
Embedded
Information

Systems
2. Scheduling

September 29, 2020

1

Quantities and variables in real-time systems
A periodically updated RT image is called parametric, or phase-insensitive, if

𝑑𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 > 𝑑𝑢𝑝𝑑𝑎𝑡𝑒 +𝑊𝐶𝐸𝑇𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑖𝑛𝑔 .

2
Embedded Information systems, Lecture #3, September 29, 2020

A periodically updated RT image is called phase-sensitive, if

𝑊𝐶𝐸𝑇𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑖𝑛𝑔 < 𝑑𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 < 𝑑𝑢𝑝𝑑𝑎𝑡𝑖𝑛𝑔 +𝑊𝐶𝐸𝑇𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑖𝑛𝑔 .

The parametric RT image at the receiver node can be utilised without further investigations,
because the updated value arrives within the accuracy interval.

In this case it is not sure that the update arrives within the accuracy interval: we must
check the time conditions and possibly wait for the update.

Reminder:

Characterisation of HRT
and SRT systems:

characteristic hard real-time soft real-time

response time hard required soft desired

peak-load performance predictable degraded

control of pace environment computer

safety often critical non-critical

size of data files small/medium large

redundancy type active checkpoint-recovery

data integrity short-term long term

error detection autonomous user assisted

3Embedded Information systems, Lecture #3, September 29, 2020

Event triggered and time triggered systems
The event triggered systems execute the program associated with the event immediately after
the arrival of the request. With this approach, we can get good response times,
number of (almost) simultaneous events increase,

but if the
the throughput/capacity of the system might

be insufficient, therefore, to meet the deadlines will be impossible.

Within the time-triggered systems a separate timeslot is assigned to every task in design time,

Thus, if the response times are a priori known, the program execution can be guaranteed.
Example: A technological process is supervised by 10 nodes.

Each node monitors 40 binary signals (alarm
signals, e.g. limit crossings, etc.).
The communication is solved via a bus.
A system-level alarm unit is also connected.

The speed of the bus is 100 kbit/s.
The monitoring nodes should send an alarm message to the alarm unit within 100 ms.

Event triggered operation: ET/CAN protocol is applied. The shortest message is one byte.

According to the protocol the message will contain: 44 bits overhead, 1-byte data,
4-bit length inter-message gap. The total size is 56 bits.

100 kbit/s means, that within 100 ms 10 000 bits can get through.If the messages are of 56 bits,

then 10 000/56 ~ 180 messages can arrive to the alarm unit within the specified time.

Since 180 < 400, therefore it is not possible to send all the possible changes,
the communication channel for ~180 simultaneous messages will completely saturate.

Reminder:

4
Embedded Information systems, Lecture #3, September 29, 2020

Time triggered operation: TT/CAN protocol is applied. The nodes periodically send

all the signalling bits to the alarm unit.

This can be performed for every 40 binary signals using a single message.

According to the protocol the message will contain: 44 bits overhead, 5-byte data,

followed by a 4-bit length inter-message gap. The total size is 88 bits.

100 kbit/s means, that within 100 ms 10 000 bits can get through.

88 bits, then 10 000/88 ~ 110 messages can arrive
to the alarm unit within the specified time.

If the messages are of

Since 110 > 10,

thus all the signalling bits will arrive to the alarm
unit, and what is more, at a load level of ~ 10%.

The importance of agreement protocols
Example: brake-by-wire: In this example, for safety reasons,

duplicated brake pedal sensors are applied.

The brakes of each wheel have
separate control nodes.

The nodes inform each other about
their knowledge of the actual sensor
value, and calculate the braking force.

If a node is violated and fails, the corresponding wheel will run free automatically,
and braking force will not be provided.

Reminder:

5
Embedded Information systems, Lecture #3, September 29, 2020

The other three nodes, after observing this situation, recalculate the braking
forces, and will brake safely.

In distributed systems there are several situations where run-time agreements are needed:
time synchronisation, consistency of distributed states, distributed mutual exclusion,
distributed transactions, distributed completion, distributed election, etc.

A further problem is that even in case of errors, an agreement would be needed.

This is not always possible.
Example: Two armies’ problem:
The allied armies, A and B together have more soldiers
than the enemy (E), but separately each has less.

A E B

Reminder:

What we can do is to increase the probability of successful agreement.

Impossibility Result: It can be proven by formal methods, that to reach to an agreement
of two or more distributed units in limited time, and through an asynchronous medium,
which is lossy, cannot be guaranteed.

Agreement in case of Byzanthine errors: Example: Synchronisation of clocks: A, B, C and D.
To filter out a node with Byzanthine error is possible only if at least 3k+1 nodes participate in
the synchronization, where k is the number of nodes having Byzanthine error.

#3

3000

5000

#4

4000

#2

2000

#1

1000

The generals of the “blue” armies try to agree the total number
of soldiers available for a joint action.
In the meantime, it turns out that one of the generals
sends wrong information.
The generals of the allied armies inform each other
about the number of the available soldiers.

Ci

Ti

Di

ai/ri si Ri fi di

6
Embedded Information systems, Lecture #3, September 29, 2020

2. Scheduling
Problem: The processors should execute various tasks with different timing requirements.
The timing conditions can be interpreted using the following figure:

Here ai or ri is the arrival/release/request time,
si is the start time of execution, its finishing time is fi,

di stands for deadline, Ti is the period time,

Di=di-ai is the deadline relative to the request time,

Ci stands for computation time, and Ri=fi-ai is the response time.

1. Periodic scheduling: this is the simplest method: in design time fix time slots are assigned
for the completion of the periodic requests, and this is repeated periodically.

The assignment is typically clock-driven; therefore these types of scheduling are called time-
triggered. They have different versions, but what is common:

schedules are made in design-time, thus their run-time overhead is low.
the decisions concerning

A further feature is that the parameters of the HRT tasks are known and fixed in advance.

Example: To each task there is assigned a frame of 10 ms. 4 functions are implemented:
The first function operates with a periodicity of 50 Hz, i.e. it receives 10 ms in every 20 ms.
The second function operates with a periodicity of 25 Hz, i.e. it receives 10 ms in every 40 ms.
The third function at a rate of 12.5 Hz, i.e. in every 80 ms receives 10 ms.
The fourth function at a rate of 6.25 Hz, i.e. in every 160 ms receives 10 ms.
Obviously, the assignment of the frames can be different; it can be done only in design time.

Reminder:

2. Time-shared/round-robin scheduling: … 3. Priority based scheduling: …

7
Embedded Information systems, Lecture #3, September 29, 2020

For simplicity imagine that to every task a different priority level is assigned.

Illustration:
H

M

L

We have one low priority (L=low),

one medium priority (M=medium)

and one high priority (H=high) task.

This assignment happened in design-time. All the tasks start running immediately after

the request, if their priority is the highest among the tasks ready to run.

The response time of the lowest priority task on the figure is: RL=CL+CM+CH

If the medium and/or the high priority task are released periodically, then depending on the
time relations, it might happen, that these tasks will run more than one time during RL.

In a more general case, for a task at priority level 𝑖, the worst-case response time can be

calculated using the following formula:

𝑅𝑖 = 𝐶𝑖 + 𝐼𝑖 = 𝐶𝑖 +
∀𝑘∈ℎ𝑝𝑖

𝑅𝑖
𝑇𝑘

𝐶𝑘

where 𝐼𝑖 is the so-called interference.
The interference time is the total computation
time of those higher priority tasks, which prevent

task 𝑖 to complete its actual run. ∀𝑘 ∈ ℎ𝑝𝑖 refers those tasks, which have higher priority than 𝑖

(hp=higher priority). The sign is the operator of assigning the upper integer. 1.02 = 2,

2.0 = 2. Since in the above formula the unknown 𝑅𝑖 on the left-hand side is present also in the

argument of the highly nonlinear function on the right-hand side, it can be evaluated only
via an iterative procedure:

𝑅𝑖
𝑛+1 = 𝐶𝑖 + 𝐼𝑖 = 𝐶𝑖 +

∀𝑘∈ℎ𝑝𝑖

𝑅𝑖
𝑛

𝑇𝑘
𝐶𝑘

The iteration will stop at step n0 where

𝑅𝑖
𝑛0+1 = 𝑅𝑖

𝑛0

The name of this method in the literature is
Deadline Monotonic Analysis (DMA).

Reminder:

8

Task T C D
1 250 5 10
2 10 2 10
3 330 25 50
4 1000 29 1000

Step Rn I Rn+1

1 0 0 25
2 25 5+3*2 36
3 36 5+4*2 38
4 38 5+4*2 38Embedded Information systems, Lecture #3, September 29, 2020

It supposes priority assignment according to the deadlines: tasks with larger 𝑫𝒊 will have
lower priority. Only such cases are considered, where 𝑫𝒊 ≤ 𝑻𝒊.The method is suitable

both for periodic and sporadic tasks.

Periodic task: is characterised by known and fixed period 𝑻𝒊.
Sporadic task: the requests are not periodic, but there is a known and fixed 𝑻𝒊 value that is
the minimum time between two subsequent requests.

Aperiodic task: the requests are not periodic, and there is no specified 𝑻𝒊 between two requests,

i.e. a request can be followed immediately by a second request.
Obviously in the case of aperiodic tasks the DMA method cannot be applied.
It might be important to emphasize, that by the application of the DMA method not the
response time but the worst-case response time will be derived.
Example: A system with four tasks can be characterized with the following time values (the
time is measured in milliseconds):

The priority order corresponds to the order of the tasks in the list.
If the deadline values are equal secondary conditions are used to decide
priority order.

In the example, the first task has higher computation time, i.e. its laxity is smaller, therefore
the higher priority might be a better choice. Let us calculate the worst-case response time
of task 3. The iterative procedure:

Comments:
38<50, thus task 3 will meet the deadline
also under worst case conditions.

9Embedded Information systems, Lecture #3, September 29, 2020

Note that the data of task 4 were not utilized at all. They are not required!

Note that the tasks up till now were considered independent from each other!
However, if they are not independent, then they are communicating.
happen, that higher priority tasks should wait for data provided by lower priority.

In this case might

This additional waiting time will increase both the response time and its worst-case version!

Response time calculation for periodic and sporadic tasks: Example:
An embedded system, devoted to executing requests of four periodic/sporadic tasks and
one periodic/sporadic interrupt, has the following parameters (time values are in ms):

Task T C D

𝑖1 10 0.5 3

𝜏1 3 0.5 3

𝜏2 6 0.75 6

𝜏3 14 1.25 14

𝜏4 50 5 50

Step 𝑅𝑛 𝐼 𝑅𝑛+1

1 0 0 5

2 5 0.5+1.0+0.75+1.25 8.5

3 8.5 0.5+1.5+1.50+1.25 9.75

4 9.75 0.5+2.0+1.50+1.25 10.25

5 10.25 1.0+2.0+1.50+1.25 10.75

6 10.75 1.0+2.0+1.50+1.25 10.75

Let us calculate the worst-
case response time of task 𝝉𝟒
using the iterative procedure!

The interrupt will be served
on the highest priority,
otherwise the priority level of
the tasks follows the deadline
monotonic assignment.

Since 10.75<50, the deadline is met.

The different versions of the DMA analysis are widely used for worst-case response time
analysis to optimize products concerning the necessary clock frequencies/bandwidths to
increase noise immunity and reduce costs.

Comment:

(Volvo Corporation has introduced this technique already in 1995, first regarding S80.)

10

(Control Area Network, ISO 11898, Bosch) bus:
Calculation of the response time:

𝑅𝑖 = 𝐶𝑖 + 𝑄𝑖

𝑄𝑖 = 𝐵𝑖 +
∀𝑘∈ℎ𝑝𝑖

𝑄𝑖
𝑇𝑘

𝐶𝑘

where

Embedded Information systems, Lecture #3, September 29, 2020

Message T [ms] C[ms]

1 3 1.35

2 6 1.35

3 10 1.35

4 30 1.35

5 40 1.35

6 40 1.35

7 100 1.35

Example: A modified version of DMA method can be used also if the operation is not
pre-emptive, i.e. when the running task will not be pre-empted. Response time analysis of
the priority-based CAN bus. The key features of the communication through the CAN

The messages are periodic, and their priority is decreasing from the top.
The requests are asynchronous. The 7th message is related to braking,
it should be received in 𝟏𝟎𝟎𝒎𝒔. The iteration for the waiting time:

Step 𝑄𝑛 𝐼 𝐵 𝑄𝑛+1

1 2 3 4 5 6 Sum

1 0 - - - - - - 0 1.35 1.35

2 1.35 1 1 1 1 1 1 8.1 1.35 9.45

3 9.45 4 2 1 1 1 1 13.5 1.35 14.85

4 14.85 5 3 2 1 1 1 17.55 1.35 18.9

5 18.9 7 4 2 1 1 1 21.6 1.35 22.95

6 22.95 8 4 3 1 1 1 24.3 1.35 25.65

7 25.65 9 5 3 1 1 1 27 1.35 28.35

8 28.35 10 5 3 1 1 1 28.35 1.35 29.7

9 29.7 10 5 3 1 1 1 28.35 1.35 29.7

The worst-case waiting
time: 29.7 𝑚𝑠.

The worst-case response
time:

29.7𝑚𝑠 + 1.35𝑚𝑠 =
31.05 𝑚𝑠.

This value is smaller than the specified 𝟏𝟎𝟎𝒎𝒔: the
deadline is met.

11

𝜇 =
𝑖=1

𝑛 𝐶𝑖
𝑇𝑖
≤ 𝑛 2

1
𝑛 − 1

𝑛→∞
𝑙𝑛 2~0.7

Embedded Information systems, Lecture #3, September 29, 2020

Schedulability, schedulability tests:

The complexity of the exact schedulability test is high, these are so called NP-complete
problems, which are hard to handle, and therefore they will not be considered.

- necessary: if the necessary condition is not met, then no schedule exists.
- sufficient: if the sufficient condition is met, then a schedule always exists.
- exact: gives the necessary and sufficient conditions and shows the existence of the schedule.

For periodic tasks among the necessary conditions the processor utilization factor can be
mentioned, which is the sum of the processor demands relative to the unit of time:

𝜇 =
𝑖=1

𝑛 𝐶𝑖
𝑇𝑖

For a single processor system if 𝝁 ≤ 𝟏 is not met, then the tasks are not
schedulable, i.e. 𝜇 ≤ 1 is a necessary condition.
(Here 𝑛 stands for the # of tasks.) If we have 𝑵 processors, then 𝝁 ≤ 𝑵.

Scheduling strategies:
Rate-monotonic (RM) (1973): For periodic and independent tasks if 𝐷𝑖 = 𝑇𝑖 and 𝐶𝑖 are
known and constant. The highest priority is assigned to the task with the shortest period.
The procedure is pre-emptive. We assume that the time of context switching between tasks
is negligible. Is it OK?
For the RM algorithm sufficient test is
available. n denotes the number of the tasks
to be scheduled. It might happen that the actual set of tasks is schedulable with the RM
strategy even at higher processor utilisation; however there is no guarantee for it.

Simulations with randomly selected 𝑻𝒊 and 𝑪𝒊 values were reported successful up to 𝝁 = 𝟎. 𝟖𝟖.

To achieve 100% utilization when using fixed priorities, assign periods so that all tasks are
harmonic. This means that for each task, its period is an exact multiple of every other
task that has a shorter period.

12

If
𝑇2

𝑇1
= 2, 𝐶1 = 𝑇2 − 𝑇1,

𝐶1

𝑇1
=

𝑇2−𝑇1

𝑇1
=

𝐶2

𝑇2
:

𝜇 = 2 2 − 1 , and for arbitrary 𝑖 :

If
𝑇𝑖+1

𝑇𝑖
= 2

1

𝑛, 𝐶𝑖 = 𝑇𝑖+1 − 𝑇𝑖,
𝐶𝑖

𝑇𝑖
=

𝑇𝑖+1−𝑇𝑖

𝑇𝑖
=

𝐶𝑖+1

𝑇𝑖+1
𝜇 = 𝑛

𝑇𝑖+1
𝑇𝑖

− 1 = 𝑛 2
1
𝑛 − 1then

We have two tasks 𝑇1 = 100 𝑚𝑠, 𝐶1 = 41 𝑚𝑠, 𝑇2 = 141 𝑚𝑠, 𝐶2 = 59 ms.

𝜇 =
41

100
+

59

141
= 0.41 + 0.4184 = 0.8284

Example:

~2 2 − 1 . If the requests are simultaneous :

41 100 141 200 241 282

41 59 41 59 41 41

If there is slight increase in the
computation time, then the RM
strategy will fail!

Between 241 and 282 there is no schedulable task!Comments:

1. If the RM scheduling strategy is applied, the most
disadvantageous is the case when all the tasks start with
zero phase, i.e. the first requests are simultaneous.

2. Non-zero phase start is
advantageous from
scheduling point of view!

Embedded Information systems, Lecture #3, September 29, 2020

Example: Under what period and computation time conditions reaches the RM strategy the
limits of schedulability for 𝒏 = 𝟐?

3. If the RM scheduling strategy is applied, and the necessary condition is met, but the
sufficient not, then the schedulability analysis should be performed for smallest common
multiple of the periods that can be extremely large.

13

Earliest Deadline First (EDF) strategy:

Is this correct?

p1 d1p p2 d2p p3 d3p p4 d4p

p1 q p1 dq d1p p2 d2p p3 d3p p4 d4p

r dr

p1 q r dq d1p p2 r d2p r p3 dr d3p p4 d4p

Row #1: requests and deadlines of
task p

Row #2: request of task q during
the run of p1.

Row #3: request and deadline
of task r.
Row #4: the run of the three tasks.

Least Laxity First (LLF) strategy: Similar to EDF.

Ci

Ti

Di

ai/ri si Ri fi di

Embedded Information systems, Lecture #3, September 29, 2020

We assume that the tasks are periodic, independent of
each other, 𝐷𝑖 ≤ 𝑇𝑖 and 𝐶𝑖 are known and are constant. Priority assignment is in run-time,
and the processor is given to the task having the earliest deadline.The operation is pre-emptive.

Here we also assume that the time of context switching is negligible.
Sufficient schedulability test can be given: tasks meeting the above conditions are schedulable
up to 𝝁 ≤ 𝟏, i.e. 100% processor utilisation is possible.

The conditions of its application are the same,

but instead of the task having the earliest deadline, the processor is assigned to the task
having the smallest laxity. This is the difference of the deadline and the remaining

computation times at the time instant of investigation.
Tasks meeting the above conditions are schedulable up to 𝝁 ≤ 𝟏,
i.e. 100% processor utilisation is possible.
The EDF and LLF strategies are applicable also for aperiodic tasks,

but since the processor utilisation factor can only be
interpreted in a different way, the sufficient condition above cannot be used.

14

Example: Comparison of RM and EDF algorithms. We have two tasks.
The period and the deadline is the same. 𝑇1 = 5 ms, 𝐶1 = 2 ms, 𝑇2 = 7 ms, 𝐶2 = 4 ms. .

The processor utilisation factor:

μ =
2

5
+
4

7
= 0.4 + 0.57 = 0.97

Here the necessary condition of the schedulability is
met,

Embedded Information systems, Lecture #3, September 29, 2020

but the sufficient condition only for the EDF/LLF
strategies. If RM strategy is applied, then the second
task will miss the deadline at 7 𝑚𝑠, but using EDF or LLF

the tasks are schedulable.
Both for EDF and LLF it is obvious
that if the deadlines are equal, the
applied schedule should result in
less context switching, because
context switching takes time.

All the task-specific information of the pre-empted task must be saved: typically, the content of
the processor’s registers must be copied into the task-specific Task Control Block (TCB), while
TCB of the task decided to run should be loaded into the registers of the processor.

These copying are supported by fast mechanisms, but still they need time.

15

Proof of the EDF schedulability:

The proof is given for periodic tasks with 𝐷𝑖 = 𝑇𝑖 . The statement is the following:
A set of periodic tasks is schedulable with EDF if and only if

𝜇 =
𝑖=1

𝑛 𝐶𝑖
𝑇𝑖
≤ 1.

Proof: 1. Only if: We show that a task set cannot be scheduled if 𝜇 > 1.

By defining 𝑇 = 𝑇1𝑇2…𝑇𝑛, the total demand of computation time

requested by all tasks in T can be calculated as:

𝑖=1

𝑛 𝑇

𝑇𝑖
𝐶𝑖 = 𝜇𝑇.

If 𝜇 > 1, hat is, if the total demand 𝜇𝑇 exceeds the available
processor time 𝑇, there is no feasible schedule for the task set.

2. If part: We show the sufficiency by contradiction.

If our assumption is that the task-set is
not schedulable, then there must be
such a task, which misses its deadline.

Embedded Information systems, Lecture #3, September 29, 2020

Assume that the condition 𝝁 < 𝟏 is satisfied and yet the taskset is not schedulable.
The next figure helps to understand the proof. Here we can see the schedule of periodic tasks

according to EDF.

Let 𝑡2 be the instant at which the time/overflow occurs and let 𝑡1, 𝑡2 be the longest interval

of continuous utilisation before the overflow, such that only instances with deadline less than
or equal to t2 are executed in 𝑡1, 𝑡2 . Note that 𝑡1 must be the release time of some periodic
instance. Let 𝐶𝑃 𝑡1, 𝑡2 be the total computation time demanded by periodic tasks in 𝑡1, 𝑡2 ,

which can be computed as:

16

𝐶𝑃 𝑡1, 𝑡2 =
𝑟𝑘≥𝑡1,𝑑𝑘≤𝑡2

𝐶𝑘 =

=
𝑖=1

𝑛 𝑡2 − 𝑡1
𝑇𝑖

𝐶𝑖

Now, observe that:

where . . . denotes the lower-integer function.

(Note that for task1 the response to the third request is not considered, therefore the
assignment of the lower-integer is correct.)

𝐶𝑃 𝑡1, 𝑡2 =
𝑟𝑘≥𝑡1,𝑑𝑘≤𝑡2

𝐶𝑘 =
𝑖=1

𝑛 𝑡2 − 𝑡1
𝑇𝑖

𝐶𝑖 ≤
𝑖=1

𝑛 𝑡2 − 𝑡1
𝑇𝑖

𝐶𝑖 = 𝑡2 − 𝑡1 𝜇

i.e. (𝑡2 − 𝑡1). Thus (𝑡2 − 𝑡1) < 𝐶𝑃(𝑡1, 𝑡2) ≤ 𝑡2 − 𝑡1 𝜇

Embedded Information systems, Lecture #3, September 29, 2020

Since a deadline is missed at 𝑡2, 𝐶𝑃 𝑡1, 𝑡2 must be greater than the available processor time

that is 𝜇 > 1,

which is a contradiction, i.e. the original statement is false!

