
Embedded
Information

Systems
2. Scheduling (cont.)

3. Memory management

October 13, 2020

1

2

𝐶𝑃 𝑡1, 𝑡2 =෍
𝑟𝑘≥𝑡1,𝑑𝑘≤𝑡2

𝐶𝑘 =

=෍
𝑖=1

𝑛 𝑡2 − 𝑡1
𝑇𝑖

𝐶𝑖

Now, observe that:

where . . . denotes the lower-integer function.

(Note that for task1 the response to the third request is not considered, therefore the
assignment of the lower-integer is correct.)

𝐶𝑃 𝑡1, 𝑡2 =෍
𝑟𝑘≥𝑡1,𝑑𝑘≤𝑡2

𝐶𝑘 =෍
𝑖=1

𝑛 𝑡2 − 𝑡1
𝑇𝑖

𝐶𝑖 ≤෍
𝑖=1

𝑛 𝑡2 − 𝑡1
𝑇𝑖

𝐶𝑖 = 𝑡2 − 𝑡1 𝜇

i.e. (𝑡2 − 𝑡1). Thus (𝑡2 − 𝑡1) < 𝐶𝑃(𝑡1, 𝑡2) ≤ 𝑡2 − 𝑡1 𝜇

Combined Scheduling of hard RT and soft RT tasks:

Since a deadline is missed at 𝑡2, 𝐶𝑃 𝑡1, 𝑡2 must be greater than the available processor time

that is 𝜇 > 1,

which is a contradiction, i.e. the original statement is false!

Two rules are applied:

Rule#1: Every task should be schedulable with average execution and average arrival times.

Rule#2: Every hard RT task should be schedulable with worst-case execution and worst-
case arrival time.

Combined Scheduling of periodic and aperiodic tasks: Fixed Priority Servers
We concentrate on hard RT systems, and soft aperiodic systems, but soft RT

systems can also be considered.

Reminder:

Embedded Information systems, Lecture #5, October 13, 2020

Background Scheduling:

3

The algorithms presented here rely on the following assumptions:

1. Periodic tasks are scheduled based on a fixed-priority assignment; here the RM algorithm;
2. All periodic tasks start simultaneously at time t=0 and 𝐷𝑖 = 𝑇𝑖.
3. Arrival times of aperiodic requests are unknown;
4. When not explicitly specified, the minimum interarrival time of a sporadic task is assumed

The major advantage of background
scheduling is its simplicity.
Its drawback is that the response time of
the aperiodic tasks can be very large.
(FCFS=First-Come-First-Served.)

If the response time of the aperiodic tasks is critical, the so-called server methods give
better result.
The server method provides processor time for the aperiodic tasks in a separate way.
The tool of this solution is the server task, which is scheduled together with the periodic tasks.

1. Polling Server (PS): The aperiodic requests are scheduled by the so-called server task (S),
using the server capacity (𝑇𝑆,𝐶𝑆), and a separated scheduling mechanism.
Is there is no aperiodic request while the server task could run,
the server task suspends itself, and its capacity will not be preserved!

Example:
Let us have TS=5, CS=2.

C T

𝜏1 1 4

𝜏2 2 6

The server task (according to RM) will have medium priority.

Assuming simultaneous start, the schedule will be the following:

to be equal to its deadline.

Embedded Information systems, Lecture #5, October 13, 2020

Reminder:

4

Let us have TS=5, CS=2.

C T

𝜏1 1 4

𝜏2 2 6

In worst case situations, the fulfilment of the aperiodic request will occur only after an
almost complete server period.

2. Deferrable Server (DS):

If there is no aperiodic request while the server task could run, the run of the DS will be
postponed, its capacity is preserved till the end of the period.
With this method, much better response times to aperiodic requests can be achieved.

Example: Previous one…

(Scheduling of the server task is the same as previously using RM strategy.)
3. Priority Exchange Server (PE): Like DS, the PE algorithm uses a periodic server (usually at

However, it differs from DS in the manner in

Example: The PE server has TS=5, CS=1. The data of the
normal tasks:

C T

𝜏1 4 10

𝜏2 8 20

The aperiodic requests are
scheduled with the help of the
so-called server task (S)
using the server capacity (𝑇𝑆, 𝐶𝑆),

and a separated scheduling mechanism.

a high priority) for servicing aperiodic requests.
which the capacity is preserved.

Embedded Information systems, Lecture #5, October 13, 2020

Reminder:

5

C T

𝜏1 4 10

𝜏2 8 20

TS=5,
CS=1.

The processor
utilization
factor: 𝜇 =

1

5
+

4

10
+

8

20
= 1

Supposing simultaneous start the schedule is the following:

Between [18-20], at the priority of 𝝉𝟐, remaining server capacity is available, which
could be used to serve further aperiodic requests.

Since there is no aperiodic
request to process, the server
capacity is used by task 𝝉𝟏.

As a consequence, task 𝝉𝟐 can run earlier, i.e. the server capacity will be used at this level.

The server capacity of the second period is used immediately.

The server capacity of the third period is used by 𝝉𝟏, but it is given back to fulfil the second
aperiodic request.

The server capacity of the fourth period is used by 𝝉𝟐.

2

The server task has
the highest priority
(RM strategy).

2 2

Embedded Information systems, Lecture #5, October 13, 2020

Reminder:

6

In the figure we can see,
that if we pass capacity to
another task, then it can be
utilized at the priority of
the receiving task.

At time instant 11 the first unit of the requested two can be found at 𝝉𝟏, while the second at 𝝉𝟐.

Between [19-20], at the priority of 𝝉𝟐, remaining server capacity is available, which could be
used to serve further aperiodic requests.

Example: The PE server has TS=5, CS=1.

The further tasks to
be scheduled:

C T

𝜏1 2 10

𝜏2 12 20

The server task has the highest
priority (RM strategy).The processor

utilization
factor:

𝜇 =
1

5
+

2

10
+

12

20
= 1.

4. Sporadic Server (SS): Like DS, differs from DS in the way it replenishes its capacity.
SS replenishes its capacity only after it has been consumed by aperiodic task execution.
The server capacity is replenished one server period later as the utilization has started.

Example: TS=8, CS=2. The further tasks to be scheduled are: C T

𝜏1 3 10

𝜏2 4 15

Supposing simultaneous
start the schedule is the
following:

Therefore at 12 the execution of 𝝉𝟏 is continued, and the aperiodic task should wait.

At 18 the aperiodic task will get processor time from 𝝉𝟐.

Embedded Information systems, Lecture #5, October 13, 2020

Correction:

Reminder:

7

C T

𝜏1 3 10

𝜏2 4 15

TS=8, CS=2.
The server task has the highest priority.

Supposing simultaneous start
the schedule is the following:

5. Slack stealing: This algorithm does not create a periodic server for the aperiodic service.
Offers substantial improvements in response time over the previous methods.

Example:

C T

𝜏1 1 4

𝜏2 2 5

Normal RM scheduling:

Upon arrival of
aperiodic request,
the slack is
calculated, and this
amount of processor
time is given to the
aperiodic task at the
highest priority:

If 𝑪𝒊 𝒕 is the
remaining computation
time at time t, then the
slack of a task 𝝉𝒊 is

𝑆𝑙𝑎𝑐𝑘𝑖 𝒕 = 𝑑𝑖 − 𝒕 − 𝑪𝒊 𝒕

The price: larger implementation complexity.
Embedded Information systems, Lecture #5, October 13, 2020

Reminder:

8

6. Dual Priority Scheduling:

(𝑅𝑖 = 𝐵𝑖 + 𝐶𝑖 + 𝐼𝑖)

Similar solutions can be derived in the case of the EDF.

Idea: there is no benefit in early completion of hard tasks.
Use three ready queues: High, Middle and Low. The hard RT tasks start running at Low priority.
The soft RT and the aperiodic tasks run at Middle priority.
The hard RT tasks at approaching the so-called promotion time 𝑋𝑖 before their deadline 𝐷𝑖
are promoted and put in the High queue just to able to meet their deadline.

The promotion time can be calculated as follows: 𝑋𝑖 = 𝐷𝑖 − 𝑅𝑖

Obviously the three priority queues can be subdivided into further priority levels.
Comments: The server tasks introduced above were scheduled using the RM strategy.

These are dynamic priority servers.

Embedded Information systems, Lecture #5, October 13, 2020

Total Bandwidth Server (TBS):
This approach assigns a possible earlier deadline to each aperiodic request.

a way that the total utilization of the aperiodic load never exceeds a specified maximum value 𝝁𝑺.

This is done in such

The name of the server comes from the fact that, when an aperiodic request enters the system;

the total bandwidth of the server is immediately assigned to it, whenever possible.

When the 𝒌-th aperiodic request arrives at time 𝒕 = 𝒓𝒌, it receives a deadline:

𝑑𝑘 = 𝑚𝑎𝑥 𝑟𝑘 , 𝑑𝑘−1 +
𝐶𝑎𝑘
𝜇𝑆

,
where 𝑪𝒂𝒌 is the execution time of the request and 𝝁𝑺 is the
server utilization factor (that is, its bandwidth).

By definition 𝑑0 = 0. In the deadline assignment rule the bandwidth allocated to previous

aperiodic requests is considered through the deadline 𝑑𝑘−1.

the request is inserted into the ready queue of the system and scheduled by EDF as any
other periodic instance.

Once a deadline is assigned,

Implementation overhead is practically negligible.

Reminder:

9Embedded Information systems, Lecture #5, October 13, 2020

The Figure below illustrates this method.
We have two periodic tasks:
𝑇1 = 6𝑚𝑠, 𝐶1 = 3𝑚𝑠, and
𝑇2 = 8𝑚𝑠, 𝐶2 = 2𝑚𝑠.
Consequently 𝜇𝑃 = 0.75
and thus 𝜇𝑆 = 0.25.

The first aperiodic request
arrives at time 𝒕 = 𝟑𝒎𝒔,

and is serviced with deadline 𝒅𝟏 = 𝑟1 + Τ𝐶𝑎1 𝜇𝑆 = 3 + Τ1 0.25 𝑚𝑠 = 𝟕𝒎𝒔.

the earliest deadline in the system, the aperiodic request is executed immediately.

Being this value

The second request, which arrives at time 𝒕 = 𝟗𝒎𝒔, 𝒅𝟐 = 𝑟2 + Τ𝐶𝑎2 𝜇𝑆 =receives a deadline
9 + Τ2 0.25 𝑚𝑠 = 𝟏𝟕𝒎𝒔,

there is an active periodic task, 𝝉𝟐 with a shorter deadline: 𝟏𝟔𝒎𝒔.
however this is not serviced immediately, because at time 𝒕 = 𝟗𝒎𝒔

request arrives at time 𝒕 = 𝟏𝟒𝒎𝒔

Finally, the third aperiodic
and gets a deadline 𝒅𝟑 = 𝑚𝑎𝑥 𝑟3, 𝑑2 + Τ𝐶𝑎3 𝜇𝑆 =

= 17 + Τ1 0.25 𝑚𝑠 = 𝟐𝟏𝒎𝒔. It does not receive immediate service, since at time 𝒕 = 𝟏𝟒𝒎𝒔
task 𝝉𝟏 is active and has an earlier deadline: 𝟏𝟖𝒎𝒔.

It can be proved that if the processor utilization factor of the periodic tasks is 𝝁𝑷,

the Total Bandwidth Server is 𝝁𝑺,

and that of

then this task set can be scheduled using EDF if and only if

𝜇𝑃 + 𝜇𝑆 ≤ 1. Proof: If in every 𝑡1, 𝑡2 interval 𝑪𝒂 is the total computation time of those

aperiodic requests, which arrived at 𝒕𝟏 or later, and served with deadlines

less than or equal to 𝒕𝟐, then 𝑪𝒂 ≤ 𝑡2 − 𝑡1 𝝁𝑺, because

Reminder:

however, this is

Embedded Information systems, Lecture #5, October 13, 2020

𝑪𝒂 = ෍

𝑘=𝑘1

𝑘2

𝐶𝑎𝑘 = 𝝁𝑺 ෍

𝑘=𝑘1

𝑘2

𝑑𝑘 −𝑚𝑎𝑥 𝑟𝑘 , 𝑑𝑘−1 ≤𝝁𝑺 𝑑𝑘2 −𝑚𝑎𝑥 𝑟𝑘1 , 𝑑𝑘1−1 ≤ 𝝁𝑺 𝒕𝟐 − 𝒕𝟏 .

After this, the proof of the schedulability test follows closely that of the periodic case.

Further examples of dynamic priority servers: Dynamic Priority Exchange Server (DPE),

Dynamic Sporadic Server (DSS), Earliest Deadline Late Server (EDL) + their improved versions.

Schedulability if 𝑫𝒊 < 𝑻𝒊:

Almost all the methods, statements and proofs discussed up till now cover cases where 𝑫𝒊 = 𝑻𝒊.
If the deadline is earlier than the period, then the priority can be assigned according to the
deadlines. One such a technique is the Deadline Monotonic (DM) algorithm,

priority is assigned to the task having earliest deadline relative to the request time.

where the highest

Obviously the
condition ෍

𝑖=1

𝑛 𝐶𝑖
𝐷𝑖

≤ 𝑛 2
1
𝑛 − 1

can be a sufficient schedulability test,
not necessary, and sometimes rather pessimistic.

Less pessimistic, if assuming simultaneous start (since concerning processor demand this is the
worst case) for all the tasks we investigate the fulfilment of the condition 𝑪𝒊 + 𝑰𝒊 ≤ 𝑫𝒊.

Here 𝐼𝑖 =෍
∀𝑘∈ℎ𝑝𝑖

𝐷𝑖
𝑇𝑘

𝐶𝑘 .
This condition is sufficient
but not necessary.

The necessary and sufficient condition is given
by the already discussed worst-case response
time analysis:

𝑅𝑖 = 𝐶𝑖 + 𝐼𝑖 = 𝐶𝑖 + σ∀𝑘∈ℎ𝑝𝑖

𝑅𝑖

𝑇𝑘
𝐶𝑘 < 𝐷𝑖.

10

Reminder:

11Embedded Information systems, Lecture #5, October 13, 2020

If the EDF strategy is applied while 𝑫𝒊 < 𝑻𝒊, then the processor utilisation factor
cannot be used.
Instead the so-called processor demand approach can be suggested. First this will be introduced
for the 𝑫𝒊 = 𝑻𝒊 case.

In general, within an arbitrary interval 𝒕, 𝒕 + 𝑳 the processor demand of a task 𝝉𝒊 is the time
needed to become completed till the time instant 𝒕 + 𝑳 or before.

the total processor time
in any 0, 𝐿 interval is:

In the case of such periodic tasks, which start running at 𝑡 = 0, and for which 𝐷𝑖 = 𝑇𝑖,

𝐶𝑝(0, 𝐿) =෍
𝑘=1

𝑛 𝐿

𝑇𝑘
𝐶𝑘

Statement:
scheduled by EDF iff for any 𝐿 > 0:

A periodic task set can be

𝐿 ≥෍
𝑘=1

𝑛 𝐿

𝑇𝑘
𝐶𝑘

Proof: On one hand, since therefore

𝐿 ≥ 𝜇𝐿 =෍
𝑘=1

𝑛 𝐿

𝑇𝑘
𝐶𝑘 ≥෍

𝑘=1

𝑛 𝐿

𝑇𝑘
𝐶𝑘

On the other, if 𝝁 > 𝟏,

then there exists such(*)

since if e.g. 𝐿 = 𝑙𝑐𝑚(𝑇1𝑇2… 𝑇𝑛), then:

𝐿 < 𝜇𝐿 =෍
𝑘=1

𝑛 𝐿

𝑇𝑘
𝐶𝑘 =෍

𝑘=1

𝑛 𝐿

𝑇𝑘
𝐶𝑘

𝝁 = σ𝒊=𝟏
𝒏 𝑪𝒊

𝑻𝒊
≤ 𝟏,

𝐿 > 0, for which (*) does not hold,

If 𝐷𝑖 < 𝑇𝑖 , then the calculation
of 𝐶𝑝(0, 𝐿) is different.
For simplicity let us have the same
period but different deadlines:

𝐶1(0, 𝐿) =
𝐿

𝑇1
𝐶1 𝐶2(0, 𝐿) =

𝐿

𝑇2
+ 1 𝐶2

?Since deadline of the third period is
out of the range of the interval of
length L, the processor demand of 𝜏1:

while for 𝜏2 this can be given by

Reminder:

Di=Ti Di<Ti

static
priority

RM
processor utilisation

approach

𝜇 ≤ 𝑛 2
1
𝑛 − 1

DM
response time approach

for ∀𝑖 𝑅𝑖 = 𝐶𝑖 + σ∀𝑘∈ℎ𝑝𝑖

𝑅𝑖

𝑇𝑘
𝐶𝑘 ≤ 𝐷𝑖

dynamic
priority

EDF
processor utilisation

approach
𝜇 ≤ 1

EDF
processor demand approach

∀𝐿 > 0 𝐿 ≥ σ𝑘=1
𝑛 𝐿−𝐷𝑘

𝑇𝑘
+ 1 𝐶𝑘

12Embedded Information systems, Lecture #5, October 13, 2020

𝐶1(0, 𝐿) =
𝐿

𝑇1
𝐶1

𝐶2(0, 𝐿) =
𝐿

𝑇2
+ 1 𝐶2

Using the figure, it is easy to understand that the two cases can be handled with a single
formula of the form:

𝐶𝑖(0, 𝐿) =
𝐿 − 𝐷𝑖
𝑇𝑖

+ 1 𝐶𝑖

Statement: With this formula: A periodic task/set can
be scheduled by EDF if and only if for every 𝐿 > 0 𝐿 ≥෍

𝑘=1

𝑛 𝐿 − 𝐷𝑘
𝑇𝑘

+ 1 𝐶𝑘

Summary:

Reminder:

13

Extensions to the response time calculation:

If this takes time 𝐹𝑖, then the response time can be written in the form of 𝑅𝑖 = 𝑅𝑖
′ + 𝐹𝑖, where

1. Cooperative scheduling:

the completion of the task as early as possible.
This can be achieved if the pre-emption of the task is prohibited till the end it’s run.

𝑅𝑖
′ = 𝐵𝑖 + 𝐶𝑖 − 𝐹𝑖 +෍

∀𝑘∈ℎ𝑝𝑖

𝑅𝑖
′

𝑇𝑘
𝐶𝑘

In this case the last part of the execution if
runs, it will run on the highest priority.

2. Fault tolerance : exception handlers, recovery blocks, etc.: + computation time is needed.
𝐶𝑖
𝑓

extra computation time for every task. In case of single fault:

𝑅𝑖 = 𝐵𝑖 + 𝐶𝑖 +෍
∀𝑘∈ℎ𝑝𝑖

𝑅𝑖
𝑇𝑘

𝐶𝑘 + ถ𝑚𝑎𝑥
𝑘∈ℎ𝑒𝑝𝑖

𝐶𝑘
𝑓 Please note: ℎ𝑒𝑝𝑖 !

For 𝑭 faults:

𝑅𝑖 = 𝐵𝑖 + 𝐶𝑖 +෍
∀𝑘∈ℎ𝑝𝑖

𝑅𝑖
𝑇𝑘

𝐶𝑘 + ถ𝑚𝑎𝑥
𝑘∈ℎ𝑒𝑝𝑖

𝐹𝐶𝑘
𝑓 If 𝑇𝑓 denotes the shortest inter arrival

time between two faults, then:

𝑅𝑖 = 𝐵𝑖 + 𝐶𝑖 +෍
∀𝑘∈ℎ𝑝𝑖

𝑅𝑖
𝑇𝑘

𝐶𝑘 + ถ𝑚𝑎𝑥
𝑘∈ℎ𝑒𝑝𝑖

𝑅𝑖
𝑇𝑓

𝐶𝑘
𝑓

3. The additional time demands of the clock handler and that of the context switches:

In many applications the scheduler is triggered by a clock interrupt (tick scheduling).

If the time of the arrival is not measurable, then the time between

Embedded Information systems, Lecture #5, October 13, 2020

At a given point of the task execution it might be a requirement

In this case the response time should be increased by the worst-case time difference of the
arrival and the clock tick.

two clock ticks is the correcting value.

Reminder:

14

If the scheduler decides a task to run, then first the registers of the processor
should be saved, after this the context of the new task should be loaded into the registers,

and then comes the execution of the task.
The response time should be increased by time of this „context switch”.

The computation time of the higher priority tasks, which pre-empt the execution of an
actual task, should be increased by the time needed to perform context switching, as well.

Embedded Information systems, Lecture #5, October 13, 2020

Scheduling if the tasks are not independent: Resource Access Protocols

Except for the time-sharing systems, where the processor’s capacity is shared among
independent users, for most of the applications the runs of the different tasks are not
completely independent.

Example:

This situation is called priority
inversion because seemingly the
priorities of task M and H are inverted.

they use common resources, and it can happen,

Tasks are communicating with each other, exchange data,

they are waiting for results from other tasks,

that higher priority tasks are blocked by runs of lower priority tasks.
Let us recall the illustration
of the priority-based
scheduling!

If here task L would use such
a resource, which is later also
used by task H, then it might
happen that task H should
wait until the resource will be
released.

This type of waiting is called blocking, because lower
priority task forces higher priority task to wait.

Reminder:

15
Embedded Information systems, Lecture #5, October 13, 2020

Priority Inheritance Protocol (PIP): To avoid priority inversion, task L should dynamically

𝑅𝑖 = 𝐶𝑖 + 𝑩𝒊 + 𝐼𝑖 = 𝐶𝑖 + 𝑩𝒊 +෍
∀𝑘∈ℎ𝑝𝑖

𝑅𝑖
𝑇𝑘

𝐶𝑘

inherit the priority of task H upon its request to enter the critical section. Thus, task L can
complete the critical section much earlier and unlock semaphore S1. The inherited priority is
called dynamic priority. After unlocking semaphore S1 the static priority will be restored.

The response time of task H will be much shorter,
and the worst-case blocking time equals the duration of
the critical section of task L.
The worst-case response time will increase with the
worst-case blocking time 𝑩𝒊 :

Deadlock avoidance:
The Priority Inheritance Protocol should be extended/modified if more common resources
are to be handled. This is illustrated by the following figure:

Task L by locking semaphore S1 enters a critical section.
Within this critical section semaphore S2 will be also locked
by task L. These two resources – with the given timing –
are used by task H, as well.
As task H would like to lock semaphore S1, it will be blocked.

Task L inherits priority H, but trying to lock semaphore S2 it will also block. Both task H and L will
wait for the other. This situation is called: deadlock. To avoid it priority ceiling protocols are used.
Priority Ceiling Protocol (PCP): The basic idea of this method is to extend the PIP with a rule for
granting a lock request on a free semaphore. To avoid multiple blocking, this rule does not
allow a task to enter a critical section if there are locked semaphores that could block it.

16
Embedded Information systems, Lecture #5, October 13, 2020

This means that, once a task enters its first critical session, it can never be blocked by lower-
priority tasks until its completion.
To realize this idea, each semaphore is assigned a priority ceiling equal to the priority of the
highest-priority task that can lock it.

The PCP protocol:
- Each semaphore 𝑺𝒌 is assigned a priority ceiling 𝑪 𝑺𝒌 equal to the priority of the highest-

priority task that can lock it. Note that 𝑪 𝑺𝒌 is a static value that can be computed offline.

Then, a task 𝑖 can enter a critical section only if its priority
is higher than all priority ceilings of the semaphores currently locked by tasks other than 𝑖.

- Let 𝝉𝒊 be the task with the highest-priority among all tasks ready to run; thus, 𝝉𝒊 is
assigned to the processor.

- Let 𝑺∗ be the semaphore with the highest-priority ceiling among all the semaphores
currently locked by tasks other than 𝜏𝑖, and let 𝑪 𝑺∗ be its ceiling.

- To enter a critical section guarded by a semaphore 𝑺𝒌, 𝝉𝒊 must have a priority (𝑷𝒊) higher
than 𝑪 𝑺∗ . If 𝑷𝒊 ≤ 𝑪 𝑺∗ , the lock request is denied and 𝝉𝒊 is said to be blocked on
semaphore 𝑺∗ by the task that holds the lock on 𝑺∗.

- When a task 𝝉𝒊 is blocked on a semaphore, it transmits its priority to the task, say 𝝉𝒌, that
holds that semaphore. Hence, 𝝉𝒌 resumes and executes the rest of its critical section with
the priority of 𝝉𝒊. In general, a task inherits the highest priority of the task blocked by it.

- When 𝝉𝒌 exits a critical section, it unlocks the semaphore and the highest-priority job, if
any, blocked on that semaphore is awakened. Moreover, the active priority of 𝝉𝒌 is
updated as follows: if no other jobs are blocked by 𝝉𝒌, its priority is set to the nominal
(static) priority; otherwise it is set to the highest-priority of the tasks blocked by 𝝉𝒌.

17
Embedded Information systems, Lecture #5, October 13, 2020

Example: 𝝉𝟎, 𝝉𝟏, 𝝉𝟐. Their priorities:

𝑃0, 𝑃1 and 𝑃2. Their priority ceilings:

𝐶(𝑆0) = 𝑃0, 𝐶(𝑆1) = 𝑃0, 𝐶(𝑆2) = 𝑃1.

Note that task 𝜏0will be blocked
even though the requested
resource is not blocked.
The reason of this blocking is that
task 𝜏2 is within a critical section
guarded by semaphore 𝑆1 the
priority of which is equal of that
of 𝜏0.

Example: The tasks to be scheduled with descending priority are: 𝝉𝟎, 𝝉𝟏, 𝝉𝟐, 𝝉𝟑. Their priorities:
𝑃0, 𝑃1, 𝑃2 and 𝑃3. The resources are guarded by semaphores 𝑆1 and 𝑆2. Their priority ceilings:
𝐶(𝑆1) = 𝑃0, 𝐶(𝑆2) = 𝑃0. On the figure it is easy to follow

the operation of the PCP protocol.
„I” denotes the interference
intervals, while „B” stands for the
blocking intervals.

the worst-case value of which equals length of the critical section of task 𝜏3.

The sum of these latter gives the

The tasks to be scheduled with descending priority are:

The resources are guarded by semaphores 𝑆0, 𝑆1 and 𝑆2.

effective blocking time,

18
Embedded Information systems, Lecture #5, October 13, 2020

Immediate Priority Ceiling Protocol (IPCP):

The essence of the protocol is that the tasks entering a critical section immediately inherit
the ceiling priority of the semaphore which guards the critical section!

Thus, on the figure below, task
𝝉𝟑 at entering the critical section
receives as dynamic priority 𝑷𝟎,
and will operate at this priority
level till the end of the critical
section.

The implementation of IPCP is easier than that of the PCP, and there are less task-switching,
and consequently context switching.

It is interesting to note that the semaphores do not need implementation because after
leaving the first critical section they are and remain unlocked!

It is also interesting to realize that using IPCP the response time of the highest priority task
became shorter. The name IPCP in POSIX is Priority Protect Protocol, and in Real-Time Java:
Priority Ceiling Emulation.

19Embedded Information systems, Lecture #5, October 13, 2020

Embedded Information Systems: 1st Mid-Term Exam 2019

1. Characterize the hard and soft real-time systems concerning (a) response time; (b) peak-
load performance; (c) control of pace; (d) safety; (e) size of data files; (f) redundancy type;
(g) data integrity; (h) error detection (max. 4 points)!

Hard RT Systems versus Soft RT Systems:
Hard real-time system (HRT): which must produce the result at the correct instant, because if

we do not meet the time limitation, it might result in catastrophic consequences. (See e.g.
the electronic control of vehicles).

Soft real-time system (SRT), online system: the result has a value also if we do not meet the
time limitation, only the quality of the service will degrade (See e.g. transaction
processing systems).

characteristic hard real-time soft real-time

response time hard required soft desired

peak-load performance predictable degraded

control of pace environment computer

safety often critical non-critical

size of data files small/medium large

redundancy type active checkpoint-recovery

data integrity short-term long term

error detection autonomous user assisted

20Embedded Information systems, Lecture #5, October 13, 2020

2. What does it mean that a periodically updated real-time image is phase sensitive (max.
1 point)? What is its consequence (max. 1 point)?

A periodically updated RT image is called phase sensitive, if

𝑊𝐶𝐸𝑇𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑖𝑛𝑔 < 𝑑𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 < 𝑑𝑢𝑝𝑑𝑎𝑡𝑒 +𝑊𝐶𝐸𝑇𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑖𝑛𝑔

Consequence: In this case it is not sure that the update will arrive within the interval of the
temporal accuracy, therefore the time of update and use should be monitored.

3. What does state-observation, and what does event-observation mean (max. 2 points)?
What does it mean that a real-time variable is out the sphere of control (SOC) of a system
(max. 2 points)?

State observations: Every observation is self-contained because it carries an absolute value.
In many cases equidistant sampling is applied, i.e. periodic time-triggered readings.

Event observations: an event is a state-change at a point of time. Since an observation is also
an event, therefore it is not possible to observe an event in the controlled object directly.

Every RT variable is in the sphere of control (SOC) of a subsystem that has the authority to set
the value of the RT variable. Outside its SOC the RT variable can only be observed, but not
modified.

21Embedded Information systems, Lecture #5, October 13, 2020

4. Within a communication system the maximum value of the message forwarding time is
5.5 𝑚𝑠, while the jitter is 5 𝑚𝑠. Determine the value of the action delay (1) if the
global time is available (max. 1 point); (2) if the global time is not available (max. 1
point)! What can we do if the temporal accuracy of the transmitted value is 8 𝑚𝑠 (max.
2 points)?

𝑗𝑖𝑡𝑡𝑒𝑟 = 𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛 = 5𝑚𝑠, 𝑑𝑚𝑖𝑛 = 0.5 𝑚𝑠

(1) If the global time is available: action delay: 𝑑𝑚𝑎𝑥 = 𝟓. 𝟓 𝒎𝒔 because the time instant
of the message forwarding is known.

(2) If the global time is not available: action delay: 2𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛 = 𝟏𝟎. 𝟓 𝒎𝒔

If the temporal accuracy of the transmitted value is 8 𝑚𝑠 < 10.5𝑚𝑠, them state
estimation is to be applied.

The increase of the updating rate does not help since action delay is to applied also for
the updated value.

5. What is the difference between aperiodic and sporadic tasks (max. 1 point)? Why is this
difference important (max. 1 point)?

Sporadic task: the requests are not periodic, but there is a known and fixed 𝑇𝑖 value that
is the minimum time between two subsequent requests.

Aperiodic task: the requests are not periodic, and there is no specified 𝑇𝑖 between two
requests, i.e. a request can be followed immediately by a second request.

The difference is important, because in the case of aperiodic tasks the DMA
method cannot be applied.

22Embedded Information systems, Lecture #5, October 13, 2020

6. Using the Deadline Monotonic Analysis (DMA) method, calculate the worst-case
response time of Task4, if the time difference between two occurrence of a single failure
during task execution is minimum 𝑇𝐹 = 50𝑚𝑠, and the error handling requires at
maximum 𝐶𝐹 = 2𝑚𝑠. (max. 4 points):

Task T[ms] C[ms] D[ms]
1 100 5 10
2 10 2 10
3 100 25 50
4 100 30 100

Imagine the application of Dual Priority Scheduling!
Determine the promotion time of task 3 (max. 2
points)!

𝑅4
, = 𝐶4 + 𝐼4 +

𝑅4
𝑇𝐹

𝐶𝐹

Step 𝑅4 𝐼4 +
𝑅4
𝑇𝐹

𝐶𝐹 𝑅4
,

1 0 0 30

2 30 5+6+25+2 68

3 68 5+14+25+4 78

4 78 5+16+25+4 80

5 80 5+16+25+4 80

Step 𝑅3 𝐼3 +
𝑅3
𝑇𝐹

𝐶𝐹 𝑅3
,

1 0 0 25
2 25 5+6+2 38
3 38 5+8+2 40
4 40 5+8+2 40

The worst-case response time: 80𝑚𝑠 < 100𝑚𝑠.

The worst-case response: 40𝑚𝑠 < 50𝑚𝑠.

The promotion time after the request arrival is
10𝑚𝑠, since only with this timing can Task3 be
completed before deadline.

23Embedded Information systems, Lecture #5, October 13, 2020

7. What is the key idea of the priority inheritance algorithm, when it is used, and what can
it cause in case of more critical sessions (max. 2 points)?

Priority Inheritance Protocol (PIP):

To avoid priority inversion, task L should dynamically inherit the priority of task H upon its
request to enter the critical section. Thus, task L can complete the critical section much

The inherited priority is called dynamic priority valid only
After unlocking semaphore S1 the static priority will be restored.

earlier and unlock semaphore S1.

for the critical section.

In case of more critical sessions deadlock may occur.

What is the key idea of the Immediate Priority Ceiling
Protocol and why is it relatively easy to implement (max.
2 points)?

Immediate Priority Ceiling Protocol (IPCP):
The essence of the protocol is that the tasks entering a critical section immediately inherit
the ceiling priority of the semaphore which guards the critical section.
The first task at entering the critical section receives as dynamic priority the ceiling priority,
and will operate at this priority level till the end of the critical section.

The implementation of IPCP is easier than that of the PCP, and there are less task-switching,
and consequently context switching.
It is interesting to note that the semaphores do not need implementation because after
leaving the first critical section they are and remain unlocked.

PS:

24Embedded Information systems, Lecture #5, October 13, 2020

8. We must schedule two hard real-time tasks. The requests are simultaneous: at the
beginning both tasks are ready to run.

C[ms] T[ms]
𝜏1 5 10
𝜏2 16 40

In addition to the two tasks a server task is also scheduled to
provide processor capacity for aperiodic requests.

period is 𝑇𝑆 = 20𝑚𝑠, and the server capacity is 𝐶𝑆 = 2𝑚𝑠.

The server

Show how the three tasks are scheduled with the RM algorithm (max. 2 points)!

Firstly, apply the Polling Server (PS) algorithm,
and after it use the Deferrable Server (DS)!

Show how an aperiodic request at 𝟕𝒎𝒔 asking for
processor time of 𝟏𝒎𝒔, and another aperiodic
request at 𝟏𝟖𝒎𝒔 asking for processor time of
𝟐𝒎𝒔 is scheduled using PS and DS (max. 4 points)?

DS:

Determine the response time of the aperiodic requests (max. 1 point)!

𝑅𝑃𝑆1 = 19𝑚𝑠, 𝑅𝑃𝑆2= 28𝑚𝑠 𝑅𝐷𝑆1 = 1𝑚𝑠, 𝑅𝐷𝑆2= 8𝑚𝑠

25Embedded Information systems, Lecture #5, October 13, 2020

How will the response time change if EDF together with a Total Bandwidth Server is
applied (max. 3 points)?

𝑑2 = 18 +
2

0.1
= 38𝑚𝑠𝑑1 = 7 +

1

0.1
= 17𝑚𝑠

𝑅𝑇𝐵𝑆1 = 1𝑚𝑠, 𝑅𝑇𝐵𝑆2= 2𝑚𝑠

9. Under what condition will be schedulable a periodic hard real-time task-set if 𝐷𝑖 < 𝑇𝑖?
Consider both static and dynamic priority assignment strategies (max. 2 points)!

Di<Ti

static
priority

DM
response time approach

For ∀𝑖 𝑅𝑖 = 𝐶𝑖 + σ∀𝑘∈ℎ𝑝𝑖

𝑅𝑖

𝑇𝑘
𝐶𝑘 ≤ 𝐷𝑖

dynamic
priority

EDF
processor demand approach

∀𝐿 > 0 𝐿 ≥ σ𝑘=1
𝑛 𝐿−𝐷𝑘

𝑇𝑘
+ 1 𝐶𝑘

26Embedded Information systems, Lecture #5, October 13, 2020

10. Characterize the operation of the event triggered and that of the time triggered systems!
In case of safety critical systems which one is preferable (max. 2 point)?

The event triggered systems execute the program associated with the event immediately
after the arrival of the request. With this approach, we can get good response times, but
if the number of (almost) simultaneous events increase, the throughput/capacity of the
system might be insufficient therefore, to meet the deadlines will be impossible.

Within the time-triggered systems a separate timeslot is assigned to every task in design
time, therefore in the case of a priori known response times, the program execution can
be guaranteed.

27Embedded Information systems, Lecture #5, October 13, 2020

3. Memory management
Scheduling not independent tasks we faced some problems of handling resources.
we discuss the problems of memory management from the viewpoint of embedded systems.

Here

In the case of embedded systems, it is typically not possible to eliminate the side-effects of
not completely correct resource handling time-to-time by resetting the device.

We must design such systems, where the performance of the resources remains stable,
degradation is not possible.

- Static memory allocation: If the memory is allocated statically, then it can be established
at compile time exactly how each byte of RAM will be used during the running of the program.
This has the advantage, for embedded systems, that the whole issue of bugs due to leaks and
failures due to fragmentation simply does not exist. The global and static data is allocated

in a fixed location since it must remain valid for the life of the program.

This approach prohibits the use of recursion, function pointers,
or any other mechanisms that require re-entrant code.

For example, and interrupt routine cannot call a function that may also be called by the main
flow of execution.
- Stack based management: The next step up in complexity is to add a stack.
memory is required for every call of a function, and not just a single block for each function in
existence.

Now a block of

The stack grows and shrinks as the program executes, and for many programs it is

not possible to predict, at compile time, what the worst-case stack size will be.
In multitasking system, there will be one stack per task to manage, plus possibly an extra
one for interrupts.

28Embedded Information systems, Lecture #5, October 13, 2020

Some judgement must be exercised to make sure that each stack is big enough for all its
activities. It is awful shame to suffer from an untimely stack overflow, when one of the other
stacks has reserve of space that it never uses.

Unfortunately, most embedded system does not support any kind of virtual memory
management that would allow the tasks to draw from a common pool as the need arises.

One rule of thumb is to make each stack 50% bigger than the worst case seen during testing.
One simple technique is to paint the stack space with simple pattern. As the stack grows

and shrinks, it will overwrite the area with its data. This technique is called watermarking.
Many RTOS’s support this mechanism.
- Heap based management: In C programs heap management is carried out by the 𝒎𝒂𝒍𝒍𝒐𝒄()
and 𝒇𝒓𝒆𝒆() functions. 𝑴𝒂𝒍𝒍𝒐𝒄() allows the programmer to acquire a pointer to an available
block of memory of a specified size. 𝑭𝒓𝒆𝒆() allows the programmer to return a piece of
memory to the heap when the application has finished it.

While stack management is handled by the computer, using heap management requires
care by the programmer, or many devious bugs can creep into the program.
At a certain point in the code you may be unsure if a particular block is no longer needed.
If you 𝑓𝑟𝑒𝑒() this piece of memory, but continue to access it (probably via a second pointer to
the same memory), then your program may function perfectly, until that particular piece of
memory is reallocated to another part of the program. Then two different parts of the program

will proceed to write over each other’s data. If you decide not to free the memory, on the

grounds that it may still be in use, then you may not get another opportunity to free it,

since all pointers to the block may have gone out of scope, or been reassigned to point
elsewhere.

29Embedded Information systems, Lecture #5, October 13, 2020

The result is: memory leakage. In this case the program logic will not be affected, but if the
piece of code that leaks memory is visited on a regular basis then the leak will tend toward

infinity, and the execution time of the program increases.

Any leak is a bug, which can be rectified by correcting the logic of the program.

There is another problem called fragmentation, which cannot be corrected at the application
program level.This is a property inherent in most applications of 𝒎𝒂𝒍𝒍𝒐𝒄().

It is caused by blocks of memory available being broken down into smaller pieces as many
allocations and frees are performed.

These two figures are
from the lecture of

Niall Murphy
(Panelsoft) entitled

Memory
Management,

presented among
others at the

Embedded Systems
Conference Europe in

2000.

Fragmentation can be reduced by using the appropriate policy when allocating and freeing blocks.
Allocation policies include:
- Allocate (and possibly split) first block found, larges than the request (First Fit).

- Allocate the best fit after exhaustive search (Best Fit).

30Embedded Information systems, Lecture #5, October 13, 2020

Free list policies include:

- Maintaining the list in order of address, to simplify merging of free blocks.

- Maintain the list in most recently used order, to match patterns of use where similar sizes
are allocated and freed in bursts.

Seeing the difficulties, the conclusion is that mission critical project cannot afford these
dynamic memory allocation mechanisms.

Recommendation:

(3) Following the initialization 𝑠𝑎𝑙𝑙𝑜𝑐() is inhibited.

limited heap functionality, static allocation:
(1) malloc() is used only during initialization, and freeing is not applied.
(2) It worth writing a separate function (E.g. 𝑠𝑎𝑙𝑙𝑜𝑐() (static allocation)).

Recommendation:
Dynamic allocation but fixed block size. (Partitions or pools of fixed size memory blocks.)

Multitasking: While each task must have its own stack, it may or may not have its own heap,

However, one heap for many tasks must be re-entrant, which means adding locks that will slow
down each allocation and deallocation.

regardless of whether the heap is based on the static scheme, pools, or general-purpose
allocation scheme. Having more than one heap means that you must tune the size of several
heaps, which is a disadvantage.

A single heap also allows one task to allocate a piece of memory which may be freed by
another task. This is useful for passing inter-task messages.

When memory is passed between tasks in this way, make sure that it is always well
defined who owns the memory at each point.

31Embedded Information systems, Lecture #5, October 13, 2020

(4) All these problems should be considered by the programmer of the library: possibly by
offering library routines for freeing memory. (So-called Pluggable memory management).

Libraries: Problems:
(1) Memory should be allocated by the library.

(2) Freeing memory is the role of the application program.
(3) We can assign static memory to the library; however, this is not suitable for re-entrant
code, which is so essential to many embedded systems.

Automatic garbage collection: e.g. Java, LISP, Smalltalk offer such a service.
Two basic mechanisms:
(1) The pointers can be objects, which have destructors that are called when the pointer
goes out of scope. In C++ this is possible with smart pointers.
(2) To test whether a piece of memory is free a search is performed within the memory in use
to find a pointer to that block. If no pointers to the block are found, then the block is free.
This is obviously an expensive way to check for available memory.

