
Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

TinyOS
 “System architecture directions for network

sensors”, Jason Hill, Robert Szewczyk, Alec Woo, Seth
Hollar, David Culler, Kristofer Pister . ASPLOS 2000,
Cambridge, November 2000

 System software for networked sensors

 Tiny Microthreading Operating System: TinyOS

 Component-based

 Event-driven

 TinyOS is written in nesC programming language

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

nesC
 nesC programming language

 An extension to C

 Designed for sensor network nodes

 Basic concepts behind nesC
 Separation of construction and composition

 Many components, “wired”(link) those you want

 Component provide a set of interfaces

 Interfaces are bidirectional
 Command (down call), event (up call)

 nesC compiler signals the potential data races

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Support Multiple Platforms
 Hardware platforms

 eyesIFXv2, ETH Zurich
 TI MSP430F1611, Infineon TDA5250

 Intelmote2, Intel
 PXA271 XScale Processor, TI (Chipcon) CC2420

 Mica2, UCB
 Atmel128, TI (Chipcon) CC1000

 Mica2dot, UCB
 Atmel128, TI (Chipcon) CC1000

 Micaz, UCB
 Atmel128, TI (Chipcon) CC2420

 Telosb, UCB
 MSP430F1611, TI (Chipcon) CC2420

 Tinynode, EPFL Switzerland
 MSP430F1611, Semtech radio transceiver XE1205

 Three different microcontrollers, four different radio transceivers and many
other peripheral ICs

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

09.14.05 TinyOS 2.0 5

TinyOS and nesC
 TinyOS is an operating system designed to target limited-

resource sensor network nodes
 TinyOS 0.4, 0.6 (2000-2001)
 TinyOS 1.0 (2002): first nesC version
 TinyOS 1.1 (2003): reliability improvements, many new

services
 TinyOS 2.0 (2006): complete rewrite, improved design,

portability, reliability and documentation

 TinyOS and its application are implemented in nesC, a C
dialect:
 nesC 1.0 (2002): Component-based programming
 nesC 1.1 (2003): Concurrency support
 nesC 1.2 (2005): Generic components, “external” types

Slides from David Gay

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Version of TinyOS
 Latest release

 TinyOS 2.0.2

 History
 Start with TinyOS 1.x

 Latest ‘CVS snapshot release’: 1.1.15

 Due to some problems, development of TinyOS 1.x suspended
 “many basic design decisions flawed or too tied to mica-family platforms”

 TinyOS 2.0 working group formed September 2004

 TinyOS 2.x is not backward compatible
 Code written on TinyOS 1.x cannot compile on TinyOS 2.x
 Require minor modification

 TinyOS 1.x is popular
 Many research group still using it
 Many protocols available on TinyOS 1.x, but not on TinyOS 2.x

 But, I will talk about TinyOS 2.x in the class
 MUCH better documentations
 The basic idea is similar, you can still programming TinyOS 1.x

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Why Abandon TinyOS 1.x
 The first platform for sensor network is Mica

 Atmel processor, CC1000 radio

 TinyOS 1.x was designed based on this platform
 Sensor network became popular, more and more platforms

available
 Different platforms has different design and architecture

 Most important, different microcontrollers
 Wide range of varieties

 It is very difficult to support all the platforms, especially
when you didn’t consider this issue at the beginning
 They kept fighting with compatibility issue

 many basic design decisions in TinyOS 1.x make the system
unreliable

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

09.14.05 TinyOS 2.0 8

Other OSes for Mote-class Devices
 SOS https://projects.nesl.ucla.edu/public/sos-2x/

 C-based, with loadable modules and dynamic memory
allocation

 also event-driven

 Contiki http://www.sics.se/contiki
 C-based, with lightweight TCP/IP implementations

 optional preemptive threading

 Mantis http://mantis.cs.colorado.edu
 C-based, with conventional thread-based programming

model

 semaphores+IPC for inter-thread communication

Slides from David Gay

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Why TinyOS is Popular
 They are the first sensor network operating system
 Platforms are commercially available

 “Efficient Memory Safety for TinyOS”, Nathan Cooprider, Will Archer,
Eric Eide, David Gay and John Regehr Sensys'07: ACM International
Conference on Embedded Networked Sensor Systems, Sydney, Australia,
November 2007

 nesC is quite similar to C
 TinyOS provides a large library of ready-made components,

thus saving much programmer work for common tasks
 The nesC compiler has a built-in race condition detector that helps

developers avoid concurrency bugs
 TinyOS is designed around a static resource allocation model

 You can program a sensor node without (or with minimum)
hardware and microcontroller programming knowledge
 But, debugging will be a big problem if you don’t know what’s going

on in the lower layer

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

TinyOS Concept

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Components Based

TinyOS

Timer

MSP430
TimerA3

MSP430
TimerB7

LEDs Radio
Send

Radio
Receive

MSP430
GPIO

MESSAGE

MSP430 SPI

CC2420
Radio

Applications

Hardware Platform

Interfaces

Components

Main

It looks like a library,
those components are
objects in the library
and the interfaces are
APIs. But it actually has
more functions than
just a library

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

An Example: Blink
 How to build an application from TinyOS

 “wired” (link) the components you need

 Implement the action you intended to do

 Application: Blink
 Toggle Red LED @ 0.25 Hz

 Toggle Green LED @ 0.5 Hz

 Toggle Yellow LED @ 1 Hz

 What components you need?
 LEDs

 Timer

 Main  every program needs a main

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Interfaces

Interface: Boot

Interface: Leds

Interface:
Timer<Tmilli>

Components provide interfaces.
Application program use these
interfaces to control the lower
layer components and hardware.

Main.Boot: for initialization and boot up
LEDs.Leds : control LEDs (on, off, toggle)
Timer.Timer<Tmilli>: timer in
millisecond resolution. you can specific a
period (eg. 250), it will signal you when
the timer expire.

In Blink application, you will have something like this:
{
 uses interface Timer<TMilli> as Timer0;
 uses interface Timer<TMilli> as Timer1;
 uses interface Timer<TMilli> as Timer2;
 uses interface Leds;
 uses interface Boot;
}
and you implement what you want to do in your program
{
 when timer fired, toggle LED;
}

Blink

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Composition And Compile

NesC

MSP430
C source file

AVRgcc
compiler

mspgcc
compiler

MicaZ, Mica2 Telosb, Taroko

Other
compiler

Other

Atmel128
C source file

Other
C source file

The components you use
may call the other
components inside TinyOS

Depends on the platform you specify,
nesC compiler compose the necessary
components and produce a platform
specific C source file

After producing a C source file, it use a
native GNU C compiler for specific
microcontroller to compile the C file into
executable, and load it onto the platform.

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Development Environment
 Command line interface

 On windows: Cygwin + TinyOS

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Installation
 Easiest way

 One-step Install with a Live CD
 Use VMware  Linux envoriment

 Easier way
 Cygwin + TinyOS
 Install TinyOS 1.1.11 (Windows Installshield)

 Windows Installshield Wizard for TinyOS CVS Snapshot 1.1.11

 If you still want TinyOS 1.x
 Install TinyOS 1.1.15
 TinyOS CVS Snapshot Installation Instructions

 Install native tools and TinyOS 2.x
 http://www.tinyos.net/tinyos-2.x/doc/html/upgrade-tinyos.html
 Follow the upgrade instructions above

http://toilers.mines.edu/Public/XubunTOS
http://toilers.mines.edu/Public/XubunTOS
http://toilers.mines.edu/Public/XubunTOS
http://webs.cs.berkeley.edu/users/users.php?download=1&snapshot=1
http://webs.cs.berkeley.edu/tos/dist-1.1.0/snapshot-1.1.15Dec2005cvs/doc/install-snapshots.html
http://www.tinyos.net/tinyos-2.x/doc/html/upgrade-tinyos.html
http://www.tinyos.net/tinyos-2.x/doc/html/upgrade-tinyos.html
http://www.tinyos.net/tinyos-2.x/doc/html/upgrade-tinyos.html
http://www.tinyos.net/tinyos-2.x/doc/html/upgrade-tinyos.html
http://www.tinyos.net/tinyos-2.x/doc/html/upgrade-tinyos.html

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Upload Program
 make <platform> install,<node id> bsl,<COMport – 1>

Optional

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

TinyOS Application
TinyOS Application Component_A

Component_B

Component_C Component_D

Component_E

Interface_A Interface_B

Interface_C

Interface_D

Use
interfaces

Provide
interfaces

Command A

Command B

Command C

Event A

Event B

Component_F

1. Application consists
one or more
components.

2. Components provide
and/or use interfaces.

3. Interfaces specify
commands (down
call) and events (up
call)

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Components
• Two types of components: Modules and

Configurations

• Configuration: link components together

• Module: actual implementation

• Every component has an implementation block

• In configuration: it define how components link
together

• In module: it allocate state and implement executable
logic

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

configuration config {
 provide interface interfA
 }
Implementation {
 component modA, configB;

 interfA = modA.interf_a;

 modA.interf_b -> configB.interf_b
}

Configurations

module modA {
 provide interface interf_a
 use interface interf_b
}
Implementation
{
 (Your actual code is in here.)
}

Modules provide the
implementations of one or
more interfaces

Configurations are used to assemble
other components together,
connecting interfaces used by
components to interfaces provided by
others

configuration(or module) configB {
 provide interface interf_b
 use interface interf_c
}

Specify the components you will wire

The -> operator maps between
the interfaces of components
that a configuration names,
The = operator maps between a
configuration’s own interfaces
and components that it names,

This line export the interface
provided by module modA
through interfA

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Modules
module modA {
 provide interface interf_a
 provide interface interf_c
 use interface interf_b
}
Implementation
{
 uint8_t i=0;
 command void interf_a.start() {
 if(interf_b.isSet()) {
 i++;
 signal interf_a.fired();
 }
 }
 command void interf_a.stop() {
 ………..
 }
 command void interf_c.get() {
 ………..
 }

 event void interf_b.readDone() {
 …………
 }
}

A module MUST implement
• every command of interfaces it provides, and
• every event of interfaces it uses
It should(must??) also signal
• every event of interfaces it provides

configuration config {
 provide interface interfA
 }
Implementation {
 component modA, configB;
 interfA = modA.interf_a;
 modA.interf_b -> configB.interf_b
}

interface interf_a {
 command void start();
 command void stop();
 event void fired();
}

interface interf_c {
 command void get();
}

configuration(or module) configB {
 provide interface interf_b
 }

interface interf_b {
 command void isSet();
 event void readDone();
}

Another file specify the available
commands and events in the interface

It must implements the commands it provides

It must implements the events it uses

It can use the command it interf_b provided
by configB because there are wired together

It should(must??) signal the events it provides

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Convention
 All nesC files must have a .nc extension

 The nesC compiler requires that the filename match the interface or component
name

 File name convention

 TinyOS use following type declare
 You can still use native C type declaration (int, unsigned int, …)
 But “int” on one platform is 16-bit long, it could be 32-bit long on another

platform

File Name File Type

Foo.nc Interface

Foo.h Header File

FooC.nc Public Component

FooP.nc Private Component

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

An Example: Blink

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Blink
 Application: Blink

 Toggle Red LED @ 0.25 Hz

 Toggle Green LED @ 0.5 Hz

 Toggle Yellow LED @ 1 Hz

 What do you need?

 Boot up -> initialization

 Generate three time intervals

 A method to control LEDs

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

In The Module
 apps/Blink/BlinkC.nc

 How to find the available interfaces to use
 Interface file name: Foo.nc

 /opt/tinyos-2.x/tos/interfaces (demo)

 Look at the sample applications
 Most common way

Interface’s name It’s parameter

Alias name

In the module, you
use the interfaces
you need to build
the application

module keyword
indicate this is a
module file

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

What Components to Wire?
 You know the interfaces you want to use

 But which components provide these interfaces?

 How to find the component?

 Again, Look at the sample applications

 Read TinyOS 2.x documentation

 Search in the /opt/tinyos-2.x/tos directory (demo)

 grep –r “provides interface (interface name)” *

 /opt/tinyos-2.x/tos/system/LedsC.nc

 /opt/tinyos-2.x/tos/system/TimerMilliC.nc

 /opt/tinyos-2.x/tos/system/MainC.nc

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Blink: Configuration
 Every nesC application start by a top level configuration

 wire the interfaces of the components you want to use

 You already know what components to reference
 In configuration of Blink

 apps/Blink/BlinkAppC.nc

In the configuration, you
specific the components
you want to reference.
This configuration
references 6 components

Configuration keyword
indicate this is a
configuration file

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

How to Wire
 A full wiring is A.a->B.b, which means "interface a of component A wires to interface b of component

B.“
 Naming the interface is important when a component uses or provides multiple instances of the same

interface. For example, BlinkC uses three instances of Timer: Timer0, Timer1 and Timer2
 When a component only has one instance of an interface, you can elide the interface name

BlinkC.Boot -> MainC.Boot;
BlinkC.Timer0 -> Timer0.Timer;
BlinkC.Timer1 -> Timer1.Timer;
BlinkC.Timer2 -> Timer2.Timer;
BlinkC.Leds -> LedsC.Leds;

BlinkC component has
one instance of Boot
and Leds interface, but
it has three instances of
Timer interface. So, it
can elide the interface
name Boot and Leds,
but cannot elide Timer.

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Events And Commands
 What events and commands inside a interface?

 Search the interface file
 Command: # locate interface_name.nc

 /opt/tinyos-2.x/tos/lib/timer/Timer.nc

 /opt/tinyos-2.x/tos/interfaces/Leds.nc

 /opt/tinyos-2.x/tos/interfaces/Boot.nc

 Take a look at these files (demo)

 Command
 Available functions you can use

 Event
 You must implement a handler for every event in the interface

you use

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Implementation
A module MUST implement
• every command of interfaces it provides, and
• every event of interfaces it uses

This module didn’t
provide interface, it
use five interfaces

Timer0.startPeriodic(250)
= BlinkC.Timer<TMilli>.startPeriodic(250)
= Timer0.Timer<TMilli>.startPeriodic(250)
= TimerMillic.Timer<TMilli>.startPeriodic(250)

In module, Timer0 is an
interface. In configuration,
Timer0 is a component

What it says here is
pretty straight forward.
After the system
booted, start the timer
periodically. When the
timer fired, toggle LED.

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Dig Into The Lowest Layer
 We use the Leds interface to find out how it is actually

implemented in the lowest layer

 Trace the file down to the lowest layer

 configuration links the components

 module details the implemention

 Interface

 MUST have some module to implement the interface

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Start With BlinkC.nc

BlinkC.Leds wire to
LedsC.Leds, so we
check LecsC.nc

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

LedsC.nc

In LedsC, it export the interface
from LedsP. And it wire the
interface (GeneralIO) used by
LedsP to PlatformLedsC

Interface Leds is
implemented by LedsP. It
use three instances of
GeneralIO to implement
these commands.

Every command in the Leds
interface must be implemented
by LedsP (demo)

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Component Graph
BlinkAppC

BlinkC {

}

Leds

LedsC

LedsP {

}

Leds

GeneralIO

PlatformLedsC

Name color

Configuration

Module

Used interface

Implemented
interface

Now we know interface Leds is implemented
by module LedsP, and we have a new
interface GeneralIO, which the LedsP use.

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

PlatformLedsC.nc

HplMsp430GeneralIOC
provide a bunch of interfaces,
three of them (Port54, Port55,
Port56) is used by
Msp430GpioC (demo)

Msp430GpioC is a module. It
implement the commands in
interface GeneralIO. It use
interfaces HplMsp430GeneralIO
to implement these commands.
(demo)

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Msp430GpioC.nc

It use interface
HplMsp430GeneralIO to
implement commands in
interface GeneralIO (demo)

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Component Graph
BlinkAppC

BlinkC {

}

Leds
LedsC

LedsP {

}

Leds

GeneralIO

PlatformLedsC

Name color

Configuration

Module

Used interface

Implemented
interface

Now we know interface
GeneralIO is implemented by
module Msp430GpioC
, and we have a new interface
HplMsp430GeneralIO
, which the Msp430GpioC use.

Msp430GpioC

GeneralIO

HplMsp430GeneralIO

HplMsp430GeneralIOC
{
 Port54;
 Port55;
 Port56; }

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

HplMsp430GeneralIOC.nc
In HplMsp430GeneralIOC, it
export the interface from
HplMsp430GeneralIOP.

Which means that Port54 = HplMsp430GeneralIOP(P5IN_,
P5OUT_, P5DIR_, P5SEL_, 4).

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

HplMsp430GeneralIOP.nc

Port54.toggle()
= HplMsp430GeneralIOP(P5IN_, P5OUT_, P5DIR_, P5SEL_,
4).toggle()
= “P5OUT_ ^= (0x01 << 4);”

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Component Graph
Name color

Configuration

Module

Used interface

Implemented
interface

Depends on the parameters you
specify, the module
HplMsp430GeneralIOP implements
the interface HplMsp430GeneralIO

HplMsp430GeneralIOC {
 Port54 = HplMsp430GeneralIOP(P5IN_, P5OUT_, P5DIR_, P5SEL_, 4);

 Port55 = HplMsp430GeneralIOP(P5IN_, P5OUT_, P5DIR_, P5SEL_, 4);
 Port56 = HplMsp430GeneralIOP(P5IN_, P5OUT_, P5DIR_, P5SEL_, 4);

}

HplMsp430GeneralIOP(uint8_t
port_in_addr, uint8_t port_out_addr,
uint8_t port_dir_addr, uint8_t
port_sel_addr, uint8_t pin)

HplMsp430GeneralIO

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Component Graph
BlinkAppC

BlinkC {

}

Leds
LedsC

LedsP {

}

Leds

GeneralIO

PlatformLedsC

Name color

Configuration

Module

Used interface

Implemented
interface

Msp430GpioC

GeneralIO

HplMsp430GeneralIO

HplMsp430GeneralIOC {
 Port54 = HplMsp430GeneralIOP(P5IN_, P5OUT_,
P5DIR_, P5SEL_, 4);
 Port55 = HplMsp430GeneralIOP(P5IN_, P5OUT_,
P5DIR_, P5SEL_, 4);
 Port56 = HplMsp430GeneralIOP(P5IN_, P5OUT_,
P5DIR_, P5SEL_, 4);
}

HplMsp430GeneralIOP(uint8_t
port_in_addr, uint8_t port_out_addr,
uint8_t port_dir_addr, uint8_t
port_sel_addr, uint8_t pin)

HplMsp430GeneralIO

Leds.Led0toggle()

call Led0.toggle();

call HplGeneralIO.toggle();

P5OUT_ ^= (0x01 << 4);

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Hardware Abstraction
 Toggle LED is such a simple operation, why so many

call?

 Hardware abstraction

 Hardware abstraction

 Hide the hardware detail

 So you can program motes without hardware knowledge

 Improve reusability and portability

 But what about performance and optimization?

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Hardware Abstraction Architecture
 Borrowed slides from TinyOS website

 http://www.tinyos.net/ttx-02-2005/tinyos2/ttx2005-
haa.ppt

 By Vlado Handziski

 Flexible Hardware Abstraction for Wireless Sensor
Networks, V. Handziski, J.Polastre, J.H.Hauer, C.Sharp,
A.Wolisz and D.Culler, in Proceedings of the 2nd
European Workshop on Wireless Sensor Networks
(EWSN 2005), Istanbul, Turkey, 2005

 I added some comments

http://www.tinyos.net/ttx-02-2005/tinyos2/ttx2005-haa.ppt
http://www.tinyos.net/ttx-02-2005/tinyos2/ttx2005-haa.ppt
http://www.tinyos.net/ttx-02-2005/tinyos2/ttx2005-haa.ppt
http://www.tinyos.net/ttx-02-2005/tinyos2/ttx2005-haa.ppt
http://www.tinyos.net/ttx-02-2005/tinyos2/ttx2005-haa.ppt
http://www.tinyos.net/ttx-02-2005/tinyos2/ttx2005-haa.ppt
http://www.tinyos.net/ttx-02-2005/tinyos2/ttx2005-haa.ppt
http://www.tinyos.net/papers/flexible_hardware_abstraction.pdf
http://www.tinyos.net/papers/flexible_hardware_abstraction.pdf

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Boot Up

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Blink In C
 If you wrote a Blink application in C

 What about the main() in TinyOS

main() {
 setting GPIO registers (for LEDs)
 setting Timer registers

 start Timer

 for(;;) {
 }
}

Timer ISR {
 toggle LEDs
}

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Boot Sequence
 In the Blink application, there is a interface Boot

 This interface has a event booted

 If you trace down the components, you will find that this
interface is actually implemented by a module
RealMainP

 This is where the main() stay

 So every application requires a interface Boot,

 And wire it to the MainC.Boot

BlinkC.nc

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

RealMainP.nc
 In the RealMainP.nc

The TinyOS boot sequence has four steps:
1. Task scheduler initialization
2. Component initialization
3. Signal that the boot process has completed
4. Run the task scheduler

Step 1

Step 2

Step 3

Step 4 This boot sequence is different
from TinyOS 1.x. If you are
using TinyOS 1.x, check “TEP
106: Schedulers and Tasks” and
“TEP 107: Boot Sequence” for
more detail.

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Atomic

 Use a atomic section to protect you code

 It disable global interrupt, make it short

This section of codes runs to
the end. It can't be preempted.
Basically it is implemented by
disable global interrupt.

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

MainC.nc

Automatically wiring these two
to the system's scheduler and
platform initialization sequence.
Hide them from applications

When RealMainP calls Scheduler.init(), it
automatically calls the TinySchedulerC.init().

Export these two
interfaces to applications

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Initialization
 Task scheduler Initialization

 Initialize the task scheduler

 Component initialization.
 PlatformInit

 wired to the platform-specific initialization component

 No other component should be wired to PlatformInit

 SoftwareInit
 Any component that requires initialization can implement the Init

interface and wire itself to MainC's SoftwareInit interface

 Signal that the boot process has completed
 Components are now free to call start() and other commands

on any components they are using

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Separate Initialization And Start/Stop
 For example, radio service

 Initialization: specify node address, PAN id and etc.
 Only run once

 Start/stop: start or stop the radio transceiver
 Dynamically call while program running

Top layer application
Software initialization

Start

PlatformInit.init()

SoftwareInit.init()

Booted()

You build a top layer application.
You wire software initialization
to SoftwareInit.init() and call
start/stop after system booted

middle layer service

Software initialization

Start Stop

You build a middle layer service
. You wire software initialization
to SoftwareInit.init() and provide
start/stop commands(maybe
other interfaces) for upper layer
application

New platform

Platform initialization

Start Stop

Software initialization

Others You build a new platform. You have to wire the
platform specify initialization to PlatformInit.init()
and wire the software initialization to
SoftwareInit.init(). you also need to provide
interfaces for other system components.

Different layer

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Wire SoftwareInit

Configuration FooC {
}
Implementation {
 components MainC, FooP;

 MainC.SoftwareInit -> FooP;
}

module FooP {
 provides interface Init;
}
Implementation {
 command error_t Init.init() {
 initialization something
 ……………
 }
}

interface Init {
 command error_t init();
}

When RealMainP calls
softwareInit, it will wires to
FooP.Init.init(), which is
implemented by FooP module

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Task And Scheduler

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Software Architectures
 Round Robin with Interrupts

 Problem: no proirity

2007/10/1 Wireless Sensor Network And Labs Fall 2007 54

 for(;;) // forever loop
 {
 1. wait for interrupt(sleep)
 if(Event 1 occurred) {
 do something
 }
 if(Event 2 occurred) {
 do something
 }
 if(Event 3 occurred) {
 do something
 }
 }

(ISR) Interrupt Service Routines 1 ()
{
 1. do critical things
 2. set event 1 occurred flag
}

(ISR) Interrupt Service Routines 2 ()
{
 1. do critical things
 2. set event 2 occurred flag
}

(ISR) Interrupt Service Routines 3 ()
{
 1. do critical things
 2. set event 3 occurred flag
}

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Software Architectures
 Function-Queue-Scheduling

 Worst wait for highest priority task

 bounded by the longest function

2007/10/1 Wireless Sensor Network And Labs Fall 2007 55

 for(;;) // forever loop
 {
 1. wait for interrupt(sleep)
 While (function queue is not empty)
 {
 call first function on queue
 }
 }

(ISR) Interrupt Service Routines 1 ()
{
 1. do critical things
 2. put function_1 on queue
}

(ISR) Interrupt Service Routines 3 ()
{
 1. do critical things
 2. put function_3 on queue
}

(ISR) Interrupt Service Routines 2 ()
{
 1. do critical things
 2. put function_2 on queue
}

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

On TinyOS
 Software Architecture of TinyOS

 Function-Queue-Scheduling

 Essentially, when running on a platform

 TinyOS is not a Operating System

 It depends on your definition of “OS”

 It performs many check at compile time through nesC

 Check memory usage

 Prevent dynamic memory allocation

 Warn potential race condition

 Determine lowest acceptable power state (for low power)

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Tasks And Scheduler
 Tasks And Scheduler in TinyOS

 Worst wait
 Total execution time of tasks ahead

 for(;;) // forever loop
 {
 1. wait for interrupt(sleep)
 While (task queue is not empty)
 {
 call a task in queue based on FIFO schedule

 }
 }

(ISR) Interrupt Service Routines 1 ()
{
 1. do critical things
 2. post task_1
}

(ISR) Interrupt Service Routines 3 ()
{
 1. do critical things
 2. post task_3
}

(ISR) Interrupt Service Routines 2 ()
{
 1. do critical things
 2. post task_2
}

Task_5 Task_2 Task_1 Task_3 Task_7

Task_5 () {
 1. do something
 2. post task_7
}

A task can be post to the task
queue by a ISR or other task

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Tasks
 How to use

 declare:

 post:

 Tasks in TinyOS 2.x

 A basic post will only fail if and only if the task has
already been posted and has not started execution

 You cannot have two same idle task in the queue

 At most 255 tasks in queue

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Rules of Thumb
 Keep task short

 Divided long task into short sub-tasks

Task_5 Task_2

If Task_5 runs 5 seconds.
Task_2 toggle a LED,
occurred every second.
In this situation, LED
will only toggle every 5
seconds.

Divided Task_5 into 10
sub-tasks, each runs 0.5
second. A sub-task post
another consecutive sub-
task after it finish.
Now, LED can toggle
every 1 seconds.

Task_5-(1) Task_2 Task_5-(2)

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Interrupts In TinyOS
 Is an event call from a ISR (Interrupt Service Routine)?

 I don’t know!!
 Didn’t specify in their documentation (or I miss it)
 But it is important

 If your application requires a real-time response to external event, it
must call from ISR

 What I found is
 commands and events that are called from interrupt handlers must

be marked async (demo)

ISR {
 signal Event_a()
}

Event_a

ISR {
 post task_a()
}

Event_a

task_a {
 signal Event_a()
}

Immediate
response

Might wait in the
task queue for
long time

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Summary
TinyOS Application Component_A

Component_B

Component_C Component_D

Component_E

Interface_A Interface_B

Interface_C

Interface_D

Use
interfaces

Provide
interfaces

Command A

Command B

Command C

Event A

Event B

Component_F

1. Application consists
one or more
components.

2. Components provide
and/or use interfaces.

3. Interfaces specify
commands (down
call) and events (up
call)

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Summary
 Application consists one or more components.

 Configuration:
 wire interfaces of different components together

 Module
 Implementation of interfaces

 Different components communicate through interfaces
 Command: down-call
 Event: up-call

 Writing a top layer TinyOS application
 Choose the interface you want to use
 Provide interfaces if necessary
 Wire the interfaces to other components provide/use these

interfaces
 Implement events and commands

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

Further Reading
 Tutorials

 http://www.tinyos.net/tinyos-
2.x/doc/html/tutorial/index.html

 A good starting point

 TinyOS Programming Manual
 http://www.tinyos.net/tinyos-2.x/doc/pdf/tinyos-

programming.pdf
 nesC programming language

 TinyOS Enhancement Proposals (TEPs)
 describe the structure, design goals, and implementation of

parts of the system as well as nesC and Java source code
documentation

 http://www.tinyos.net/tinyos-2.x/doc/

http://www.tinyos.net/tinyos-2.x/doc/html/tutorial/index.html
http://www.tinyos.net/tinyos-2.x/doc/html/tutorial/index.html
http://www.tinyos.net/tinyos-2.x/doc/html/tutorial/index.html
http://www.tinyos.net/tinyos-2.x/doc/pdf/tinyos-programming.pdf
http://www.tinyos.net/tinyos-2.x/doc/pdf/tinyos-programming.pdf
http://www.tinyos.net/tinyos-2.x/doc/pdf/tinyos-programming.pdf
http://www.tinyos.net/tinyos-2.x/doc/pdf/tinyos-programming.pdf
http://www.tinyos.net/tinyos-2.x/doc/pdf/tinyos-programming.pdf

Network and Systems Laboratory
nslab.ee.ntu.edu.tw

About TinyOS
 My opinions

 Writing a high level program is relative easy

 But debugging could be a big problem
 You don’t know what’s going on inside

 Documentation is important
 One of the big problem in TinyOS 1.x

 They put a lots of effort in documenting TinyOS 2.x

 Still some parts missing, some inconsistency

 But it is much better than TinyOS 1.x

 Trade off between (efficiency, optimization) and (portability,
reusability)

 Is portability important?

