
Embedded
Information

Systems
2. Scheduling

October 6, 2020

1

2
Embedded Information systems, Lecture #4, October 6, 2020

For simplicity imagine that to every task a different priority level is assigned.

Illustration:
H

M

L

We have one low priority (L=low),

one medium priority (M=medium)

and one high priority (H=high) task.

This assignment happened in design-time. All the tasks start running immediately after

the request, if their priority is the highest among the tasks ready to run.

The response time of the lowest priority task on the figure is: RL=CL+CM+CH

If the medium and/or the high priority task are released periodically, then depending on the
time relations, it might happen, that these tasks will run more than one time during RL.

In a more general case, for a task at priority level 𝑖, the worst-case response time can be

calculated using the following formula:

𝑅𝑖 = 𝐶𝑖 + 𝐼𝑖 = 𝐶𝑖 +
∀𝑘∈ℎ𝑝𝑖

𝑅𝑖
𝑇𝑘

𝐶𝑘

where 𝐼𝑖 is the so-called interference.
The interference time is the total computation
time of those higher priority tasks, which prevent

task 𝑖 to complete its actual run. ∀𝑘 ∈ ℎ𝑝𝑖 refers those tasks, which have higher priority than 𝑖

(hp=higher priority). The sign is the operator of assigning the upper integer. 1.02 = 2,

2.0 = 2. Since in the above formula the unknown 𝑅𝑖 on the left-hand side is present also in the

argument of the highly nonlinear function on the right-hand side, it can be evaluated only
via an iterative procedure:

𝑅𝑖
𝑛+1 = 𝐶𝑖 + 𝐼𝑖 = 𝐶𝑖 +

∀𝑘∈ℎ𝑝𝑖

𝑅𝑖
𝑛

𝑇𝑘
𝐶𝑘

The iteration will stop at step n0 where

𝑅𝑖
𝑛0+1 = 𝑅𝑖

𝑛0

The name of this method in the literature is
Deadline Monotonic Analysis (DMA).

Reminder:

3

𝜇 =
𝑖=1

𝑛 𝐶𝑖
𝑇𝑖
≤ 𝑛 2

1
𝑛 − 1

𝑛→∞
𝑙𝑛 2~0.7

Schedulability, schedulability tests:

The complexity of the exact schedulability test is high, these are so called NP-complete
problems, which are hard to handle, and therefore they will not be considered.

- necessary: if the necessary condition is not met, then no schedule exists.
- sufficient: if the sufficient condition is met, then a schedule always exists.
- exact: gives the necessary and sufficient conditions and shows the existence of the schedule.

For periodic tasks among the necessary conditions the processor utilization factor can be
mentioned, which is the sum of the processor demands relative to the unit of time:

𝜇 =
𝑖=1

𝑛 𝐶𝑖
𝑇𝑖

For a single processor system if 𝝁 ≤ 𝟏 is not met, then the tasks are not
schedulable, i.e. 𝜇 ≤ 1 is a necessary condition.
(Here 𝑛 stands for the # of tasks.) If we have 𝑵 processors, then 𝝁 ≤ 𝑵.

Scheduling strategies:
Rate-monotonic (RM) (1973): For periodic and independent tasks if 𝐷𝑖 = 𝑇𝑖 and 𝐶𝑖 are
known and constant. The highest priority is assigned to the task with the shortest period.
The procedure is pre-emptive. We assume that the time of context switching between tasks
is negligible. Is it OK?
For the RM algorithm sufficient test is
available. n denotes the number of the tasks
to be scheduled. It might happen that the actual set of tasks is schedulable with the RM
strategy even at higher processor utilisation; however there is no guarantee for it.

Simulations with randomly selected 𝑻𝒊 and 𝑪𝒊 values were reported successful up to 𝝁 = 𝟎. 𝟖𝟖.

To achieve 100% utilization when using fixed priorities, assign periods so that all tasks are
harmonic. This means that for each task, its period is an exact multiple of every other
task that has a shorter period.

Reminder:

Embedded Information systems, Lecture #4, October 6, 2020

4

If
𝑇2

𝑇1
= 2, 𝐶1 = 𝑇2 − 𝑇1,

𝐶1

𝑇1
=

𝑇2−𝑇1

𝑇1
=

𝐶2

𝑇2
:

𝜇 = 2 2 − 1 , and for arbitrary 𝑖 :

If
𝑇𝑖+1

𝑇𝑖
= 2

1

𝑛, 𝐶𝑖 = 𝑇𝑖+1 − 𝑇𝑖,
𝐶𝑖

𝑇𝑖
=

𝑇𝑖+1−𝑇𝑖

𝑇𝑖
=

𝐶𝑖+1

𝑇𝑖+1
𝜇 = 𝑛

𝑇𝑖+1
𝑇𝑖

− 1 = 𝑛 2
1
𝑛 − 1then

We have two tasks 𝑇1 = 100 𝑚𝑠, 𝐶1 = 41 𝑚𝑠, 𝑇2 = 141 𝑚𝑠, 𝐶2 = 59 ms.

𝜇 =
41

100
+

59

141
= 0.41 + 0.4184 = 0.8284

Example:

~2 2 − 1 . If the requests are simultaneous :

41 100 141 200 241 282

41 59 41 59 41 41

If there is slight increase in the
computation time, then the RM
strategy will fail!

Between 241 and 282 there is no schedulable task!Comments:

1. If the RM scheduling strategy is applied, the most
disadvantageous is the case when all the tasks start with
zero phase, i.e. the first requests are simultaneous.

2. Non-zero phase start is
advantageous from
scheduling point of view!

Example: Under what period and computation time conditions reaches the RM
strategy the limits of schedulability for 𝒏 = 𝟐?

3. If the RM scheduling strategy is applied, and the necessary condition is met, but the
sufficient not, then the schedulability analysis should be performed for smallest common
multiple of the periods that can be extremely large.

Reminder:

Embedded Information systems, Lecture #4, October 6, 2020

5

Earliest Deadline First (EDF) strategy:

Is this correct?

p1 d1p p2 d2p p3 d3p p4 d4p

p1 q p1 dq d1p p2 d2p p3 d3p p4 d4p

r dr

p1 q r dq d1p p2 r d2p r p3 dr d3p p4 d4p

Row #1: requests and deadlines of
task p

Row #2: request of task q during
the run of p1.

Row #3: request and deadline
of task r.
Row #4: the run of the three tasks.

Least Laxity First (LLF) strategy: Similar to EDF.

Ci

Ti

Di

ai/ri si Ri fi di

The tasks are periodic, independent of
each other, 𝐷𝑖 ≤ 𝑇𝑖 and 𝐶𝑖 are known and are constant. Priority assignment is in run-time,
and the processor is given to the task having the earliest deadline.The operation is pre-emptive.

Here we also assume that the time of context switching is negligible.
Sufficient schedulability test can be given: tasks meeting the above conditions are schedulable
up to 𝝁 ≤ 𝟏, i.e. 100% processor utilisation is possible.

The conditions of its application are the same,

but instead of the task having the earliest deadline, the processor is assigned to the task
having the smallest laxity. This is the difference of the deadline and the remaining

computation times at the time instant of investigation.
Tasks meeting the above conditions are schedulable up to 𝝁 ≤ 𝟏,
i.e. 100% processor utilisation is possible.
The EDF and LLF strategies are applicable also for aperiodic tasks,

but since the processor utilisation factor can only be
interpreted in a different way, the sufficient condition above cannot be used.

Reminder:

Embedded Information systems, Lecture #4, October 6, 2020

6

Example: Comparison of RM and EDF algorithms. We have two tasks.
The period and the deadline is the same. 𝑇1 = 5 ms, 𝐶1 = 2 ms, 𝑇2 = 7 ms, 𝐶2 = 4 ms. .

The processor utilisation factor:

μ =
2

5
+
4

7
= 0.4 + 0.57 = 0.97

Here the necessary condition of the schedulability is
met, but the sufficient condition only for the EDF/LLF
strategies. If RM strategy is applied, then the second
task will miss the deadline at 7 𝑚𝑠, but using EDF or LLF

the tasks are schedulable.
Both for EDF and LLF it is obvious
that if the deadlines are equal, the
applied schedule should result in
less context switching, because
context switching takes time.

All the task-specific information of the pre-empted task must be saved: typically, the content of
the processor’s registers must be copied into the task-specific Task Control Block (TCB), while
TCB of the task decided to run should be loaded into the registers of the processor.

These copying are supported by fast mechanisms, but still they need time.

Reminder:

Embedded Information systems, Lecture #4, October 6, 2020

7

Proof of the EDF schedulability:

The proof is given for periodic tasks with 𝐷𝑖 = 𝑇𝑖 . The statement is the following:
A set of periodic tasks is schedulable with EDF if and only if

𝜇 =
𝑖=1

𝑛 𝐶𝑖
𝑇𝑖
≤ 1.

Proof: 1. Only if: We show that a task set cannot be scheduled if 𝜇 > 1.

By defining 𝑇 = 𝑇1𝑇2…𝑇𝑛, the total demand of computation time

requested by all tasks in T can be calculated as:

𝑖=1

𝑛 𝑇

𝑇𝑖
𝐶𝑖 = 𝜇𝑇.

If 𝜇 > 1, that is, if the total demand 𝜇𝑇 exceeds the available
processor time 𝑇, there is no feasible schedule for the task set.

2. If part: We show the sufficiency by contradiction.

If our assumption is that the task-set is
not schedulable, then there must be
such a task, which misses its deadline.

Assume that the condition 𝝁 < 𝟏 is satisfied and yet the taskset is not schedulable.
The next figure helps to understand the proof. Here we can see the schedule of periodic tasks

according to EDF.

Let 𝑡2 be the instant at which the time/overflow occurs and let 𝑡1, 𝑡2 be the longest interval

of continuous utilisation before the overflow, such that only instances with deadline less than
or equal to t2 are executed in 𝑡1, 𝑡2 . Note that 𝑡1 must be the release time of some periodic
instance. Let 𝐶𝑃 𝑡1, 𝑡2 be the total computation time demanded by periodic tasks in 𝑡1, 𝑡2 ,

which can be computed as:

Reminder:

Embedded Information systems, Lecture #4, October 6, 2020

8

𝐶𝑃 𝑡1, 𝑡2 =
𝑟𝑘≥𝑡1,𝑑𝑘≤𝑡2

𝐶𝑘 =

=
𝑖=1

𝑛 𝑡2 − 𝑡1
𝑇𝑖

𝐶𝑖

Now, observe that:

where . . . denotes the lower-integer function.

(Note that for task1 the response to the third request is not considered, therefore the
assignment of the lower-integer is correct.)

𝐶𝑃 𝑡1, 𝑡2 =
𝑟𝑘≥𝑡1,𝑑𝑘≤𝑡2

𝐶𝑘 =
𝑖=1

𝑛 𝑡2 − 𝑡1
𝑇𝑖

𝐶𝑖 ≤
𝑖=1

𝑛 𝑡2 − 𝑡1
𝑇𝑖

𝐶𝑖 = 𝑡2 − 𝑡1 𝜇

i.e. (𝑡2 − 𝑡1). Thus (𝑡2 − 𝑡1) < 𝐶𝑃(𝑡1, 𝑡2) ≤ 𝑡2 − 𝑡1 𝜇

Combined Scheduling of hard RT and soft RT tasks:

Since a deadline is missed at 𝑡2, 𝐶𝑃 𝑡1, 𝑡2 must be greater than the available processor time

that is 𝜇 > 1,

which is a contradiction, i.e. the original statement is false!

Two rules are applied:

Rule#1: Every task should be schedulable with average execution and average arrival times.

Rule#2: Every hard RT task should be schedulable with worst-case execution and worst-
case arrival time.

Combined Scheduling of periodic and aperiodic tasks: Fixed Priority Servers
We concentrate on hard RT systems, and soft aperiodic systems, but soft RT

systems can also be considered.

Reminder:

Embedded Information systems, Lecture #4, October 6, 2020

The new material starts here!

Background Scheduling:

9

The algorithms presented here rely on the following assumptions:

1. Periodic tasks are scheduled based on a fixed-priority assignment; here the RM algorithm;
2. All periodic tasks start simultaneously at time t=0 and 𝐷𝑖 = 𝑇𝑖.
3. Arrival times of aperiodic requests are unknown;
4. When not explicitly specified, the minimum interarrival time of a sporadic task is assumed

The major advantage of background
scheduling is its simplicity.
Its drawback is that the response time of
the aperiodic tasks can be very large.
(FCFS=First-Come-First-Served.)

If the response time of the aperiodic tasks is critical, the so-called server methods give
better result.
The server method provides processor time for the aperiodic tasks in a separate way.
The tool of this solution is the server task, which is scheduled together with the periodic tasks.

1. Polling Server (PS): The aperiodic requests are scheduled by the so-called server task (S),
using the server capacity (𝑇𝑆,𝐶𝑆), and a separated scheduling mechanism.
Is there is no aperiodic request while the server task could run,
the server task suspends itself, and its capacity will not be preserved!

Example:
Let us have TS=5, CS=2.

C T

𝜏1 1 4

𝜏2 2 6

The server task (according to RM) will have medium priority.

Assuming simultaneous start, the schedule will be the following:

to be equal to its deadline.

Embedded Information systems, Lecture #4, October 6, 2020

10

Let us have TS=5, CS=2.

C T

𝜏1 1 4

𝜏2 2 6

In worst case situations, the fulfilment of the aperiodic request will occur only after an
almost complete server period.

2. Deferrable Server (DS):

If there is no aperiodic request while the server task could run, the run of the DS will be
postponed, its capacity is preserved till the end of the period.
With this method, much better response times to aperiodic requests can be achieved.

Example: Previous one…

(Scheduling of the server task is the same as previously using RM strategy.)
3. Priority Exchange Server (PE): Like DS, the PE algorithm uses a periodic server (usually at

However, it differs from DS in the manner in

Example: The PE server has TS=5, CS=1. The data of the
normal tasks:

C T

𝜏1 4 10

𝜏2 8 20

The aperiodic requests are
scheduled with the help of the
so-called server task (S)
using the server capacity (𝑇𝑆, 𝐶𝑆),

and a separated scheduling mechanism.

a high priority) for servicing aperiodic requests.
which the capacity is preserved.

Embedded Information systems, Lecture #4, October 6, 2020

11

C T

𝜏1 4 10

𝜏2 8 20

TS=5,
CS=1.

The processor
utilization
factor:

𝜇 =
1

5
+

4

10
+

8

20
= 1

Supposing simultaneous start the schedule is the following:

Between [18-20], at the priority of 𝝉𝟐, remaining server capacity is available, which
could be used to serve further aperiodic requests.

Since there is no aperiodic
request to process, the server
capacity is used by task 𝝉𝟏.

As a consequence, task 𝝉𝟐 can run earlier, i.e. the server capacity will be used at this level.

The server capacity of the second period is used immediately.

The server capacity of the third period is used by 𝝉𝟏, but it is given back to fulfil the second
aperiodic request.

The server capacity of the fourth period is used by 𝝉𝟐.

2

The server task has
the highest priority
(RM strategy).

2 2

Embedded Information systems, Lecture #4, October 6, 2020

12

In the figure we can see,
that if we pass capacity to
another task, then it can be
utilized at the priority of
the receiving task.

At time instant 11 the first unit of the requested two can be found at 𝝉𝟏, while the second at 𝝉𝟐.

Between [19-20], at the priority of 𝝉𝟐, remaining server capacity is available, which could be
used to serve further aperiodic requests.

Example: The PE server has TS=5, CS=1.

The further tasks to
be scheduled:

C T

𝜏1 2 10

𝜏2 12 20

The server task has the highest priority (RM strategy).
The processor
utilization
factor:

𝜇 =
1

5
+

2

10
+

12

20
= 1.

4. Sporadic Server (SS): Like DS, differs from DS in the way it replenishes its capacity.
SS replenishes its capacity only after it has been consumed by aperiodic task execution.
The server capacity is replenished one server period later as the utilization has started.

Example: TS=8, CS=2. The further tasks to be scheduled are: C T

𝜏1 3 10

𝜏2 4 15

Supposing simultaneous
start the schedule is the
following:

Therefore at 12 the execution of 𝝉𝟏 is continued, and the aperiodic task should wait.

At 18 the aperiodic task will get processor time from 𝝉𝟐.

Embedded Information systems, Lecture #4, October 6, 2020

Correction:

13

C T

𝜏1 3 10

𝜏2 4 15

TS=8, CS=2.
The server task has the highest priority. Supposing simultaneous start

the schedule is the following:

5. Slack stealing: This algorithm does not create a periodic server for the aperiodic service.
Offers substantial improvements in response time over the previous methods.

Example:

C T

𝜏1 1 4

𝜏2 2 5

Normal RM scheduling:

Upon arrival of
aperiodic request,
the slack is
calculated, and this
amount of processor
time is given to the
aperiodic task at the
highest priority:

If 𝑪𝒊 𝒕 is the
remaining computation
time at time t, then the
slack of a task 𝝉𝒊 is

𝑆𝑙𝑎𝑐𝑘𝑖 𝒕 = 𝑑𝑖 − 𝒕 − 𝑪𝒊 𝒕

The price: larger implementation complexity.
Embedded Information systems, Lecture #4, October 6, 2020

14

6. Dual Priority Scheduling:

(𝑅𝑖 = 𝐵𝑖 + 𝐶𝑖 + 𝐼𝑖)

Similar solutions can be derived in the case of the EDF.

Idea: there is no benefit in early completion of hard tasks.
Use three ready queues: High, Middle and Low. The hard RT tasks start running at Low priority.
The soft RT and the aperiodic tasks run at Middle priority.
The hard RT tasks at approaching the so-called promotion time 𝑋𝑖 before their deadline 𝐷𝑖
are promoted and put in the High queue just to able to meet their deadline.

The promotion time can be calculated as follows: 𝑋𝑖 = 𝐷𝑖 − 𝑅𝑖

Obviously the three priority queues can be subdivided into further priority levels.
Comments: The server tasks introduced above were scheduled using the RM strategy.

These are dynamic priority servers.

Embedded Information systems, Lecture #4, October 6, 2020

Total Bandwidth Server (TBS):
This approach assigns a possible earlier deadline to each aperiodic request.

a way that the total utilization of the aperiodic load never exceeds a specified maximum value 𝝁𝑺.

This is done in such

The name of the server comes from the fact that, when an aperiodic request enters the system;

the total bandwidth of the server is immediately assigned to it, whenever possible.

When the 𝒌-th aperiodic request arrives at time 𝒕 = 𝒓𝒌, it receives a deadline:

𝑑𝑘 = 𝑚𝑎𝑥 𝑟𝑘 , 𝑑𝑘−1 +
𝐶𝑎𝑘
𝜇𝑆

,
where 𝑪𝒂𝒌 is the execution time of the request and 𝝁𝑺 is the
server utilization factor (that is, its bandwidth).

By definition 𝑑0 = 0. In the deadline assignment rule the bandwidth allocated to previous

aperiodic requests is considered through the deadline 𝑑𝑘−1.

the request is inserted into the ready queue of the system and scheduled by EDF as any
other periodic instance.

Once a deadline is assigned,

Implementation overhead is practically negligible.

15Embedded Information systems, Lecture #4, October 6, 2020

The Figure below illustrates this method. We have two periodic tasks:

𝑇1 = 6𝑚𝑠, 𝐶1 = 3𝑚𝑠, and
𝑇2 = 8𝑚𝑠, 𝐶2 = 2𝑚𝑠.

Consequently 𝜇𝑃 = 0.75
and thus 𝜇𝑆 = 0.25.

The first aperiodic request
arrives at time 𝒕 = 𝟑𝒎𝒔,

and is serviced with deadline 𝒅𝟏 = 𝑟1 + Τ𝐶𝑎1 𝜇𝑆 = 3 + Τ1 0.25 𝑚𝑠 = 𝟕𝒎𝒔.

the earliest deadline in the system, the aperiodic request is executed immediately.

Being this value

The second request, which arrives at time 𝒕 = 𝟗𝒎𝒔, 𝒅𝟐 = 𝑟2 + Τ𝐶𝑎2 𝜇𝑆 =receives a deadline
9 + Τ2 0.25 𝑚𝑠 = 𝟏𝟕𝒎𝒔,

there is an active periodic task, 𝝉𝟐 with a shorter deadline: 𝟏𝟔𝒎𝒔.
however this is not serviced immediately, because at time 𝒕 = 𝟗𝒎𝒔

request arrives at time 𝒕 = 𝟏𝟒𝒎𝒔

Finally, the third aperiodic
and gets a deadline 𝒅𝟑 = 𝑚𝑎𝑥 𝑟3, 𝑑2 + Τ𝐶𝑎3 𝜇𝑆 =

= 17 + Τ1 0.25 𝑚𝑠 = 𝟐𝟏𝒎𝒔. It does not receive immediate service, since at time 𝒕 = 𝟏𝟒𝒎𝒔
task 𝝉𝟏 is active and has an earlier deadline: 𝟏𝟖𝒎𝒔.

It can be proved that if the processor utilization factor of the periodic tasks is 𝝁𝑷,

the Total Bandwidth Server is 𝝁𝑺,

and that of

then this task set can be scheduled using EDF if and only if

𝜇𝑃 + 𝜇𝑆 ≤ 1. Proof: If in every 𝑡1, 𝑡2 interval 𝑪𝒂 is the total computation time of those

aperiodic requests, which arrived at 𝒕𝟏 or later, and served with deadlines

less than or equal to 𝒕𝟐, then 𝑪𝒂 ≤ 𝑡2 − 𝑡1 𝝁𝑺, because

however, this is

Embedded Information systems, Lecture #4, October 6, 2020

𝑪𝒂 =

𝑘=𝑘1

𝑘2

𝐶𝑎𝑘 = 𝝁𝑺

𝑘=𝑘1

𝑘2

𝑑𝑘 −𝑚𝑎𝑥 𝑟𝑘 , 𝑑𝑘−1 ≤𝝁𝑺 𝑑𝑘2 −𝑚𝑎𝑥 𝑟𝑘1 , 𝑑𝑘1−1 ≤ 𝝁𝑺 𝒕𝟐 − 𝒕𝟏 .

After this, the proof of the schedulability test follows closely that of the periodic case.

Further examples of dynamic priority servers: Dynamic Priority Exchange Server (DPE),

Dynamic Sporadic Server (DSS), Earliest Deadline Late Server (EDL) + their improved versions.

Schedulability if 𝑫𝒊 < 𝑻𝒊:

Almost all the methods, statements and proofs discussed up till now cover cases where 𝑫𝒊 = 𝑻𝒊.
If the deadline is earlier than the period, then the priority can be assigned according to the
deadlines. One such a technique is the Deadline Monotonic (DM) algorithm,

priority is assigned to the task having earliest deadline relative to the request time.

where the highest

Obviously the
condition

𝑖=1

𝑛 𝐶𝑖
𝐷𝑖

≤ 𝑛 2
1
𝑛 − 1

can be a sufficient schedulability test,
not necessary, and sometimes rather pessimistic.

Less pessimistic, if assuming simultaneous start (since concerning processor demand this is the
worst case) for all the tasks we investigate the fulfilment of the condition 𝑪𝒊 + 𝑰𝒊 ≤ 𝑫𝒊.

Here 𝐼𝑖 =
∀𝑘∈ℎ𝑝𝑖

𝐷𝑖
𝑇𝑘

𝐶𝑘 .
This condition is sufficient
but not necessary.

The necessary and sufficient condition is given
by the already discussed worst-case response
time analysis:

𝑅𝑖 = 𝐶𝑖 + 𝐼𝑖 = 𝐶𝑖 + σ∀𝑘∈ℎ𝑝𝑖

𝑅𝑖

𝑇𝑘
𝐶𝑘 < 𝐷𝑖.

16

17Embedded Information systems, Lecture #4, October 6, 2020

If the EDF strategy is applied while 𝑫𝒊 < 𝑻𝒊, then the processor utilisation factor cannot be used.

Instead the so-called processor demand approach can be suggested. First this will be introduced

for the 𝑫𝒊 = 𝑻𝒊 case.

In general, within an arbitrary interval 𝒕, 𝒕 + 𝑳 the processor demand of a task 𝝉𝒊 is the time
needed to become completed till the time instant 𝒕 + 𝑳 or before.

the total processor time
in any 0, 𝐿 interval is:

In the case of such periodic tasks, which start running at 𝑡 = 0, and for which 𝐷𝑖 = 𝑇𝑖,

𝐶𝑝(0, 𝐿) =
𝑘=1

𝑛 𝐿

𝑇𝑘
𝐶𝑘

Statement:
scheduled by EDF iff for any 𝐿 > 0:

A periodic task set can be

𝐿 ≥
𝑘=1

𝑛 𝐿

𝑇𝑘
𝐶𝑘

Proof: On one hand, since therefore

𝐿 ≥ 𝜇𝐿 =
𝑘=1

𝑛 𝐿

𝑇𝑘
𝐶𝑘 ≥

𝑘=1

𝑛 𝐿

𝑇𝑘
𝐶𝑘

On the other, if 𝝁 > 𝟏,

then there exists such(*)

since if e.g. 𝐿 = 𝑙𝑐𝑚(𝑇1𝑇2… 𝑇𝑛), then:

𝐿 < 𝜇𝐿 =
𝑘=1

𝑛 𝐿

𝑇𝑘
𝐶𝑘 =

𝑘=1

𝑛 𝐿

𝑇𝑘
𝐶𝑘

𝝁 = σ𝒊=𝟏
𝒏 𝑪𝒊

𝑻𝒊
≤ 𝟏,

𝐿 > 0, for which (*) does not hold,

If 𝐷𝑖 < 𝑇𝑖 , then the calculation
of 𝐶𝑝(0, 𝐿) is different.
For simplicity let us have the same
period but different deadlines:

𝐶1(0, 𝐿) =
𝐿

𝑇1
𝐶1 𝐶2(0, 𝐿) =

𝐿

𝑇2
+ 1 𝐶2

?Since deadline of the third period is
out of the range of the interval of
length L, the processor demand of 𝜏1:

while for 𝜏2 this can be given by

Di=Ti Di<Ti

static
priority

RM
processor utilisation

approach

𝜇 ≤ 𝑛 2
1
𝑛 − 1

DM
response time approach

for ∀𝑖 𝑅𝑖 = 𝐶𝑖 + σ∀𝑘∈ℎ𝑝𝑖

𝑅𝑖

𝑇𝑘
𝐶𝑘 ≤ 𝐷𝑖

dynamic
priority

EDF
processor utilisation

approach
𝜇 ≤ 1

EDF
processor demand approach

∀𝐿 > 0 𝐿 ≥ σ𝑘=1
𝑛 𝐿−𝐷𝑘

𝑇𝑘
+ 1 𝐶𝑘

18Embedded Information systems, Lecture #4, October 6, 2020

𝐶1(0, 𝐿) =
𝐿

𝑇1
𝐶1

𝐶2(0, 𝐿) =
𝐿

𝑇2
+ 1 𝐶2

Using the figure, it is easy to understand that the two cases can be handled with a single
formula of the form:

𝐶𝑖(0, 𝐿) =
𝐿 − 𝐷𝑖
𝑇𝑖

+ 1 𝐶𝑖

Statement: With this formula: A periodic task/set can
be scheduled by EDF if and only if for every 𝐿 > 0 𝐿 ≥

𝑘=1

𝑛 𝐿 − 𝐷𝑘
𝑇𝑘

+ 1 𝐶𝑘

Summary:

19

Extensions to the response time calculation:

If this takes time 𝐹𝑖, then the response time can be written in the form of 𝑅𝑖 = 𝑅𝑖
′ + 𝐹𝑖, where

1. Cooperative scheduling:

the completion of the task as early as possible.
This can be achieved if the pre-emption of the task is prohibited till the end it’s run.

𝑅𝑖
′ = 𝐵𝑖 + 𝐶𝑖 − 𝐹𝑖 +

∀𝑘∈ℎ𝑝𝑖

𝑅𝑖
′

𝑇𝑘
𝐶𝑘

In this case the last part of the execution if
runs, it will run on the highest priority.

2. Fault tolerance : exception handlers, recovery blocks, etc.: + computation time is needed.
𝐶𝑖
𝑓

extra computation time for every task. In case of single fault:

𝑅𝑖 = 𝐵𝑖 + 𝐶𝑖 +
∀𝑘∈ℎ𝑝𝑖

𝑅𝑖
𝑇𝑘

𝐶𝑘 + ถ𝑚𝑎𝑥
𝑘∈ℎ𝑒𝑝𝑖

𝐶𝑘
𝑓 Please note: ℎ𝑒𝑝𝑖 !

For 𝑭 faults:

𝑅𝑖 = 𝐵𝑖 + 𝐶𝑖 +
∀𝑘∈ℎ𝑝𝑖

𝑅𝑖
𝑇𝑘

𝐶𝑘 + ถ𝑚𝑎𝑥
𝑘∈ℎ𝑒𝑝𝑖

𝐹𝐶𝑘
𝑓 If 𝑇𝑓 denotes the shortest inter arrival

time between two faults, then:

𝑅𝑖 = 𝐵𝑖 + 𝐶𝑖 +
∀𝑘∈ℎ𝑝𝑖

𝑅𝑖
𝑇𝑘

𝐶𝑘 + ถ𝑚𝑎𝑥
𝑘∈ℎ𝑒𝑝𝑖

𝑅𝑖
𝑇𝑓

𝐶𝑘
𝑓

3. The additional time demands of the clock handler and that of the context switches:

In many applications the scheduler is triggered by a clock interrupt (tick scheduling).

If the time of the arrival is not measurable, then the time between

Embedded Information systems, Lecture #4, October 6, 2020

At a given point of the task execution it might be a requirement

In this case the response time should be increased by the worst-case time difference of the
arrival and the clock tick.

two clock ticks is the correcting value.

