better thanmachines at

learning new concepts: They require fewer exam-
ples and use their concepts in richer ways. Our
work suggests that the principles of composi-
tionality, causality, and learning to learn will be
critical in buildingmachines that narrow this gap.
Machine learning and computer vision research-
ers are beginning to explore methods based on
simple program induction (36–41), andour results
show that this approach can perform one-shot
learning in classification tasks at human-level ac-
curacy and fool most judges in visual Turing tests
of itsmore creative abilities. For each visual Turing
test, fewer than 25% of judges performed signif-
icantly better than chance.
Although successful on these tasks, BPL still

sees less structure in visual concepts than people
do. It lacks explicit knowledge of parallel lines,
symmetry, optional elements such as cross bars
in “7”s, and connections between the ends of
strokes and other strokes. Moreover, people
use their concepts for other abilities that were
not studied here, including planning (42), expla-
nation (43), communication (44), and conceptual
combination (45). Probabilistic programs could
capture these richer aspects of concept learning
and use, but only withmore abstract and complex
structure than the programs studied here. More-
sophisticated programs could also be suitable for
learning compositional, causal representations of
manyconceptsbeyondsimpleperceptual categories.
Examples include concepts for physical artifacts,
such as tools, vehicles, or furniture, that are well
described by parts, relations, and the functions
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four generative tasks.The creative outputs for humans and models were compared by the percent of
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machine: 
which one is the same?

human: 
copy this
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Human-level concept learning
through probabilistic
program induction
Brenden M. Lake,1* Ruslan Salakhutdinov,2 Joshua B. Tenenbaum3

People learning new concepts can often generalize successfully from just a single example,
yet machine learning algorithms typically require tens or hundreds of examples to
perform with similar accuracy. People can also use learned concepts in richer ways than
conventional algorithms—for action, imagination, and explanation. We present a
computational model that captures these human learning abilities for a large class of
simple visual concepts: handwritten characters from the world’s alphabets. The model
represents concepts as simple programs that best explain observed examples under a
Bayesian criterion. On a challenging one-shot classification task, the model achieves
human-level performance while outperforming recent deep learning approaches. We also
present several “visual Turing tests” probing the model’s creative generalization abilities,
which in many cases are indistinguishable from human behavior.

D
espite remarkable advances in artificial
intelligence and machine learning, two
aspects of human conceptual knowledge
have eluded machine systems. First, for
most interesting kinds of natural andman-

made categories, people can learn a new concept

from just one or a handful of examples, whereas
standard algorithms in machine learning require
tens or hundreds of examples to perform simi-
larly. For instance, people may only need to see
one example of a novel two-wheeled vehicle
(Fig. 1A) in order to grasp the boundaries of the

new concept, and even children canmake mean-
ingful generalizations via “one-shot learning”
(1–3). In contrast, many of the leading approaches
inmachine learning are also themost data-hungry,
especially “deep learning” models that have
achieved new levels of performance on object
and speech recognition benchmarks (4–9). Sec-
ond, people learn richer representations than
machines do, even for simple concepts (Fig. 1B),
using them for a wider range of functions, in-
cluding (Fig. 1, ii) creating new exemplars (10),
(Fig. 1, iii) parsing objects into parts and rela-
tions (11), and (Fig. 1, iv) creating new abstract
categories of objects based on existing categories
(12, 13). In contrast, the best machine classifiers
do not perform these additional functions, which
are rarely studied and usually require special-
ized algorithms. A central challenge is to ex-
plain these two aspects of human-level concept
learning: How do people learn new concepts
from just one or a few examples? And how do
people learn such abstract, rich, and flexible rep-
resentations? An even greater challenge arises
when putting them together: How can learning
succeed from such sparse data yet also produce
such rich representations? For any theory of
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Fig. 1. People can learn rich concepts from limited data. (A and B) A single example of a new concept (red boxes) can be enough information to support
the (i) classification of new examples, (ii) generation of new examples, (iii) parsing an object into parts and relations (parts segmented by color), and (iv)
generation of new concepts from related concepts. [Image credit for (A), iv, bottom: With permission from Glenn Roberts and Motorcycle Mojo Magazine]
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which in many cases are indistinguishable from human behavior.
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conditions of the visual Turing test, examining
the necessity of key model ingredients in BPL.
Two lesions, learning to learn (token-level only)
and compositionality, resulted in significantly
easier Turing test tasks (80% ID level with 17 of 19
judges above chance and 65% with 14 of 26, re-
spectively), indicating that this task is a nontrivial
one to pass and that these two principles each
contribute to BPL’s human-like generative profi-
ciency. To evaluate parsing more directly (Fig. 4B),
we ran a dynamic version of this task with a dif-
ferent set of judges (N = 143), where each trial
showed paired movies of a person and BPL draw-
ing the same character. BPL performance on this
visual Turing test was not perfect (59% average
ID level; new exemplars (dynamic) in Fig. 6B),
although randomizing the learned prior on stroke
order and direction significantly raises the ID level
(71%), showing the importance of capturing the
right causal dynamics for BPL.
Although learning to learn new characters from

30 background alphabets proved effective, many
human learners will have much less experience:
perhaps familiarity with only one or a few alpha-
bets, along with related drawing tasks. To see
how themodels performwithmore limited expe-
rience, we retrained several of them by using two
different subsets of only five background alpha-
bets. BPL achieved similar performance for one-
shot classification as with 30 alphabets (4.3%
and 4.0% errors, for the two sets, respectively); in
contrast, the deep convolutional net performed
notably worse than before (24.0% and 22.3%
errors). BPL performance on a visual Turing test
of exemplar generation (N = 59) was also similar
on the first set [52% average ID level that was
not significantly different from chance t(26) = 1.04,
P > 0.05], with only 3 of 27 judges reliably above
chance, although performance on the second set
was slightly worse [57% ID level; t(31) = 4.35, P <
0.001; 7 of 32 judges reliably above chance].
These results suggest that although learning to
learn is important for BPL’s success, the model’s
structure allows it to take nearly full advantage
of comparatively limited background training.
The human productive capacity goes beyond

generating new examples of a given concept:
People can also generate whole new concepts.
We tested this by showing a few example char-
acters from 1 of 10 foreign alphabets and asking
participants to quickly create a new character
that appears to belong to the same alphabet (Fig.
7A). The BPLmodel can capture this behavior by
placing a nonparametric prior on the type level,
which favors reusing strokes inferred from the
example characters to produce stylistically con-
sistent new characters (section S7). Human judges
compared people versus BPL in a visual Turing
test (N = 117), viewing a series of displays in the
format of Fig. 7A, i and iii. The judges had only a
49% ID level on average [Fig. 6B, new concepts
(from type)], which is not significantly different
from chance [t(34) = 0.45, P > 0.05]. Individually,
only 8 of 35 judges had an ID level significantly
above chance. In contrast, a model with a lesion
to (type-level) learning to learn was successfully
detected by judges on 69% of trials in a separate

condition of the visual Turing test, and was sig-
nificantly easier to detect thanBPL (18 of 25 judges
above chance). Further comparisons in section
S6 suggested that the model’s ability to produce
plausible novel characters, rather than stylistic
consistency per se, was the crucial factor for
passing this test. We also found greater variation
in individual judges’ comparisons of people and
the BPL model on this task, as reflected in their
ID levels: 10 of 35 judges had individual ID levels
significantly below chance; in contrast, only two
participants had below-chance ID levels for BPL
across all the other experiments shown in Fig. 6B.
Last, judges (N = 124) compared people and

models on an entirely free-form task of generat-
ing novel character concepts, unconstrained by a
particular alphabet (Fig. 7B). Sampling from the
prior distribution on character types P(y) in BPL
led to an average ID level of 57% correct in a visual
Turing test (11 of 32 judges above chance); with
the nonparametric prior that reuses inferred parts
frombackground characters, BPL achieved a 51%
ID level [Fig. 7B and new concepts (unconstrained)
in Fig. 6B; ID level not significantly different
from chance t(24) = 0.497, P > 0.05; 2 of 25 judges
above chance]. A lesion analysis revealed that both
compositionality (68% and 15 of 22) and learning
to learn (64% and 22 of 45)were crucial in passing
this test.

Discussion

Despite a changing artificial intelligence land-
scape, people remain far better thanmachines at

learning new concepts: They require fewer exam-
ples and use their concepts in richer ways. Our
work suggests that the principles of composi-
tionality, causality, and learning to learn will be
critical in buildingmachines that narrow this gap.
Machine learning and computer vision research-
ers are beginning to explore methods based on
simple program induction (36–41), andour results
show that this approach can perform one-shot
learning in classification tasks at human-level ac-
curacy and fool most judges in visual Turing tests
of itsmore creative abilities. For each visual Turing
test, fewer than 25% of judges performed signif-
icantly better than chance.
Although successful on these tasks, BPL still

sees less structure in visual concepts than people
do. It lacks explicit knowledge of parallel lines,
symmetry, optional elements such as cross bars
in “7”s, and connections between the ends of
strokes and other strokes. Moreover, people
use their concepts for other abilities that were
not studied here, including planning (42), expla-
nation (43), communication (44), and conceptual
combination (45). Probabilistic programs could
capture these richer aspects of concept learning
and use, but only withmore abstract and complex
structure than the programs studied here. More-
sophisticated programs could also be suitable for
learning compositional, causal representations of
manyconceptsbeyondsimpleperceptual categories.
Examples include concepts for physical artifacts,
such as tools, vehicles, or furniture, that are well
described by parts, relations, and the functions
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Fig. 6. Human and machine performance was compared on (A) one-shot classification and (B)
four generative tasks.The creative outputs for humans and models were compared by the percent of
human judges to correctly identify the machine. Ideal performance is 50%, where the machine is
perfectly confusable with humans in these two-alternative forced choice tasks (pink dotted line). Bars
show the mean ± SEM [N = 10 alphabets in (A)]. The no learning-to-learn lesion is applied at different
levels (bars left to right): (A) token; (B) token, stroke order, type, and type.
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conditions of the visual Turing test, examining
the necessity of key model ingredients in BPL.
Two lesions, learning to learn (token-level only)
and compositionality, resulted in significantly
easier Turing test tasks (80% ID level with 17 of 19
judges above chance and 65% with 14 of 26, re-
spectively), indicating that this task is a nontrivial
one to pass and that these two principles each
contribute to BPL’s human-like generative profi-
ciency. To evaluate parsing more directly (Fig. 4B),
we ran a dynamic version of this task with a dif-
ferent set of judges (N = 143), where each trial
showed paired movies of a person and BPL draw-
ing the same character. BPL performance on this
visual Turing test was not perfect (59% average
ID level; new exemplars (dynamic) in Fig. 6B),
although randomizing the learned prior on stroke
order and direction significantly raises the ID level
(71%), showing the importance of capturing the
right causal dynamics for BPL.
Although learning to learn new characters from

30 background alphabets proved effective, many
human learners will have much less experience:
perhaps familiarity with only one or a few alpha-
bets, along with related drawing tasks. To see
how themodels performwithmore limited expe-
rience, we retrained several of them by using two
different subsets of only five background alpha-
bets. BPL achieved similar performance for one-
shot classification as with 30 alphabets (4.3%
and 4.0% errors, for the two sets, respectively); in
contrast, the deep convolutional net performed
notably worse than before (24.0% and 22.3%
errors). BPL performance on a visual Turing test
of exemplar generation (N = 59) was also similar
on the first set [52% average ID level that was
not significantly different from chance t(26) = 1.04,
P > 0.05], with only 3 of 27 judges reliably above
chance, although performance on the second set
was slightly worse [57% ID level; t(31) = 4.35, P <
0.001; 7 of 32 judges reliably above chance].
These results suggest that although learning to
learn is important for BPL’s success, the model’s
structure allows it to take nearly full advantage
of comparatively limited background training.
The human productive capacity goes beyond

generating new examples of a given concept:
People can also generate whole new concepts.
We tested this by showing a few example char-
acters from 1 of 10 foreign alphabets and asking
participants to quickly create a new character
that appears to belong to the same alphabet (Fig.
7A). The BPLmodel can capture this behavior by
placing a nonparametric prior on the type level,
which favors reusing strokes inferred from the
example characters to produce stylistically con-
sistent new characters (section S7). Human judges
compared people versus BPL in a visual Turing
test (N = 117), viewing a series of displays in the
format of Fig. 7A, i and iii. The judges had only a
49% ID level on average [Fig. 6B, new concepts
(from type)], which is not significantly different
from chance [t(34) = 0.45, P > 0.05]. Individually,
only 8 of 35 judges had an ID level significantly
above chance. In contrast, a model with a lesion
to (type-level) learning to learn was successfully
detected by judges on 69% of trials in a separate

condition of the visual Turing test, and was sig-
nificantly easier to detect thanBPL (18 of 25 judges
above chance). Further comparisons in section
S6 suggested that the model’s ability to produce
plausible novel characters, rather than stylistic
consistency per se, was the crucial factor for
passing this test. We also found greater variation
in individual judges’ comparisons of people and
the BPL model on this task, as reflected in their
ID levels: 10 of 35 judges had individual ID levels
significantly below chance; in contrast, only two
participants had below-chance ID levels for BPL
across all the other experiments shown in Fig. 6B.
Last, judges (N = 124) compared people and

models on an entirely free-form task of generat-
ing novel character concepts, unconstrained by a
particular alphabet (Fig. 7B). Sampling from the
prior distribution on character types P(y) in BPL
led to an average ID level of 57% correct in a visual
Turing test (11 of 32 judges above chance); with
the nonparametric prior that reuses inferred parts
frombackground characters, BPL achieved a 51%
ID level [Fig. 7B and new concepts (unconstrained)
in Fig. 6B; ID level not significantly different
from chance t(24) = 0.497, P > 0.05; 2 of 25 judges
above chance]. A lesion analysis revealed that both
compositionality (68% and 15 of 22) and learning
to learn (64% and 22 of 45)were crucial in passing
this test.

Discussion

Despite a changing artificial intelligence land-
scape, people remain far better thanmachines at

learning new concepts: They require fewer exam-
ples and use their concepts in richer ways. Our
work suggests that the principles of composi-
tionality, causality, and learning to learn will be
critical in buildingmachines that narrow this gap.
Machine learning and computer vision research-
ers are beginning to explore methods based on
simple program induction (36–41), andour results
show that this approach can perform one-shot
learning in classification tasks at human-level ac-
curacy and fool most judges in visual Turing tests
of itsmore creative abilities. For each visual Turing
test, fewer than 25% of judges performed signif-
icantly better than chance.
Although successful on these tasks, BPL still

sees less structure in visual concepts than people
do. It lacks explicit knowledge of parallel lines,
symmetry, optional elements such as cross bars
in “7”s, and connections between the ends of
strokes and other strokes. Moreover, people
use their concepts for other abilities that were
not studied here, including planning (42), expla-
nation (43), communication (44), and conceptual
combination (45). Probabilistic programs could
capture these richer aspects of concept learning
and use, but only withmore abstract and complex
structure than the programs studied here. More-
sophisticated programs could also be suitable for
learning compositional, causal representations of
manyconceptsbeyondsimpleperceptual categories.
Examples include concepts for physical artifacts,
such as tools, vehicles, or furniture, that are well
described by parts, relations, and the functions
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Fig. 6. Human and machine performance was compared on (A) one-shot classification and (B)
four generative tasks.The creative outputs for humans and models were compared by the percent of
human judges to correctly identify the machine. Ideal performance is 50%, where the machine is
perfectly confusable with humans in these two-alternative forced choice tasks (pink dotted line). Bars
show the mean ± SEM [N = 10 alphabets in (A)]. The no learning-to-learn lesion is applied at different
levels (bars left to right): (A) token; (B) token, stroke order, type, and type.
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for each subpart. Last, parts are roughly positioned
to begin either independently, at the beginning, at
the end, or along previous parts, as defined by
relation Ri (Fig. 3A, iv).
Character tokens q(m) are produced by execut-

ing the parts and the relations andmodeling how
ink flows from the pen to the page. First, motor
noise is added to the control points and the scale
of the subparts to create token-level stroke tra-
jectories S(m). Second, the trajectory’s precise start
location L(m) is sampled from the schematic pro-
vided by its relationRi to previous strokes. Third,
global transformations are sampled, including
an affine warp A(m) and adaptive noise parame-
ters that ease probabilistic inference (30). Last, a
binary image I (m) is created by a stochastic ren-
dering function, lining the stroke trajectories
with grayscale ink and interpreting the pixel
values as independent Bernoulli probabilities.
Posterior inference requires searching the large

combinatorial space of programs that could have
generated a raw image I (m). Our strategy uses fast
bottom-up methods (31) to propose a range of
candidate parses. The most promising candidates
are refined by using continuous optimization

and local search, forming a discrete approxima-
tion to the posterior distribution P(y , q(m)|I (m))
(section S3). Figure 4A shows the set of discov-
ered programs for a training image I (1) and
how they are refit to different test images I (2) to
compute a classification score log P(I (2)|I (1)) (the
log posterior predictive probability), where higher
scores indicate that they are more likely to be-
long to the same class. A high score is achieved
when at least one set of parts and relations can
successfully explain both the training and the
test images, without violating the soft constraints
of the learned within-class variability model.
Figure 4B compares the model’s best-scoring
parses with the ground-truth human parses for
several characters.

Results

People, BPL, and alternative models were com-
pared side by side on five concept learning tasks
that examine different forms of generalization
from just one or a few examples (example task
Fig. 5). All behavioral experiments were run
through Amazon’s Mechanical Turk, and the ex-
perimental procedures are detailed in section S5.

The main results are summarized by Fig. 6, and
additional lesion analyses and controls are re-
ported in section S6.
One-shot classification was evaluated through

a series of within-alphabet classification tasks for
10 different alphabets. As illustrated in Fig. 1B, i,
a single image of a new character was presented,
and participants selected another example of that
same character from a set of 20 distinct char-
acters produced by a typical drawer of that alpha-
bet. Performance is shown in Fig. 6A,where chance
is 95% errors. As a baseline, themodifiedHausdorff
distance (32) was computed between centered
images, producing 38.8% errors. People were
skilled one-shot learners, achieving an average
error rate of 4.5% (N = 40). BPL showed a similar
error rate of 3.3%, achieving better performance
than adeep convolutional network (convnet; 13.5%
errors) and the HDmodel (34.8%)—each adapted
from deep learning methods that have performed
well on a range of computer vision tasks. A deep
Siamese convolutional network optimized for this
one-shot learning task achieved 8.0% errors (33),
still about twice as high as humans or ourmodel.
BPL’s advantage points to the benefits ofmodeling
theunderlying causal process in learning concepts,
a strategy different from the particular deep learn-
ing approaches examined here. BPL’s other key
ingredients also make positive contributions, as
shown by higher error rates for BPL lesions
without learning to learn (token-level only) or
compositionality (11.0% errors and 14.0%, respec-
tively). Learning to learn was studied separately
at the type and token level by disrupting the
learned hyperparameters of the generativemodel.
Compositionality was evaluated by comparing
BPL to a matched model that allowed just one
spline-based stroke, resembling earlier analysis-
by-synthesis models for handwritten characters
that were similarly limited (34, 35).
The human capacity for one-shot learning is

more than just classification. It can include a suite
of abilities, such as generating new examples of a
concept. We compared the creative outputs pro-
duced by humans and machines through “visual
Turing tests,”where naive human judges tried to
identify the machine, given paired examples of
human and machine behavior. In our most basic
task, judges compared the drawings from nine
humans asked to produce a new instance of a
concept given one example with nine new ex-
amples drawn by BPL (Fig. 5). We evaluated each
model based on the accuracy of the judges, which
we call their identification (ID) level: Idealmodel
performance is 50% ID level, indicating that they
cannot distinguish the model’s behavior from
humans; worst-case performance is 100%. Each
judge (N = 147) completed 49 trials with blocked
feedback, and judges were analyzed individually
and in aggregate. The results are shown in Fig.
6B (new exemplars). Judges had only a 52% ID
level on average for discriminating human versus
BPL behavior. As a group, this performance was
barely better than chance [t(47) = 2.03, P = 0.048],
and only 3 of 48 judges had an ID level reliably
above chance. Three lesioned models were eval-
uated by different groups of judges in separate
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(top) and asked to produce new exemplars.The nine-character grids in each pair that were generated by
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RESEARCH | RESEARCH ARTICLES

on January 29, 2018
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

human: 
human or machine?

for each subpart. Last, parts are roughly positioned
to begin either independently, at the beginning, at
the end, or along previous parts, as defined by
relation Ri (Fig. 3A, iv).
Character tokens q(m) are produced by execut-

ing the parts and the relations andmodeling how
ink flows from the pen to the page. First, motor
noise is added to the control points and the scale
of the subparts to create token-level stroke tra-
jectories S(m). Second, the trajectory’s precise start
location L(m) is sampled from the schematic pro-
vided by its relationRi to previous strokes. Third,
global transformations are sampled, including
an affine warp A(m) and adaptive noise parame-
ters that ease probabilistic inference (30). Last, a
binary image I (m) is created by a stochastic ren-
dering function, lining the stroke trajectories
with grayscale ink and interpreting the pixel
values as independent Bernoulli probabilities.
Posterior inference requires searching the large

combinatorial space of programs that could have
generated a raw image I (m). Our strategy uses fast
bottom-up methods (31) to propose a range of
candidate parses. The most promising candidates
are refined by using continuous optimization

and local search, forming a discrete approxima-
tion to the posterior distribution P(y , q(m)|I (m))
(section S3). Figure 4A shows the set of discov-
ered programs for a training image I (1) and
how they are refit to different test images I (2) to
compute a classification score log P(I (2)|I (1)) (the
log posterior predictive probability), where higher
scores indicate that they are more likely to be-
long to the same class. A high score is achieved
when at least one set of parts and relations can
successfully explain both the training and the
test images, without violating the soft constraints
of the learned within-class variability model.
Figure 4B compares the model’s best-scoring
parses with the ground-truth human parses for
several characters.

Results

People, BPL, and alternative models were com-
pared side by side on five concept learning tasks
that examine different forms of generalization
from just one or a few examples (example task
Fig. 5). All behavioral experiments were run
through Amazon’s Mechanical Turk, and the ex-
perimental procedures are detailed in section S5.

The main results are summarized by Fig. 6, and
additional lesion analyses and controls are re-
ported in section S6.
One-shot classification was evaluated through

a series of within-alphabet classification tasks for
10 different alphabets. As illustrated in Fig. 1B, i,
a single image of a new character was presented,
and participants selected another example of that
same character from a set of 20 distinct char-
acters produced by a typical drawer of that alpha-
bet. Performance is shown in Fig. 6A,where chance
is 95% errors. As a baseline, themodifiedHausdorff
distance (32) was computed between centered
images, producing 38.8% errors. People were
skilled one-shot learners, achieving an average
error rate of 4.5% (N = 40). BPL showed a similar
error rate of 3.3%, achieving better performance
than adeep convolutional network (convnet; 13.5%
errors) and the HDmodel (34.8%)—each adapted
from deep learning methods that have performed
well on a range of computer vision tasks. A deep
Siamese convolutional network optimized for this
one-shot learning task achieved 8.0% errors (33),
still about twice as high as humans or ourmodel.
BPL’s advantage points to the benefits ofmodeling
theunderlying causal process in learning concepts,
a strategy different from the particular deep learn-
ing approaches examined here. BPL’s other key
ingredients also make positive contributions, as
shown by higher error rates for BPL lesions
without learning to learn (token-level only) or
compositionality (11.0% errors and 14.0%, respec-
tively). Learning to learn was studied separately
at the type and token level by disrupting the
learned hyperparameters of the generativemodel.
Compositionality was evaluated by comparing
BPL to a matched model that allowed just one
spline-based stroke, resembling earlier analysis-
by-synthesis models for handwritten characters
that were similarly limited (34, 35).
The human capacity for one-shot learning is

more than just classification. It can include a suite
of abilities, such as generating new examples of a
concept. We compared the creative outputs pro-
duced by humans and machines through “visual
Turing tests,”where naive human judges tried to
identify the machine, given paired examples of
human and machine behavior. In our most basic
task, judges compared the drawings from nine
humans asked to produce a new instance of a
concept given one example with nine new ex-
amples drawn by BPL (Fig. 5). We evaluated each
model based on the accuracy of the judges, which
we call their identification (ID) level: Idealmodel
performance is 50% ID level, indicating that they
cannot distinguish the model’s behavior from
humans; worst-case performance is 100%. Each
judge (N = 147) completed 49 trials with blocked
feedback, and judges were analyzed individually
and in aggregate. The results are shown in Fig.
6B (new exemplars). Judges had only a 52% ID
level on average for discriminating human versus
BPL behavior. As a group, this performance was
barely better than chance [t(47) = 2.03, P = 0.048],
and only 3 of 48 judges had an ID level reliably
above chance. Three lesioned models were eval-
uated by different groups of judges in separate
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conditions of the visual Turing test, examining
the necessity of key model ingredients in BPL.
Two lesions, learning to learn (token-level only)
and compositionality, resulted in significantly
easier Turing test tasks (80% ID level with 17 of 19
judges above chance and 65% with 14 of 26, re-
spectively), indicating that this task is a nontrivial
one to pass and that these two principles each
contribute to BPL’s human-like generative profi-
ciency. To evaluate parsing more directly (Fig. 4B),
we ran a dynamic version of this task with a dif-
ferent set of judges (N = 143), where each trial
showed paired movies of a person and BPL draw-
ing the same character. BPL performance on this
visual Turing test was not perfect (59% average
ID level; new exemplars (dynamic) in Fig. 6B),
although randomizing the learned prior on stroke
order and direction significantly raises the ID level
(71%), showing the importance of capturing the
right causal dynamics for BPL.
Although learning to learn new characters from

30 background alphabets proved effective, many
human learners will have much less experience:
perhaps familiarity with only one or a few alpha-
bets, along with related drawing tasks. To see
how themodels performwithmore limited expe-
rience, we retrained several of them by using two
different subsets of only five background alpha-
bets. BPL achieved similar performance for one-
shot classification as with 30 alphabets (4.3%
and 4.0% errors, for the two sets, respectively); in
contrast, the deep convolutional net performed
notably worse than before (24.0% and 22.3%
errors). BPL performance on a visual Turing test
of exemplar generation (N = 59) was also similar
on the first set [52% average ID level that was
not significantly different from chance t(26) = 1.04,
P > 0.05], with only 3 of 27 judges reliably above
chance, although performance on the second set
was slightly worse [57% ID level; t(31) = 4.35, P <
0.001; 7 of 32 judges reliably above chance].
These results suggest that although learning to
learn is important for BPL’s success, the model’s
structure allows it to take nearly full advantage
of comparatively limited background training.
The human productive capacity goes beyond

generating new examples of a given concept:
People can also generate whole new concepts.
We tested this by showing a few example char-
acters from 1 of 10 foreign alphabets and asking
participants to quickly create a new character
that appears to belong to the same alphabet (Fig.
7A). The BPLmodel can capture this behavior by
placing a nonparametric prior on the type level,
which favors reusing strokes inferred from the
example characters to produce stylistically con-
sistent new characters (section S7). Human judges
compared people versus BPL in a visual Turing
test (N = 117), viewing a series of displays in the
format of Fig. 7A, i and iii. The judges had only a
49% ID level on average [Fig. 6B, new concepts
(from type)], which is not significantly different
from chance [t(34) = 0.45, P > 0.05]. Individually,
only 8 of 35 judges had an ID level significantly
above chance. In contrast, a model with a lesion
to (type-level) learning to learn was successfully
detected by judges on 69% of trials in a separate

condition of the visual Turing test, and was sig-
nificantly easier to detect thanBPL (18 of 25 judges
above chance). Further comparisons in section
S6 suggested that the model’s ability to produce
plausible novel characters, rather than stylistic
consistency per se, was the crucial factor for
passing this test. We also found greater variation
in individual judges’ comparisons of people and
the BPL model on this task, as reflected in their
ID levels: 10 of 35 judges had individual ID levels
significantly below chance; in contrast, only two
participants had below-chance ID levels for BPL
across all the other experiments shown in Fig. 6B.
Last, judges (N = 124) compared people and

models on an entirely free-form task of generat-
ing novel character concepts, unconstrained by a
particular alphabet (Fig. 7B). Sampling from the
prior distribution on character types P(y) in BPL
led to an average ID level of 57% correct in a visual
Turing test (11 of 32 judges above chance); with
the nonparametric prior that reuses inferred parts
frombackground characters, BPL achieved a 51%
ID level [Fig. 7B and new concepts (unconstrained)
in Fig. 6B; ID level not significantly different
from chance t(24) = 0.497, P > 0.05; 2 of 25 judges
above chance]. A lesion analysis revealed that both
compositionality (68% and 15 of 22) and learning
to learn (64% and 22 of 45)were crucial in passing
this test.

Discussion

Despite a changing artificial intelligence land-
scape, people remain far better thanmachines at

learning new concepts: They require fewer exam-
ples and use their concepts in richer ways. Our
work suggests that the principles of composi-
tionality, causality, and learning to learn will be
critical in buildingmachines that narrow this gap.
Machine learning and computer vision research-
ers are beginning to explore methods based on
simple program induction (36–41), andour results
show that this approach can perform one-shot
learning in classification tasks at human-level ac-
curacy and fool most judges in visual Turing tests
of itsmore creative abilities. For each visual Turing
test, fewer than 25% of judges performed signif-
icantly better than chance.
Although successful on these tasks, BPL still

sees less structure in visual concepts than people
do. It lacks explicit knowledge of parallel lines,
symmetry, optional elements such as cross bars
in “7”s, and connections between the ends of
strokes and other strokes. Moreover, people
use their concepts for other abilities that were
not studied here, including planning (42), expla-
nation (43), communication (44), and conceptual
combination (45). Probabilistic programs could
capture these richer aspects of concept learning
and use, but only withmore abstract and complex
structure than the programs studied here. More-
sophisticated programs could also be suitable for
learning compositional, causal representations of
manyconceptsbeyondsimpleperceptual categories.
Examples include concepts for physical artifacts,
such as tools, vehicles, or furniture, that are well
described by parts, relations, and the functions
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Fig. 6. Human and machine performance was compared on (A) one-shot classification and (B)
four generative tasks.The creative outputs for humans and models were compared by the percent of
human judges to correctly identify the machine. Ideal performance is 50%, where the machine is
perfectly confusable with humans in these two-alternative forced choice tasks (pink dotted line). Bars
show the mean ± SEM [N = 10 alphabets in (A)]. The no learning-to-learn lesion is applied at different
levels (bars left to right): (A) token; (B) token, stroke order, type, and type.
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Human-level concept learning
through probabilistic
program induction
Brenden M. Lake,1* Ruslan Salakhutdinov,2 Joshua B. Tenenbaum3

People learning new concepts can often generalize successfully from just a single example,
yet machine learning algorithms typically require tens or hundreds of examples to
perform with similar accuracy. People can also use learned concepts in richer ways than
conventional algorithms—for action, imagination, and explanation. We present a
computational model that captures these human learning abilities for a large class of
simple visual concepts: handwritten characters from the world’s alphabets. The model
represents concepts as simple programs that best explain observed examples under a
Bayesian criterion. On a challenging one-shot classification task, the model achieves
human-level performance while outperforming recent deep learning approaches. We also
present several “visual Turing tests” probing the model’s creative generalization abilities,
which in many cases are indistinguishable from human behavior.

D
espite remarkable advances in artificial
intelligence and machine learning, two
aspects of human conceptual knowledge
have eluded machine systems. First, for
most interesting kinds of natural andman-

made categories, people can learn a new concept

from just one or a handful of examples, whereas
standard algorithms in machine learning require
tens or hundreds of examples to perform simi-
larly. For instance, people may only need to see
one example of a novel two-wheeled vehicle
(Fig. 1A) in order to grasp the boundaries of the

new concept, and even children canmake mean-
ingful generalizations via “one-shot learning”
(1–3). In contrast, many of the leading approaches
inmachine learning are also themost data-hungry,
especially “deep learning” models that have
achieved new levels of performance on object
and speech recognition benchmarks (4–9). Sec-
ond, people learn richer representations than
machines do, even for simple concepts (Fig. 1B),
using them for a wider range of functions, in-
cluding (Fig. 1, ii) creating new exemplars (10),
(Fig. 1, iii) parsing objects into parts and rela-
tions (11), and (Fig. 1, iv) creating new abstract
categories of objects based on existing categories
(12, 13). In contrast, the best machine classifiers
do not perform these additional functions, which
are rarely studied and usually require special-
ized algorithms. A central challenge is to ex-
plain these two aspects of human-level concept
learning: How do people learn new concepts
from just one or a few examples? And how do
people learn such abstract, rich, and flexible rep-
resentations? An even greater challenge arises
when putting them together: How can learning
succeed from such sparse data yet also produce
such rich representations? For any theory of
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Fig. 1. People can learn rich concepts from limited data. (A and B) A single example of a new concept (red boxes) can be enough information to support
the (i) classification of new examples, (ii) generation of new examples, (iii) parsing an object into parts and relations (parts segmented by color), and (iv)
generation of new concepts from related concepts. [Image credit for (A), iv, bottom: With permission from Glenn Roberts and Motorcycle Mojo Magazine]
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conditions of the visual Turing test, examining
the necessity of key model ingredients in BPL.
Two lesions, learning to learn (token-level only)
and compositionality, resulted in significantly
easier Turing test tasks (80% ID level with 17 of 19
judges above chance and 65% with 14 of 26, re-
spectively), indicating that this task is a nontrivial
one to pass and that these two principles each
contribute to BPL’s human-like generative profi-
ciency. To evaluate parsing more directly (Fig. 4B),
we ran a dynamic version of this task with a dif-
ferent set of judges (N = 143), where each trial
showed paired movies of a person and BPL draw-
ing the same character. BPL performance on this
visual Turing test was not perfect (59% average
ID level; new exemplars (dynamic) in Fig. 6B),
although randomizing the learned prior on stroke
order and direction significantly raises the ID level
(71%), showing the importance of capturing the
right causal dynamics for BPL.
Although learning to learn new characters from

30 background alphabets proved effective, many
human learners will have much less experience:
perhaps familiarity with only one or a few alpha-
bets, along with related drawing tasks. To see
how themodels performwithmore limited expe-
rience, we retrained several of them by using two
different subsets of only five background alpha-
bets. BPL achieved similar performance for one-
shot classification as with 30 alphabets (4.3%
and 4.0% errors, for the two sets, respectively); in
contrast, the deep convolutional net performed
notably worse than before (24.0% and 22.3%
errors). BPL performance on a visual Turing test
of exemplar generation (N = 59) was also similar
on the first set [52% average ID level that was
not significantly different from chance t(26) = 1.04,
P > 0.05], with only 3 of 27 judges reliably above
chance, although performance on the second set
was slightly worse [57% ID level; t(31) = 4.35, P <
0.001; 7 of 32 judges reliably above chance].
These results suggest that although learning to
learn is important for BPL’s success, the model’s
structure allows it to take nearly full advantage
of comparatively limited background training.
The human productive capacity goes beyond

generating new examples of a given concept:
People can also generate whole new concepts.
We tested this by showing a few example char-
acters from 1 of 10 foreign alphabets and asking
participants to quickly create a new character
that appears to belong to the same alphabet (Fig.
7A). The BPLmodel can capture this behavior by
placing a nonparametric prior on the type level,
which favors reusing strokes inferred from the
example characters to produce stylistically con-
sistent new characters (section S7). Human judges
compared people versus BPL in a visual Turing
test (N = 117), viewing a series of displays in the
format of Fig. 7A, i and iii. The judges had only a
49% ID level on average [Fig. 6B, new concepts
(from type)], which is not significantly different
from chance [t(34) = 0.45, P > 0.05]. Individually,
only 8 of 35 judges had an ID level significantly
above chance. In contrast, a model with a lesion
to (type-level) learning to learn was successfully
detected by judges on 69% of trials in a separate

condition of the visual Turing test, and was sig-
nificantly easier to detect thanBPL (18 of 25 judges
above chance). Further comparisons in section
S6 suggested that the model’s ability to produce
plausible novel characters, rather than stylistic
consistency per se, was the crucial factor for
passing this test. We also found greater variation
in individual judges’ comparisons of people and
the BPL model on this task, as reflected in their
ID levels: 10 of 35 judges had individual ID levels
significantly below chance; in contrast, only two
participants had below-chance ID levels for BPL
across all the other experiments shown in Fig. 6B.
Last, judges (N = 124) compared people and

models on an entirely free-form task of generat-
ing novel character concepts, unconstrained by a
particular alphabet (Fig. 7B). Sampling from the
prior distribution on character types P(y) in BPL
led to an average ID level of 57% correct in a visual
Turing test (11 of 32 judges above chance); with
the nonparametric prior that reuses inferred parts
frombackground characters, BPL achieved a 51%
ID level [Fig. 7B and new concepts (unconstrained)
in Fig. 6B; ID level not significantly different
from chance t(24) = 0.497, P > 0.05; 2 of 25 judges
above chance]. A lesion analysis revealed that both
compositionality (68% and 15 of 22) and learning
to learn (64% and 22 of 45)were crucial in passing
this test.

Discussion

Despite a changing artificial intelligence land-
scape, people remain far better thanmachines at

learning new concepts: They require fewer exam-
ples and use their concepts in richer ways. Our
work suggests that the principles of composi-
tionality, causality, and learning to learn will be
critical in buildingmachines that narrow this gap.
Machine learning and computer vision research-
ers are beginning to explore methods based on
simple program induction (36–41), andour results
show that this approach can perform one-shot
learning in classification tasks at human-level ac-
curacy and fool most judges in visual Turing tests
of itsmore creative abilities. For each visual Turing
test, fewer than 25% of judges performed signif-
icantly better than chance.
Although successful on these tasks, BPL still

sees less structure in visual concepts than people
do. It lacks explicit knowledge of parallel lines,
symmetry, optional elements such as cross bars
in “7”s, and connections between the ends of
strokes and other strokes. Moreover, people
use their concepts for other abilities that were
not studied here, including planning (42), expla-
nation (43), communication (44), and conceptual
combination (45). Probabilistic programs could
capture these richer aspects of concept learning
and use, but only withmore abstract and complex
structure than the programs studied here. More-
sophisticated programs could also be suitable for
learning compositional, causal representations of
manyconceptsbeyondsimpleperceptual categories.
Examples include concepts for physical artifacts,
such as tools, vehicles, or furniture, that are well
described by parts, relations, and the functions

1336 11 DECEMBER 2015 • VOL 350 ISSUE 6266 sciencemag.org SCIENCE

new exemplarsnew exemplars (dynamic)new concepts (from type)
40

45

50

55

60

65

70

75

80

85

People

BPL Lesion (no compositionality)

BPL
BPL Lesion (no learning-to-learn)

C
la

ss
ifi

ca
tio

n 
er

ro
r 

ra
te

Id
en

tifi
ca

tio
n 

(I
D

) 
Le

ve
l

(%
 ju

dg
es

 w
ho

 c
or

re
ct

ly
 ID

 m
ac

hi
ne

 v
s.

 h
um

an
)

One-sh
ot c

lass
ific

atio
n

(20-w
ay)

Generatin
g

new exe
mplars

Generatin
g new

exe
mplars 

(dyn
amic)

Generatin
g new

co
nce

pts 
(fro

m ty
pe)

Generatin
g new

co
nce

pts 
(unco

nstr
ained)

Deep Siamese Convnet

Hierarchical Deep

Deep Convnet

Bayesian Program Learning models Deep Learning models

0

5

10

15

20

25

30

35

(Note: only 
applicable to 
classification tasks 
in panel A)

Fig. 6. Human and machine performance was compared on (A) one-shot classification and (B)
four generative tasks.The creative outputs for humans and models were compared by the percent of
human judges to correctly identify the machine. Ideal performance is 50%, where the machine is
perfectly confusable with humans in these two-alternative forced choice tasks (pink dotted line). Bars
show the mean ± SEM [N = 10 alphabets in (A)]. The no learning-to-learn lesion is applied at different
levels (bars left to right): (A) token; (B) token, stroke order, type, and type.
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conditions of the visual Turing test, examining
the necessity of key model ingredients in BPL.
Two lesions, learning to learn (token-level only)
and compositionality, resulted in significantly
easier Turing test tasks (80% ID level with 17 of 19
judges above chance and 65% with 14 of 26, re-
spectively), indicating that this task is a nontrivial
one to pass and that these two principles each
contribute to BPL’s human-like generative profi-
ciency. To evaluate parsing more directly (Fig. 4B),
we ran a dynamic version of this task with a dif-
ferent set of judges (N = 143), where each trial
showed paired movies of a person and BPL draw-
ing the same character. BPL performance on this
visual Turing test was not perfect (59% average
ID level; new exemplars (dynamic) in Fig. 6B),
although randomizing the learned prior on stroke
order and direction significantly raises the ID level
(71%), showing the importance of capturing the
right causal dynamics for BPL.
Although learning to learn new characters from

30 background alphabets proved effective, many
human learners will have much less experience:
perhaps familiarity with only one or a few alpha-
bets, along with related drawing tasks. To see
how themodels performwithmore limited expe-
rience, we retrained several of them by using two
different subsets of only five background alpha-
bets. BPL achieved similar performance for one-
shot classification as with 30 alphabets (4.3%
and 4.0% errors, for the two sets, respectively); in
contrast, the deep convolutional net performed
notably worse than before (24.0% and 22.3%
errors). BPL performance on a visual Turing test
of exemplar generation (N = 59) was also similar
on the first set [52% average ID level that was
not significantly different from chance t(26) = 1.04,
P > 0.05], with only 3 of 27 judges reliably above
chance, although performance on the second set
was slightly worse [57% ID level; t(31) = 4.35, P <
0.001; 7 of 32 judges reliably above chance].
These results suggest that although learning to
learn is important for BPL’s success, the model’s
structure allows it to take nearly full advantage
of comparatively limited background training.
The human productive capacity goes beyond

generating new examples of a given concept:
People can also generate whole new concepts.
We tested this by showing a few example char-
acters from 1 of 10 foreign alphabets and asking
participants to quickly create a new character
that appears to belong to the same alphabet (Fig.
7A). The BPLmodel can capture this behavior by
placing a nonparametric prior on the type level,
which favors reusing strokes inferred from the
example characters to produce stylistically con-
sistent new characters (section S7). Human judges
compared people versus BPL in a visual Turing
test (N = 117), viewing a series of displays in the
format of Fig. 7A, i and iii. The judges had only a
49% ID level on average [Fig. 6B, new concepts
(from type)], which is not significantly different
from chance [t(34) = 0.45, P > 0.05]. Individually,
only 8 of 35 judges had an ID level significantly
above chance. In contrast, a model with a lesion
to (type-level) learning to learn was successfully
detected by judges on 69% of trials in a separate

condition of the visual Turing test, and was sig-
nificantly easier to detect thanBPL (18 of 25 judges
above chance). Further comparisons in section
S6 suggested that the model’s ability to produce
plausible novel characters, rather than stylistic
consistency per se, was the crucial factor for
passing this test. We also found greater variation
in individual judges’ comparisons of people and
the BPL model on this task, as reflected in their
ID levels: 10 of 35 judges had individual ID levels
significantly below chance; in contrast, only two
participants had below-chance ID levels for BPL
across all the other experiments shown in Fig. 6B.
Last, judges (N = 124) compared people and

models on an entirely free-form task of generat-
ing novel character concepts, unconstrained by a
particular alphabet (Fig. 7B). Sampling from the
prior distribution on character types P(y) in BPL
led to an average ID level of 57% correct in a visual
Turing test (11 of 32 judges above chance); with
the nonparametric prior that reuses inferred parts
frombackground characters, BPL achieved a 51%
ID level [Fig. 7B and new concepts (unconstrained)
in Fig. 6B; ID level not significantly different
from chance t(24) = 0.497, P > 0.05; 2 of 25 judges
above chance]. A lesion analysis revealed that both
compositionality (68% and 15 of 22) and learning
to learn (64% and 22 of 45)were crucial in passing
this test.

Discussion

Despite a changing artificial intelligence land-
scape, people remain far better thanmachines at

learning new concepts: They require fewer exam-
ples and use their concepts in richer ways. Our
work suggests that the principles of composi-
tionality, causality, and learning to learn will be
critical in buildingmachines that narrow this gap.
Machine learning and computer vision research-
ers are beginning to explore methods based on
simple program induction (36–41), andour results
show that this approach can perform one-shot
learning in classification tasks at human-level ac-
curacy and fool most judges in visual Turing tests
of itsmore creative abilities. For each visual Turing
test, fewer than 25% of judges performed signif-
icantly better than chance.
Although successful on these tasks, BPL still

sees less structure in visual concepts than people
do. It lacks explicit knowledge of parallel lines,
symmetry, optional elements such as cross bars
in “7”s, and connections between the ends of
strokes and other strokes. Moreover, people
use their concepts for other abilities that were
not studied here, including planning (42), expla-
nation (43), communication (44), and conceptual
combination (45). Probabilistic programs could
capture these richer aspects of concept learning
and use, but only withmore abstract and complex
structure than the programs studied here. More-
sophisticated programs could also be suitable for
learning compositional, causal representations of
manyconceptsbeyondsimpleperceptual categories.
Examples include concepts for physical artifacts,
such as tools, vehicles, or furniture, that are well
described by parts, relations, and the functions
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Fig. 6. Human and machine performance was compared on (A) one-shot classification and (B)
four generative tasks.The creative outputs for humans and models were compared by the percent of
human judges to correctly identify the machine. Ideal performance is 50%, where the machine is
perfectly confusable with humans in these two-alternative forced choice tasks (pink dotted line). Bars
show the mean ± SEM [N = 10 alphabets in (A)]. The no learning-to-learn lesion is applied at different
levels (bars left to right): (A) token; (B) token, stroke order, type, and type.
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for each subpart. Last, parts are roughly positioned
to begin either independently, at the beginning, at
the end, or along previous parts, as defined by
relation Ri (Fig. 3A, iv).
Character tokens q(m) are produced by execut-

ing the parts and the relations andmodeling how
ink flows from the pen to the page. First, motor
noise is added to the control points and the scale
of the subparts to create token-level stroke tra-
jectories S(m). Second, the trajectory’s precise start
location L(m) is sampled from the schematic pro-
vided by its relationRi to previous strokes. Third,
global transformations are sampled, including
an affine warp A(m) and adaptive noise parame-
ters that ease probabilistic inference (30). Last, a
binary image I (m) is created by a stochastic ren-
dering function, lining the stroke trajectories
with grayscale ink and interpreting the pixel
values as independent Bernoulli probabilities.
Posterior inference requires searching the large

combinatorial space of programs that could have
generated a raw image I (m). Our strategy uses fast
bottom-up methods (31) to propose a range of
candidate parses. The most promising candidates
are refined by using continuous optimization

and local search, forming a discrete approxima-
tion to the posterior distribution P(y , q(m)|I (m))
(section S3). Figure 4A shows the set of discov-
ered programs for a training image I (1) and
how they are refit to different test images I (2) to
compute a classification score log P(I (2)|I (1)) (the
log posterior predictive probability), where higher
scores indicate that they are more likely to be-
long to the same class. A high score is achieved
when at least one set of parts and relations can
successfully explain both the training and the
test images, without violating the soft constraints
of the learned within-class variability model.
Figure 4B compares the model’s best-scoring
parses with the ground-truth human parses for
several characters.

Results

People, BPL, and alternative models were com-
pared side by side on five concept learning tasks
that examine different forms of generalization
from just one or a few examples (example task
Fig. 5). All behavioral experiments were run
through Amazon’s Mechanical Turk, and the ex-
perimental procedures are detailed in section S5.

The main results are summarized by Fig. 6, and
additional lesion analyses and controls are re-
ported in section S6.
One-shot classification was evaluated through

a series of within-alphabet classification tasks for
10 different alphabets. As illustrated in Fig. 1B, i,
a single image of a new character was presented,
and participants selected another example of that
same character from a set of 20 distinct char-
acters produced by a typical drawer of that alpha-
bet. Performance is shown in Fig. 6A,where chance
is 95% errors. As a baseline, themodifiedHausdorff
distance (32) was computed between centered
images, producing 38.8% errors. People were
skilled one-shot learners, achieving an average
error rate of 4.5% (N = 40). BPL showed a similar
error rate of 3.3%, achieving better performance
than adeep convolutional network (convnet; 13.5%
errors) and the HDmodel (34.8%)—each adapted
from deep learning methods that have performed
well on a range of computer vision tasks. A deep
Siamese convolutional network optimized for this
one-shot learning task achieved 8.0% errors (33),
still about twice as high as humans or ourmodel.
BPL’s advantage points to the benefits ofmodeling
theunderlying causal process in learning concepts,
a strategy different from the particular deep learn-
ing approaches examined here. BPL’s other key
ingredients also make positive contributions, as
shown by higher error rates for BPL lesions
without learning to learn (token-level only) or
compositionality (11.0% errors and 14.0%, respec-
tively). Learning to learn was studied separately
at the type and token level by disrupting the
learned hyperparameters of the generativemodel.
Compositionality was evaluated by comparing
BPL to a matched model that allowed just one
spline-based stroke, resembling earlier analysis-
by-synthesis models for handwritten characters
that were similarly limited (34, 35).
The human capacity for one-shot learning is

more than just classification. It can include a suite
of abilities, such as generating new examples of a
concept. We compared the creative outputs pro-
duced by humans and machines through “visual
Turing tests,”where naive human judges tried to
identify the machine, given paired examples of
human and machine behavior. In our most basic
task, judges compared the drawings from nine
humans asked to produce a new instance of a
concept given one example with nine new ex-
amples drawn by BPL (Fig. 5). We evaluated each
model based on the accuracy of the judges, which
we call their identification (ID) level: Idealmodel
performance is 50% ID level, indicating that they
cannot distinguish the model’s behavior from
humans; worst-case performance is 100%. Each
judge (N = 147) completed 49 trials with blocked
feedback, and judges were analyzed individually
and in aggregate. The results are shown in Fig.
6B (new exemplars). Judges had only a 52% ID
level on average for discriminating human versus
BPL behavior. As a group, this performance was
barely better than chance [t(47) = 2.03, P = 0.048],
and only 3 of 48 judges had an ID level reliably
above chance. Three lesioned models were eval-
uated by different groups of judges in separate
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Fig. 5. Generating new exemplars. Humans and machines were given an image of a novel character
(top) and asked to produce new exemplars.The nine-character grids in each pair that were generated by
a machine are (by row) 1, 2; 2, 1; 1, 1.
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these structures support; fractal structures, such
as rivers and trees, where complexity arises from
highly iterated but simple generative processes;
and even abstract knowledge, such as natural
number, natural language semantics, and intuitive
physical theories (17, 46–48).
Capturing how people learn all these concepts

at the level we reached with handwritten charac-
ters is a long-term goal. In the near term, applying
our approach to other types of symbolic concepts
may be particularly promising. Human cultures
produce many such symbol systems, including
gestures, dance moves, and the words of spoken
and signed languages. As with characters, these
concepts can be learned to some extent from
one or a few examples, even before the symbolic
meaning is clear: Consider seeing a “thumbs up,”

“fist bump,” or “high five” or hearing the names
“Boutros Boutros-Ghali,” “Kofi Annan,” or “Ban
Ki-moon” for the first time. From this limited
experience, people can typically recognize new
examples and even produce a recognizable sem-
blance of the concept themselves. The BPL prin-
ciples of compositionality, causality, and learning
to learn may help to explain how.
To illustrate how BPL applies in the domain of

speech, programs for spoken words could be
constructed by composing phonemes (subparts)
systematically to form syllables (parts), which
compose further to form morphemes and entire
words. Given an abstract syllable-phoneme parse
of a word, realistic speech tokens can be gener-
ated from a causalmodel that captures aspects of
speechmotor articulation. These part and subpart

components are shared across the words in a
language, enabling children to acquire them
through a long-term learning-to-learn process.
We have already found that a prototype model
exploiting compositionality and learning to learn,
but not causality, is able to capture some aspects
of the human ability to learn and generalize new
spoken words (e.g., English speakers learning
words in Japanese) (49). Further progress may
come from adopting a richer causal model of
speech generation, in the spirit of classic “analysis-
by-synthesis” proposals for speech perception and
language comprehension (20, 50).
Although our work focused on adult learners,

it raises natural developmental questions. If chil-
dren learning to write acquire an inductive bias
similar to what BPL constructs, the model could
help explain why children find some characters
difficult and which teaching procedures are most
effective (51). Comparing children’s parsing and
generalization behavior at different stages of
learning and BPL models given varying back-
groundexperience couldbetter evaluate themodel’s
learning-to-learnmechanismsandsuggest improve-
ments. By testing our classification tasks on infants
who categorize visually before they begin drawing
or scribbling (52), we can askwhether children learn
to perceive characters more causally and composi-
tionally based on their own proto-writing experi-
ence. Causal representations are prewired in our
current BPL models, but they could conceivably
be constructed through learning to learn at an
even deeper level of model hierarchy (53).
Last, we hope that our workmay shed light on

the neural representations of concepts and the
development of more neurally grounded learning
models. Supplementing feedforward visual pro-
cessing (54), previous behavioral studies and our
results suggest that people learn new handwritten
characters in part by inferring abstract motor
programs (55), a representation grounded in pro-
duction yet active in purely perceptual tasks,
independent of specific motor articulators and
potentially driven by activity in premotor cortex
(56–58). Could we decode representations struc-
turally similar to those in BPL from brain imaging
ofpremotor cortex (or other action-oriented regions)
in humans perceiving and classifying new char-
acters for the first time? Recent large-scale brain
models (59) and deep recurrent neural networks
(60–62) have also focused on character recogni-
tion and production tasks—but typically learning
from large training samples with many examples
of each concept. We see the one-shot learning
capacities studied here as a challenge for these
neural models: one we expect they might rise to
by incorporating the principles of composition-
ality, causality, and learning to learn that BPL
instantiates.
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gestures, dance moves, and the words of spoken
and signed languages. As with characters, these
concepts can be learned to some extent from
one or a few examples, even before the symbolic
meaning is clear: Consider seeing a “thumbs up,”

“fist bump,” or “high five” or hearing the names
“Boutros Boutros-Ghali,” “Kofi Annan,” or “Ban
Ki-moon” for the first time. From this limited
experience, people can typically recognize new
examples and even produce a recognizable sem-
blance of the concept themselves. The BPL prin-
ciples of compositionality, causality, and learning
to learn may help to explain how.
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speech, programs for spoken words could be
constructed by composing phonemes (subparts)
systematically to form syllables (parts), which
compose further to form morphemes and entire
words. Given an abstract syllable-phoneme parse
of a word, realistic speech tokens can be gener-
ated from a causalmodel that captures aspects of
speechmotor articulation. These part and subpart

components are shared across the words in a
language, enabling children to acquire them
through a long-term learning-to-learn process.
We have already found that a prototype model
exploiting compositionality and learning to learn,
but not causality, is able to capture some aspects
of the human ability to learn and generalize new
spoken words (e.g., English speakers learning
words in Japanese) (49). Further progress may
come from adopting a richer causal model of
speech generation, in the spirit of classic “analysis-
by-synthesis” proposals for speech perception and
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Although our work focused on adult learners,

it raises natural developmental questions. If chil-
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help explain why children find some characters
difficult and which teaching procedures are most
effective (51). Comparing children’s parsing and
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learning and BPL models given varying back-
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who categorize visually before they begin drawing
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to perceive characters more causally and composi-
tionally based on their own proto-writing experi-
ence. Causal representations are prewired in our
current BPL models, but they could conceivably
be constructed through learning to learn at an
even deeper level of model hierarchy (53).
Last, we hope that our workmay shed light on

the neural representations of concepts and the
development of more neurally grounded learning
models. Supplementing feedforward visual pro-
cessing (54), previous behavioral studies and our
results suggest that people learn new handwritten
characters in part by inferring abstract motor
programs (55), a representation grounded in pro-
duction yet active in purely perceptual tasks,
independent of specific motor articulators and
potentially driven by activity in premotor cortex
(56–58). Could we decode representations struc-
turally similar to those in BPL from brain imaging
ofpremotor cortex (or other action-oriented regions)
in humans perceiving and classifying new char-
acters for the first time? Recent large-scale brain
models (59) and deep recurrent neural networks
(60–62) have also focused on character recogni-
tion and production tasks—but typically learning
from large training samples with many examples
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capacities studied here as a challenge for these
neural models: one we expect they might rise to
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ality, causality, and learning to learn that BPL
instantiates.
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for each subpart. Last, parts are roughly positioned
to begin either independently, at the beginning, at
the end, or along previous parts, as defined by
relation Ri (Fig. 3A, iv).
Character tokens q(m) are produced by execut-

ing the parts and the relations andmodeling how
ink flows from the pen to the page. First, motor
noise is added to the control points and the scale
of the subparts to create token-level stroke tra-
jectories S(m). Second, the trajectory’s precise start
location L(m) is sampled from the schematic pro-
vided by its relationRi to previous strokes. Third,
global transformations are sampled, including
an affine warp A(m) and adaptive noise parame-
ters that ease probabilistic inference (30). Last, a
binary image I (m) is created by a stochastic ren-
dering function, lining the stroke trajectories
with grayscale ink and interpreting the pixel
values as independent Bernoulli probabilities.
Posterior inference requires searching the large

combinatorial space of programs that could have
generated a raw image I (m). Our strategy uses fast
bottom-up methods (31) to propose a range of
candidate parses. The most promising candidates
are refined by using continuous optimization

and local search, forming a discrete approxima-
tion to the posterior distribution P(y , q(m)|I (m))
(section S3). Figure 4A shows the set of discov-
ered programs for a training image I (1) and
how they are refit to different test images I (2) to
compute a classification score log P(I (2)|I (1)) (the
log posterior predictive probability), where higher
scores indicate that they are more likely to be-
long to the same class. A high score is achieved
when at least one set of parts and relations can
successfully explain both the training and the
test images, without violating the soft constraints
of the learned within-class variability model.
Figure 4B compares the model’s best-scoring
parses with the ground-truth human parses for
several characters.

Results

People, BPL, and alternative models were com-
pared side by side on five concept learning tasks
that examine different forms of generalization
from just one or a few examples (example task
Fig. 5). All behavioral experiments were run
through Amazon’s Mechanical Turk, and the ex-
perimental procedures are detailed in section S5.

The main results are summarized by Fig. 6, and
additional lesion analyses and controls are re-
ported in section S6.
One-shot classification was evaluated through

a series of within-alphabet classification tasks for
10 different alphabets. As illustrated in Fig. 1B, i,
a single image of a new character was presented,
and participants selected another example of that
same character from a set of 20 distinct char-
acters produced by a typical drawer of that alpha-
bet. Performance is shown in Fig. 6A,where chance
is 95% errors. As a baseline, themodifiedHausdorff
distance (32) was computed between centered
images, producing 38.8% errors. People were
skilled one-shot learners, achieving an average
error rate of 4.5% (N = 40). BPL showed a similar
error rate of 3.3%, achieving better performance
than adeep convolutional network (convnet; 13.5%
errors) and the HDmodel (34.8%)—each adapted
from deep learning methods that have performed
well on a range of computer vision tasks. A deep
Siamese convolutional network optimized for this
one-shot learning task achieved 8.0% errors (33),
still about twice as high as humans or ourmodel.
BPL’s advantage points to the benefits ofmodeling
theunderlying causal process in learning concepts,
a strategy different from the particular deep learn-
ing approaches examined here. BPL’s other key
ingredients also make positive contributions, as
shown by higher error rates for BPL lesions
without learning to learn (token-level only) or
compositionality (11.0% errors and 14.0%, respec-
tively). Learning to learn was studied separately
at the type and token level by disrupting the
learned hyperparameters of the generativemodel.
Compositionality was evaluated by comparing
BPL to a matched model that allowed just one
spline-based stroke, resembling earlier analysis-
by-synthesis models for handwritten characters
that were similarly limited (34, 35).
The human capacity for one-shot learning is

more than just classification. It can include a suite
of abilities, such as generating new examples of a
concept. We compared the creative outputs pro-
duced by humans and machines through “visual
Turing tests,”where naive human judges tried to
identify the machine, given paired examples of
human and machine behavior. In our most basic
task, judges compared the drawings from nine
humans asked to produce a new instance of a
concept given one example with nine new ex-
amples drawn by BPL (Fig. 5). We evaluated each
model based on the accuracy of the judges, which
we call their identification (ID) level: Idealmodel
performance is 50% ID level, indicating that they
cannot distinguish the model’s behavior from
humans; worst-case performance is 100%. Each
judge (N = 147) completed 49 trials with blocked
feedback, and judges were analyzed individually
and in aggregate. The results are shown in Fig.
6B (new exemplars). Judges had only a 52% ID
level on average for discriminating human versus
BPL behavior. As a group, this performance was
barely better than chance [t(47) = 2.03, P = 0.048],
and only 3 of 48 judges had an ID level reliably
above chance. Three lesioned models were eval-
uated by different groups of judges in separate
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conditions of the visual Turing test, examining
the necessity of key model ingredients in BPL.
Two lesions, learning to learn (token-level only)
and compositionality, resulted in significantly
easier Turing test tasks (80% ID level with 17 of 19
judges above chance and 65% with 14 of 26, re-
spectively), indicating that this task is a nontrivial
one to pass and that these two principles each
contribute to BPL’s human-like generative profi-
ciency. To evaluate parsing more directly (Fig. 4B),
we ran a dynamic version of this task with a dif-
ferent set of judges (N = 143), where each trial
showed paired movies of a person and BPL draw-
ing the same character. BPL performance on this
visual Turing test was not perfect (59% average
ID level; new exemplars (dynamic) in Fig. 6B),
although randomizing the learned prior on stroke
order and direction significantly raises the ID level
(71%), showing the importance of capturing the
right causal dynamics for BPL.
Although learning to learn new characters from

30 background alphabets proved effective, many
human learners will have much less experience:
perhaps familiarity with only one or a few alpha-
bets, along with related drawing tasks. To see
how themodels performwithmore limited expe-
rience, we retrained several of them by using two
different subsets of only five background alpha-
bets. BPL achieved similar performance for one-
shot classification as with 30 alphabets (4.3%
and 4.0% errors, for the two sets, respectively); in
contrast, the deep convolutional net performed
notably worse than before (24.0% and 22.3%
errors). BPL performance on a visual Turing test
of exemplar generation (N = 59) was also similar
on the first set [52% average ID level that was
not significantly different from chance t(26) = 1.04,
P > 0.05], with only 3 of 27 judges reliably above
chance, although performance on the second set
was slightly worse [57% ID level; t(31) = 4.35, P <
0.001; 7 of 32 judges reliably above chance].
These results suggest that although learning to
learn is important for BPL’s success, the model’s
structure allows it to take nearly full advantage
of comparatively limited background training.
The human productive capacity goes beyond

generating new examples of a given concept:
People can also generate whole new concepts.
We tested this by showing a few example char-
acters from 1 of 10 foreign alphabets and asking
participants to quickly create a new character
that appears to belong to the same alphabet (Fig.
7A). The BPLmodel can capture this behavior by
placing a nonparametric prior on the type level,
which favors reusing strokes inferred from the
example characters to produce stylistically con-
sistent new characters (section S7). Human judges
compared people versus BPL in a visual Turing
test (N = 117), viewing a series of displays in the
format of Fig. 7A, i and iii. The judges had only a
49% ID level on average [Fig. 6B, new concepts
(from type)], which is not significantly different
from chance [t(34) = 0.45, P > 0.05]. Individually,
only 8 of 35 judges had an ID level significantly
above chance. In contrast, a model with a lesion
to (type-level) learning to learn was successfully
detected by judges on 69% of trials in a separate

condition of the visual Turing test, and was sig-
nificantly easier to detect thanBPL (18 of 25 judges
above chance). Further comparisons in section
S6 suggested that the model’s ability to produce
plausible novel characters, rather than stylistic
consistency per se, was the crucial factor for
passing this test. We also found greater variation
in individual judges’ comparisons of people and
the BPL model on this task, as reflected in their
ID levels: 10 of 35 judges had individual ID levels
significantly below chance; in contrast, only two
participants had below-chance ID levels for BPL
across all the other experiments shown in Fig. 6B.
Last, judges (N = 124) compared people and

models on an entirely free-form task of generat-
ing novel character concepts, unconstrained by a
particular alphabet (Fig. 7B). Sampling from the
prior distribution on character types P(y) in BPL
led to an average ID level of 57% correct in a visual
Turing test (11 of 32 judges above chance); with
the nonparametric prior that reuses inferred parts
frombackground characters, BPL achieved a 51%
ID level [Fig. 7B and new concepts (unconstrained)
in Fig. 6B; ID level not significantly different
from chance t(24) = 0.497, P > 0.05; 2 of 25 judges
above chance]. A lesion analysis revealed that both
compositionality (68% and 15 of 22) and learning
to learn (64% and 22 of 45)were crucial in passing
this test.

Discussion

Despite a changing artificial intelligence land-
scape, people remain far better thanmachines at

learning new concepts: They require fewer exam-
ples and use their concepts in richer ways. Our
work suggests that the principles of composi-
tionality, causality, and learning to learn will be
critical in buildingmachines that narrow this gap.
Machine learning and computer vision research-
ers are beginning to explore methods based on
simple program induction (36–41), andour results
show that this approach can perform one-shot
learning in classification tasks at human-level ac-
curacy and fool most judges in visual Turing tests
of itsmore creative abilities. For each visual Turing
test, fewer than 25% of judges performed signif-
icantly better than chance.
Although successful on these tasks, BPL still

sees less structure in visual concepts than people
do. It lacks explicit knowledge of parallel lines,
symmetry, optional elements such as cross bars
in “7”s, and connections between the ends of
strokes and other strokes. Moreover, people
use their concepts for other abilities that were
not studied here, including planning (42), expla-
nation (43), communication (44), and conceptual
combination (45). Probabilistic programs could
capture these richer aspects of concept learning
and use, but only withmore abstract and complex
structure than the programs studied here. More-
sophisticated programs could also be suitable for
learning compositional, causal representations of
manyconceptsbeyondsimpleperceptual categories.
Examples include concepts for physical artifacts,
such as tools, vehicles, or furniture, that are well
described by parts, relations, and the functions
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conditions of the visual Turing test, examining
the necessity of key model ingredients in BPL.
Two lesions, learning to learn (token-level only)
and compositionality, resulted in significantly
easier Turing test tasks (80% ID level with 17 of 19
judges above chance and 65% with 14 of 26, re-
spectively), indicating that this task is a nontrivial
one to pass and that these two principles each
contribute to BPL’s human-like generative profi-
ciency. To evaluate parsing more directly (Fig. 4B),
we ran a dynamic version of this task with a dif-
ferent set of judges (N = 143), where each trial
showed paired movies of a person and BPL draw-
ing the same character. BPL performance on this
visual Turing test was not perfect (59% average
ID level; new exemplars (dynamic) in Fig. 6B),
although randomizing the learned prior on stroke
order and direction significantly raises the ID level
(71%), showing the importance of capturing the
right causal dynamics for BPL.
Although learning to learn new characters from

30 background alphabets proved effective, many
human learners will have much less experience:
perhaps familiarity with only one or a few alpha-
bets, along with related drawing tasks. To see
how themodels performwithmore limited expe-
rience, we retrained several of them by using two
different subsets of only five background alpha-
bets. BPL achieved similar performance for one-
shot classification as with 30 alphabets (4.3%
and 4.0% errors, for the two sets, respectively); in
contrast, the deep convolutional net performed
notably worse than before (24.0% and 22.3%
errors). BPL performance on a visual Turing test
of exemplar generation (N = 59) was also similar
on the first set [52% average ID level that was
not significantly different from chance t(26) = 1.04,
P > 0.05], with only 3 of 27 judges reliably above
chance, although performance on the second set
was slightly worse [57% ID level; t(31) = 4.35, P <
0.001; 7 of 32 judges reliably above chance].
These results suggest that although learning to
learn is important for BPL’s success, the model’s
structure allows it to take nearly full advantage
of comparatively limited background training.
The human productive capacity goes beyond

generating new examples of a given concept:
People can also generate whole new concepts.
We tested this by showing a few example char-
acters from 1 of 10 foreign alphabets and asking
participants to quickly create a new character
that appears to belong to the same alphabet (Fig.
7A). The BPLmodel can capture this behavior by
placing a nonparametric prior on the type level,
which favors reusing strokes inferred from the
example characters to produce stylistically con-
sistent new characters (section S7). Human judges
compared people versus BPL in a visual Turing
test (N = 117), viewing a series of displays in the
format of Fig. 7A, i and iii. The judges had only a
49% ID level on average [Fig. 6B, new concepts
(from type)], which is not significantly different
from chance [t(34) = 0.45, P > 0.05]. Individually,
only 8 of 35 judges had an ID level significantly
above chance. In contrast, a model with a lesion
to (type-level) learning to learn was successfully
detected by judges on 69% of trials in a separate

condition of the visual Turing test, and was sig-
nificantly easier to detect thanBPL (18 of 25 judges
above chance). Further comparisons in section
S6 suggested that the model’s ability to produce
plausible novel characters, rather than stylistic
consistency per se, was the crucial factor for
passing this test. We also found greater variation
in individual judges’ comparisons of people and
the BPL model on this task, as reflected in their
ID levels: 10 of 35 judges had individual ID levels
significantly below chance; in contrast, only two
participants had below-chance ID levels for BPL
across all the other experiments shown in Fig. 6B.
Last, judges (N = 124) compared people and

models on an entirely free-form task of generat-
ing novel character concepts, unconstrained by a
particular alphabet (Fig. 7B). Sampling from the
prior distribution on character types P(y) in BPL
led to an average ID level of 57% correct in a visual
Turing test (11 of 32 judges above chance); with
the nonparametric prior that reuses inferred parts
frombackground characters, BPL achieved a 51%
ID level [Fig. 7B and new concepts (unconstrained)
in Fig. 6B; ID level not significantly different
from chance t(24) = 0.497, P > 0.05; 2 of 25 judges
above chance]. A lesion analysis revealed that both
compositionality (68% and 15 of 22) and learning
to learn (64% and 22 of 45)were crucial in passing
this test.

Discussion

Despite a changing artificial intelligence land-
scape, people remain far better thanmachines at

learning new concepts: They require fewer exam-
ples and use their concepts in richer ways. Our
work suggests that the principles of composi-
tionality, causality, and learning to learn will be
critical in buildingmachines that narrow this gap.
Machine learning and computer vision research-
ers are beginning to explore methods based on
simple program induction (36–41), andour results
show that this approach can perform one-shot
learning in classification tasks at human-level ac-
curacy and fool most judges in visual Turing tests
of itsmore creative abilities. For each visual Turing
test, fewer than 25% of judges performed signif-
icantly better than chance.
Although successful on these tasks, BPL still

sees less structure in visual concepts than people
do. It lacks explicit knowledge of parallel lines,
symmetry, optional elements such as cross bars
in “7”s, and connections between the ends of
strokes and other strokes. Moreover, people
use their concepts for other abilities that were
not studied here, including planning (42), expla-
nation (43), communication (44), and conceptual
combination (45). Probabilistic programs could
capture these richer aspects of concept learning
and use, but only withmore abstract and complex
structure than the programs studied here. More-
sophisticated programs could also be suitable for
learning compositional, causal representations of
manyconceptsbeyondsimpleperceptual categories.
Examples include concepts for physical artifacts,
such as tools, vehicles, or furniture, that are well
described by parts, relations, and the functions
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Fig. 6. Human and machine performance was compared on (A) one-shot classification and (B)
four generative tasks.The creative outputs for humans and models were compared by the percent of
human judges to correctly identify the machine. Ideal performance is 50%, where the machine is
perfectly confusable with humans in these two-alternative forced choice tasks (pink dotted line). Bars
show the mean ± SEM [N = 10 alphabets in (A)]. The no learning-to-learn lesion is applied at different
levels (bars left to right): (A) token; (B) token, stroke order, type, and type.
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Human-level concept learning
through probabilistic
program induction
Brenden M. Lake,1* Ruslan Salakhutdinov,2 Joshua B. Tenenbaum3

People learning new concepts can often generalize successfully from just a single example,
yet machine learning algorithms typically require tens or hundreds of examples to
perform with similar accuracy. People can also use learned concepts in richer ways than
conventional algorithms—for action, imagination, and explanation. We present a
computational model that captures these human learning abilities for a large class of
simple visual concepts: handwritten characters from the world’s alphabets. The model
represents concepts as simple programs that best explain observed examples under a
Bayesian criterion. On a challenging one-shot classification task, the model achieves
human-level performance while outperforming recent deep learning approaches. We also
present several “visual Turing tests” probing the model’s creative generalization abilities,
which in many cases are indistinguishable from human behavior.

D
espite remarkable advances in artificial
intelligence and machine learning, two
aspects of human conceptual knowledge
have eluded machine systems. First, for
most interesting kinds of natural andman-

made categories, people can learn a new concept

from just one or a handful of examples, whereas
standard algorithms in machine learning require
tens or hundreds of examples to perform simi-
larly. For instance, people may only need to see
one example of a novel two-wheeled vehicle
(Fig. 1A) in order to grasp the boundaries of the

new concept, and even children canmake mean-
ingful generalizations via “one-shot learning”
(1–3). In contrast, many of the leading approaches
inmachine learning are also themost data-hungry,
especially “deep learning” models that have
achieved new levels of performance on object
and speech recognition benchmarks (4–9). Sec-
ond, people learn richer representations than
machines do, even for simple concepts (Fig. 1B),
using them for a wider range of functions, in-
cluding (Fig. 1, ii) creating new exemplars (10),
(Fig. 1, iii) parsing objects into parts and rela-
tions (11), and (Fig. 1, iv) creating new abstract
categories of objects based on existing categories
(12, 13). In contrast, the best machine classifiers
do not perform these additional functions, which
are rarely studied and usually require special-
ized algorithms. A central challenge is to ex-
plain these two aspects of human-level concept
learning: How do people learn new concepts
from just one or a few examples? And how do
people learn such abstract, rich, and flexible rep-
resentations? An even greater challenge arises
when putting them together: How can learning
succeed from such sparse data yet also produce
such rich representations? For any theory of
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Fig. 1. People can learn rich concepts from limited data. (A and B) A single example of a new concept (red boxes) can be enough information to support
the (i) classification of new examples, (ii) generation of new examples, (iii) parsing an object into parts and relations (parts segmented by color), and (iv)
generation of new concepts from related concepts. [Image credit for (A), iv, bottom: With permission from Glenn Roberts and Motorcycle Mojo Magazine]
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conditions of the visual Turing test, examining
the necessity of key model ingredients in BPL.
Two lesions, learning to learn (token-level only)
and compositionality, resulted in significantly
easier Turing test tasks (80% ID level with 17 of 19
judges above chance and 65% with 14 of 26, re-
spectively), indicating that this task is a nontrivial
one to pass and that these two principles each
contribute to BPL’s human-like generative profi-
ciency. To evaluate parsing more directly (Fig. 4B),
we ran a dynamic version of this task with a dif-
ferent set of judges (N = 143), where each trial
showed paired movies of a person and BPL draw-
ing the same character. BPL performance on this
visual Turing test was not perfect (59% average
ID level; new exemplars (dynamic) in Fig. 6B),
although randomizing the learned prior on stroke
order and direction significantly raises the ID level
(71%), showing the importance of capturing the
right causal dynamics for BPL.
Although learning to learn new characters from

30 background alphabets proved effective, many
human learners will have much less experience:
perhaps familiarity with only one or a few alpha-
bets, along with related drawing tasks. To see
how themodels performwithmore limited expe-
rience, we retrained several of them by using two
different subsets of only five background alpha-
bets. BPL achieved similar performance for one-
shot classification as with 30 alphabets (4.3%
and 4.0% errors, for the two sets, respectively); in
contrast, the deep convolutional net performed
notably worse than before (24.0% and 22.3%
errors). BPL performance on a visual Turing test
of exemplar generation (N = 59) was also similar
on the first set [52% average ID level that was
not significantly different from chance t(26) = 1.04,
P > 0.05], with only 3 of 27 judges reliably above
chance, although performance on the second set
was slightly worse [57% ID level; t(31) = 4.35, P <
0.001; 7 of 32 judges reliably above chance].
These results suggest that although learning to
learn is important for BPL’s success, the model’s
structure allows it to take nearly full advantage
of comparatively limited background training.
The human productive capacity goes beyond

generating new examples of a given concept:
People can also generate whole new concepts.
We tested this by showing a few example char-
acters from 1 of 10 foreign alphabets and asking
participants to quickly create a new character
that appears to belong to the same alphabet (Fig.
7A). The BPLmodel can capture this behavior by
placing a nonparametric prior on the type level,
which favors reusing strokes inferred from the
example characters to produce stylistically con-
sistent new characters (section S7). Human judges
compared people versus BPL in a visual Turing
test (N = 117), viewing a series of displays in the
format of Fig. 7A, i and iii. The judges had only a
49% ID level on average [Fig. 6B, new concepts
(from type)], which is not significantly different
from chance [t(34) = 0.45, P > 0.05]. Individually,
only 8 of 35 judges had an ID level significantly
above chance. In contrast, a model with a lesion
to (type-level) learning to learn was successfully
detected by judges on 69% of trials in a separate

condition of the visual Turing test, and was sig-
nificantly easier to detect thanBPL (18 of 25 judges
above chance). Further comparisons in section
S6 suggested that the model’s ability to produce
plausible novel characters, rather than stylistic
consistency per se, was the crucial factor for
passing this test. We also found greater variation
in individual judges’ comparisons of people and
the BPL model on this task, as reflected in their
ID levels: 10 of 35 judges had individual ID levels
significantly below chance; in contrast, only two
participants had below-chance ID levels for BPL
across all the other experiments shown in Fig. 6B.
Last, judges (N = 124) compared people and

models on an entirely free-form task of generat-
ing novel character concepts, unconstrained by a
particular alphabet (Fig. 7B). Sampling from the
prior distribution on character types P(y) in BPL
led to an average ID level of 57% correct in a visual
Turing test (11 of 32 judges above chance); with
the nonparametric prior that reuses inferred parts
frombackground characters, BPL achieved a 51%
ID level [Fig. 7B and new concepts (unconstrained)
in Fig. 6B; ID level not significantly different
from chance t(24) = 0.497, P > 0.05; 2 of 25 judges
above chance]. A lesion analysis revealed that both
compositionality (68% and 15 of 22) and learning
to learn (64% and 22 of 45)were crucial in passing
this test.

Discussion

Despite a changing artificial intelligence land-
scape, people remain far better thanmachines at

learning new concepts: They require fewer exam-
ples and use their concepts in richer ways. Our
work suggests that the principles of composi-
tionality, causality, and learning to learn will be
critical in buildingmachines that narrow this gap.
Machine learning and computer vision research-
ers are beginning to explore methods based on
simple program induction (36–41), andour results
show that this approach can perform one-shot
learning in classification tasks at human-level ac-
curacy and fool most judges in visual Turing tests
of itsmore creative abilities. For each visual Turing
test, fewer than 25% of judges performed signif-
icantly better than chance.
Although successful on these tasks, BPL still

sees less structure in visual concepts than people
do. It lacks explicit knowledge of parallel lines,
symmetry, optional elements such as cross bars
in “7”s, and connections between the ends of
strokes and other strokes. Moreover, people
use their concepts for other abilities that were
not studied here, including planning (42), expla-
nation (43), communication (44), and conceptual
combination (45). Probabilistic programs could
capture these richer aspects of concept learning
and use, but only withmore abstract and complex
structure than the programs studied here. More-
sophisticated programs could also be suitable for
learning compositional, causal representations of
manyconceptsbeyondsimpleperceptual categories.
Examples include concepts for physical artifacts,
such as tools, vehicles, or furniture, that are well
described by parts, relations, and the functions
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Fig. 6. Human and machine performance was compared on (A) one-shot classification and (B)
four generative tasks.The creative outputs for humans and models were compared by the percent of
human judges to correctly identify the machine. Ideal performance is 50%, where the machine is
perfectly confusable with humans in these two-alternative forced choice tasks (pink dotted line). Bars
show the mean ± SEM [N = 10 alphabets in (A)]. The no learning-to-learn lesion is applied at different
levels (bars left to right): (A) token; (B) token, stroke order, type, and type.
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conditions of the visual Turing test, examining
the necessity of key model ingredients in BPL.
Two lesions, learning to learn (token-level only)
and compositionality, resulted in significantly
easier Turing test tasks (80% ID level with 17 of 19
judges above chance and 65% with 14 of 26, re-
spectively), indicating that this task is a nontrivial
one to pass and that these two principles each
contribute to BPL’s human-like generative profi-
ciency. To evaluate parsing more directly (Fig. 4B),
we ran a dynamic version of this task with a dif-
ferent set of judges (N = 143), where each trial
showed paired movies of a person and BPL draw-
ing the same character. BPL performance on this
visual Turing test was not perfect (59% average
ID level; new exemplars (dynamic) in Fig. 6B),
although randomizing the learned prior on stroke
order and direction significantly raises the ID level
(71%), showing the importance of capturing the
right causal dynamics for BPL.
Although learning to learn new characters from

30 background alphabets proved effective, many
human learners will have much less experience:
perhaps familiarity with only one or a few alpha-
bets, along with related drawing tasks. To see
how themodels performwithmore limited expe-
rience, we retrained several of them by using two
different subsets of only five background alpha-
bets. BPL achieved similar performance for one-
shot classification as with 30 alphabets (4.3%
and 4.0% errors, for the two sets, respectively); in
contrast, the deep convolutional net performed
notably worse than before (24.0% and 22.3%
errors). BPL performance on a visual Turing test
of exemplar generation (N = 59) was also similar
on the first set [52% average ID level that was
not significantly different from chance t(26) = 1.04,
P > 0.05], with only 3 of 27 judges reliably above
chance, although performance on the second set
was slightly worse [57% ID level; t(31) = 4.35, P <
0.001; 7 of 32 judges reliably above chance].
These results suggest that although learning to
learn is important for BPL’s success, the model’s
structure allows it to take nearly full advantage
of comparatively limited background training.
The human productive capacity goes beyond

generating new examples of a given concept:
People can also generate whole new concepts.
We tested this by showing a few example char-
acters from 1 of 10 foreign alphabets and asking
participants to quickly create a new character
that appears to belong to the same alphabet (Fig.
7A). The BPLmodel can capture this behavior by
placing a nonparametric prior on the type level,
which favors reusing strokes inferred from the
example characters to produce stylistically con-
sistent new characters (section S7). Human judges
compared people versus BPL in a visual Turing
test (N = 117), viewing a series of displays in the
format of Fig. 7A, i and iii. The judges had only a
49% ID level on average [Fig. 6B, new concepts
(from type)], which is not significantly different
from chance [t(34) = 0.45, P > 0.05]. Individually,
only 8 of 35 judges had an ID level significantly
above chance. In contrast, a model with a lesion
to (type-level) learning to learn was successfully
detected by judges on 69% of trials in a separate

condition of the visual Turing test, and was sig-
nificantly easier to detect thanBPL (18 of 25 judges
above chance). Further comparisons in section
S6 suggested that the model’s ability to produce
plausible novel characters, rather than stylistic
consistency per se, was the crucial factor for
passing this test. We also found greater variation
in individual judges’ comparisons of people and
the BPL model on this task, as reflected in their
ID levels: 10 of 35 judges had individual ID levels
significantly below chance; in contrast, only two
participants had below-chance ID levels for BPL
across all the other experiments shown in Fig. 6B.
Last, judges (N = 124) compared people and

models on an entirely free-form task of generat-
ing novel character concepts, unconstrained by a
particular alphabet (Fig. 7B). Sampling from the
prior distribution on character types P(y) in BPL
led to an average ID level of 57% correct in a visual
Turing test (11 of 32 judges above chance); with
the nonparametric prior that reuses inferred parts
frombackground characters, BPL achieved a 51%
ID level [Fig. 7B and new concepts (unconstrained)
in Fig. 6B; ID level not significantly different
from chance t(24) = 0.497, P > 0.05; 2 of 25 judges
above chance]. A lesion analysis revealed that both
compositionality (68% and 15 of 22) and learning
to learn (64% and 22 of 45)were crucial in passing
this test.

Discussion

Despite a changing artificial intelligence land-
scape, people remain far better thanmachines at

learning new concepts: They require fewer exam-
ples and use their concepts in richer ways. Our
work suggests that the principles of composi-
tionality, causality, and learning to learn will be
critical in buildingmachines that narrow this gap.
Machine learning and computer vision research-
ers are beginning to explore methods based on
simple program induction (36–41), andour results
show that this approach can perform one-shot
learning in classification tasks at human-level ac-
curacy and fool most judges in visual Turing tests
of itsmore creative abilities. For each visual Turing
test, fewer than 25% of judges performed signif-
icantly better than chance.
Although successful on these tasks, BPL still

sees less structure in visual concepts than people
do. It lacks explicit knowledge of parallel lines,
symmetry, optional elements such as cross bars
in “7”s, and connections between the ends of
strokes and other strokes. Moreover, people
use their concepts for other abilities that were
not studied here, including planning (42), expla-
nation (43), communication (44), and conceptual
combination (45). Probabilistic programs could
capture these richer aspects of concept learning
and use, but only withmore abstract and complex
structure than the programs studied here. More-
sophisticated programs could also be suitable for
learning compositional, causal representations of
manyconceptsbeyondsimpleperceptual categories.
Examples include concepts for physical artifacts,
such as tools, vehicles, or furniture, that are well
described by parts, relations, and the functions
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Fig. 6. Human and machine performance was compared on (A) one-shot classification and (B)
four generative tasks.The creative outputs for humans and models were compared by the percent of
human judges to correctly identify the machine. Ideal performance is 50%, where the machine is
perfectly confusable with humans in these two-alternative forced choice tasks (pink dotted line). Bars
show the mean ± SEM [N = 10 alphabets in (A)]. The no learning-to-learn lesion is applied at different
levels (bars left to right): (A) token; (B) token, stroke order, type, and type.
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for each subpart. Last, parts are roughly positioned
to begin either independently, at the beginning, at
the end, or along previous parts, as defined by
relation Ri (Fig. 3A, iv).
Character tokens q(m) are produced by execut-

ing the parts and the relations andmodeling how
ink flows from the pen to the page. First, motor
noise is added to the control points and the scale
of the subparts to create token-level stroke tra-
jectories S(m). Second, the trajectory’s precise start
location L(m) is sampled from the schematic pro-
vided by its relationRi to previous strokes. Third,
global transformations are sampled, including
an affine warp A(m) and adaptive noise parame-
ters that ease probabilistic inference (30). Last, a
binary image I (m) is created by a stochastic ren-
dering function, lining the stroke trajectories
with grayscale ink and interpreting the pixel
values as independent Bernoulli probabilities.
Posterior inference requires searching the large

combinatorial space of programs that could have
generated a raw image I (m). Our strategy uses fast
bottom-up methods (31) to propose a range of
candidate parses. The most promising candidates
are refined by using continuous optimization

and local search, forming a discrete approxima-
tion to the posterior distribution P(y , q(m)|I (m))
(section S3). Figure 4A shows the set of discov-
ered programs for a training image I (1) and
how they are refit to different test images I (2) to
compute a classification score log P(I (2)|I (1)) (the
log posterior predictive probability), where higher
scores indicate that they are more likely to be-
long to the same class. A high score is achieved
when at least one set of parts and relations can
successfully explain both the training and the
test images, without violating the soft constraints
of the learned within-class variability model.
Figure 4B compares the model’s best-scoring
parses with the ground-truth human parses for
several characters.

Results

People, BPL, and alternative models were com-
pared side by side on five concept learning tasks
that examine different forms of generalization
from just one or a few examples (example task
Fig. 5). All behavioral experiments were run
through Amazon’s Mechanical Turk, and the ex-
perimental procedures are detailed in section S5.

The main results are summarized by Fig. 6, and
additional lesion analyses and controls are re-
ported in section S6.
One-shot classification was evaluated through

a series of within-alphabet classification tasks for
10 different alphabets. As illustrated in Fig. 1B, i,
a single image of a new character was presented,
and participants selected another example of that
same character from a set of 20 distinct char-
acters produced by a typical drawer of that alpha-
bet. Performance is shown in Fig. 6A,where chance
is 95% errors. As a baseline, themodifiedHausdorff
distance (32) was computed between centered
images, producing 38.8% errors. People were
skilled one-shot learners, achieving an average
error rate of 4.5% (N = 40). BPL showed a similar
error rate of 3.3%, achieving better performance
than adeep convolutional network (convnet; 13.5%
errors) and the HDmodel (34.8%)—each adapted
from deep learning methods that have performed
well on a range of computer vision tasks. A deep
Siamese convolutional network optimized for this
one-shot learning task achieved 8.0% errors (33),
still about twice as high as humans or ourmodel.
BPL’s advantage points to the benefits ofmodeling
theunderlying causal process in learning concepts,
a strategy different from the particular deep learn-
ing approaches examined here. BPL’s other key
ingredients also make positive contributions, as
shown by higher error rates for BPL lesions
without learning to learn (token-level only) or
compositionality (11.0% errors and 14.0%, respec-
tively). Learning to learn was studied separately
at the type and token level by disrupting the
learned hyperparameters of the generativemodel.
Compositionality was evaluated by comparing
BPL to a matched model that allowed just one
spline-based stroke, resembling earlier analysis-
by-synthesis models for handwritten characters
that were similarly limited (34, 35).
The human capacity for one-shot learning is

more than just classification. It can include a suite
of abilities, such as generating new examples of a
concept. We compared the creative outputs pro-
duced by humans and machines through “visual
Turing tests,”where naive human judges tried to
identify the machine, given paired examples of
human and machine behavior. In our most basic
task, judges compared the drawings from nine
humans asked to produce a new instance of a
concept given one example with nine new ex-
amples drawn by BPL (Fig. 5). We evaluated each
model based on the accuracy of the judges, which
we call their identification (ID) level: Idealmodel
performance is 50% ID level, indicating that they
cannot distinguish the model’s behavior from
humans; worst-case performance is 100%. Each
judge (N = 147) completed 49 trials with blocked
feedback, and judges were analyzed individually
and in aggregate. The results are shown in Fig.
6B (new exemplars). Judges had only a 52% ID
level on average for discriminating human versus
BPL behavior. As a group, this performance was
barely better than chance [t(47) = 2.03, P = 0.048],
and only 3 of 48 judges had an ID level reliably
above chance. Three lesioned models were eval-
uated by different groups of judges in separate
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these structures support; fractal structures, such
as rivers and trees, where complexity arises from
highly iterated but simple generative processes;
and even abstract knowledge, such as natural
number, natural language semantics, and intuitive
physical theories (17, 46–48).
Capturing how people learn all these concepts

at the level we reached with handwritten charac-
ters is a long-term goal. In the near term, applying
our approach to other types of symbolic concepts
may be particularly promising. Human cultures
produce many such symbol systems, including
gestures, dance moves, and the words of spoken
and signed languages. As with characters, these
concepts can be learned to some extent from
one or a few examples, even before the symbolic
meaning is clear: Consider seeing a “thumbs up,”

“fist bump,” or “high five” or hearing the names
“Boutros Boutros-Ghali,” “Kofi Annan,” or “Ban
Ki-moon” for the first time. From this limited
experience, people can typically recognize new
examples and even produce a recognizable sem-
blance of the concept themselves. The BPL prin-
ciples of compositionality, causality, and learning
to learn may help to explain how.
To illustrate how BPL applies in the domain of

speech, programs for spoken words could be
constructed by composing phonemes (subparts)
systematically to form syllables (parts), which
compose further to form morphemes and entire
words. Given an abstract syllable-phoneme parse
of a word, realistic speech tokens can be gener-
ated from a causalmodel that captures aspects of
speechmotor articulation. These part and subpart

components are shared across the words in a
language, enabling children to acquire them
through a long-term learning-to-learn process.
We have already found that a prototype model
exploiting compositionality and learning to learn,
but not causality, is able to capture some aspects
of the human ability to learn and generalize new
spoken words (e.g., English speakers learning
words in Japanese) (49). Further progress may
come from adopting a richer causal model of
speech generation, in the spirit of classic “analysis-
by-synthesis” proposals for speech perception and
language comprehension (20, 50).
Although our work focused on adult learners,

it raises natural developmental questions. If chil-
dren learning to write acquire an inductive bias
similar to what BPL constructs, the model could
help explain why children find some characters
difficult and which teaching procedures are most
effective (51). Comparing children’s parsing and
generalization behavior at different stages of
learning and BPL models given varying back-
groundexperience couldbetter evaluate themodel’s
learning-to-learnmechanismsandsuggest improve-
ments. By testing our classification tasks on infants
who categorize visually before they begin drawing
or scribbling (52), we can askwhether children learn
to perceive characters more causally and composi-
tionally based on their own proto-writing experi-
ence. Causal representations are prewired in our
current BPL models, but they could conceivably
be constructed through learning to learn at an
even deeper level of model hierarchy (53).
Last, we hope that our workmay shed light on

the neural representations of concepts and the
development of more neurally grounded learning
models. Supplementing feedforward visual pro-
cessing (54), previous behavioral studies and our
results suggest that people learn new handwritten
characters in part by inferring abstract motor
programs (55), a representation grounded in pro-
duction yet active in purely perceptual tasks,
independent of specific motor articulators and
potentially driven by activity in premotor cortex
(56–58). Could we decode representations struc-
turally similar to those in BPL from brain imaging
ofpremotor cortex (or other action-oriented regions)
in humans perceiving and classifying new char-
acters for the first time? Recent large-scale brain
models (59) and deep recurrent neural networks
(60–62) have also focused on character recogni-
tion and production tasks—but typically learning
from large training samples with many examples
of each concept. We see the one-shot learning
capacities studied here as a challenge for these
neural models: one we expect they might rise to
by incorporating the principles of composition-
ality, causality, and learning to learn that BPL
instantiates.
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these structures support; fractal structures, such
as rivers and trees, where complexity arises from
highly iterated but simple generative processes;
and even abstract knowledge, such as natural
number, natural language semantics, and intuitive
physical theories (17, 46–48).
Capturing how people learn all these concepts

at the level we reached with handwritten charac-
ters is a long-term goal. In the near term, applying
our approach to other types of symbolic concepts
may be particularly promising. Human cultures
produce many such symbol systems, including
gestures, dance moves, and the words of spoken
and signed languages. As with characters, these
concepts can be learned to some extent from
one or a few examples, even before the symbolic
meaning is clear: Consider seeing a “thumbs up,”

“fist bump,” or “high five” or hearing the names
“Boutros Boutros-Ghali,” “Kofi Annan,” or “Ban
Ki-moon” for the first time. From this limited
experience, people can typically recognize new
examples and even produce a recognizable sem-
blance of the concept themselves. The BPL prin-
ciples of compositionality, causality, and learning
to learn may help to explain how.
To illustrate how BPL applies in the domain of

speech, programs for spoken words could be
constructed by composing phonemes (subparts)
systematically to form syllables (parts), which
compose further to form morphemes and entire
words. Given an abstract syllable-phoneme parse
of a word, realistic speech tokens can be gener-
ated from a causalmodel that captures aspects of
speechmotor articulation. These part and subpart

components are shared across the words in a
language, enabling children to acquire them
through a long-term learning-to-learn process.
We have already found that a prototype model
exploiting compositionality and learning to learn,
but not causality, is able to capture some aspects
of the human ability to learn and generalize new
spoken words (e.g., English speakers learning
words in Japanese) (49). Further progress may
come from adopting a richer causal model of
speech generation, in the spirit of classic “analysis-
by-synthesis” proposals for speech perception and
language comprehension (20, 50).
Although our work focused on adult learners,

it raises natural developmental questions. If chil-
dren learning to write acquire an inductive bias
similar to what BPL constructs, the model could
help explain why children find some characters
difficult and which teaching procedures are most
effective (51). Comparing children’s parsing and
generalization behavior at different stages of
learning and BPL models given varying back-
groundexperience couldbetter evaluate themodel’s
learning-to-learnmechanismsandsuggest improve-
ments. By testing our classification tasks on infants
who categorize visually before they begin drawing
or scribbling (52), we can askwhether children learn
to perceive characters more causally and composi-
tionally based on their own proto-writing experi-
ence. Causal representations are prewired in our
current BPL models, but they could conceivably
be constructed through learning to learn at an
even deeper level of model hierarchy (53).
Last, we hope that our workmay shed light on

the neural representations of concepts and the
development of more neurally grounded learning
models. Supplementing feedforward visual pro-
cessing (54), previous behavioral studies and our
results suggest that people learn new handwritten
characters in part by inferring abstract motor
programs (55), a representation grounded in pro-
duction yet active in purely perceptual tasks,
independent of specific motor articulators and
potentially driven by activity in premotor cortex
(56–58). Could we decode representations struc-
turally similar to those in BPL from brain imaging
ofpremotor cortex (or other action-oriented regions)
in humans perceiving and classifying new char-
acters for the first time? Recent large-scale brain
models (59) and deep recurrent neural networks
(60–62) have also focused on character recogni-
tion and production tasks—but typically learning
from large training samples with many examples
of each concept. We see the one-shot learning
capacities studied here as a challenge for these
neural models: one we expect they might rise to
by incorporating the principles of composition-
ality, causality, and learning to learn that BPL
instantiates.
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these structures support; fractal structures, such
as rivers and trees, where complexity arises from
highly iterated but simple generative processes;
and even abstract knowledge, such as natural
number, natural language semantics, and intuitive
physical theories (17, 46–48).
Capturing how people learn all these concepts

at the level we reached with handwritten charac-
ters is a long-term goal. In the near term, applying
our approach to other types of symbolic concepts
may be particularly promising. Human cultures
produce many such symbol systems, including
gestures, dance moves, and the words of spoken
and signed languages. As with characters, these
concepts can be learned to some extent from
one or a few examples, even before the symbolic
meaning is clear: Consider seeing a “thumbs up,”

“fist bump,” or “high five” or hearing the names
“Boutros Boutros-Ghali,” “Kofi Annan,” or “Ban
Ki-moon” for the first time. From this limited
experience, people can typically recognize new
examples and even produce a recognizable sem-
blance of the concept themselves. The BPL prin-
ciples of compositionality, causality, and learning
to learn may help to explain how.
To illustrate how BPL applies in the domain of

speech, programs for spoken words could be
constructed by composing phonemes (subparts)
systematically to form syllables (parts), which
compose further to form morphemes and entire
words. Given an abstract syllable-phoneme parse
of a word, realistic speech tokens can be gener-
ated from a causalmodel that captures aspects of
speechmotor articulation. These part and subpart

components are shared across the words in a
language, enabling children to acquire them
through a long-term learning-to-learn process.
We have already found that a prototype model
exploiting compositionality and learning to learn,
but not causality, is able to capture some aspects
of the human ability to learn and generalize new
spoken words (e.g., English speakers learning
words in Japanese) (49). Further progress may
come from adopting a richer causal model of
speech generation, in the spirit of classic “analysis-
by-synthesis” proposals for speech perception and
language comprehension (20, 50).
Although our work focused on adult learners,

it raises natural developmental questions. If chil-
dren learning to write acquire an inductive bias
similar to what BPL constructs, the model could
help explain why children find some characters
difficult and which teaching procedures are most
effective (51). Comparing children’s parsing and
generalization behavior at different stages of
learning and BPL models given varying back-
groundexperience couldbetter evaluate themodel’s
learning-to-learnmechanismsandsuggest improve-
ments. By testing our classification tasks on infants
who categorize visually before they begin drawing
or scribbling (52), we can askwhether children learn
to perceive characters more causally and composi-
tionally based on their own proto-writing experi-
ence. Causal representations are prewired in our
current BPL models, but they could conceivably
be constructed through learning to learn at an
even deeper level of model hierarchy (53).
Last, we hope that our workmay shed light on

the neural representations of concepts and the
development of more neurally grounded learning
models. Supplementing feedforward visual pro-
cessing (54), previous behavioral studies and our
results suggest that people learn new handwritten
characters in part by inferring abstract motor
programs (55), a representation grounded in pro-
duction yet active in purely perceptual tasks,
independent of specific motor articulators and
potentially driven by activity in premotor cortex
(56–58). Could we decode representations struc-
turally similar to those in BPL from brain imaging
ofpremotor cortex (or other action-oriented regions)
in humans perceiving and classifying new char-
acters for the first time? Recent large-scale brain
models (59) and deep recurrent neural networks
(60–62) have also focused on character recogni-
tion and production tasks—but typically learning
from large training samples with many examples
of each concept. We see the one-shot learning
capacities studied here as a challenge for these
neural models: one we expect they might rise to
by incorporating the principles of composition-
ality, causality, and learning to learn that BPL
instantiates.
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human or machine?

for each subpart. Last, parts are roughly positioned
to begin either independently, at the beginning, at
the end, or along previous parts, as defined by
relation Ri (Fig. 3A, iv).
Character tokens q(m) are produced by execut-

ing the parts and the relations andmodeling how
ink flows from the pen to the page. First, motor
noise is added to the control points and the scale
of the subparts to create token-level stroke tra-
jectories S(m). Second, the trajectory’s precise start
location L(m) is sampled from the schematic pro-
vided by its relationRi to previous strokes. Third,
global transformations are sampled, including
an affine warp A(m) and adaptive noise parame-
ters that ease probabilistic inference (30). Last, a
binary image I (m) is created by a stochastic ren-
dering function, lining the stroke trajectories
with grayscale ink and interpreting the pixel
values as independent Bernoulli probabilities.
Posterior inference requires searching the large

combinatorial space of programs that could have
generated a raw image I (m). Our strategy uses fast
bottom-up methods (31) to propose a range of
candidate parses. The most promising candidates
are refined by using continuous optimization

and local search, forming a discrete approxima-
tion to the posterior distribution P(y , q(m)|I (m))
(section S3). Figure 4A shows the set of discov-
ered programs for a training image I (1) and
how they are refit to different test images I (2) to
compute a classification score log P(I (2)|I (1)) (the
log posterior predictive probability), where higher
scores indicate that they are more likely to be-
long to the same class. A high score is achieved
when at least one set of parts and relations can
successfully explain both the training and the
test images, without violating the soft constraints
of the learned within-class variability model.
Figure 4B compares the model’s best-scoring
parses with the ground-truth human parses for
several characters.

Results

People, BPL, and alternative models were com-
pared side by side on five concept learning tasks
that examine different forms of generalization
from just one or a few examples (example task
Fig. 5). All behavioral experiments were run
through Amazon’s Mechanical Turk, and the ex-
perimental procedures are detailed in section S5.

The main results are summarized by Fig. 6, and
additional lesion analyses and controls are re-
ported in section S6.
One-shot classification was evaluated through

a series of within-alphabet classification tasks for
10 different alphabets. As illustrated in Fig. 1B, i,
a single image of a new character was presented,
and participants selected another example of that
same character from a set of 20 distinct char-
acters produced by a typical drawer of that alpha-
bet. Performance is shown in Fig. 6A,where chance
is 95% errors. As a baseline, themodifiedHausdorff
distance (32) was computed between centered
images, producing 38.8% errors. People were
skilled one-shot learners, achieving an average
error rate of 4.5% (N = 40). BPL showed a similar
error rate of 3.3%, achieving better performance
than adeep convolutional network (convnet; 13.5%
errors) and the HDmodel (34.8%)—each adapted
from deep learning methods that have performed
well on a range of computer vision tasks. A deep
Siamese convolutional network optimized for this
one-shot learning task achieved 8.0% errors (33),
still about twice as high as humans or ourmodel.
BPL’s advantage points to the benefits ofmodeling
theunderlying causal process in learning concepts,
a strategy different from the particular deep learn-
ing approaches examined here. BPL’s other key
ingredients also make positive contributions, as
shown by higher error rates for BPL lesions
without learning to learn (token-level only) or
compositionality (11.0% errors and 14.0%, respec-
tively). Learning to learn was studied separately
at the type and token level by disrupting the
learned hyperparameters of the generativemodel.
Compositionality was evaluated by comparing
BPL to a matched model that allowed just one
spline-based stroke, resembling earlier analysis-
by-synthesis models for handwritten characters
that were similarly limited (34, 35).
The human capacity for one-shot learning is

more than just classification. It can include a suite
of abilities, such as generating new examples of a
concept. We compared the creative outputs pro-
duced by humans and machines through “visual
Turing tests,”where naive human judges tried to
identify the machine, given paired examples of
human and machine behavior. In our most basic
task, judges compared the drawings from nine
humans asked to produce a new instance of a
concept given one example with nine new ex-
amples drawn by BPL (Fig. 5). We evaluated each
model based on the accuracy of the judges, which
we call their identification (ID) level: Idealmodel
performance is 50% ID level, indicating that they
cannot distinguish the model’s behavior from
humans; worst-case performance is 100%. Each
judge (N = 147) completed 49 trials with blocked
feedback, and judges were analyzed individually
and in aggregate. The results are shown in Fig.
6B (new exemplars). Judges had only a 52% ID
level on average for discriminating human versus
BPL behavior. As a group, this performance was
barely better than chance [t(47) = 2.03, P = 0.048],
and only 3 of 48 judges had an ID level reliably
above chance. Three lesioned models were eval-
uated by different groups of judges in separate
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conditions of the visual Turing test, examining
the necessity of key model ingredients in BPL.
Two lesions, learning to learn (token-level only)
and compositionality, resulted in significantly
easier Turing test tasks (80% ID level with 17 of 19
judges above chance and 65% with 14 of 26, re-
spectively), indicating that this task is a nontrivial
one to pass and that these two principles each
contribute to BPL’s human-like generative profi-
ciency. To evaluate parsing more directly (Fig. 4B),
we ran a dynamic version of this task with a dif-
ferent set of judges (N = 143), where each trial
showed paired movies of a person and BPL draw-
ing the same character. BPL performance on this
visual Turing test was not perfect (59% average
ID level; new exemplars (dynamic) in Fig. 6B),
although randomizing the learned prior on stroke
order and direction significantly raises the ID level
(71%), showing the importance of capturing the
right causal dynamics for BPL.
Although learning to learn new characters from

30 background alphabets proved effective, many
human learners will have much less experience:
perhaps familiarity with only one or a few alpha-
bets, along with related drawing tasks. To see
how themodels performwithmore limited expe-
rience, we retrained several of them by using two
different subsets of only five background alpha-
bets. BPL achieved similar performance for one-
shot classification as with 30 alphabets (4.3%
and 4.0% errors, for the two sets, respectively); in
contrast, the deep convolutional net performed
notably worse than before (24.0% and 22.3%
errors). BPL performance on a visual Turing test
of exemplar generation (N = 59) was also similar
on the first set [52% average ID level that was
not significantly different from chance t(26) = 1.04,
P > 0.05], with only 3 of 27 judges reliably above
chance, although performance on the second set
was slightly worse [57% ID level; t(31) = 4.35, P <
0.001; 7 of 32 judges reliably above chance].
These results suggest that although learning to
learn is important for BPL’s success, the model’s
structure allows it to take nearly full advantage
of comparatively limited background training.
The human productive capacity goes beyond

generating new examples of a given concept:
People can also generate whole new concepts.
We tested this by showing a few example char-
acters from 1 of 10 foreign alphabets and asking
participants to quickly create a new character
that appears to belong to the same alphabet (Fig.
7A). The BPLmodel can capture this behavior by
placing a nonparametric prior on the type level,
which favors reusing strokes inferred from the
example characters to produce stylistically con-
sistent new characters (section S7). Human judges
compared people versus BPL in a visual Turing
test (N = 117), viewing a series of displays in the
format of Fig. 7A, i and iii. The judges had only a
49% ID level on average [Fig. 6B, new concepts
(from type)], which is not significantly different
from chance [t(34) = 0.45, P > 0.05]. Individually,
only 8 of 35 judges had an ID level significantly
above chance. In contrast, a model with a lesion
to (type-level) learning to learn was successfully
detected by judges on 69% of trials in a separate

condition of the visual Turing test, and was sig-
nificantly easier to detect thanBPL (18 of 25 judges
above chance). Further comparisons in section
S6 suggested that the model’s ability to produce
plausible novel characters, rather than stylistic
consistency per se, was the crucial factor for
passing this test. We also found greater variation
in individual judges’ comparisons of people and
the BPL model on this task, as reflected in their
ID levels: 10 of 35 judges had individual ID levels
significantly below chance; in contrast, only two
participants had below-chance ID levels for BPL
across all the other experiments shown in Fig. 6B.
Last, judges (N = 124) compared people and

models on an entirely free-form task of generat-
ing novel character concepts, unconstrained by a
particular alphabet (Fig. 7B). Sampling from the
prior distribution on character types P(y) in BPL
led to an average ID level of 57% correct in a visual
Turing test (11 of 32 judges above chance); with
the nonparametric prior that reuses inferred parts
frombackground characters, BPL achieved a 51%
ID level [Fig. 7B and new concepts (unconstrained)
in Fig. 6B; ID level not significantly different
from chance t(24) = 0.497, P > 0.05; 2 of 25 judges
above chance]. A lesion analysis revealed that both
compositionality (68% and 15 of 22) and learning
to learn (64% and 22 of 45)were crucial in passing
this test.

Discussion

Despite a changing artificial intelligence land-
scape, people remain far better thanmachines at

learning new concepts: They require fewer exam-
ples and use their concepts in richer ways. Our
work suggests that the principles of composi-
tionality, causality, and learning to learn will be
critical in buildingmachines that narrow this gap.
Machine learning and computer vision research-
ers are beginning to explore methods based on
simple program induction (36–41), andour results
show that this approach can perform one-shot
learning in classification tasks at human-level ac-
curacy and fool most judges in visual Turing tests
of itsmore creative abilities. For each visual Turing
test, fewer than 25% of judges performed signif-
icantly better than chance.
Although successful on these tasks, BPL still

sees less structure in visual concepts than people
do. It lacks explicit knowledge of parallel lines,
symmetry, optional elements such as cross bars
in “7”s, and connections between the ends of
strokes and other strokes. Moreover, people
use their concepts for other abilities that were
not studied here, including planning (42), expla-
nation (43), communication (44), and conceptual
combination (45). Probabilistic programs could
capture these richer aspects of concept learning
and use, but only withmore abstract and complex
structure than the programs studied here. More-
sophisticated programs could also be suitable for
learning compositional, causal representations of
manyconceptsbeyondsimpleperceptual categories.
Examples include concepts for physical artifacts,
such as tools, vehicles, or furniture, that are well
described by parts, relations, and the functions
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Fig. 6. Human and machine performance was compared on (A) one-shot classification and (B)
four generative tasks.The creative outputs for humans and models were compared by the percent of
human judges to correctly identify the machine. Ideal performance is 50%, where the machine is
perfectly confusable with humans in these two-alternative forced choice tasks (pink dotted line). Bars
show the mean ± SEM [N = 10 alphabets in (A)]. The no learning-to-learn lesion is applied at different
levels (bars left to right): (A) token; (B) token, stroke order, type, and type.
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conditions of the visual Turing test, examining
the necessity of key model ingredients in BPL.
Two lesions, learning to learn (token-level only)
and compositionality, resulted in significantly
easier Turing test tasks (80% ID level with 17 of 19
judges above chance and 65% with 14 of 26, re-
spectively), indicating that this task is a nontrivial
one to pass and that these two principles each
contribute to BPL’s human-like generative profi-
ciency. To evaluate parsing more directly (Fig. 4B),
we ran a dynamic version of this task with a dif-
ferent set of judges (N = 143), where each trial
showed paired movies of a person and BPL draw-
ing the same character. BPL performance on this
visual Turing test was not perfect (59% average
ID level; new exemplars (dynamic) in Fig. 6B),
although randomizing the learned prior on stroke
order and direction significantly raises the ID level
(71%), showing the importance of capturing the
right causal dynamics for BPL.
Although learning to learn new characters from

30 background alphabets proved effective, many
human learners will have much less experience:
perhaps familiarity with only one or a few alpha-
bets, along with related drawing tasks. To see
how themodels performwithmore limited expe-
rience, we retrained several of them by using two
different subsets of only five background alpha-
bets. BPL achieved similar performance for one-
shot classification as with 30 alphabets (4.3%
and 4.0% errors, for the two sets, respectively); in
contrast, the deep convolutional net performed
notably worse than before (24.0% and 22.3%
errors). BPL performance on a visual Turing test
of exemplar generation (N = 59) was also similar
on the first set [52% average ID level that was
not significantly different from chance t(26) = 1.04,
P > 0.05], with only 3 of 27 judges reliably above
chance, although performance on the second set
was slightly worse [57% ID level; t(31) = 4.35, P <
0.001; 7 of 32 judges reliably above chance].
These results suggest that although learning to
learn is important for BPL’s success, the model’s
structure allows it to take nearly full advantage
of comparatively limited background training.
The human productive capacity goes beyond

generating new examples of a given concept:
People can also generate whole new concepts.
We tested this by showing a few example char-
acters from 1 of 10 foreign alphabets and asking
participants to quickly create a new character
that appears to belong to the same alphabet (Fig.
7A). The BPLmodel can capture this behavior by
placing a nonparametric prior on the type level,
which favors reusing strokes inferred from the
example characters to produce stylistically con-
sistent new characters (section S7). Human judges
compared people versus BPL in a visual Turing
test (N = 117), viewing a series of displays in the
format of Fig. 7A, i and iii. The judges had only a
49% ID level on average [Fig. 6B, new concepts
(from type)], which is not significantly different
from chance [t(34) = 0.45, P > 0.05]. Individually,
only 8 of 35 judges had an ID level significantly
above chance. In contrast, a model with a lesion
to (type-level) learning to learn was successfully
detected by judges on 69% of trials in a separate

condition of the visual Turing test, and was sig-
nificantly easier to detect thanBPL (18 of 25 judges
above chance). Further comparisons in section
S6 suggested that the model’s ability to produce
plausible novel characters, rather than stylistic
consistency per se, was the crucial factor for
passing this test. We also found greater variation
in individual judges’ comparisons of people and
the BPL model on this task, as reflected in their
ID levels: 10 of 35 judges had individual ID levels
significantly below chance; in contrast, only two
participants had below-chance ID levels for BPL
across all the other experiments shown in Fig. 6B.
Last, judges (N = 124) compared people and

models on an entirely free-form task of generat-
ing novel character concepts, unconstrained by a
particular alphabet (Fig. 7B). Sampling from the
prior distribution on character types P(y) in BPL
led to an average ID level of 57% correct in a visual
Turing test (11 of 32 judges above chance); with
the nonparametric prior that reuses inferred parts
frombackground characters, BPL achieved a 51%
ID level [Fig. 7B and new concepts (unconstrained)
in Fig. 6B; ID level not significantly different
from chance t(24) = 0.497, P > 0.05; 2 of 25 judges
above chance]. A lesion analysis revealed that both
compositionality (68% and 15 of 22) and learning
to learn (64% and 22 of 45)were crucial in passing
this test.

Discussion

Despite a changing artificial intelligence land-
scape, people remain far better thanmachines at

learning new concepts: They require fewer exam-
ples and use their concepts in richer ways. Our
work suggests that the principles of composi-
tionality, causality, and learning to learn will be
critical in buildingmachines that narrow this gap.
Machine learning and computer vision research-
ers are beginning to explore methods based on
simple program induction (36–41), andour results
show that this approach can perform one-shot
learning in classification tasks at human-level ac-
curacy and fool most judges in visual Turing tests
of itsmore creative abilities. For each visual Turing
test, fewer than 25% of judges performed signif-
icantly better than chance.
Although successful on these tasks, BPL still

sees less structure in visual concepts than people
do. It lacks explicit knowledge of parallel lines,
symmetry, optional elements such as cross bars
in “7”s, and connections between the ends of
strokes and other strokes. Moreover, people
use their concepts for other abilities that were
not studied here, including planning (42), expla-
nation (43), communication (44), and conceptual
combination (45). Probabilistic programs could
capture these richer aspects of concept learning
and use, but only withmore abstract and complex
structure than the programs studied here. More-
sophisticated programs could also be suitable for
learning compositional, causal representations of
manyconceptsbeyondsimpleperceptual categories.
Examples include concepts for physical artifacts,
such as tools, vehicles, or furniture, that are well
described by parts, relations, and the functions
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Fig. 6. Human and machine performance was compared on (A) one-shot classification and (B)
four generative tasks.The creative outputs for humans and models were compared by the percent of
human judges to correctly identify the machine. Ideal performance is 50%, where the machine is
perfectly confusable with humans in these two-alternative forced choice tasks (pink dotted line). Bars
show the mean ± SEM [N = 10 alphabets in (A)]. The no learning-to-learn lesion is applied at different
levels (bars left to right): (A) token; (B) token, stroke order, type, and type.
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conditions of the visual Turing test, examining
the necessity of key model ingredients in BPL.
Two lesions, learning to learn (token-level only)
and compositionality, resulted in significantly
easier Turing test tasks (80% ID level with 17 of 19
judges above chance and 65% with 14 of 26, re-
spectively), indicating that this task is a nontrivial
one to pass and that these two principles each
contribute to BPL’s human-like generative profi-
ciency. To evaluate parsing more directly (Fig. 4B),
we ran a dynamic version of this task with a dif-
ferent set of judges (N = 143), where each trial
showed paired movies of a person and BPL draw-
ing the same character. BPL performance on this
visual Turing test was not perfect (59% average
ID level; new exemplars (dynamic) in Fig. 6B),
although randomizing the learned prior on stroke
order and direction significantly raises the ID level
(71%), showing the importance of capturing the
right causal dynamics for BPL.
Although learning to learn new characters from

30 background alphabets proved effective, many
human learners will have much less experience:
perhaps familiarity with only one or a few alpha-
bets, along with related drawing tasks. To see
how themodels performwithmore limited expe-
rience, we retrained several of them by using two
different subsets of only five background alpha-
bets. BPL achieved similar performance for one-
shot classification as with 30 alphabets (4.3%
and 4.0% errors, for the two sets, respectively); in
contrast, the deep convolutional net performed
notably worse than before (24.0% and 22.3%
errors). BPL performance on a visual Turing test
of exemplar generation (N = 59) was also similar
on the first set [52% average ID level that was
not significantly different from chance t(26) = 1.04,
P > 0.05], with only 3 of 27 judges reliably above
chance, although performance on the second set
was slightly worse [57% ID level; t(31) = 4.35, P <
0.001; 7 of 32 judges reliably above chance].
These results suggest that although learning to
learn is important for BPL’s success, the model’s
structure allows it to take nearly full advantage
of comparatively limited background training.
The human productive capacity goes beyond

generating new examples of a given concept:
People can also generate whole new concepts.
We tested this by showing a few example char-
acters from 1 of 10 foreign alphabets and asking
participants to quickly create a new character
that appears to belong to the same alphabet (Fig.
7A). The BPLmodel can capture this behavior by
placing a nonparametric prior on the type level,
which favors reusing strokes inferred from the
example characters to produce stylistically con-
sistent new characters (section S7). Human judges
compared people versus BPL in a visual Turing
test (N = 117), viewing a series of displays in the
format of Fig. 7A, i and iii. The judges had only a
49% ID level on average [Fig. 6B, new concepts
(from type)], which is not significantly different
from chance [t(34) = 0.45, P > 0.05]. Individually,
only 8 of 35 judges had an ID level significantly
above chance. In contrast, a model with a lesion
to (type-level) learning to learn was successfully
detected by judges on 69% of trials in a separate

condition of the visual Turing test, and was sig-
nificantly easier to detect thanBPL (18 of 25 judges
above chance). Further comparisons in section
S6 suggested that the model’s ability to produce
plausible novel characters, rather than stylistic
consistency per se, was the crucial factor for
passing this test. We also found greater variation
in individual judges’ comparisons of people and
the BPL model on this task, as reflected in their
ID levels: 10 of 35 judges had individual ID levels
significantly below chance; in contrast, only two
participants had below-chance ID levels for BPL
across all the other experiments shown in Fig. 6B.
Last, judges (N = 124) compared people and

models on an entirely free-form task of generat-
ing novel character concepts, unconstrained by a
particular alphabet (Fig. 7B). Sampling from the
prior distribution on character types P(y) in BPL
led to an average ID level of 57% correct in a visual
Turing test (11 of 32 judges above chance); with
the nonparametric prior that reuses inferred parts
frombackground characters, BPL achieved a 51%
ID level [Fig. 7B and new concepts (unconstrained)
in Fig. 6B; ID level not significantly different
from chance t(24) = 0.497, P > 0.05; 2 of 25 judges
above chance]. A lesion analysis revealed that both
compositionality (68% and 15 of 22) and learning
to learn (64% and 22 of 45)were crucial in passing
this test.

Discussion

Despite a changing artificial intelligence land-
scape, people remain far better thanmachines at

learning new concepts: They require fewer exam-
ples and use their concepts in richer ways. Our
work suggests that the principles of composi-
tionality, causality, and learning to learn will be
critical in buildingmachines that narrow this gap.
Machine learning and computer vision research-
ers are beginning to explore methods based on
simple program induction (36–41), andour results
show that this approach can perform one-shot
learning in classification tasks at human-level ac-
curacy and fool most judges in visual Turing tests
of itsmore creative abilities. For each visual Turing
test, fewer than 25% of judges performed signif-
icantly better than chance.
Although successful on these tasks, BPL still

sees less structure in visual concepts than people
do. It lacks explicit knowledge of parallel lines,
symmetry, optional elements such as cross bars
in “7”s, and connections between the ends of
strokes and other strokes. Moreover, people
use their concepts for other abilities that were
not studied here, including planning (42), expla-
nation (43), communication (44), and conceptual
combination (45). Probabilistic programs could
capture these richer aspects of concept learning
and use, but only withmore abstract and complex
structure than the programs studied here. More-
sophisticated programs could also be suitable for
learning compositional, causal representations of
manyconceptsbeyondsimpleperceptual categories.
Examples include concepts for physical artifacts,
such as tools, vehicles, or furniture, that are well
described by parts, relations, and the functions
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Fig. 6. Human and machine performance was compared on (A) one-shot classification and (B)
four generative tasks.The creative outputs for humans and models were compared by the percent of
human judges to correctly identify the machine. Ideal performance is 50%, where the machine is
perfectly confusable with humans in these two-alternative forced choice tasks (pink dotted line). Bars
show the mean ± SEM [N = 10 alphabets in (A)]. The no learning-to-learn lesion is applied at different
levels (bars left to right): (A) token; (B) token, stroke order, type, and type.
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Human-level concept learning
through probabilistic
program induction
Brenden M. Lake,1* Ruslan Salakhutdinov,2 Joshua B. Tenenbaum3

People learning new concepts can often generalize successfully from just a single example,
yet machine learning algorithms typically require tens or hundreds of examples to
perform with similar accuracy. People can also use learned concepts in richer ways than
conventional algorithms—for action, imagination, and explanation. We present a
computational model that captures these human learning abilities for a large class of
simple visual concepts: handwritten characters from the world’s alphabets. The model
represents concepts as simple programs that best explain observed examples under a
Bayesian criterion. On a challenging one-shot classification task, the model achieves
human-level performance while outperforming recent deep learning approaches. We also
present several “visual Turing tests” probing the model’s creative generalization abilities,
which in many cases are indistinguishable from human behavior.

D
espite remarkable advances in artificial
intelligence and machine learning, two
aspects of human conceptual knowledge
have eluded machine systems. First, for
most interesting kinds of natural andman-

made categories, people can learn a new concept

from just one or a handful of examples, whereas
standard algorithms in machine learning require
tens or hundreds of examples to perform simi-
larly. For instance, people may only need to see
one example of a novel two-wheeled vehicle
(Fig. 1A) in order to grasp the boundaries of the

new concept, and even children canmake mean-
ingful generalizations via “one-shot learning”
(1–3). In contrast, many of the leading approaches
inmachine learning are also themost data-hungry,
especially “deep learning” models that have
achieved new levels of performance on object
and speech recognition benchmarks (4–9). Sec-
ond, people learn richer representations than
machines do, even for simple concepts (Fig. 1B),
using them for a wider range of functions, in-
cluding (Fig. 1, ii) creating new exemplars (10),
(Fig. 1, iii) parsing objects into parts and rela-
tions (11), and (Fig. 1, iv) creating new abstract
categories of objects based on existing categories
(12, 13). In contrast, the best machine classifiers
do not perform these additional functions, which
are rarely studied and usually require special-
ized algorithms. A central challenge is to ex-
plain these two aspects of human-level concept
learning: How do people learn new concepts
from just one or a few examples? And how do
people learn such abstract, rich, and flexible rep-
resentations? An even greater challenge arises
when putting them together: How can learning
succeed from such sparse data yet also produce
such rich representations? For any theory of
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Fig. 1. People can learn rich concepts from limited data. (A and B) A single example of a new concept (red boxes) can be enough information to support
the (i) classification of new examples, (ii) generation of new examples, (iii) parsing an object into parts and relations (parts segmented by color), and (iv)
generation of new concepts from related concepts. [Image credit for (A), iv, bottom: With permission from Glenn Roberts and Motorcycle Mojo Magazine]
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computational model that captures these human learning abilities for a large class of
simple visual concepts: handwritten characters from the world’s alphabets. The model
represents concepts as simple programs that best explain observed examples under a
Bayesian criterion. On a challenging one-shot classification task, the model achieves
human-level performance while outperforming recent deep learning approaches. We also
present several “visual Turing tests” probing the model’s creative generalization abilities,
which in many cases are indistinguishable from human behavior.
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especially “deep learning” models that have
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conditions of the visual Turing test, examining
the necessity of key model ingredients in BPL.
Two lesions, learning to learn (token-level only)
and compositionality, resulted in significantly
easier Turing test tasks (80% ID level with 17 of 19
judges above chance and 65% with 14 of 26, re-
spectively), indicating that this task is a nontrivial
one to pass and that these two principles each
contribute to BPL’s human-like generative profi-
ciency. To evaluate parsing more directly (Fig. 4B),
we ran a dynamic version of this task with a dif-
ferent set of judges (N = 143), where each trial
showed paired movies of a person and BPL draw-
ing the same character. BPL performance on this
visual Turing test was not perfect (59% average
ID level; new exemplars (dynamic) in Fig. 6B),
although randomizing the learned prior on stroke
order and direction significantly raises the ID level
(71%), showing the importance of capturing the
right causal dynamics for BPL.
Although learning to learn new characters from

30 background alphabets proved effective, many
human learners will have much less experience:
perhaps familiarity with only one or a few alpha-
bets, along with related drawing tasks. To see
how themodels performwithmore limited expe-
rience, we retrained several of them by using two
different subsets of only five background alpha-
bets. BPL achieved similar performance for one-
shot classification as with 30 alphabets (4.3%
and 4.0% errors, for the two sets, respectively); in
contrast, the deep convolutional net performed
notably worse than before (24.0% and 22.3%
errors). BPL performance on a visual Turing test
of exemplar generation (N = 59) was also similar
on the first set [52% average ID level that was
not significantly different from chance t(26) = 1.04,
P > 0.05], with only 3 of 27 judges reliably above
chance, although performance on the second set
was slightly worse [57% ID level; t(31) = 4.35, P <
0.001; 7 of 32 judges reliably above chance].
These results suggest that although learning to
learn is important for BPL’s success, the model’s
structure allows it to take nearly full advantage
of comparatively limited background training.
The human productive capacity goes beyond

generating new examples of a given concept:
People can also generate whole new concepts.
We tested this by showing a few example char-
acters from 1 of 10 foreign alphabets and asking
participants to quickly create a new character
that appears to belong to the same alphabet (Fig.
7A). The BPLmodel can capture this behavior by
placing a nonparametric prior on the type level,
which favors reusing strokes inferred from the
example characters to produce stylistically con-
sistent new characters (section S7). Human judges
compared people versus BPL in a visual Turing
test (N = 117), viewing a series of displays in the
format of Fig. 7A, i and iii. The judges had only a
49% ID level on average [Fig. 6B, new concepts
(from type)], which is not significantly different
from chance [t(34) = 0.45, P > 0.05]. Individually,
only 8 of 35 judges had an ID level significantly
above chance. In contrast, a model with a lesion
to (type-level) learning to learn was successfully
detected by judges on 69% of trials in a separate

condition of the visual Turing test, and was sig-
nificantly easier to detect thanBPL (18 of 25 judges
above chance). Further comparisons in section
S6 suggested that the model’s ability to produce
plausible novel characters, rather than stylistic
consistency per se, was the crucial factor for
passing this test. We also found greater variation
in individual judges’ comparisons of people and
the BPL model on this task, as reflected in their
ID levels: 10 of 35 judges had individual ID levels
significantly below chance; in contrast, only two
participants had below-chance ID levels for BPL
across all the other experiments shown in Fig. 6B.
Last, judges (N = 124) compared people and

models on an entirely free-form task of generat-
ing novel character concepts, unconstrained by a
particular alphabet (Fig. 7B). Sampling from the
prior distribution on character types P(y) in BPL
led to an average ID level of 57% correct in a visual
Turing test (11 of 32 judges above chance); with
the nonparametric prior that reuses inferred parts
frombackground characters, BPL achieved a 51%
ID level [Fig. 7B and new concepts (unconstrained)
in Fig. 6B; ID level not significantly different
from chance t(24) = 0.497, P > 0.05; 2 of 25 judges
above chance]. A lesion analysis revealed that both
compositionality (68% and 15 of 22) and learning
to learn (64% and 22 of 45)were crucial in passing
this test.

Discussion

Despite a changing artificial intelligence land-
scape, people remain far better thanmachines at

learning new concepts: They require fewer exam-
ples and use their concepts in richer ways. Our
work suggests that the principles of composi-
tionality, causality, and learning to learn will be
critical in buildingmachines that narrow this gap.
Machine learning and computer vision research-
ers are beginning to explore methods based on
simple program induction (36–41), andour results
show that this approach can perform one-shot
learning in classification tasks at human-level ac-
curacy and fool most judges in visual Turing tests
of itsmore creative abilities. For each visual Turing
test, fewer than 25% of judges performed signif-
icantly better than chance.
Although successful on these tasks, BPL still

sees less structure in visual concepts than people
do. It lacks explicit knowledge of parallel lines,
symmetry, optional elements such as cross bars
in “7”s, and connections between the ends of
strokes and other strokes. Moreover, people
use their concepts for other abilities that were
not studied here, including planning (42), expla-
nation (43), communication (44), and conceptual
combination (45). Probabilistic programs could
capture these richer aspects of concept learning
and use, but only withmore abstract and complex
structure than the programs studied here. More-
sophisticated programs could also be suitable for
learning compositional, causal representations of
manyconceptsbeyondsimpleperceptual categories.
Examples include concepts for physical artifacts,
such as tools, vehicles, or furniture, that are well
described by parts, relations, and the functions
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Fig. 6. Human and machine performance was compared on (A) one-shot classification and (B)
four generative tasks.The creative outputs for humans and models were compared by the percent of
human judges to correctly identify the machine. Ideal performance is 50%, where the machine is
perfectly confusable with humans in these two-alternative forced choice tasks (pink dotted line). Bars
show the mean ± SEM [N = 10 alphabets in (A)]. The no learning-to-learn lesion is applied at different
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conditions of the visual Turing test, examining
the necessity of key model ingredients in BPL.
Two lesions, learning to learn (token-level only)
and compositionality, resulted in significantly
easier Turing test tasks (80% ID level with 17 of 19
judges above chance and 65% with 14 of 26, re-
spectively), indicating that this task is a nontrivial
one to pass and that these two principles each
contribute to BPL’s human-like generative profi-
ciency. To evaluate parsing more directly (Fig. 4B),
we ran a dynamic version of this task with a dif-
ferent set of judges (N = 143), where each trial
showed paired movies of a person and BPL draw-
ing the same character. BPL performance on this
visual Turing test was not perfect (59% average
ID level; new exemplars (dynamic) in Fig. 6B),
although randomizing the learned prior on stroke
order and direction significantly raises the ID level
(71%), showing the importance of capturing the
right causal dynamics for BPL.
Although learning to learn new characters from

30 background alphabets proved effective, many
human learners will have much less experience:
perhaps familiarity with only one or a few alpha-
bets, along with related drawing tasks. To see
how themodels performwithmore limited expe-
rience, we retrained several of them by using two
different subsets of only five background alpha-
bets. BPL achieved similar performance for one-
shot classification as with 30 alphabets (4.3%
and 4.0% errors, for the two sets, respectively); in
contrast, the deep convolutional net performed
notably worse than before (24.0% and 22.3%
errors). BPL performance on a visual Turing test
of exemplar generation (N = 59) was also similar
on the first set [52% average ID level that was
not significantly different from chance t(26) = 1.04,
P > 0.05], with only 3 of 27 judges reliably above
chance, although performance on the second set
was slightly worse [57% ID level; t(31) = 4.35, P <
0.001; 7 of 32 judges reliably above chance].
These results suggest that although learning to
learn is important for BPL’s success, the model’s
structure allows it to take nearly full advantage
of comparatively limited background training.
The human productive capacity goes beyond

generating new examples of a given concept:
People can also generate whole new concepts.
We tested this by showing a few example char-
acters from 1 of 10 foreign alphabets and asking
participants to quickly create a new character
that appears to belong to the same alphabet (Fig.
7A). The BPLmodel can capture this behavior by
placing a nonparametric prior on the type level,
which favors reusing strokes inferred from the
example characters to produce stylistically con-
sistent new characters (section S7). Human judges
compared people versus BPL in a visual Turing
test (N = 117), viewing a series of displays in the
format of Fig. 7A, i and iii. The judges had only a
49% ID level on average [Fig. 6B, new concepts
(from type)], which is not significantly different
from chance [t(34) = 0.45, P > 0.05]. Individually,
only 8 of 35 judges had an ID level significantly
above chance. In contrast, a model with a lesion
to (type-level) learning to learn was successfully
detected by judges on 69% of trials in a separate

condition of the visual Turing test, and was sig-
nificantly easier to detect thanBPL (18 of 25 judges
above chance). Further comparisons in section
S6 suggested that the model’s ability to produce
plausible novel characters, rather than stylistic
consistency per se, was the crucial factor for
passing this test. We also found greater variation
in individual judges’ comparisons of people and
the BPL model on this task, as reflected in their
ID levels: 10 of 35 judges had individual ID levels
significantly below chance; in contrast, only two
participants had below-chance ID levels for BPL
across all the other experiments shown in Fig. 6B.
Last, judges (N = 124) compared people and

models on an entirely free-form task of generat-
ing novel character concepts, unconstrained by a
particular alphabet (Fig. 7B). Sampling from the
prior distribution on character types P(y) in BPL
led to an average ID level of 57% correct in a visual
Turing test (11 of 32 judges above chance); with
the nonparametric prior that reuses inferred parts
frombackground characters, BPL achieved a 51%
ID level [Fig. 7B and new concepts (unconstrained)
in Fig. 6B; ID level not significantly different
from chance t(24) = 0.497, P > 0.05; 2 of 25 judges
above chance]. A lesion analysis revealed that both
compositionality (68% and 15 of 22) and learning
to learn (64% and 22 of 45)were crucial in passing
this test.

Discussion

Despite a changing artificial intelligence land-
scape, people remain far better thanmachines at

learning new concepts: They require fewer exam-
ples and use their concepts in richer ways. Our
work suggests that the principles of composi-
tionality, causality, and learning to learn will be
critical in buildingmachines that narrow this gap.
Machine learning and computer vision research-
ers are beginning to explore methods based on
simple program induction (36–41), andour results
show that this approach can perform one-shot
learning in classification tasks at human-level ac-
curacy and fool most judges in visual Turing tests
of itsmore creative abilities. For each visual Turing
test, fewer than 25% of judges performed signif-
icantly better than chance.
Although successful on these tasks, BPL still

sees less structure in visual concepts than people
do. It lacks explicit knowledge of parallel lines,
symmetry, optional elements such as cross bars
in “7”s, and connections between the ends of
strokes and other strokes. Moreover, people
use their concepts for other abilities that were
not studied here, including planning (42), expla-
nation (43), communication (44), and conceptual
combination (45). Probabilistic programs could
capture these richer aspects of concept learning
and use, but only withmore abstract and complex
structure than the programs studied here. More-
sophisticated programs could also be suitable for
learning compositional, causal representations of
manyconceptsbeyondsimpleperceptual categories.
Examples include concepts for physical artifacts,
such as tools, vehicles, or furniture, that are well
described by parts, relations, and the functions
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for each subpart. Last, parts are roughly positioned
to begin either independently, at the beginning, at
the end, or along previous parts, as defined by
relation Ri (Fig. 3A, iv).
Character tokens q(m) are produced by execut-

ing the parts and the relations andmodeling how
ink flows from the pen to the page. First, motor
noise is added to the control points and the scale
of the subparts to create token-level stroke tra-
jectories S(m). Second, the trajectory’s precise start
location L(m) is sampled from the schematic pro-
vided by its relationRi to previous strokes. Third,
global transformations are sampled, including
an affine warp A(m) and adaptive noise parame-
ters that ease probabilistic inference (30). Last, a
binary image I (m) is created by a stochastic ren-
dering function, lining the stroke trajectories
with grayscale ink and interpreting the pixel
values as independent Bernoulli probabilities.
Posterior inference requires searching the large

combinatorial space of programs that could have
generated a raw image I (m). Our strategy uses fast
bottom-up methods (31) to propose a range of
candidate parses. The most promising candidates
are refined by using continuous optimization

and local search, forming a discrete approxima-
tion to the posterior distribution P(y , q(m)|I (m))
(section S3). Figure 4A shows the set of discov-
ered programs for a training image I (1) and
how they are refit to different test images I (2) to
compute a classification score log P(I (2)|I (1)) (the
log posterior predictive probability), where higher
scores indicate that they are more likely to be-
long to the same class. A high score is achieved
when at least one set of parts and relations can
successfully explain both the training and the
test images, without violating the soft constraints
of the learned within-class variability model.
Figure 4B compares the model’s best-scoring
parses with the ground-truth human parses for
several characters.

Results

People, BPL, and alternative models were com-
pared side by side on five concept learning tasks
that examine different forms of generalization
from just one or a few examples (example task
Fig. 5). All behavioral experiments were run
through Amazon’s Mechanical Turk, and the ex-
perimental procedures are detailed in section S5.

The main results are summarized by Fig. 6, and
additional lesion analyses and controls are re-
ported in section S6.
One-shot classification was evaluated through

a series of within-alphabet classification tasks for
10 different alphabets. As illustrated in Fig. 1B, i,
a single image of a new character was presented,
and participants selected another example of that
same character from a set of 20 distinct char-
acters produced by a typical drawer of that alpha-
bet. Performance is shown in Fig. 6A,where chance
is 95% errors. As a baseline, themodifiedHausdorff
distance (32) was computed between centered
images, producing 38.8% errors. People were
skilled one-shot learners, achieving an average
error rate of 4.5% (N = 40). BPL showed a similar
error rate of 3.3%, achieving better performance
than adeep convolutional network (convnet; 13.5%
errors) and the HDmodel (34.8%)—each adapted
from deep learning methods that have performed
well on a range of computer vision tasks. A deep
Siamese convolutional network optimized for this
one-shot learning task achieved 8.0% errors (33),
still about twice as high as humans or ourmodel.
BPL’s advantage points to the benefits ofmodeling
theunderlying causal process in learning concepts,
a strategy different from the particular deep learn-
ing approaches examined here. BPL’s other key
ingredients also make positive contributions, as
shown by higher error rates for BPL lesions
without learning to learn (token-level only) or
compositionality (11.0% errors and 14.0%, respec-
tively). Learning to learn was studied separately
at the type and token level by disrupting the
learned hyperparameters of the generativemodel.
Compositionality was evaluated by comparing
BPL to a matched model that allowed just one
spline-based stroke, resembling earlier analysis-
by-synthesis models for handwritten characters
that were similarly limited (34, 35).
The human capacity for one-shot learning is

more than just classification. It can include a suite
of abilities, such as generating new examples of a
concept. We compared the creative outputs pro-
duced by humans and machines through “visual
Turing tests,”where naive human judges tried to
identify the machine, given paired examples of
human and machine behavior. In our most basic
task, judges compared the drawings from nine
humans asked to produce a new instance of a
concept given one example with nine new ex-
amples drawn by BPL (Fig. 5). We evaluated each
model based on the accuracy of the judges, which
we call their identification (ID) level: Idealmodel
performance is 50% ID level, indicating that they
cannot distinguish the model’s behavior from
humans; worst-case performance is 100%. Each
judge (N = 147) completed 49 trials with blocked
feedback, and judges were analyzed individually
and in aggregate. The results are shown in Fig.
6B (new exemplars). Judges had only a 52% ID
level on average for discriminating human versus
BPL behavior. As a group, this performance was
barely better than chance [t(47) = 2.03, P = 0.048],
and only 3 of 48 judges had an ID level reliably
above chance. Three lesioned models were eval-
uated by different groups of judges in separate
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these structures support; fractal structures, such
as rivers and trees, where complexity arises from
highly iterated but simple generative processes;
and even abstract knowledge, such as natural
number, natural language semantics, and intuitive
physical theories (17, 46–48).
Capturing how people learn all these concepts

at the level we reached with handwritten charac-
ters is a long-term goal. In the near term, applying
our approach to other types of symbolic concepts
may be particularly promising. Human cultures
produce many such symbol systems, including
gestures, dance moves, and the words of spoken
and signed languages. As with characters, these
concepts can be learned to some extent from
one or a few examples, even before the symbolic
meaning is clear: Consider seeing a “thumbs up,”

“fist bump,” or “high five” or hearing the names
“Boutros Boutros-Ghali,” “Kofi Annan,” or “Ban
Ki-moon” for the first time. From this limited
experience, people can typically recognize new
examples and even produce a recognizable sem-
blance of the concept themselves. The BPL prin-
ciples of compositionality, causality, and learning
to learn may help to explain how.
To illustrate how BPL applies in the domain of

speech, programs for spoken words could be
constructed by composing phonemes (subparts)
systematically to form syllables (parts), which
compose further to form morphemes and entire
words. Given an abstract syllable-phoneme parse
of a word, realistic speech tokens can be gener-
ated from a causalmodel that captures aspects of
speechmotor articulation. These part and subpart

components are shared across the words in a
language, enabling children to acquire them
through a long-term learning-to-learn process.
We have already found that a prototype model
exploiting compositionality and learning to learn,
but not causality, is able to capture some aspects
of the human ability to learn and generalize new
spoken words (e.g., English speakers learning
words in Japanese) (49). Further progress may
come from adopting a richer causal model of
speech generation, in the spirit of classic “analysis-
by-synthesis” proposals for speech perception and
language comprehension (20, 50).
Although our work focused on adult learners,

it raises natural developmental questions. If chil-
dren learning to write acquire an inductive bias
similar to what BPL constructs, the model could
help explain why children find some characters
difficult and which teaching procedures are most
effective (51). Comparing children’s parsing and
generalization behavior at different stages of
learning and BPL models given varying back-
groundexperience couldbetter evaluate themodel’s
learning-to-learnmechanismsandsuggest improve-
ments. By testing our classification tasks on infants
who categorize visually before they begin drawing
or scribbling (52), we can askwhether children learn
to perceive characters more causally and composi-
tionally based on their own proto-writing experi-
ence. Causal representations are prewired in our
current BPL models, but they could conceivably
be constructed through learning to learn at an
even deeper level of model hierarchy (53).
Last, we hope that our workmay shed light on

the neural representations of concepts and the
development of more neurally grounded learning
models. Supplementing feedforward visual pro-
cessing (54), previous behavioral studies and our
results suggest that people learn new handwritten
characters in part by inferring abstract motor
programs (55), a representation grounded in pro-
duction yet active in purely perceptual tasks,
independent of specific motor articulators and
potentially driven by activity in premotor cortex
(56–58). Could we decode representations struc-
turally similar to those in BPL from brain imaging
ofpremotor cortex (or other action-oriented regions)
in humans perceiving and classifying new char-
acters for the first time? Recent large-scale brain
models (59) and deep recurrent neural networks
(60–62) have also focused on character recogni-
tion and production tasks—but typically learning
from large training samples with many examples
of each concept. We see the one-shot learning
capacities studied here as a challenge for these
neural models: one we expect they might rise to
by incorporating the principles of composition-
ality, causality, and learning to learn that BPL
instantiates.
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these structures support; fractal structures, such
as rivers and trees, where complexity arises from
highly iterated but simple generative processes;
and even abstract knowledge, such as natural
number, natural language semantics, and intuitive
physical theories (17, 46–48).
Capturing how people learn all these concepts

at the level we reached with handwritten charac-
ters is a long-term goal. In the near term, applying
our approach to other types of symbolic concepts
may be particularly promising. Human cultures
produce many such symbol systems, including
gestures, dance moves, and the words of spoken
and signed languages. As with characters, these
concepts can be learned to some extent from
one or a few examples, even before the symbolic
meaning is clear: Consider seeing a “thumbs up,”

“fist bump,” or “high five” or hearing the names
“Boutros Boutros-Ghali,” “Kofi Annan,” or “Ban
Ki-moon” for the first time. From this limited
experience, people can typically recognize new
examples and even produce a recognizable sem-
blance of the concept themselves. The BPL prin-
ciples of compositionality, causality, and learning
to learn may help to explain how.
To illustrate how BPL applies in the domain of

speech, programs for spoken words could be
constructed by composing phonemes (subparts)
systematically to form syllables (parts), which
compose further to form morphemes and entire
words. Given an abstract syllable-phoneme parse
of a word, realistic speech tokens can be gener-
ated from a causalmodel that captures aspects of
speechmotor articulation. These part and subpart

components are shared across the words in a
language, enabling children to acquire them
through a long-term learning-to-learn process.
We have already found that a prototype model
exploiting compositionality and learning to learn,
but not causality, is able to capture some aspects
of the human ability to learn and generalize new
spoken words (e.g., English speakers learning
words in Japanese) (49). Further progress may
come from adopting a richer causal model of
speech generation, in the spirit of classic “analysis-
by-synthesis” proposals for speech perception and
language comprehension (20, 50).
Although our work focused on adult learners,

it raises natural developmental questions. If chil-
dren learning to write acquire an inductive bias
similar to what BPL constructs, the model could
help explain why children find some characters
difficult and which teaching procedures are most
effective (51). Comparing children’s parsing and
generalization behavior at different stages of
learning and BPL models given varying back-
groundexperience couldbetter evaluate themodel’s
learning-to-learnmechanismsandsuggest improve-
ments. By testing our classification tasks on infants
who categorize visually before they begin drawing
or scribbling (52), we can askwhether children learn
to perceive characters more causally and composi-
tionally based on their own proto-writing experi-
ence. Causal representations are prewired in our
current BPL models, but they could conceivably
be constructed through learning to learn at an
even deeper level of model hierarchy (53).
Last, we hope that our workmay shed light on

the neural representations of concepts and the
development of more neurally grounded learning
models. Supplementing feedforward visual pro-
cessing (54), previous behavioral studies and our
results suggest that people learn new handwritten
characters in part by inferring abstract motor
programs (55), a representation grounded in pro-
duction yet active in purely perceptual tasks,
independent of specific motor articulators and
potentially driven by activity in premotor cortex
(56–58). Could we decode representations struc-
turally similar to those in BPL from brain imaging
ofpremotor cortex (or other action-oriented regions)
in humans perceiving and classifying new char-
acters for the first time? Recent large-scale brain
models (59) and deep recurrent neural networks
(60–62) have also focused on character recogni-
tion and production tasks—but typically learning
from large training samples with many examples
of each concept. We see the one-shot learning
capacities studied here as a challenge for these
neural models: one we expect they might rise to
by incorporating the principles of composition-
ality, causality, and learning to learn that BPL
instantiates.
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these structures support; fractal structures, such
as rivers and trees, where complexity arises from
highly iterated but simple generative processes;
and even abstract knowledge, such as natural
number, natural language semantics, and intuitive
physical theories (17, 46–48).
Capturing how people learn all these concepts

at the level we reached with handwritten charac-
ters is a long-term goal. In the near term, applying
our approach to other types of symbolic concepts
may be particularly promising. Human cultures
produce many such symbol systems, including
gestures, dance moves, and the words of spoken
and signed languages. As with characters, these
concepts can be learned to some extent from
one or a few examples, even before the symbolic
meaning is clear: Consider seeing a “thumbs up,”

“fist bump,” or “high five” or hearing the names
“Boutros Boutros-Ghali,” “Kofi Annan,” or “Ban
Ki-moon” for the first time. From this limited
experience, people can typically recognize new
examples and even produce a recognizable sem-
blance of the concept themselves. The BPL prin-
ciples of compositionality, causality, and learning
to learn may help to explain how.
To illustrate how BPL applies in the domain of

speech, programs for spoken words could be
constructed by composing phonemes (subparts)
systematically to form syllables (parts), which
compose further to form morphemes and entire
words. Given an abstract syllable-phoneme parse
of a word, realistic speech tokens can be gener-
ated from a causalmodel that captures aspects of
speechmotor articulation. These part and subpart

components are shared across the words in a
language, enabling children to acquire them
through a long-term learning-to-learn process.
We have already found that a prototype model
exploiting compositionality and learning to learn,
but not causality, is able to capture some aspects
of the human ability to learn and generalize new
spoken words (e.g., English speakers learning
words in Japanese) (49). Further progress may
come from adopting a richer causal model of
speech generation, in the spirit of classic “analysis-
by-synthesis” proposals for speech perception and
language comprehension (20, 50).
Although our work focused on adult learners,

it raises natural developmental questions. If chil-
dren learning to write acquire an inductive bias
similar to what BPL constructs, the model could
help explain why children find some characters
difficult and which teaching procedures are most
effective (51). Comparing children’s parsing and
generalization behavior at different stages of
learning and BPL models given varying back-
groundexperience couldbetter evaluate themodel’s
learning-to-learnmechanismsandsuggest improve-
ments. By testing our classification tasks on infants
who categorize visually before they begin drawing
or scribbling (52), we can askwhether children learn
to perceive characters more causally and composi-
tionally based on their own proto-writing experi-
ence. Causal representations are prewired in our
current BPL models, but they could conceivably
be constructed through learning to learn at an
even deeper level of model hierarchy (53).
Last, we hope that our workmay shed light on

the neural representations of concepts and the
development of more neurally grounded learning
models. Supplementing feedforward visual pro-
cessing (54), previous behavioral studies and our
results suggest that people learn new handwritten
characters in part by inferring abstract motor
programs (55), a representation grounded in pro-
duction yet active in purely perceptual tasks,
independent of specific motor articulators and
potentially driven by activity in premotor cortex
(56–58). Could we decode representations struc-
turally similar to those in BPL from brain imaging
ofpremotor cortex (or other action-oriented regions)
in humans perceiving and classifying new char-
acters for the first time? Recent large-scale brain
models (59) and deep recurrent neural networks
(60–62) have also focused on character recogni-
tion and production tasks—but typically learning
from large training samples with many examples
of each concept. We see the one-shot learning
capacities studied here as a challenge for these
neural models: one we expect they might rise to
by incorporating the principles of composition-
ality, causality, and learning to learn that BPL
instantiates.
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Fig. 7. Generating new concepts. (A) Humans and machines were given a novel alphabet (i) and asked
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for each subpart. Last, parts are roughly positioned
to begin either independently, at the beginning, at
the end, or along previous parts, as defined by
relation Ri (Fig. 3A, iv).
Character tokens q(m) are produced by execut-

ing the parts and the relations andmodeling how
ink flows from the pen to the page. First, motor
noise is added to the control points and the scale
of the subparts to create token-level stroke tra-
jectories S(m). Second, the trajectory’s precise start
location L(m) is sampled from the schematic pro-
vided by its relationRi to previous strokes. Third,
global transformations are sampled, including
an affine warp A(m) and adaptive noise parame-
ters that ease probabilistic inference (30). Last, a
binary image I (m) is created by a stochastic ren-
dering function, lining the stroke trajectories
with grayscale ink and interpreting the pixel
values as independent Bernoulli probabilities.
Posterior inference requires searching the large

combinatorial space of programs that could have
generated a raw image I (m). Our strategy uses fast
bottom-up methods (31) to propose a range of
candidate parses. The most promising candidates
are refined by using continuous optimization

and local search, forming a discrete approxima-
tion to the posterior distribution P(y , q(m)|I (m))
(section S3). Figure 4A shows the set of discov-
ered programs for a training image I (1) and
how they are refit to different test images I (2) to
compute a classification score log P(I (2)|I (1)) (the
log posterior predictive probability), where higher
scores indicate that they are more likely to be-
long to the same class. A high score is achieved
when at least one set of parts and relations can
successfully explain both the training and the
test images, without violating the soft constraints
of the learned within-class variability model.
Figure 4B compares the model’s best-scoring
parses with the ground-truth human parses for
several characters.

Results

People, BPL, and alternative models were com-
pared side by side on five concept learning tasks
that examine different forms of generalization
from just one or a few examples (example task
Fig. 5). All behavioral experiments were run
through Amazon’s Mechanical Turk, and the ex-
perimental procedures are detailed in section S5.

The main results are summarized by Fig. 6, and
additional lesion analyses and controls are re-
ported in section S6.
One-shot classification was evaluated through

a series of within-alphabet classification tasks for
10 different alphabets. As illustrated in Fig. 1B, i,
a single image of a new character was presented,
and participants selected another example of that
same character from a set of 20 distinct char-
acters produced by a typical drawer of that alpha-
bet. Performance is shown in Fig. 6A,where chance
is 95% errors. As a baseline, themodifiedHausdorff
distance (32) was computed between centered
images, producing 38.8% errors. People were
skilled one-shot learners, achieving an average
error rate of 4.5% (N = 40). BPL showed a similar
error rate of 3.3%, achieving better performance
than adeep convolutional network (convnet; 13.5%
errors) and the HDmodel (34.8%)—each adapted
from deep learning methods that have performed
well on a range of computer vision tasks. A deep
Siamese convolutional network optimized for this
one-shot learning task achieved 8.0% errors (33),
still about twice as high as humans or ourmodel.
BPL’s advantage points to the benefits ofmodeling
theunderlying causal process in learning concepts,
a strategy different from the particular deep learn-
ing approaches examined here. BPL’s other key
ingredients also make positive contributions, as
shown by higher error rates for BPL lesions
without learning to learn (token-level only) or
compositionality (11.0% errors and 14.0%, respec-
tively). Learning to learn was studied separately
at the type and token level by disrupting the
learned hyperparameters of the generativemodel.
Compositionality was evaluated by comparing
BPL to a matched model that allowed just one
spline-based stroke, resembling earlier analysis-
by-synthesis models for handwritten characters
that were similarly limited (34, 35).
The human capacity for one-shot learning is

more than just classification. It can include a suite
of abilities, such as generating new examples of a
concept. We compared the creative outputs pro-
duced by humans and machines through “visual
Turing tests,”where naive human judges tried to
identify the machine, given paired examples of
human and machine behavior. In our most basic
task, judges compared the drawings from nine
humans asked to produce a new instance of a
concept given one example with nine new ex-
amples drawn by BPL (Fig. 5). We evaluated each
model based on the accuracy of the judges, which
we call their identification (ID) level: Idealmodel
performance is 50% ID level, indicating that they
cannot distinguish the model’s behavior from
humans; worst-case performance is 100%. Each
judge (N = 147) completed 49 trials with blocked
feedback, and judges were analyzed individually
and in aggregate. The results are shown in Fig.
6B (new exemplars). Judges had only a 52% ID
level on average for discriminating human versus
BPL behavior. As a group, this performance was
barely better than chance [t(47) = 2.03, P = 0.048],
and only 3 of 48 judges had an ID level reliably
above chance. Three lesioned models were eval-
uated by different groups of judges in separate
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conditions of the visual Turing test, examining
the necessity of key model ingredients in BPL.
Two lesions, learning to learn (token-level only)
and compositionality, resulted in significantly
easier Turing test tasks (80% ID level with 17 of 19
judges above chance and 65% with 14 of 26, re-
spectively), indicating that this task is a nontrivial
one to pass and that these two principles each
contribute to BPL’s human-like generative profi-
ciency. To evaluate parsing more directly (Fig. 4B),
we ran a dynamic version of this task with a dif-
ferent set of judges (N = 143), where each trial
showed paired movies of a person and BPL draw-
ing the same character. BPL performance on this
visual Turing test was not perfect (59% average
ID level; new exemplars (dynamic) in Fig. 6B),
although randomizing the learned prior on stroke
order and direction significantly raises the ID level
(71%), showing the importance of capturing the
right causal dynamics for BPL.
Although learning to learn new characters from

30 background alphabets proved effective, many
human learners will have much less experience:
perhaps familiarity with only one or a few alpha-
bets, along with related drawing tasks. To see
how themodels performwithmore limited expe-
rience, we retrained several of them by using two
different subsets of only five background alpha-
bets. BPL achieved similar performance for one-
shot classification as with 30 alphabets (4.3%
and 4.0% errors, for the two sets, respectively); in
contrast, the deep convolutional net performed
notably worse than before (24.0% and 22.3%
errors). BPL performance on a visual Turing test
of exemplar generation (N = 59) was also similar
on the first set [52% average ID level that was
not significantly different from chance t(26) = 1.04,
P > 0.05], with only 3 of 27 judges reliably above
chance, although performance on the second set
was slightly worse [57% ID level; t(31) = 4.35, P <
0.001; 7 of 32 judges reliably above chance].
These results suggest that although learning to
learn is important for BPL’s success, the model’s
structure allows it to take nearly full advantage
of comparatively limited background training.
The human productive capacity goes beyond

generating new examples of a given concept:
People can also generate whole new concepts.
We tested this by showing a few example char-
acters from 1 of 10 foreign alphabets and asking
participants to quickly create a new character
that appears to belong to the same alphabet (Fig.
7A). The BPLmodel can capture this behavior by
placing a nonparametric prior on the type level,
which favors reusing strokes inferred from the
example characters to produce stylistically con-
sistent new characters (section S7). Human judges
compared people versus BPL in a visual Turing
test (N = 117), viewing a series of displays in the
format of Fig. 7A, i and iii. The judges had only a
49% ID level on average [Fig. 6B, new concepts
(from type)], which is not significantly different
from chance [t(34) = 0.45, P > 0.05]. Individually,
only 8 of 35 judges had an ID level significantly
above chance. In contrast, a model with a lesion
to (type-level) learning to learn was successfully
detected by judges on 69% of trials in a separate

condition of the visual Turing test, and was sig-
nificantly easier to detect thanBPL (18 of 25 judges
above chance). Further comparisons in section
S6 suggested that the model’s ability to produce
plausible novel characters, rather than stylistic
consistency per se, was the crucial factor for
passing this test. We also found greater variation
in individual judges’ comparisons of people and
the BPL model on this task, as reflected in their
ID levels: 10 of 35 judges had individual ID levels
significantly below chance; in contrast, only two
participants had below-chance ID levels for BPL
across all the other experiments shown in Fig. 6B.
Last, judges (N = 124) compared people and

models on an entirely free-form task of generat-
ing novel character concepts, unconstrained by a
particular alphabet (Fig. 7B). Sampling from the
prior distribution on character types P(y) in BPL
led to an average ID level of 57% correct in a visual
Turing test (11 of 32 judges above chance); with
the nonparametric prior that reuses inferred parts
frombackground characters, BPL achieved a 51%
ID level [Fig. 7B and new concepts (unconstrained)
in Fig. 6B; ID level not significantly different
from chance t(24) = 0.497, P > 0.05; 2 of 25 judges
above chance]. A lesion analysis revealed that both
compositionality (68% and 15 of 22) and learning
to learn (64% and 22 of 45)were crucial in passing
this test.

Discussion

Despite a changing artificial intelligence land-
scape, people remain far better thanmachines at

learning new concepts: They require fewer exam-
ples and use their concepts in richer ways. Our
work suggests that the principles of composi-
tionality, causality, and learning to learn will be
critical in buildingmachines that narrow this gap.
Machine learning and computer vision research-
ers are beginning to explore methods based on
simple program induction (36–41), andour results
show that this approach can perform one-shot
learning in classification tasks at human-level ac-
curacy and fool most judges in visual Turing tests
of itsmore creative abilities. For each visual Turing
test, fewer than 25% of judges performed signif-
icantly better than chance.
Although successful on these tasks, BPL still

sees less structure in visual concepts than people
do. It lacks explicit knowledge of parallel lines,
symmetry, optional elements such as cross bars
in “7”s, and connections between the ends of
strokes and other strokes. Moreover, people
use their concepts for other abilities that were
not studied here, including planning (42), expla-
nation (43), communication (44), and conceptual
combination (45). Probabilistic programs could
capture these richer aspects of concept learning
and use, but only withmore abstract and complex
structure than the programs studied here. More-
sophisticated programs could also be suitable for
learning compositional, causal representations of
manyconceptsbeyondsimpleperceptual categories.
Examples include concepts for physical artifacts,
such as tools, vehicles, or furniture, that are well
described by parts, relations, and the functions
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Fig. 6. Human and machine performance was compared on (A) one-shot classification and (B)
four generative tasks.The creative outputs for humans and models were compared by the percent of
human judges to correctly identify the machine. Ideal performance is 50%, where the machine is
perfectly confusable with humans in these two-alternative forced choice tasks (pink dotted line). Bars
show the mean ± SEM [N = 10 alphabets in (A)]. The no learning-to-learn lesion is applied at different
levels (bars left to right): (A) token; (B) token, stroke order, type, and type.
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conditions of the visual Turing test, examining
the necessity of key model ingredients in BPL.
Two lesions, learning to learn (token-level only)
and compositionality, resulted in significantly
easier Turing test tasks (80% ID level with 17 of 19
judges above chance and 65% with 14 of 26, re-
spectively), indicating that this task is a nontrivial
one to pass and that these two principles each
contribute to BPL’s human-like generative profi-
ciency. To evaluate parsing more directly (Fig. 4B),
we ran a dynamic version of this task with a dif-
ferent set of judges (N = 143), where each trial
showed paired movies of a person and BPL draw-
ing the same character. BPL performance on this
visual Turing test was not perfect (59% average
ID level; new exemplars (dynamic) in Fig. 6B),
although randomizing the learned prior on stroke
order and direction significantly raises the ID level
(71%), showing the importance of capturing the
right causal dynamics for BPL.
Although learning to learn new characters from

30 background alphabets proved effective, many
human learners will have much less experience:
perhaps familiarity with only one or a few alpha-
bets, along with related drawing tasks. To see
how themodels performwithmore limited expe-
rience, we retrained several of them by using two
different subsets of only five background alpha-
bets. BPL achieved similar performance for one-
shot classification as with 30 alphabets (4.3%
and 4.0% errors, for the two sets, respectively); in
contrast, the deep convolutional net performed
notably worse than before (24.0% and 22.3%
errors). BPL performance on a visual Turing test
of exemplar generation (N = 59) was also similar
on the first set [52% average ID level that was
not significantly different from chance t(26) = 1.04,
P > 0.05], with only 3 of 27 judges reliably above
chance, although performance on the second set
was slightly worse [57% ID level; t(31) = 4.35, P <
0.001; 7 of 32 judges reliably above chance].
These results suggest that although learning to
learn is important for BPL’s success, the model’s
structure allows it to take nearly full advantage
of comparatively limited background training.
The human productive capacity goes beyond

generating new examples of a given concept:
People can also generate whole new concepts.
We tested this by showing a few example char-
acters from 1 of 10 foreign alphabets and asking
participants to quickly create a new character
that appears to belong to the same alphabet (Fig.
7A). The BPLmodel can capture this behavior by
placing a nonparametric prior on the type level,
which favors reusing strokes inferred from the
example characters to produce stylistically con-
sistent new characters (section S7). Human judges
compared people versus BPL in a visual Turing
test (N = 117), viewing a series of displays in the
format of Fig. 7A, i and iii. The judges had only a
49% ID level on average [Fig. 6B, new concepts
(from type)], which is not significantly different
from chance [t(34) = 0.45, P > 0.05]. Individually,
only 8 of 35 judges had an ID level significantly
above chance. In contrast, a model with a lesion
to (type-level) learning to learn was successfully
detected by judges on 69% of trials in a separate

condition of the visual Turing test, and was sig-
nificantly easier to detect thanBPL (18 of 25 judges
above chance). Further comparisons in section
S6 suggested that the model’s ability to produce
plausible novel characters, rather than stylistic
consistency per se, was the crucial factor for
passing this test. We also found greater variation
in individual judges’ comparisons of people and
the BPL model on this task, as reflected in their
ID levels: 10 of 35 judges had individual ID levels
significantly below chance; in contrast, only two
participants had below-chance ID levels for BPL
across all the other experiments shown in Fig. 6B.
Last, judges (N = 124) compared people and

models on an entirely free-form task of generat-
ing novel character concepts, unconstrained by a
particular alphabet (Fig. 7B). Sampling from the
prior distribution on character types P(y) in BPL
led to an average ID level of 57% correct in a visual
Turing test (11 of 32 judges above chance); with
the nonparametric prior that reuses inferred parts
frombackground characters, BPL achieved a 51%
ID level [Fig. 7B and new concepts (unconstrained)
in Fig. 6B; ID level not significantly different
from chance t(24) = 0.497, P > 0.05; 2 of 25 judges
above chance]. A lesion analysis revealed that both
compositionality (68% and 15 of 22) and learning
to learn (64% and 22 of 45)were crucial in passing
this test.

Discussion

Despite a changing artificial intelligence land-
scape, people remain far better thanmachines at

learning new concepts: They require fewer exam-
ples and use their concepts in richer ways. Our
work suggests that the principles of composi-
tionality, causality, and learning to learn will be
critical in buildingmachines that narrow this gap.
Machine learning and computer vision research-
ers are beginning to explore methods based on
simple program induction (36–41), andour results
show that this approach can perform one-shot
learning in classification tasks at human-level ac-
curacy and fool most judges in visual Turing tests
of itsmore creative abilities. For each visual Turing
test, fewer than 25% of judges performed signif-
icantly better than chance.
Although successful on these tasks, BPL still

sees less structure in visual concepts than people
do. It lacks explicit knowledge of parallel lines,
symmetry, optional elements such as cross bars
in “7”s, and connections between the ends of
strokes and other strokes. Moreover, people
use their concepts for other abilities that were
not studied here, including planning (42), expla-
nation (43), communication (44), and conceptual
combination (45). Probabilistic programs could
capture these richer aspects of concept learning
and use, but only withmore abstract and complex
structure than the programs studied here. More-
sophisticated programs could also be suitable for
learning compositional, causal representations of
manyconceptsbeyondsimpleperceptual categories.
Examples include concepts for physical artifacts,
such as tools, vehicles, or furniture, that are well
described by parts, relations, and the functions
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Fig. 6. Human and machine performance was compared on (A) one-shot classification and (B)
four generative tasks.The creative outputs for humans and models were compared by the percent of
human judges to correctly identify the machine. Ideal performance is 50%, where the machine is
perfectly confusable with humans in these two-alternative forced choice tasks (pink dotted line). Bars
show the mean ± SEM [N = 10 alphabets in (A)]. The no learning-to-learn lesion is applied at different
levels (bars left to right): (A) token; (B) token, stroke order, type, and type.
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conditions of the visual Turing test, examining
the necessity of key model ingredients in BPL.
Two lesions, learning to learn (token-level only)
and compositionality, resulted in significantly
easier Turing test tasks (80% ID level with 17 of 19
judges above chance and 65% with 14 of 26, re-
spectively), indicating that this task is a nontrivial
one to pass and that these two principles each
contribute to BPL’s human-like generative profi-
ciency. To evaluate parsing more directly (Fig. 4B),
we ran a dynamic version of this task with a dif-
ferent set of judges (N = 143), where each trial
showed paired movies of a person and BPL draw-
ing the same character. BPL performance on this
visual Turing test was not perfect (59% average
ID level; new exemplars (dynamic) in Fig. 6B),
although randomizing the learned prior on stroke
order and direction significantly raises the ID level
(71%), showing the importance of capturing the
right causal dynamics for BPL.
Although learning to learn new characters from

30 background alphabets proved effective, many
human learners will have much less experience:
perhaps familiarity with only one or a few alpha-
bets, along with related drawing tasks. To see
how themodels performwithmore limited expe-
rience, we retrained several of them by using two
different subsets of only five background alpha-
bets. BPL achieved similar performance for one-
shot classification as with 30 alphabets (4.3%
and 4.0% errors, for the two sets, respectively); in
contrast, the deep convolutional net performed
notably worse than before (24.0% and 22.3%
errors). BPL performance on a visual Turing test
of exemplar generation (N = 59) was also similar
on the first set [52% average ID level that was
not significantly different from chance t(26) = 1.04,
P > 0.05], with only 3 of 27 judges reliably above
chance, although performance on the second set
was slightly worse [57% ID level; t(31) = 4.35, P <
0.001; 7 of 32 judges reliably above chance].
These results suggest that although learning to
learn is important for BPL’s success, the model’s
structure allows it to take nearly full advantage
of comparatively limited background training.
The human productive capacity goes beyond

generating new examples of a given concept:
People can also generate whole new concepts.
We tested this by showing a few example char-
acters from 1 of 10 foreign alphabets and asking
participants to quickly create a new character
that appears to belong to the same alphabet (Fig.
7A). The BPLmodel can capture this behavior by
placing a nonparametric prior on the type level,
which favors reusing strokes inferred from the
example characters to produce stylistically con-
sistent new characters (section S7). Human judges
compared people versus BPL in a visual Turing
test (N = 117), viewing a series of displays in the
format of Fig. 7A, i and iii. The judges had only a
49% ID level on average [Fig. 6B, new concepts
(from type)], which is not significantly different
from chance [t(34) = 0.45, P > 0.05]. Individually,
only 8 of 35 judges had an ID level significantly
above chance. In contrast, a model with a lesion
to (type-level) learning to learn was successfully
detected by judges on 69% of trials in a separate

condition of the visual Turing test, and was sig-
nificantly easier to detect thanBPL (18 of 25 judges
above chance). Further comparisons in section
S6 suggested that the model’s ability to produce
plausible novel characters, rather than stylistic
consistency per se, was the crucial factor for
passing this test. We also found greater variation
in individual judges’ comparisons of people and
the BPL model on this task, as reflected in their
ID levels: 10 of 35 judges had individual ID levels
significantly below chance; in contrast, only two
participants had below-chance ID levels for BPL
across all the other experiments shown in Fig. 6B.
Last, judges (N = 124) compared people and

models on an entirely free-form task of generat-
ing novel character concepts, unconstrained by a
particular alphabet (Fig. 7B). Sampling from the
prior distribution on character types P(y) in BPL
led to an average ID level of 57% correct in a visual
Turing test (11 of 32 judges above chance); with
the nonparametric prior that reuses inferred parts
frombackground characters, BPL achieved a 51%
ID level [Fig. 7B and new concepts (unconstrained)
in Fig. 6B; ID level not significantly different
from chance t(24) = 0.497, P > 0.05; 2 of 25 judges
above chance]. A lesion analysis revealed that both
compositionality (68% and 15 of 22) and learning
to learn (64% and 22 of 45)were crucial in passing
this test.

Discussion

Despite a changing artificial intelligence land-
scape, people remain far better thanmachines at

learning new concepts: They require fewer exam-
ples and use their concepts in richer ways. Our
work suggests that the principles of composi-
tionality, causality, and learning to learn will be
critical in buildingmachines that narrow this gap.
Machine learning and computer vision research-
ers are beginning to explore methods based on
simple program induction (36–41), andour results
show that this approach can perform one-shot
learning in classification tasks at human-level ac-
curacy and fool most judges in visual Turing tests
of itsmore creative abilities. For each visual Turing
test, fewer than 25% of judges performed signif-
icantly better than chance.
Although successful on these tasks, BPL still

sees less structure in visual concepts than people
do. It lacks explicit knowledge of parallel lines,
symmetry, optional elements such as cross bars
in “7”s, and connections between the ends of
strokes and other strokes. Moreover, people
use their concepts for other abilities that were
not studied here, including planning (42), expla-
nation (43), communication (44), and conceptual
combination (45). Probabilistic programs could
capture these richer aspects of concept learning
and use, but only withmore abstract and complex
structure than the programs studied here. More-
sophisticated programs could also be suitable for
learning compositional, causal representations of
manyconceptsbeyondsimpleperceptual categories.
Examples include concepts for physical artifacts,
such as tools, vehicles, or furniture, that are well
described by parts, relations, and the functions
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Fig. 6. Human and machine performance was compared on (A) one-shot classification and (B)
four generative tasks.The creative outputs for humans and models were compared by the percent of
human judges to correctly identify the machine. Ideal performance is 50%, where the machine is
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Ken  
Miller

Yashar 
Ahmadian

http://www.eng.cam.ac.uk/~m.lengyel


Máté Lengyel  |  A Bayesian approach to internal models http://www.eng.cam.ac.uk/~m.lengyelBME MIT, 22 March 2018

STABILIZED SUPRALINEAR NETWORK

 33

Ahmadian et al, Neural Comput 2013 
Rubin et al, Neuron 2015

low-pass filtered 
membrane potential

membrane  
time constant

resting 
potential

synaptic 
weights

⌧i
dVi

dt
= �Vi + Vrest +

X

j

Wij rj(t) + hi(t)

recurrently coupled E/I network

THE

V1

V2

V3

V4

V5

V6

V7

V8

V9

V10

V11

V12

Inhibition-stabilized balanced dynamics
account for stimulus-induced changes of

noise variability in the cortex

Guillaume Hennequin

g.hennequin@eng.cam.ac.uk

NCCD, Bilbao, September 2015

Yashar AhmadianDan Rubin Ken Miller Máté Lengyel
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Figure 8. The Relationship between Membrane Potential and Firing Rate

The membrane potential (A) and firing rate (B) are shown for an example neuron to a grating moving in the preferred direction (left panel) and
the null direction (right panel). (C) The predicted firing rate derived by applying the membrane potential response to the fitted relationship
between membrane potential and firing rate. (D) The relationship between membrane potential and firing rate was fit by a power law model.
Single points show the mean membrane potential and spike rate for 30 ms epochs. The blue squares show the average firing rate for membrane
potentials within a 1 mV bin. Error bars are the standard error of the mean. The red curve shows the power law fit to the data. Panels (E)–(H)
follow the same format as (A)–(D) for a second example neuron. (I) The direction index computed from the F1 of the spiking response is
plotted against the direction index computed from the F1 of the membrane potential response. Each symbol represents the relationship for
a single neuron. (J) The direction index computed from the F1 of the spiking response is compared to the F1 computed from the spiking
response predicted from the membrane potential and the power law nonlinearity. The dashed trace indicates a line of slope of 1 and y-intercept
of 0.

A Comparison of Response Field Maps Derived noise (Rieke, 1997). Since the 1D noise stimulus used
here is a close approximation to Gaussian noise, thefrom Spiking and Voltage Responses

The discrepancy found between spike and membrane threshold nonlinearity would not be expected to alter
the spatiotemporal receptive field.potential direction selectivity to grating stimulation was

not found when we examined direction selectivity pre-
dicted from x-t maps. We were able to construct spatio- Discussion
temporal receptive field maps from the spiking re-
sponses to noise stimuli for 13 neurons with sufficiently It has been proposed in several models of primary visual

cortex that inhibition from the nonpreferred direction ishigh spike rates and long-duration recordings. Spiking
response fields are remarkably similar to the voltage required to create direction-selective responses. In this

paper, we provide evidence that the excitatory and in-response fields (Figures 9A and 9B). The average corre-
lation coefficient between voltage and spiking maps was hibitory synaptic inputs to simple cells prefer motion in

the same direction, which is the direction that evokes0.82 (std ! 0.08). The direction selectivity estimated by
Fourier transformation of the spiking response fields the most spikes. While excitation and inhibition were

tuned to the same direction, the two components werewas very similar to that derived from the voltage re-
sponse fields, whether measured from the ON or OFF evoked asynchronously by moving stimuli. This differ-

ence in the timing of excitation and inhibition appearedfields alone (Figure 9C, regression slope ! 0.91, not
significantly different from 1, y-intercept ! 0.0), or the in responses to simple gratings as a 180" phase differ-

ence between the excitatory and inhibitory inputs. In thedifference between the ON and OFF fields (data not
shown). The similarity between the maps based on responses to 1D noise, the difference in timing appeared

as an anticorrelation between the spatiotemporal pro-membrane potential and maps based on spiking is con-
sistent with the theoretical finding that a static nonlinear- files of excitation and inhibition.

The spatiotemporal relationship between excitationity should not distort a linear estimate of the receptive
field as long as the stimulus is composed of Gaussian and inhibition for direction-selective neurons is reminis-

[Priebe and Ferster, Neuron (2005)]
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ideal observer: GSM visual cortex: neural network
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USING VARIABILITY IS CRITICAL

 39

ideal observer: GSM visual cortex: neural networktrain
‣ recurrent 
‣ E-I 
‣ expansive nonlinearity

(2nd order)
‣ full distribution

http://www.eng.cam.ac.uk/~m.lengyel


Máté Lengyel  |  A Bayesian approach to internal models http://www.eng.cam.ac.uk/~m.lengyelBME MIT, 22 March 2018

USING VARIABILITY IS CRITICAL

 39

ideal observer: GSM visual cortex: neural networktrain
‣ recurrent 
‣ E-I 
‣ expansive nonlinearity

‣ just the means
(1st order)
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‣ expansive nonlinearity

‣ just the means
(1st order)
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‣ expansive nonlinearity

‣ just the means
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PROBABILISTIC INFERENCE AND LEARNING

 40

✓

?

structure

parameters

latent variables

data

program

x

y

�

M

✓ ✓

✓✓

?

✓

?

?

theory experimentstheory experiments

✓

✓

✓

✓

✓

✓

✓

cognitive science neuroscience

✓?

?

✓?

P

http://www.eng.cam.ac.uk/~m.lengyel


Máté Lengyel  |  A Bayesian approach to internal models http://www.eng.cam.ac.uk/~m.lengyelBME MIT, 22 March 2018

POSTDOC POSITION AVAILABLE

 41

Nádor utca 9. | 1051 Budapest | Hungary 

January 10, 2013

Mr. Zoltan Sandor
Arany Janos utca 19, 2/8
1051 Budapest
Hungary 

'HDUb0U��6DQGRU�

Te porrovit im dem archillorum, vel mint, qui ut dus magnis adignissi occus aut labore, int quate 
sit porem ut et dempos dioratus essequat quatusdae nobist, nihit doluptam ape susapient 
quaesti onsequam solestibus eici debisciatur, ius audi nobit et etus aci cus dolescia doluptatur?

+DUXSWL�QWLDQW�ODQW�YHUDWXUHUFL�LQFLSVDQW�TXL�VLWLDP�TXL�LV�DFHVWHWXU��QH�YHULDHF�HUXPTXR�RɝFDH��$W�
acepudante porepti arum fuga. Uga. Puditat volupti tem liquam iur ant et velicienias aut exerspe 
litatis asitem et ommod magnis endaecu ptiuntures endae nus, aut intions equassi blacea corro 
WHP�DXW�RPPR�RGLWD�HV�QRQ�UHVVHG�PRORULR�RɝFDW�HVHTXDH�UHVWLEXV�DXWDH�SUDWXUL�EHUQDWH�FDWDH��
Et laborrum alita quid esequam int qu.

Epudandebis antur? Qui nonsed exera inctur re porrum inverum apelibus inim fugiatis imus ut 
accum que ommo es dolorrum quunturiam doluptae reiurem rem quia di dellabor ratur maion 
coreiur, id ut laut omnihil etur arumet mincte venihil ipit qui ist magnatur aborernam, tempores 
am doloreh endiciet estio. Usam quiae voluptia nonseruntus.

Orepel idestiustia di restem unditatios a seceptatur siminctem nossum rae. Untectium voloria net 
magnimin nost re, occulpa della volo core perferrum repratium in remporecae audit ma cum ve-
lit, quae. Paritatio beris remolorecat earum aris paritatem sequis recerunt aboreius maximporera 
quasseque sus ad maximaione ea id ut facearum eturem idusciu samusdae vendi odit occabo. Et 
ex et venis nobis eicillatium voluptas doloreptatae vidit, te ma nihil ium faci aut ma natecte que 
velesed iaeriae voloria debit ommolen imincti nctem. Magnient enis doluptate volupta erionestio 
YHO�HVW��RPQLPHW�RɝFLP�XVFLXP�TXLV�PRGLJQL�VTXLEXV�YROR�GRORUHP�ROXSWXU"

Sincerely,

University-level stationery Unit-level stationery

Nádor u. 9. | 1051 Budapest | Hungary

January 10, 2013

Mr. Zoltan Sandor
Arany Janos utca 19, 2/8
1051 Budapest
Hungary 

'HDUb0U��6DQGRU�

Te porrovit im dem archillorum, vel mint, qui ut dus magnis adignissi occus aut labore, int quate 
sit porem ut et dempos dioratus essequat quatusdae nobist, nihit doluptam ape susapient 
quaesti onsequam solestibus eici debisciatur, ius audi nobit et etus aci cus dolescia doluptatur?

+DUXSWL�QWLDQW�ODQW�YHUDWXUHUFL�LQFLSVDQW�TXL�VLWLDP�TXL�LV�DFHVWHWXU��QH�YHULDHF�HUXPTXR�RɝFDH��$W�
acepudante porepti arum fuga. Uga. Puditat volupti tem liquam iur ant et velicienias aut exerspe 
litatis asitem et ommod magnis endaecu ptiuntures endae nus, aut intions equassi blacea corro 
WHP�DXW�RPPR�RGLWD�HV�QRQ�UHVVHG�PRORULR�RɝFDW�HVHTXDH�UHVWLEXV�DXWDH�SUDWXUL�EHUQDWH�FDWDH��
Et laborrum alita quid esequam int qu.

Epudandebis antur? Qui nonsed exera inctur re porrum inverum apelibus inim fugiatis imus ut 
accum que ommo es dolorrum quunturiam doluptae reiurem rem quia di dellabor ratur maion 
coreiur, id ut laut omnihil etur arumet mincte venihil ipit qui ist magnatur aborernam, tempores 
am doloreh endiciet estio. Usam quiae voluptia nonseruntus.

Orepel idestiustia di restem unditatios a seceptatur siminctem nossum rae. Untectium voloria net 
magnimin nost re, occulpa della volo core perferrum repratium in remporecae audit ma cum ve-
lit, quae. Paritatio beris remolorecat earum aris paritatem sequis recerunt aboreius maximporera 
quasseque sus ad maximaione ea id ut facearum eturem idusciu samusdae vendi odit occabo. Et 
ex et venis nobis eicillatium voluptas doloreptatae vidit, te ma nihil ium faci aut ma natecte que 
velesed iaeriae voloria debit ommolen imincti nctem. Magnient enis doluptate volupta erionestio 
YHO�HVW��RPQLPHW�RɝFLP�XVFLXP�TXLV�PRGLJQL�VTXLEXV�YROR�GRORUHP�ROXSWXU"

Sincerely,

Department 
of Economics

estimate humans’ complex, high dimensional, 
dynamically changing internal models from behaviour

collaborate with world-leading  
experimental cognitive scientists

http://www.eng.cam.ac.uk/~m.lengyel

