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 Basic concepts of probability theory
◦ Joint distribution
◦ Conditional probability
◦ Bayes’ rule
◦ Chain rule
◦ Marginalization
◦ General inference
◦ Independence

 Conditional independence

 Contextual independence

 Direct dependency

 Independence model
 Logical properties

 Naive Bayesian networks
◦ Definition
◦ Inference
◦ Full Bayesian treatment

 Specification

 Inference

 Learning
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 Atomic event: A complete specification of the state of 
the world about which the agent is uncertain



E.g., if the world consists of only two Boolean variables Cavity
and Toothache, then there are 4 distinct atomic events:

Cavity = false Toothache = false

Cavity = false  Toothache = true

Cavity = true  Toothache = false

Cavity = true  Toothache = true

 Atomic events are mutually exclusive and exhaustive



 For any propositions A, B



◦ 0 ≤ P(A) ≤ 1

◦ P(true) = 1 and P(false) = 0

◦ P(A  B) = P(A) + P(B) - P(A  B)

◦



 Basic element: random variable

 Similar to propositional logic: possible worlds defined by assignment of values to 
random variables.

 Boolean random variables

 e.g., Cavity (do I have a cavity?)



 Discrete random variables

 e.g., Weather is one of <sunny,rainy,cloudy,snow>

 Domain values must be exhaustive and mutually exclusive

 Elementary proposition constructed by assignment of a value to a

 random variable: e.g., Weather = sunny, Cavity = false

 (abbreviated as cavity)

 Complex propositions formed from elementary propositions and standard logical 
connectives e.g., Weather = sunny  Cavity = false



 Prior or unconditional probabilities of propositions

 e.g., P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72 correspond to belief 
prior to arrival of any (new) evidence



 Probability distribution gives values for all possible assignments:

 P(Weather) = <0.72,0.1,0.08,0.1> (normalized, i.e., sums to 1)

 Joint probability distribution for a set of random variables gives the 
probability of every atomic event on those random variables

 P(Weather,Cavity) = a 4 × 2 matrix of values:



Weather = sunny rainy cloudy snow 

Cavity = true 0.144 0.02 0.016 0.02

Cavity = false 0.576 0.08 0.064 0.08



 Conditional or posterior probabilities


e.g., P(cavity | toothache) = 0.8

i.e., given that toothache is all I know

 (Notation for conditional distributions:


P(Cavity | Toothache) = 2-element vector of 2-element vectors)

 If we know more, e.g., cavity is also given, then we have


P(cavity | toothache,cavity) = 1

 New evidence may be irrelevant, allowing simplification, e.g.,


P(cavity | toothache, sunny) = P(cavity | toothache) = 0.8
 This kind of inference, sanctioned by domain knowledge, is crucial




 Definition of conditional probability:

 P(a | b) = P(a  b) / P(b) if  P(b) > 0



 Product rule gives an alternative formulation:

 P(a  b) = P(a | b) P(b) = P(b | a) P(a)



 A general version holds for whole distributions, e.g.,

 P(Weather,Cavity) = P(Weather | Cavity) P(Cavity)

 (View as a set of 4 × 2 equations, not matrix mult.)
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An algebraic triviality

A scientific research paradigm

A practical method for inverting causal knowledge to diagnostic tool.
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 Chain rule is derived by successive application of product 

rule:

 P(X1, …,Xn) = P(X1,...,Xn-1) P(Xn | X1,...,Xn-1)

= P(X1,...,Xn-2) P(Xn-1 | X1,...,Xn-2) P(Xn | X1,...,Xn-1)

= …

= π P(Xi | X1, … ,Xi-1)



 ~Summing out/averaging out

 Start with the joint probability distribution:


 For any proposition φ, sum the atomic events 
where it is true: P(φ) = Σω:ω╞φ P(ω)





 Start with the joint probability distribution:


 Can also compute conditional probabilities:


P(cavity | toothache) = P(cavity  toothache)
P(toothache)

= 0.016+0.064
0.108 + 0.012 + 0.016 + 0.064

= 0.4



 Denominator can be viewed as a normalization constant α


P(Cavity | toothache) = α, P(Cavity,toothache) 
= α, [P(Cavity,toothache,catch) + P(Cavity,toothache, catch)]
= α, [<0.108,0.016> + <0.012,0.064>] 
= α, <0.12,0.08> = <0.6,0.4>

General idea: compute distribution on query variable by fixing 
evidence variables and summing over hidden variables



Any question about observable events in the domain can be answered by 
the joint distribution.

Typically, we are interested in the posterior joint distribution of the query 
variables Y given specific values e for the evidence variables E

Let the hidden variables be H = X - Y – E

Then the required summation of joint entries is done by summing out the 
hidden variables:

P(Y | E = e) = αP(Y,E = e) = αΣhP(Y,E= e, H = h)

 The terms in the summation are joint entries because Y, E and H
together exhaust the set of random variables

 Obvious problems:
1. Worst-case time complexity O(dn) where d is the largest arity

2. Space complexity O(dn) to store the joint distribution

3. How to find the numbers for O(dn) entries?



IP(X;Y|Z) or (X⫫Y|Z)P denotes that X is independent of Y 
given Z defined as follows

for all x,y and z with P(z)>0:  P(x;y|z)=P(x|z) P(y|z) 

(Almost) alternatively, IP(X;Y|Z) iff

P(X|Z,Y)= P(X|Z) for all z,y with P(z,y)>0.

Other notations: DP(X;Y|Z) =def= ┐IP(X;Y|Z)

Direct dependence: DP(X;Y|V/{X,Y})



Mutation

Onset

Bleeding

absent

P(D|a,l,m)

Regularity

weak

Onset=early Onset=late

h.wild

regular irregular

mutated

P(D|a,l,h.w.)

P(D|B=a,O=e)

strong

P(D|Bleeding=strong)

Mutation

P(D|w,i,m)

h.wild mutated

P(D|w,i,h.w.)

P(D|B=w,R=r)

Decision tree: Each internal node represent a (univariate) test, the leafs contains 

the conditional probabilities given the values along the path.

Decision graph: If conditions are equivalent, then subtrees can be merged.

E.g. If (Bleeding=absent,Onset=late) ~ (Bleeding=weak,Regularity=irreg)

Contextual independence: IP(X;Y|Z=z) for not all z.



The independence map (model) M of a 
distribution P is the set of the valid 
independence triplets:

MP={IP,1(X1;Y1|Z1),..., IP,K(XK;YK|ZK)}

X Y ZIf P(X,Y,Z) is a Markov chain, then 

MP={D(X;Y), D(Y;Z), I(X;Z|Y)}

Normally/almost always: D(X;Z)

Exceptionally: I(X;Z)



 Information theoretic based dependence
◦ Entropy: H(X)

◦ Conditional entropy: H(X|Y)

◦ Kullback-Leibler divergence (KL(p||q))

 Not distance (asymmetric, triangle inequality)

 Always positive

◦ Mutual information: MI(X;Y), MI(X;Y|Z)

 MI(X;Y)=H(X)-H(X|Y)

 MI(X;Y)=KL(p(X,Y)||p(X)p(Y))
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Semi-graphoids (SG): Symmetry, Decomposition, Weak Union, Contraction (holds 

in all probability distribution). SG is sound, but incomplete inference.
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J.Pearl: Probabilistic Reasoning in intelligent systems, 1998

Graphoids: Semi-graphoids+Intersection

(holds only in strictly positive distribution)



 Total independence

 Naive Bayesian networks

 Hidden Markov Models
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Variables (nodes) 
Flu: present/absent

FeverAbove38C: present/absent

Coughing: present/absent

Flu

Fever Coughing

P(Fever=present|Flu=present)=0.6

P(Fever=absent|Flu=present)=1-0.6

P(Fever=present|Flu=absent)=0.01

P(Fever=absent|Flu=absent)=1-0.01

P(Flu=present)=0.001

P(Flu=absent)=1-P(Flu=present)Model

P(Coughing=present|Flu=present)=0.3

P(Coughing=absent|Flu=present)=1-0.7

P(Coughing=present|Flu=absent)=0.02

P(Coughing=absent|Flu=absent)=1-0.02

Assumptions: 

1, Two types of nodes: a cause and effects.

2, Effects are conditionally independent of each other given their cause.



Decomposition of the joint:

P(Y,X1,..,Xn) = P(Y)∏iP(Xi,|Y, X1,..,Xi-1) //by the chain rule

= P(Y)∏iP(Xi,|Y) // by the N-BN assumption

2n+1 parameteres!

Diagnostic inference:

P(Y|xi1,..,xik) = P(Y)∏jP(xij,|Y) / P(xi1,..,xik)

If Y is binary, then the odds
P(Y=1|xi1,..,xik) / P(Y=0|xi1,..,xik)  = P(Y=1)/P(Y=0) ∏j P(xij,|Y=1) / P(xij,|Y=0)

Flu

Fever Coughing
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IDA: 2.1,2.2,2.3



 Structure prior: p(G)
◦ Specify priors for edges in G

◦ Penalize deviation from a prior structure G0

 Parameter prior: p(|G)
◦  denotes the complete parametrization for G

◦ Specify p(|G) independently for each variable?

◦ Specify p(|G) using a „convenient” (~conjugate) prior?

 Inference
◦ Tractable?
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 Integration over parameters?
◦ Analytical solution!

 Bayesian model averaging over exponential 
number of structures?
◦ Analytical solution!

 Existence of equivalent „super”-parametrization!!

◦ DISCUSSION&PROOFS: later

◦ PDSS:9.2.5
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 Basic concepts of probability theory
◦ On the use of probabilities: PDSS:2.1
◦ The Bayesian framework: PDSS:2.2
◦ LATER: Indepence models: PDSS:2.3
https://www.mit.bme.hu/system/files/oktatas/targy
ak/9383/Antal_Valoszinusegi.pdf

 Naive Bayesian networks
◦ Definition, Inference (PDSS:2.5.1)
◦ Full Bayesian treatment: LATER

◦ IDA:9.2.5 (~9.2)
https://www.mit.bme.hu/system/files/oktatas/targy
ak/9383/Antal_IDA.pdf

https://www.mit.bme.hu/system/files/oktatas/targyak/9383/Antal_Valoszinusegi.pdf
https://www.mit.bme.hu/system/files/oktatas/targyak/9383/Antal_IDA.pdf

