
Embedded
Information

Systems
1. Introduction (cont.)

2. Scheduling

September 22, 2020

1

Embedded systems: a possible definition

• but at system level the resources prove to be ample

A Research Agenda
for Networked Systems

of Embedded Computers
National Academy of Sciences

(2001)

BMW 745i:
53 pcs. 8-bit,
11 pcs. 32-bit,
7 pcs. 16-bit processors,
2 000 000 line of code,
Windows CE OS,
Multiple network.

Fly-by-wire Drive-by-wire

2% of the processors are used in IT and PC
applications, 98% are embedded applications:
vehicles, consumer electronics, mobile
phones, etc. 2Embedded Information systems, Lecture #2, September 22, 2020

Embedded systems are computer systems which

• communicate intensively with their receiving
physical/chemical/biological environment,

• operate autonomously,

• are highly reliable, and
• mostly “invisible”.
• Its elements have typically limited

resources (memory, bandwidth, …),

Reminder:

The main actor is the embedded software

Within the premium category cars there are several thousand wires, and 70-100+ ECUs.

• The software meets both functional and physical requirements.

The embedded software is
a universal system builder

„... Software is Hard and Hardware is Soft ...”

Bad news: using software many things are possible…
3

Embedded Information systems, Lecture #2, September 22, 2020

On one hand standardized hardware and software components (COTS) are applied,
but the individual capabilities are provided by the software.

The components of the real systems interact more and more by computer mechanisms.

Consequences:
• On one hand the software absorbs its environment, while on the other it

becomes part of the given application.

Good news: using software many things are possible…

Reminder:

Cooperation of embedded components:
systems of systems

Half of the cost of manufacturing the wiring harness is wage.

Air-bag system

Pre Collision
Technology

Several types of automotive networks:
CAN, LIN, Flexray, MOST, TTCAN, TT-Ethernet, … 4

Embedded Information systems, Lecture #2, September 22, 2020

Wiring harness is the 3rd most expensive car component after the
engine and the body.
Wiring harness is the 3rd heaviest component after the body and the
engine.
Its average weight is 100 kg, its length ~5km.

Reminder:

Modelling CPS systems

Example: Programmable voltage divider.

U(t)

r

R

𝑈0(t)

𝑈 𝑡 = 𝑈0 𝑡
𝑅

𝑟 + 𝑅
𝑈 𝑡 = 𝑖 𝑡 𝑅 𝑖 𝑡 =

𝑈0(𝑡)

𝑟 + 𝑅

R can be tuned! Let’s substitute R with the following circuit!

𝑖(𝑡)

A/D D/Ar

𝑅

𝑟

𝑈 𝑡 = 𝑖 𝑡 𝑅

µP, DSP, “cloud”, …

?

𝑈 𝑡 = 𝑅𝑖 𝑡 − ∆𝑡

Consequence:

𝑖(𝑡 = 0) =
𝑈0
𝑟

𝑈(𝑡 = 0) = 0

𝑖 𝑡 = ∆𝑡 = 𝑈0 − 𝑅
𝑈0
𝑟

1

𝑟
= 1 −

𝑅

𝑟

𝑈0
𝑟

𝑈 𝑡 = ∆𝑡 = 𝑅
𝑈0
𝑟

𝑖(𝑡 = 2∆𝑡) = 𝑈0 − 𝑅 1 −
𝑅

𝑟

𝑈0
𝑟

1

𝑟
= 1 −

𝑅

𝑟
+

𝑅

𝑟

2 𝑈0
𝑟

𝑈(𝑡 = 2∆𝑡) = 𝑅 1 −
𝑅

𝑟

𝑈0
𝑟

1
0U

Embedded Information systems, Lecture #2, September 22, 2020

Reminder:

Modelling CPS systems

𝑖(𝑡 = 𝑛∆𝑡) = 1 −
𝑅

𝑟
+

𝑅

𝑟

2

∓⋯±
𝑅

𝑟

𝑛 𝑈0
𝑟
→

𝑈0
𝑟 + 𝑅

𝑈(𝑡 = 𝑛∆𝑡) = 𝑅 1 −
𝑅

𝑟
+

𝑅

𝑟

2

∓⋯∓
𝑅

𝑟

𝑛−1 𝑈0
𝑟
→ 𝑈0

𝑅

𝑟 + 𝑅 If
𝑅

𝑟
< 1

6
Embedded Information systems, Lecture #2, September 22, 2020

The delay can cause

depending on the
parameter values.

growing magnitude oscillations
constant magnitude oscillations,
damping oscillations,
overshoots,

The direct utilisation
of continuous models
is not always feasible!

Reminder:

Embedded Information systems, Lecture #2, September 22, 2020
.

Examples of specific time relations in embedded
systems:

The figure illustrates, that in the case of client Q the
message about event E2 precedes the message
about event E1, which occurred earlier.

Such a situation might cause problems, if the decisions
made at client Q depend on the order of the messages.

.

𝑑𝑚𝑖𝑛 ≤ 𝑑 ≤ 𝑑𝑚𝑎𝑥
7

• relativistic effect: the time conditions of the communication through different
channels may change the order of the event at the receiving node.

If the events E1 and E2 are not independent, after the arrival of the message about E2 to
server Q, it might be reasonable to propose to wait for all those messages which were sent
possibly at the same time instant or earlier as the message about E2.

This waiting time is called action delay, which is the worst-case value of the possible
message forwarding time for the case described above.

The necessary action delay can be calculated if the minimum and the maximum of the

message forwarding time is known, i.e. for the message forwarding time the following is

valid:

Reminder:

Quantities and variables in real-time systems

(Certain actions can not be withdrawn: a
catapult, a shooting, etc.)

B

A

D

C
Valve
control

Alarm monitor

Operator Pressure sensor

Note: the technological system itself
implements a communication channel!

8
Embedded Information systems, Lecture #2, September 22, 2020

Example: We are monitoring the pressure within a container with a distributed system.

Node A: alarm monitor,
Node B : operator,
Node C : valve control,
Node D : pressure sensor.
Possible messages:

MDA: indicates a drastic change of pressure,
MBC: operator command to change the valve,
MBA: It was an intentional change, no alarm.

Note: There is a hidden communication channel
between the valve and the pressure sensor due
to the operation of the physical system.

False alarm may occur, if
through 𝐵 → C → 𝐷 → 𝐴 the information
runs faster, than through 𝐵 → 𝐴.

To avoid this all actions of the alarm monitor
should be delayed.

Reminder:

Quantities and variables in real-time systems

In the second case the delay is larger, because the sending time is not known, while in
the first case it can be calculated from the time-stamp sent with the message.

• A RT image can be utilised only after reaching permanence. If this time exceeds the
time accuracy of the image, only the state estimation can help.

9Embedded Information systems, Lecture #2, September 22, 2020

Action delay: we must wait until the permanence of the message.
Calculation of the delay: (1) If the global time is available:
tpermanent = tsent + dmax + 2g, where dmax is the worst-case value of the message delay,

and g stands for the resolution of the clock. (2) If the global time is not available:
tpermanent = tsent + 2dmax - dmin + gl , where dmin is minimum message delay,

and gl stands for the resolution of the local clock.

The difference between the two cases is dmax - dmin that can be large.
In the case e.g. of a token controlled bus if the token round takes 10 ms, while message
forwarding time is always 1 ms, then dmax = 11ms and dmin = 1 ms, since if the token just
left we must wait for 10 ms.

Comments:
• To understand the calculation of the action delay, imagine that you are an external

observer, who knows the time of every event, and is familiar what is known and
what is not at the different nodes.

Reminder:

Quantities and variables in real-time systems
Example: Some engine parameters are given in the Table below together with their
magnitude accuracy and the corresponding time intervals.

10

RT image max. change accuracy accuracy in time

Piston/cylinder position 6000 rpm 0.1 3sec

Gas pedal position 100%/sec 1% 10 msec

engine load 50%/sec 1% 20 msec

Oil and water temperature 10%/min 1% 6 sec

Among the accuracy intervals of the RT images the difference is more than 6 magnitude.

Embedded Information systems, Lecture #2 September 22, 2020

In the case of the piston position such an accuracy can be provided only with state estimation
(prediction) within the program.
The magnitude error caused by the time difference between the observation and the

utilisation in the case of a variable 𝑣 𝑡 :
𝑒𝑟𝑟𝑜𝑟(𝑡) ≅

𝑑𝑣(𝑡)

𝑑𝑡
𝐶(𝑡𝑢𝑡𝑖𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛) − 𝐶(𝑡𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛)

If the RT image is accurate in
time, the worst-case error is: 𝑒𝑟𝑟𝑜𝑟 = ถ𝑚𝑎𝑥

∀𝑡

𝑑𝑣 𝑡

𝑑𝑡
𝑑𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦

In case of balanced design this
value should be in the range of the

magnitude measurement error.
𝐶(𝑡𝑢𝑡𝑖𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛) − 𝐶(𝑡𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛) ≤ 𝑑𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦

To provide accurate calculations based on the RT images,
we must meet the following condition:

Reminder:

New material starts here:

Quantities and variables in real-time systems

For nine seconds the plane relied only on one wheel, and because the braking mechanisms
were allowed to operate only if the wheels on both sides rely on the ground, the plane
could not decelerate properly.

A periodically updated RT image is called parametric, or phase-insensitive, if

𝑑𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 > 𝑑𝑢𝑝𝑑𝑎𝑡𝑒 +𝑊𝐶𝐸𝑇𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑖𝑛𝑔 .

11
Embedded Information systems, Lecture #2, September 22, 2020

Example for validity in time:
September 14, 1993. Warsaw Airport: A Lufthansa Airbus A320 could not
stop on the runway: 2 dead, 54 injured.

The accident was caused by a design error of the control logic.

Practically the conclusion that „the plane is in the air therefore the braking mechanisms
can not be activated” became invalid as one of the wheels landed.

A periodically updated RT image is called phase-sensitive, if

𝑊𝐶𝐸𝑇𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑖𝑛𝑔 < 𝑑𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 < 𝑑𝑢𝑝𝑑𝑎𝑡𝑖𝑛𝑔 +𝑊𝐶𝐸𝑇𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑖𝑛𝑔 .

The parametric RT image at the receiver node can be utilised without further investigations,
because the updated value arrives within the accuracy interval.

In this case it is not sure that the update arrives within the accuracy interval: we must
check the time conditions and possibly wait for the update.

Quantities and variables in real-time systems
Example: Imagine that in the previous example forwarding the gas pedal position
required 4 msec. If the periodic updating time is less than 6 msec, the RT image is
parametric, while if it is e.g. 8 msec, then it is phase-sensitive.

12
Embedded Information systems, Lecture #2, September 22, 2020

Phase-sensitivity can be avoided by applying appropriate sampling frequency or by
the application of state estimation.
Idempotency: If – to improve fault tolerance - the very same message arrives
several times to a particular node, then this set of messages is called idempotent, if
the effect is the same as in the case of a single one.

Example: setting a valve position to 45 (state message) changing the valve position
by 5 (event message).

This concept is important, because if the message is only a change, then its multiple
application will result in multiple corrections, while the intention was only a single one.

Hard RT systems versus soft RT systems
Hard real-time system (HRT): which must produce the result at the correct instant,
because if we do not meet the time limitation, it might result in catastrophic
consequences. (See e.g. the electronic control of vehicles).

Soft real-time system (SRT), online system: the result has value also if we do not meet
the time limitation, only the quality of the service will degrade (See e.g. transaction
processing systems).

13

Characterisation of HRT and SRT systems:

characteristic hard real-time soft real-time

response time hard required soft desired

peak-load performance predictable degraded

control of pace environment computer

safety often critical non-critical

size of data files small/medium large

redundancy type active checkpoint-recovery

data integrity short-term long term

error detection autonomous user assisted

Response time: HRT systems: often in the order of ms or less,
preclude direct human intervention during normal operation
and in critical situations.

A HRT system must be highly autonomous to maintain safe operation of the process.
The response time requirements of SRT and on-line systems are often in the order of seconds.
If a deadline is missed in a SRT system, no catastrophe can result.
Peak-load performance: In a HRT system, the peak-load scenario must be well-defined.

It must be guaranteed by design that the system meets the specified deadlines in all situations.
In a SRT system the average performance is important.
A degraded operation in a rarely occurring peak load case is tolerated for economic reasons.

Embedded Information systems, Lecture #2, September 22, 2020

14

Hardware redundancy is needed!

Embedded Information systems, Lecture #2, September 22, 2020

Control of pace: A HRT system must remain synchronous with the state of the environment.
In all operational scenarios!
it cannot process the offered load.

A SRT can exercise some control over the environment in case
If the computer cannot keep up with the demands of

the operators, it just extends the response time and forces the operator to slow down.
Safety:The safety criticality in HRT applications has many consequences for the system designer.
Error detection must be autonomous so that the system can initiate appropriate recovery
actions within the time intervals dictated by the application.

Size of data files: HRT systems have small data files, that are composed of the temporally
accurate images of the RT-entities. The key concern in HRT systems is on the short-term
temporal accuracy of the RT database.
In contrast in on-line transaction processing systems, the maintenance of the long-term integrity
of large data files is the key issue.
Redundancy type: After an error has been detected in a SRT system, the computation is rolled
back to a previously established checkpoint to initiate a recovery action.

In HRT systems, roll-back/recovery is limited utility for the following reasons:

(1) It is difficult to guarantee the deadline after the occurrence of an error, since the roll-
back/recovery action can take an unpredictable amount of time,

(2) An irrevocable action which has been effected on the environment, cannot be undone,
(3) The temporal accuracy of the checkpoint data is invalidated by the time difference
between the checkpoint time and the instant now.

Error detection: HRT: autonomous,

SRT: supported by the user/operator

15Embedded Information systems, Lecture #2, September 22, 2020

Event triggered (ET) and time triggered (TT) systems
The event triggered systems execute the program associated with the event immediately after
the arrival of the request. With this approach, we can get good response times,
number of (almost) simultaneous events increase,

but if the
the throughput/capacity of the system might

be insufficient, therefore, to meet the deadlines will be impossible.

Within the time-triggered systems a separate timeslot is assigned to every task in design time,

Thus, if the response times are a priori known, the program execution can be guaranteed.
Example: A technological process is supervised by 10 nodes.

Each node monitors 40 binary signals (alarm
signals, e.g. limit crossings, etc.).
The communication is solved via a bus.
A system-level alarm unit is also connected.

The speed of the bus is 100 kbit/s.
The monitoring nodes should send an alarm message to the alarm unit within 100 ms.

Event triggered operation: ET/CAN protocol is applied. The shortest message is one byte.

According to the protocol the message will contain: 44 bits overhead, 1-byte data,
4-bit length inter-message gap. The total size is 56 bits.

100 kbit/s means, that within 100 ms 10 000 bits can get through.If the messages are of 56 bits,

then 10 000/56 ~ 180 messages can arrive to the alarm unit within the specified time.

Since 180 < 400, therefore it is not possible to send all the possible changes,
the communication channel for ~180 simultaneous messages will completely saturate.

16
Embedded Information systems, Lecture #2, September 22, 2020

Time triggered operation: TT/CAN protocol is applied. The nodes periodically send all the

signalling bits to the alarm unit.

This can be performed for every 40 binary signals using a single message.

According to the protocol the message will contain: 44 bits overhead, 5-byte data,

followed by a 4-bit length inter-message gap. The total size is 88 bits.

100 kbit/s means, that within 100 ms 10 000 bits can get through.

88 bits, then 10 000/88 ~ 110 messages can arrive
to the alarm unit within the specified time.

If the messages are of

Since 110 > 10,

thus all the signalling bits will arrive to the alarm
unit, and what is more, at a load level of ~ 10%.

The importance of agreement protocols
Example: brake-by-wire: In this example, for safety reasons,

duplicated brake pedal sensors are applied.

The brakes of each wheel have
separate control nodes.

The nodes inform each other about
their knowledge of the actual sensor
value, and calculate the braking force.

If a node is violated and fails, the corresponding wheel will run free automatically,
and braking force will not be provided.

17
Embedded Information systems, Lecture #2, September 22, 2020

The other three nodes, after observing this situation, recalculate the braking forces, and will
brake safely.

In distributed systems there are several situations where run-time agreements are needed:
time synchronisation, consistency of distributed states, distributed mutual exclusion,
distributed transactions, distributed completion, distributed election, etc.

A further problem is that even in case of errors, an agreement would be needed.

This is not always possible.
Example: Two armies’ problem:
The allied armies, A and B together have more soldiers
than the enemy (E), but separately each has less.

A E B

A and B have decided the attack, but an agreement upon the time is still needed.
The agreement needs communication, e.g. a messenger (M) should be send,

but the messenger can be captured by enemy E, i.e. the communication is not error-free.
If the general of army A sends a messenger to the general of army B with the message:

„Let’s attack tomorrow afternoon at four o`clock”,

an acknowledgement is needed, since the communication channel is not error-free.

(And what is more, it is also possible, that the general of army B sends a message to A with a
different timing proposal.) The problem is obvious:
If M does not return to A, what is the conclusion? If M is captured on the way to B, A will be in

danger, if acts alone.
If M is captured on the way back to A, then B might depart with a given probability,
but A will not, because acknowledgement was not returned.

18
Embedded Information systems, Lecture #2, September 22, 2020

What we can do is to increase the probability of successful agreement.

Impossibility Result: It can be proven by formal methods, that to reach to an agreement
of two or more distributed units in limited time, and through an asynchronous medium,
which is lossy, cannot be guaranteed.

Agreement in case of Byzanthine errors: Example: Synchronisation of clocks:

The position of clock A is 4h00m, and that of B is 4h05m.
Clock C does not operate properly, because communicating with A sends 3h.55m,
and to B 4h10m. This type of error is called Byzanthine error.
In such a situation the agreement is not possible,because both clocks A and B realize

that their value is the arithmetic mean of the two other clocks, thus there is no reason to change!
To filter out a node with Byzanthine error is possible only if at least 3k+1 nodes participate in
the synchronization, where k is the number of nodes having Byzanthine error.
In our case one further correctly operating clock-node (D) is required.

#3

3000

5000

#4

4000

#2

2000

#1

1000

Example: Problem of the Byzanthine generals:

According to the figure, the generals of the “blue” armies try to
agree the total number of soldiers available for a joint action.
In the meantime, it turns out that one of the generals sends wrong
information. (There is a bug in the software.)
The enemy has 5000 soldiers.

The generals of the allied armies inform each other about the number of the available soldiers.
Suppose that they can communicate without any error!

19
Embedded Information systems, Lecture #2, September 22, 2020

#3

3000

5000

#4

4000

#2

2000

#1

1000

At the different nodes the following data are available:
#1: (1K, 2K, xK, 4K),

#2: (1K, 2K, yK, 4K),

#3: (1K, 2K, 3K, 4K),

#4: (1K, 2K, zK, 4K),

where x, y, z are values which differ from
the true values and from each other,
because the general of node #3 sends
wrong data (software bug).

For nodes #1, #2 and #4 this error is not known, only the given data are available.
To check the values, all the nodes send their information vector to the other nodes.

The node with Byzanthine error will send wrong values.

Finally, the information available at the correctly operating nodes (in unit of 1000 soldiers):

#1:
1 2
𝑎 𝑏

𝑦 4
𝑐 𝑑

1 2 𝑧 4
#2:

1 2
𝑒 𝑓

𝑥 4
𝑔 ℎ

1 2 𝑧 4
#4:

1 2
1 2

𝑥 4
𝑧 4

𝑖 𝑗 𝑘 𝑙
The generals of the three properly operating nodes will get the same information from two
nodes, but from the third, from general #3, the information is different.
Their conclusion is 1 2 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 4 , i.e. minimum 7000 soldiers will participate,

and the general of node #3 is the source of wrong information.

Ci

Ti

Di

ai/ri si Ri fi di

20
Embedded Information systems, Lecture #2, September 22, 2020

2. Scheduling
Problem: The processors should execute various tasks with different timing requirements.
The timing conditions can be interpreted using the following figure:

Here ai or ri is the arrival/release/request time,
si is the start time of execution, its finishing time is fi,

di stands for deadline, Ti is the period time,

Di=di-ai is the deadline relative to the request time,

Ci stands for computation time, and Ri=fi-ai is the response time.

1. Periodic scheduling: this is the simplest method: in design time fix time slots are assigned
for the completion of the periodic requests, and this is repeated periodically.

The assignment is typically clock-driven; therefore these types of scheduling are called time-
triggered. They have different versions, but what is common:

schedules are made in design-time, thus their run-time overhead is low.
the decisions concerning

A further feature is that the parameters of the HRT tasks are known and fixed in advance.

Example: To each task there is assigned a frame of 10 ms. 4 functions are implemented:
The first function operates with a periodicity of 50 Hz, i.e. it receives 10 ms in every 20 ms.
The second function operates with a periodicity of 25 Hz, i.e. it receives 10 ms in every 40 ms.
The third function at a rate of 12.5 Hz, i.e. in every 80 ms receives 10 ms.
The fourth function at a rate of 6.25 Hz, i.e. in every 160 ms receives 10 ms.
Obviously, the assignment of the frames can be different; it can be done only in design time.

Such a scheduling can be rather unpleasant and rigid!

21
Embedded Information systems, Lecture #2, September 22, 2020

Comment: In the example above the first function utilises one half of the processor time,

the second the one fourth, the third the one eighth, etc. It worth bringing back the result:
1

2
+
1

4
+
1

8
+. . . → 1

i.e. the number of the functions can be increased to the infinity,

if the required overall processor time is always one half of the previous.

This property was utilised by the designers of the first real-time 1/3 octave spectrum analyser
(Brüel & Kjaer 2131) based on digital filters in 1977!

This device performs 1/3 octave analysis in the frequency range of 1.6 Hz and 20 kHz, in 42 bands.
The hardware is based on octave filters, having at 3 dB attenuation frequency ratio 1:2.
This property is utilised in the following way: imagine an octave filter with a centre frequency
of 16 kHz and sampling frequency of fs=66.667 kHz. If the signal is properly bandlimited,
then the octave filter with a centre frequency of 8 kHz can be successfully operated at a
sampling frequency of fs/2, etc.

The evaluation of the highest frequency range takes one half of the time, all the other ranges
share the second half of the time!

2. Time-shared/round-robin scheduling:
The tasks ready to run are placed into a FIFO (First-In First-Out), and the task first on the list
will get the processor for a fixed amount of time.This time slot is typically few times 10 ms, and

independent of the tasks. If the given task is not completed within the slot,
interrupted, and placed to the last position of the FIFO.

it will be

3. Priority based scheduling:
From the set of tasks ready to run the one having the highest priority will run.
Priority assignment can be performed either in design or in run-time.

22
Embedded Information systems, Lecture #2, September 22, 2020

For simplicity imagine that to every task a different priority level is assigned.

Illustration:
H

M

L

We have one low priority (L=low),

one medium priority (M=medium)

and one high priority (H=high) task.

This assignment happened in design-time. All the tasks start running immediately after

the request, if their priority is the highest among the tasks ready to run.

The response time of the lowest priority task on the figure is: RL=CL+CM+CH

If the medium and/or the high priority task are released periodically, then depending on the
time relations, it might happen, that these tasks will run more than one time during RL.

In a more general case, for a task at priority level 𝑖, the worst-case response time can be

calculated using the following formula:

𝑅𝑖 = 𝐶𝑖 + 𝐼𝑖 = 𝐶𝑖 +
∀𝑘∈ℎ𝑝𝑖

𝑅𝑖
𝑇𝑘

𝐶𝑘

where 𝐼𝑖 is the so-called interference.
The interference time is the total computation
time of those higher priority tasks, which prevent

task 𝑖 to complete its actual run. ∀𝑘 ∈ ℎ𝑝𝑖 refers those tasks, which have higher priority than 𝑖

(hp=higher priority). The sign is the operator of assigning the upper integer. 1.02 = 2,

2.0 = 2. Since in the above formula the unknown 𝑅𝑖 on the left-hand side is present also in the

argument of the highly nonlinear function on the right-hand side, it can be evaluated only
via an iterative procedure:

𝑅𝑖
𝑛+1 = 𝐶𝑖 + 𝐼𝑖 = 𝐶𝑖 +

∀𝑘∈ℎ𝑝𝑖

𝑅𝑖
𝑛

𝑇𝑘
𝐶𝑘

The iteration will stop at step n0 where

𝑅𝑖
𝑛0+1 = 𝑅𝑖

𝑛0

The name of this method in the literature is
Deadline Monotonic Analysis (DMA).

