
Embedded 
Information 

Systems
5. Quantities and variables in real-

time systems

November 3, 2020

1



2
Embedded Information systems, Lecture #8, November 3, 2020.

Clock synchronisation:
Berkeley algorithm:
computes their average and resends them.

Active time server: regularly requests the clock values of the nodes, 

Cristian algorithm:

~
𝑇1−𝑇0−𝐼

2
.

Synchronization is initiated by the client at
time 𝑇0 by requesting a server, which has a UTC receiver.
After the arrival of the request an interrupt routine is executed 
and the UTC radio is requested. Finally, the value of the UTC

clock is sent to the client. The message arrives at 𝑇1. 

The received clock value must be corrected by the time needed for communication.

If the communication requires nearly the same amount of time in both directions, 

then a good approximation of this correction is:

Comment:

It might cause problems if 𝐶𝑈𝑇𝐶 + 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 < 𝑇1, i.e., the clock of the client is to be reset 
to an earlier time. If the client clock is just timestamping subsequent events, it might happen

that due to the reset a later event receives earlier time, i.e., seemingly changes the order.

If such a situation is a real danger, then it is not allowed to reset the clock, only the slowing

of the clock is permitted until its run will be synchronous with the UTC clock.

Reminder:

Master-slave 
algorithms:



3Embedded Information systems, Lecture #8, November 3, 2020.

Master side:
The basic algorithm is repeated 𝑁 times:
for k=1 to N
do
Initialization:
do

𝑇𝐴 ← 𝐶𝑖(𝑛𝑜𝑤)
∀𝑗 ≠ 𝑖 Send 𝑇𝐴 to j

endo
Processing data received from the slaves:
∀𝑗 ≠ 𝑖:
do

𝑑2
𝑗
← 𝐶𝑖(𝑛𝑜𝑤) − 𝑇𝐵

𝛥𝑗(𝑘) ← 𝑑1
𝑗
− 𝑑2

𝑗
/2

endo
endo ; N differences are available for ∀𝑗:

∀𝑗 ≠ 𝑖:
do

𝛥𝑗 = 1/𝑁 σ𝑘=1
𝑁 𝛥𝑗 (𝑘)

Send 𝛥𝑗 to j

endo

Slave side:

do

𝑑1
𝑗
← 𝐶𝑗(𝑛𝑜𝑤) − 𝑇𝐴

𝑇𝐵 ← 𝐶𝑗(𝑛𝑜𝑤)

Send (𝑇𝐵,𝑑1
𝑗
) to i

endo

do
𝐶𝑗(𝑡) ← 𝐶𝑗(𝑡) − 𝛥𝑗

endo

Example: Tempo algorithms: master-slave synchronization in the distributed Berkeley Unix.Reminder:



4
Embedded Information systems, Lecture #8, November 3, 2020.

Distributed clock synchronization algorithms

The major advantage of the distributed approach is the higher degree of fault tolerance it 
achieves.This achievement increases the cost mainly in communication rather than in special
hardware. The load imposed on the communication network by the distributed approach

is therefore expected to be higher than that of the MS approach.

In the distributed clock systems, all the time servers use uniform approach with the

following characteristics:

- Each node polls the rest of the clocks or a subset of them.

- Each applies a specific algorithm to the responses of the poll.

- Each node updates the local clock accordingly.

I. A Fundamental Ordering Approach
Let us consider an ordering approach based on message timestamping with the following

properties:
- The accuracy of clock i is bounded by a drift rate 𝛿: ∀𝑡: 1 −

𝑑

𝑑𝑡
𝐶𝑖 𝑡 < 𝛿𝑖 ≪ 1.

- The communication graph of the algorithm is closely connected (every vertex/node can

send synchronization messages to the rest of the vertices/nodes) with a diameter d

(minimum number of hopes).

- The network imposes an unpredictable (yet bounded) message delay D. In other words,

𝜇 < 𝐷 < 𝜂 holds, where 𝜇 and 𝜂 are the lower and upper bounds on D.

Each clock implements the following algorithm:

- On every local clock event occurrence, increment the local clock 𝐶𝑖 𝑡 ← 𝐶𝑖 𝑡 + 1.

Reminder:



5
Embedded Information systems, Lecture #8, November 3, 2020.

- Each node with a clock sends messages to the others at least every 𝜏 seconds. Each

message includes its timestamp 𝑇𝑚.

- Upon reception of an external 𝑇𝑚, the receiver sets its clock 𝐶𝑖 𝑡 ← 𝑚𝑎𝑥 𝐶𝑖 𝑡 , 𝑇𝑚 + 𝜇 .

The communication cost of one update of the whole network is 𝑛 𝑛 − 1 messages. 

The correctness of each clock due to this synchronization algorithm is ∀𝑖: ∀𝑗:

𝐶𝑖 𝑡 − 𝐶𝑗 𝑡 < 𝑑 2𝛿𝜏 + 𝜂 for all t. 

This algorithm achieves only the ordering goal, bounding clock differences between sites. 
The algorithm results in updates according to the fastest clock in the system, and not

necessarily the most accurate one.

II. Minimize Maximum Error

Every clock 𝑖 “knows” it is correct within the interval: 𝐶𝑖 𝑡 − 𝐸𝑖 𝑡 , 𝐶𝑖 𝑡 + 𝐸𝑖 𝑡 where 𝐸𝑖 𝑡
is a bound on the error of clock 𝑖.

The error interval is constructed from the following contributors:
- The error that comes into effect right on the clock reset time 𝜌𝑖 , as discretization and

other constant errors 𝜀𝑖 .
- The delay from the time this clock 𝑖 is read until another clock 𝑗 uses the readout for its

update 𝜇𝑖
𝑗

.
- The degradation of time-counting that develops between consecutive resets 𝛿𝑖 .

The algorithm consists of two rules: a response rule and a synchronizer rule.

A request is transmitted by the synchronizer rule at node 𝑗 activates 𝑖’s response.

Reminder:



6Embedded Information systems, Lecture #8, November 3, 2020.

Minimize Maximum Error:

Upon receiving a time Request from 𝒋 ≠ 𝒊:
do

𝐸𝑖(𝑡) ← 𝜀𝑖 + 𝐶𝑖(𝑡) − 𝜌𝑖 𝛿𝑖 Rule#1 (from the viewpoint of clock 𝑖).
Send 𝐶𝑖(𝑡), 𝐸𝑖(𝑡) to 𝑗.

endo

At least once every 𝝉 time units:

∀𝑗 ≠ 𝑖: Request 𝐶𝑗(𝑡), 𝐸𝑗(𝑡) ;

for 𝑗 ≠ 𝑖 do begin

Receive 𝐶𝑗(𝑡), 𝐸𝑗(𝑡) ;

if 𝐶𝑗(𝑡), 𝐸𝑗(𝑡) is consistent with 𝐶𝑖(𝑡), 𝐸𝑖(𝑡)

then if 𝐸𝑗(𝑡) + 1 + 𝛿𝑖 𝜇𝑗
𝑖 ≤ 𝐸𝑖(𝑡)

then begin
Rule#2

𝐶𝑖(𝑡) ← 𝐶𝑗(𝑡)

𝜀𝑖 ← 𝐸𝑗(𝑡) + 1 + 𝛿𝑖 𝜇𝑗
𝑖

𝜌𝑖 ← 𝐶𝑗(𝑡)

end
else ignore it

end
endo

Reminder:



7Embedded Information systems, Lecture #8, November 3, 2020.

Then the algorithm selects the highest left 
boundary in the responses, 𝛼, and the lowest 
right boundary, 𝛽. 

At least once every 𝝉 time units:

∀𝑗 ≠ 𝑖: Request 𝐶𝑗(𝑡), 𝐸𝑗(𝑡) ;

∀𝑗 ≠ 𝑖: Receive 𝐶𝑗(𝑡), 𝐸𝑗(𝑡) ;

∀𝑗 ≠ 𝑖 𝐿𝑗(𝑡) ← 𝐶𝑗(𝑡) − 𝐸𝑗(𝑡) ; the left boundary

∀𝑗 ≠ 𝑖: 𝑅𝑗(𝑡) ← 𝐶𝑗(𝑡) + 𝐸𝑗(𝑡) + 1 + 𝛿𝑖 𝜇𝑗
𝑖

the right boundary

𝛼 ← 𝑚𝑎𝑥 𝐿𝑗 ; 𝛽 ← 𝑚𝑖𝑛 𝑅𝑗
if 𝛼 < 𝛽

then

𝜀𝑖 ←
1

2
𝛽 − 𝛼 ;

𝐶𝑖(𝑡) ←
1

2
𝛼 + 𝛽 ;

𝜌𝑖 ←
1

2
𝛼 + 𝛽

end
else ignore them all

endo

III. Intersection of time intervals

This algorithm also consists of two rules: a response rule and a synchronizer rule. 
The response rule is identical to the response of the previous algorithm. 
The synchronizer rule here is also periodic, performed at least every 𝜏 time units. 
The first step of the synchronizer rule is a request for responses, which the algorithm sends to 
the rest of the nodes. The similarity to the previous algorithm ends here. 
The second step of this algorithm is to receive all the responses. 

Each response interval has a left boundary 
𝐿𝑗 𝑡 and a right boundary 𝑅𝑗 𝑡 and the 

algorithm calculates both of them.

If the responses are

consistent, there must be a nonempty 
intersection of them all, and thus, 𝛼 < 𝛽.
Otherwise the responses are considered 
inconsistent and therefore ignored. 
If they are consistent, we can conclude that 
the real-time clock is within the interval 𝛼, 𝛽 . 

Therefore, the algorithm sets its error to equal

half this interval and the local clock to equal

the interval’s midpoint.

The first rule is exactly the same as previously.

The second rule:

Reminder:



8
Embedded Information systems, Lecture #8, November 3, 2020.

Jitter: 𝑒 = 𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛

- at the application software level: 500𝜇𝑠 …5ms
- at the kernel of the operating system: 10𝜇𝑠 …100𝜇𝑠

- at hardware of the communication controller: <10𝜇𝑠.

𝛱 = 𝑒 1 −
1

𝑁
.

Comments:
(1) The intersection algorithm is superior in its accuracy, however, less robust. It may ignore

the responses of all the participants because of an erroneous response from one

participant.

(2) The communication demand of the distributed algorithm in case of n clocks is 2𝑛 𝑛 − 1 in 
every τ time units. 

(3) The distributed algorithms require good knowledge of time.

Jitter of the synchronization message:

The important role of the latency jitter 𝜀 for internal synchronization is emphasized by an 
impossibility result: It is not possible to internally synchronize the clocks of an ensemble

consisting of N nodes to a better precision than 

IV. Fault-Tolerant-Average (FTA) algorithm:

In a system with N nodes k Byzantine faults should be tolerated. 
The FTA algorithm is a one-round algorithm that works with inconsistent information, and 
bounds the error introduced by inconsistency. At every node, the N measured time differences

between the node’s clock and the clocks of all other nodes are collected (the node considers 
itself a member of the ensemble with time difference zero).

Reminder:



9
Embedded Information systems, Lecture #8, November 3, 2020.

These time differences are sorted by size. 

Then the 𝑘 largest and the 𝑘 smallest differences are removed (if the erroneous time value is 
either larger or smaller than the rest). 

The remaining 𝑁 − 2𝑘 time differences are, by definition, within the precision window. 

The average of these remaining time differences is the correction term for the node’s clock. 

Reminder:



10Embedded Information systems, Lecture #8, November 3, 2020.

5. Quantities and variables in real-time systems
Known concepts: Real-time variable, real-time image, temporal accuracy, 

observation: 

periodic update,

state observation, event observation, real-time object,

idempotence,action delay,

permanence,

credibility (Byzantine errors), sphere of control, …

Modelling of the recipient environment: What can not be avoided: 

The cognition of the recipient environment, and its installation into the software.

An important tool of this latter is the measurement process: which is an inherent part of the
cognition process within which we are increasing and expanding our knowledge. 

The figure helps the interpretation.

This is made preferably by quantities 
which show stability.

Obviously, such quantities are results of 
abstractions.

- state variables (x), the changes of which follow 

energy processes (voltage, pressure, 

temperature, speed, etc.) due to interactions; 

- parameters (a), which characterize the 
strength of the interactions; 

- structures (S), which describe the

relations of the system components.
The Space of the real world is such an 
abstraction, where the values of the 
investigated features correspond to one 
point of the space.

While taking measurement, we try to 
grasp the different phenomena of the 
real world. 

The following quantities/features play

key role:



11Embedded Information systems, Lecture #8, November 3, 2020.

The coordinates of this points are 
unknown before the measurement. 

It is well known, that due to measurement errors, only an estimate of the measurand can be
provided. 
Further difficulty, that there is no direct access to the quantity to be measured, only some

kind of indirect mapping is possible. This mapping is called observation.

The path from the quantity to be measured and the observation is called measuring channel.

A/D converter

Environment to be 
modelled

Computer to be
programmed

Model Inverse model

Observation in case of 
deterministic channel:

The observed reality is described by a 
discrete model, and it is supposed to be 
an autonomous system.
The state equations and the 

observation equation describing 

the reality and the observation: 

𝑥(𝑛 + 1) = 𝐴𝑥(𝑛),

)𝑦(𝑛) = 𝐶𝑥(𝑛

𝑑𝑖𝑚 𝑥 𝑛 = 𝑁, 𝑑𝑖𝑚 𝐴 = 𝑁 ∗ 𝑁

𝑑𝑖𝑚 𝑦 𝑛 = 𝑀, 𝑀 ≤ 𝑁, 𝑑𝑖𝑚 𝐶 = 𝑀 ∗ 𝑁

Can we invert such a system? Generally not! When is it possible? If 𝐶−1 exists!



12Embedded Information systems, Lecture #8, November 3, 2020.

If 𝐶−1 does not exist, then something else is to do! The solution is a simulator!
The model should be built into the computer! This is controlled by the observed values!

Our aim is the estimation of 
the state variable x(n).

The name of this device is: observer, which tries to produce a copy of the reality by 
following it thanks to a correction/training/adaptation mechanism, and gives an estimate 
of the value to be measured. This estimator ො𝑥(𝑛) can be read from the observer.

The state and the observation equations of the observer are:

)ො𝑥(𝑛 + 1) = 𝐴ො𝑥(𝑛) + 𝐺𝑒(𝑛

)ො𝑦(𝑛) = 𝐶 ො𝑥(𝑛

𝐺: correction matrix; 𝑑𝑖𝑚 𝐺 = 𝑁 ∗ 𝑀, )𝑒(𝑛) = 𝑦(𝑛) − ො𝑦(𝑛

Matrix 𝐺 should be designed to get: ො𝑥(𝑛) → 𝑥(𝑛).
The difference of the state variables is to be minimized:

𝑥(𝑛 + 1) − ො𝑥(𝑛 + 1) = 𝐴𝑥(𝑛) − 𝐴ො𝑥(𝑛) − 𝐺𝑒(𝑛) = (𝐴 − 𝐺𝐶)(𝑥(𝑛) − ො𝑥(𝑛)).

)𝜀(𝑛 + 1 )𝜀(𝑛𝐹
)𝜀(𝑛 + 1) = 𝐹𝜀(𝑛

Is the state equation of the error system.

The design of matrix 𝐺: 𝜀(𝑛)
𝑛→∞

0, therefore 𝜀 𝑛 + 1 < 𝜀 𝑛 , is forced, possibly for

F reduces the size of vector, i.e. it is „contractive”. This property can be interpreted 𝑛.

also in such a way that the internal energy of the error system is dissipated.

If this is the case in every step, then the decrease of the size of the error vector will be

a monotonic process.



13Embedded Information systems, Lecture #8, November 3, 2020.

Special cases:
1. 𝐹 = 𝐴 − 𝐺𝐶 = 0. In this case 𝐺 = 𝐴𝐶−1. This is possible if C is a square matrix, 

i.e. the observation has as many components as the state vector itself. 
The equation can be solved in an explicite way! The system converges in one step!

2. 𝐹𝑁 = (𝐴 − 𝐺𝐶)𝑁 = 0. In this case the error system converges in N steps:

𝑥(𝑁) − ො𝑥(𝑁) = 𝐴 − 𝐺𝐶 𝑁(𝑥(0) − ො𝑥(0)) = 0 The matrices wth property 𝐹𝑁 = 0

can be characterized by the fact that all they eigenvalues are zero. 

Systems having state transition matrix of this property are of finite impulse response (FIR) 
systems, the initial error will disappear in finite steps. 

3. If 𝐹𝑁 = (𝐴 − 𝐺𝐶)𝑁 ≠ 0, then the size of the state vector of a stabile error system will

decrease exponentially. The error system is stable, if all its eigenvalue is within the unit circle.

In this case our expectation is not 𝜀 𝑛
𝑛→∞

0, but the trace of 𝐸 𝜀 𝑛 𝜀𝑇 𝑛
𝑛→∞

𝑚𝑖𝑛. 

𝜀 𝑛 =

𝜀0 𝑛

𝜀1 𝑛
⋮

𝜀𝑁−1 𝑛

therefore 𝑡𝑟𝑎𝑐𝑒 ሿ𝐸[𝜀(𝑛)𝜀𝑇(𝑛) = σ𝑘=0
𝑁−1 ൯𝜀𝑘

2(𝑛 .

)𝜀(𝑛 + 1) = 𝐹𝜀(𝑛Instead of

𝐸[𝜀(𝑛 + 1)𝜀𝑇(𝑛 + 1)ሿ = 𝐹𝐸[𝜀(𝑛)𝜀𝑇(𝑛)ሿ𝐹𝑇 Is used for error system characterization.

Systems having state transition matrix of this property have infinite impulse response (IIR
systems), because the initial error will disappear in infinite steps.

Observation in the case of noisy observation channel: 



𝑤 𝑛

14Embedded Information systems, Lecture #8, November 3, 2020.

plays a central role in the famous Kalman predictor and filter.P= ሿ𝐸[𝜀(𝑛)𝜀𝑇(𝑛)Matrix

Comments:
1. Thanks to the principle of superposition, the system observed and the observer itself can

have an additional, common 
external excitation without 
any change in the convergence 
properties.

2. The above introduced observer is called Luenberger observer. According to Luenberger
almost any system is an observer. The only requirement is that the observer should be
faster than the observed system; otherwise it will not be able to follow its changes.

3. The bridge-branch containing the impedance to be 
measured within an impedance measuring bridge implements 
the physical model of the reality, while the tuneable bridge-
branch correspond to the model built into the observer.

The difference between the outputs of the 
voltage divider bridge-branches controls the 
correction mechanism. Finally the value of 
the unknown impedance will be computed 
from the correction value.
This setup, together with the operator
responsible for tuning, implements an
observer.

Example:

Given 𝐴 =
1 0
0 −1

;𝐶 =
1 0
0 1

How to set matrix 𝐺?

𝐺 = 𝐴𝐶−1 = 𝐴 =
1 0
0 −1



15Embedded Information systems, Lecture #8, November 3, 2020.

Given 𝐴 =
1 0
0 −1

; 𝐶 = 1 1 . How to set matrix 𝐺? 𝐺 =
𝑔0
𝑔1

=?

𝐺𝐶 =
𝑔0
𝑔1

1 1 =
𝑔0 𝑔0
𝑔1 𝑔1

, 𝐴 − 𝐺𝐶 =
1 − 𝑔0 −𝑔0
−𝑔1 −1 − 1𝑔1

, 𝐴 − 𝐺𝐶 2 = 0based on

1 − 𝑔0 −𝑔0
−𝑔1 −1 − 𝑔1

1 − 𝑔0 −𝑔0
−𝑔1 −1 − 𝑔1

=
1 − 2𝑔0 + 𝑔0

2 + 𝑔0𝑔1 −𝑔0 + 𝑔0
2 + 𝑔0 + 𝑔0𝑔1

−𝑔1 + 𝑔1
2 + 𝑔1 + 𝑔0𝑔1 1 + 2𝑔1 + 𝑔1

2 + 𝑔0𝑔1
=

=
0 0
0 0

Substituting expressions of the minor diagonal into the main diagonal we get: 

1 − 2𝑔0 = 0, 1 + 2𝑔1 = 0, where from: 𝑔0 = 0.5 és 𝑔1 = −0.5. 

Checking: 0.5 −0.5
0.5 −0.5

0.5 −0.5
0.5 −0.5

=
0 0
0 0

Let us compute eigenvalues of matrix 𝐴 − 𝐺𝐶 :

Example:

Example: 𝑑𝑒𝑡 𝜆𝐼 − 𝐴 + 𝐺𝐶 = 0

𝑑𝑒𝑡
𝜆 − 0.5 0.5
−0.5 𝜆 + 0.5

= (𝜆 − 0.5)(𝜆 + 0.5) + 0.25 = 𝜆2 − 0.25 + 0.25 = 0.

Both eigenvalues are zero.
Comments: 

1. This property is valid in every system capable to converge in finite steps.

2. The transfer function of such systems is a rational function having all its poles at the origin:

𝐻(𝑧) = 𝑎1𝑧
−1 + 𝑎2𝑧

−2+. . . +𝑎𝑁𝑧
−𝑁 =

𝑎𝑁 + 𝑎𝑁−1𝑧 + 𝑎𝑁−2𝑧
2+. . . +𝑎1𝑧

𝑁−1

𝑧𝑁
These are the so-called Finite Impulse Response (FIR) filters.

The time-domain equivalent: 𝑦(𝑛) = 𝑎1𝑥(𝑛 − 1) + 𝑎2𝑥(𝑛 − 2)+. . . +𝑎𝑁𝑥(𝑛 − 𝑁),

where due to computability reasons only previous samples of 𝑥(𝑛) are used.



16Embedded Information systems, Lecture #8, November 3, 2020.

The condition for the eigenvalues can be used to compute 𝑔0 and 𝑔1:Example:

𝑑𝑒𝑡 𝜆𝐼 − 𝐴 + 𝐺𝐶 = 0, 𝑑𝑒𝑡
𝜆 − 1 + 𝑔0 𝑔0

𝑔1 𝜆 + 1 + 𝑔1
= 𝜆2 + 𝜆 𝑔0 + 𝑔1 + 𝑔0 − 𝑔1 − 1 =

= 𝜆2 = 0. Where from: 𝑔0 + 𝑔1 = 0 and 𝑔0 − 𝑔1 = 1, thus: 𝑔0 = 0.5 és 𝑔1 = −0.5.

Linear Least Squares (LS) Estimation:

It happens that the dynamics of recipient environment is not known: 
The state equation is not known or 𝐴 = 𝐼. In this case we have only observations.

No a priori information is available neither from
the parameter to be measured, nor from the channel characteristics/noise.

that the observation equation is linear: 𝑦 𝑛 = 𝐶𝑥 𝑛 + 𝑤 𝑛 ; 𝑤 𝑛 is the observation noise.
We assume that the unknown 𝑥 𝑛 takes value ො𝑥 𝑛 , and we set up the model of the 
observation. We compare this with the observation, and we are looking for the best

𝐽 𝑥 𝑛 , ො𝑥 𝑛 = 𝑦 𝑛 − 𝐶 ො𝑥 𝑛
𝑇
𝑦 𝑛 − 𝐶 ො𝑥 𝑛 =

= 𝑦 𝑛 𝑇𝑦 𝑛 − 𝑦 𝑛 𝑇𝐶 ො𝑥 𝑛 − ො𝑥 𝑛 𝑇𝐶𝑇𝑦 𝑛 + ො𝑥 𝑛 𝑇𝐶𝑇𝐶 ො𝑥 𝑛 =
= 𝑦 𝑛 𝑇𝑦 𝑛 − 2ො𝑥 𝑛 𝑇𝐶𝑇𝑦 𝑛 + ො𝑥 𝑛 𝑇𝐶𝑇𝐶 ො𝑥 𝑛 The minimum of which is given by:

อ
൯𝜕𝐽(𝑥 𝑛 , ො𝑥 𝑛

𝜕 ො𝑥 𝑛
ො𝑥 𝑛 = ො𝑥𝐿𝑆

= 0 −2𝐶𝑇𝑦 𝑛 + 2𝐶𝑇𝐶 ො𝑥 𝑛 = 0, ො𝑥 𝑛 = 𝐶𝑇𝐶 −1𝐶𝑇𝑦 𝑛

Due to 𝐴 = 𝐼 here 𝑥 𝑛 is practically a constant parameter.
We take more observations, and the (noisy) observed values are collected in vector 𝑦 𝑛 . 
If 𝐶 = 1 1 ⋯ 1 𝑇 , then

ො𝑥𝐿𝑆 =
1

𝑁


𝑘=0

𝑁−1

𝑦𝑘(𝑛)
i.e. the result is simple linear averaging.

Let us assume 

setting of ො𝑥 𝑛 assuming squared error:



17Embedded Information systems, Lecture #8, November 3, 2020.

Model fitting: In the case of LS estimators, we do not have prior information about 
parameter to be measured, therefore what we do is model fitting.

The problem of model fitting is manifold.
A classical version is regression calculus: The determination of a possibly deterministic relation

of independent and dependent variables can be considered as a special case of model fitting.

In the figure below the function to be modelled 𝑦 =
𝑔(𝑢, 𝑛) has two types of independent variables: the one
denoted by 𝑢 𝑛 , is known and can be influenced, while
the other, denoted by 𝑛 𝑛 , is unknown, and cannot be
influenced.

For modelling we use a “tuneable” function ො𝑦 = ො𝑔(𝑢) the free parameters of which are 
tuneable. We aim at applying such setting of parameters which is optimal in some sense.

Typically quadratic criterion is applied:

𝐽 = 𝐸 𝑦 − ො𝑦 𝑇 𝑦 − ො𝑦

Linear regression: The function to be fitted is a scalar linear function ො𝑔(𝑢) = 𝑎0 + 𝑎1𝑢, 
the parameters of which are set to minimize 𝐸 𝑦 − ො𝑔 𝑢

2
.

To get the minimum of 𝐽 = 𝐸 𝑦 − 𝑎0 − 𝑎1𝑢
2 we take the derivative to 𝑎0 and 𝑎1 :

𝜕𝐽

𝜕𝑎0
= −2𝐸 𝑦 − 𝑎0 − 𝑎1𝑢 = −2 𝐸 𝑦 − 𝑎0 − 𝑎1𝐸 𝑢 = 0

𝜕𝐽

𝜕𝑎1
= −2𝐸 𝑢 𝑦 − 𝑎0 − 𝑎1𝑢 = −2 𝐸 𝑢𝑦 − 𝑎0𝐸 𝑢 − 𝑎1𝐸 𝑢2 = 0

This latter is typically a noise process, or
disturbance modelled as a noise process.



18Embedded Information systems, Lecture #8, November 3, 2020.

Polynomial regression:

ො𝑔(𝑢) =
𝑘=0

𝑁

𝑎𝑘 𝑢
𝑘

Important property that it is linear in its parameters.

Linear regression based on measured data: 
The above development can be carried out also for the case where no a priori information is 
available. In this case 𝑦𝑛 = 𝑎0 + 𝑎1𝑢𝑛 + 𝑤𝑛, 

which is the model of the observation at the 𝑛-th time instant.

Let us take 𝑁 observations! The input and the observed samples are ordered into vectors.

𝒛 =

𝑦0
𝑦1
⋮

𝑦𝑁−1

=

1 𝑢0
1 𝑢1
⋮ ⋮
1 𝑢𝑁−1

𝑎0
𝑎1

+

𝑤0

𝑤1
⋮

𝑤𝑁−1

We recognize that this structure is the same as 

the model of the LS estimation!

+𝑤 𝑛𝑦 𝑛 = 𝐶 ∗ 𝑥 𝑛
𝑪𝑇𝒛 =

σ𝑛=0
𝑁−1𝑦𝑛

σ𝑛=0
𝑁−1𝑢𝑛𝑦𝑛

,
ො𝑥 𝑛 = 𝐶𝑇𝐶 −1𝐶𝑇𝑦 𝑛

ො𝑎0
ො𝑎1

=
1

1

𝑁
σ𝑛=0
𝑁−1 𝑢𝑛

2−
1

𝑁
σ𝑛=0
𝑁−1 𝑢𝑛

2

1

𝑁
σ𝑛=0
𝑁−1𝑢𝑛

2 −
1

𝑁
σ𝑛=0
𝑁−1𝑢𝑛

−
1

𝑁
σ𝑛=0
𝑁−1𝑢𝑛 1

1

𝑁
σ𝑛=0
𝑁−1 𝑦𝑛

1

𝑁
σ𝑛=0
𝑁−1𝑢𝑛𝑦𝑛

,

𝑪𝑇𝑪 =
𝑁 σ𝑛=0

𝑁−1𝑢𝑛
σ𝑛=0
𝑁−1𝑢𝑛 σ𝑛=0

𝑁−1𝑢𝑛
2 ,

We recognize the approximations of the statistical characterizations!

We prefer models linear in their parameters, because in case of

squared error criterion, finding the optimum requires the solution of

a set of linear equations.


