
Embedded
Information

Systems
Safety-critical systems

Nonconventional modelling

December 1, 2020

1

d5 …d4d3d2d1 u5u4u3u2u1

s(t)

2
Embedded Information systems, Lecture #12 December 1, 2020.

Safety-critical systems
Concepts and requirements of safety-critical systems

- Risk analysis: Tolerable Hazard Rate (THR)
- In case of continuous operation: the rate of hazardous error phenomena per hour;
- In case of discontinuous operation: the probability of the hazardous error phenomena

at the time of calling the function.

- Categorization: Safety Integrity Level (SIL)

SIL Error of safety-critical function/hour

1 10-6<THR<10-5

2 10-7<THR<10-6

3 10-8<THR<10-7

4 10-9<THR<10-8

1 year = 8760 hours.
Assuming SIL4: 108/8760 ≅ 11415 years without error.
If the lifetime is 15 years, then during this time out of ~750 equipment the failure of one
can be expected, since 15*750=11250.

Dependability requirements (Aspects of dependability):
- Reliability: Probability of continuous correct service (until the first failure).

E.g., “After departure the onboard control system shall function correctly for 12 hours”;
- Availability: Probability of correct service (considering repairs and maintenance).
E.g., “Availability of the service shall be 95%”;

- Safety: Freedom from unacceptable risk of harm;

- Integrity: Avoidance of erroneous changes or alterations;
- Maintainability: Possibility of repairs and improvements;

Basis: Partitioning the states of the
system s(t). Correct (U, up) and
incorrect (D, down) state partitions.

Dependability metrics:

3
Embedded Information systems, Lecture #12 December 1, 2020.

Mean values:

d5 …d4d3d2d1 u5u4u3u2u1

s(t)

- MTFF=E{u1} Mean Time to First Failure

- MUT=E{ui} Mean Up Time

- MTTF Mean Time To Failure (Same as previous)
- MDT=E{di} Mean Down Time
- MTTR Mean Time To Repair (Same as previous)
- MTBF=MUT+MDT Mean Time Between Failures

- Availability: a(t)=P{s(t)∈ 𝑈} decreases with time, system may fail

- Asymptotic availability: A=𝑙𝑖𝑚𝑡→∞a(t) A=MTTF/(MTTF+MTTR)

- Reliability: r(t)=P{s(t’) ∈ 𝑈} ∀𝑡′ < 𝑡, system does not fail, →0.

Probability functions:

Component attributes:
- Fault rate: λ(t) Probability that the component will fail in the interval t at time point t,

given that it has been correct until t, is given by (t)t:

𝜆 𝑡 Δ𝑡 = 𝑃{𝑠(𝑡 + Δ𝑡) ∈ 𝐷ȁ𝑠(𝑡) ∈ 𝑈}, ∆𝑡 → 0.

- Reliability of a component based on this definition:

𝜆 𝑡 = −
1

𝑟(𝑡)

𝑑𝑟(𝑡)

𝑑𝑡
, thus 𝑟 𝑡 = 𝑒− 0

𝑡
𝜆 𝑡 𝑑𝑡.

For electronic components:
In the operating period 𝜆 𝑡 = 𝜆.
Assuming exponential distribution:

𝑟 𝑡 = 𝑒−𝜆𝑡

𝑀𝑇𝐹𝐹 = 𝐸 𝑢1 = න
0

∞

𝑟 𝑡 𝑑𝑡 =
1

𝜆

4
Embedded Information systems, Lecture #12 December 1, 2020.

Comment: Initial errors are filtered by testing at the end of the production lines.

Threats to dependability:

- Fault: Adjudged or hypothesized cause of an error.
- Error: State leading to the failure.
- Failure: The delivered service deviates from correct service.

Example of fault → error → failure chain:

Fault Error Failure

Bit flip in the memory due to a

cosmic particle

Reading the faulty memory cell will result

in incorrect value

The robot arm collides with the

wall

The programmer increases a

variable instead of decreasing

The faulty statement is executed, and the

value of the variable will be incorrect

The result of the computation will

be incorrect

Means to improve dependability:
- Fault prevention:

o Physical faults: Good components, shielding, ...
o Design faults: Good design methodology

- Fault removal:
o Design phase: Verification and corrections
o Prototype phase: Testing, diagnostics, repair

- Fault tolerance:
o Operational phase: Fault handling, reconfiguration

- Fault forecasting:
o Measurements and prediction

Avoiding service failures

Estimating faults and their effects

The development process: e.g. V-model, verification, validation, testing, …

5
Embedded Information systems, Lecture #12 December 1, 2020.

Organisation and independence of roles:
The roles:
Designer (analyst, architect, coder, unit tester) (DES);
Verifier (VER);
Validator (VAL);
Assessor (ASS);
Project manager (MAN);
Quality assurance personnel (QUA).

In case of SIL0:
DES, VER, VAL can be the same person,
ASS should be different person;

In case of SIL1 and SIL2:

DES, VER-VAL, and ASS should be
different persons;

In case of SIL3 and SIL4:
MAN, DES, VER-VAL, and ASS should be
different persons, or even VER and VAL.Architecture design to avoid hazard

Fail-safe operation:
(1) fail-stop behaviour (Stopping (switch-off) is a safe state),
(2) fail-operational behaviour (Stopping (switch-off) is not a safe state, service is needed).

Fault tolerance is required.

Typical architectures for fail-stop operation

- Single channel architecture with built-in self-test;
- Two channels: (a) the same program with comparison,

(b) not the same program with independent checker;

Fault tolerance: Providing (safe) service in case of faults (Fail-operational behaviour)
Extra resources: Redundancy: (1) Hardware, (2) Software, (3) Information, (4) Time.
Types of redundancy: cold (inactive in fault-free case), warm (operates with reduced load),
hot (active in fault-free case).

6
Embedded Information systems, Lecture #12 December 1, 2020.

How to use redundancy?

- Hardware design faults (<1%):
- Hardware permanent operational faults (~20%):

- Hardware transient operational faults (~70-80%):

hardware redundancy with design diversity.
hardware redundancy, e.g. redundant

software redundancy (e.g. recovery
time-redundancy (e.g. instruction retry);

information redundancy (e.g. error correcting codes);
from saved state).

processor.

- Software design faults (~10): software redundancy with design diversity

Fault tolerance for hardware permanent faults:
Duplication with diagnostics:

Triple-modular redundancy (TMR):

Masking the failure by majority voting.
Voter is critical (but simple).

N-modular redundancy (NMR): Masking the failure by majority voting.
In mission critical systems surviving the mission time is of primary importance.
Following the mission repair is possible. Avionic on-board devices: 4MR, 5MR, or even 7MR.

Fault tolerance for software faults:
Repeated execution is not effective for design faults. Redundancy with design diversity is
required.

7
Embedded Information systems, Lecture #12 December 1, 2020.

Application of variants:
- redundant software modules with diverse algorithms and data structures,
- different programming language and development tools,
- separated development teams.

N-version programming: active redundancy, parallel execution, majority voting.
If output acceptance range is specified, the voter will check it.
The voter is a critical component (but simple).

Recovery blocks:

passive redundancy, activated only in case of faults.

(1) The primary variant is executed first;
(2) Acceptance check is performed at the

output of the variants;

(If no acceptance test can be performed, then
the method cannot be used.)

(3) In case of detected error another variant is
executed.

Property/Type N-version programming Recovery blocks

Error detection Majority voting, relative Acceptance checking

Execution Parallel Serial

Execution time Slowest variant or time-out Depends on # of faults

Activation of redundancy Always (active) Only in case of fault (p)

of tolerated faults [(N-1)/2] N-1

Error handling Masking Restoration

Comparison:

8
Embedded Information systems, Lecture #12 December 1, 2020.

Reliability Block Diagram

1. Serial system: C1 C2 CNthe components follow each other:

The system is faultless, if all the components are faultless.
The reliability of the system is the product of the reliability of the components:

𝑟𝑆(𝑡) = ς𝑖=1
𝑁 𝑟𝑖 (𝑡). If the fault rate of the components is 𝜆𝑖, then for the system

𝑀𝑇𝐹𝐹 =
1

σ𝑖=1
𝑁 𝜆𝑖

.2. Parallel system: the components are parallelly connected:
C1

C2

CN

The system is faulty, if all the components are faulty.
The probability of faulty behaviour is: (1 – reliability).

1 − 𝑟𝑆 𝑡 = ς𝑖=1
𝑁 (1 − 𝑟𝑖 (𝑡)). If the reliability of the components is the same:

𝑟𝐶 𝑡 , 𝑟𝑆 𝑡 = 1 − (1 − 𝑟𝐶 𝑡)𝑁.then

If the fault rate of the components is 𝜆, then for the system 𝑀𝑇𝐹𝐹 =
1

𝜆
σ𝑖=1
𝑁 1

𝑖
.

3. Composite system: can be calculated component by component:

The availability of the system can be computed from the availability of the components:

𝐴𝑆 = 0.95 ∙ 0.99 ∙ 1 − 1 − 0.7 3 ∙ 1 − 1 − 0.75 2 ∙ 0.9 =

= 0.95 ∙ 0.99 ∙ 0.973 ∙ 0.9375 ∙ 0.9 = 0.77

9
Embedded Information systems, Lecture #12 December 1, 2020.

Embedded Information Systems: 2nd Mid-Term Exam 10.12.2019

1. In a distributed system the clocks are synchronized using a round-trip-communication
based method. The time of the round-trip measured by the clock to be synchronized is
10 𝑚𝑠, while the specified minimum and the maximum of the message forwarding
times within the complete network are 𝑑𝑚𝑖𝑛 = 3 𝑚𝑠 and 𝑑𝑚𝑎𝑥 = 6𝑚𝑠, respectively.
Compute the uncertainty of the clock synchronization (max. 3 points)! This uncertainty
can be reduced by the reference broadcasting synchronization method. Why (max. 1
point)?

Since 𝑑′ and 𝑑 are in the ranges 4 ≤ 𝑑′ ≤ 6, and 4 ≤ 𝑑 ≤ 6, while

𝑑′ + 𝑑 = 10, Therefore the uncertainty of the synchronization is ±1𝑚𝑠.

d’
d

Ci(b)

Ci(a) Cj(a)

Cj(b)

D

Ni Nj Nk

The uncertainty is reduced, because 𝐷 good approximates 𝑑.

2. Please characterize the hidden terminal problem (max. 1 point)!
How operates the RTS/CTS algorithm? What kind of information
should contain the RTS and the CTS messages (max. 2 points)?

ACK

DATA

RTSRTS

CTSCTS

C

D B
A

Sender „A” sends RTS message to “B”
Receiver „B” replies with CTS message
Receiving CTS the sender “A” transmits data

The other nodes are not allowed to transmit
after receiving RTS or CTS!

(NAV = Network Allocation Vector)

RTS

CTS

DATA

ACK

RTS NAV

CTS NAV

A

B

C

D

The address of the node and the
length of the message.

10
Embedded Information systems, Lecture #12 December 1, 2020.

3. Please compare the characteristic features of embedded operating systems with that of
the desktop computers (max. 2 points)! What are the embedded real-time kernels for
(max. 1 point)? How can the real-time operating systems be combined with conventional
ones (max. 1 point)?

4. Using pseudo-code, please explain how the Non-Blocking-Write (NBW) Protocol operates!
What is this protocol for, and under what condition can it be applied (max. 3 points)?

Desk-top OS-s are not suitable in embedded systems, because:
(1) the services are too extensive; (2) non-modular, non-fault tolerant, non-configurable,
non-modifiable; (3) require large memory; (4) not optimized for power consumption;
(5) are not designed for mission-critical application; (6) timing uncertainties are too large.

Embedded RTOS Standard OS
application software application software

middleware middleware
device drivers OS

real-time kernel device drivers

The role of the kernel:
to provide parallel programming environment,
scheduling,
inter-task communication,
handling interrupts,
handling timers, and timing services,
(possibly) memory management

The conventional operating systems is one of the tasks of the real-time one.

Initialization: CCF:=0

Writer:

Start: CCF_old:=CCF;

CCF:=CCF_old+1;

<write into data srtucture>

CCF:=CCF_old+2;

Reader:

Start: CCF_begin:=CCF;

if CCF_begin=odd then goto Start;

<read data structure>

CCF_end:=CCF;

if CCF_end CCF_begin then goto Start;

It is used if the host is event triggered.

11
Embedded Information systems, Lecture #12 December 1, 2020.

5. In case of a communication channel what is the meaning of bit-length (max. 1 point)?
What is called protocol efficiency (max. 1 point)?

6. We have three hardware units in serial. Each has an availability factor of 𝐾 = 0.8.
Applying redundancy we would like to increase the overall availability of the system to
a level of 𝐾’ ≥ 0.8. Please suggest at least one possible solution (max. 3 points)!

The system without redundancy has overall availability of 0.8 ∗ 0.8 ∗ 0.8 = 0.512.

If we duplicate each unit then at unit level we have availability factor of

1 − 1 − 0.8 2 = 0.96,

and for the system level: 0.96 ∗ 0.96 ∗ 0.96 = 0.8847 > 0.8

The term bit length of a channel is used to denote the number of bits that can traverse the
channel within one propagation delay.
For example, if the channel bandwidth is 100 Mbit and the channel is 200 m long,
the bit length of the channel is 100 bits, since the propagation delay of this channel is 1 µs.
Then an upper bound for the data efficiency of any media access protocol in a bus system is
given by:

𝑑𝑎𝑡𝑎 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 <
𝑚

𝑚 + 𝑏𝑙

12
Embedded Information systems, Lecture #12 December 1, 2020.

7. A timed automaton is applied to control heating and cooling. Please explain and
characterize the operation by a state-transition diagram (max. 1 point), by defining
condition/action steps (max. 1 point), and by the time-diagram of the operation (max. 2
points)!

8. Time-Triggered Architecture (TTA) is applied. The nodes communicate via a field-bus.
The bandwidth is 100𝑘𝑏𝑖𝑡/𝑠, the bandwidth utilization is 90%. During the cluster
round, each node would like to send a single frame consisting of 50 bytes to the
remaining nodes. Would it be possible to fit 10 nodes into the cluster, if the nodes
would like to receive/refresh a frame at every 40 𝑚𝑠 (max. 2 points)?

10 nodes would send 400 bits at every 40 𝑚𝑠. 10 ∗
400

0.04
= 105

𝑏𝑖𝑡

𝑠
> 9 ∗ 104

𝑏𝑖𝑡

𝑠
The answer is negative.

𝑇 𝑡

ℎ 𝑡

𝑐 𝑡

𝑑ℎ𝑒𝑎𝑡𝑖𝑛𝑔 𝑑𝑐𝑜𝑜𝑙𝑖𝑛𝑔

𝑑𝑐𝑜𝑜𝑙𝑖𝑛𝑔

20∘

0

1

Condition1/action1: 𝑇(𝑡) ≤ 20 ∧ 𝑐(𝑡) ≥ 𝑑𝑐𝑜𝑜𝑙𝑖𝑛𝑔/𝑐(𝑡) =0.

Condition2/action2: 𝑇(𝑡) ≥ 20 ∧ 𝑐(𝑡) ≥ 𝑑ℎ𝑒𝑎𝑡𝑖𝑛𝑔/𝑐(𝑡) =0.

13
Embedded Information systems, Lecture #12 December 1, 2020.

9. Please explain the polynomial regression problem for the case of a seemingly quadratic
relation, if the number of measured values is N, and the model applies two tunable
parameters! Derive the explicit formulae suitable to calculate the unknown parameters
(max. 3 points)! Please explain why is advantageous to apply quadratic error criteria
and models linear in their parameters together (max. 2 points)!

10.Please explain the method of N-version programming and that of the recovery blocks
(max. 2 points)! Compare the two methods concerning the way of error detection,
program execution, way of redundancy activation, number of tolerated faults and error
handling (max. 2 points)!

For the measured values we have 𝑦𝑛 = 𝑎0 + 𝑎2𝑢𝑛
2 + 𝑤𝑛, where wn denotes additive noise,

𝑛 = 0,1, … , 𝑁 − 1. With vector notation: 𝑧 = 𝑈𝑎 + 𝑤. Using the LS method:

𝑧 =

𝑦0
𝑦1
⋮

𝑦𝑁−1

=

1 𝑢0
2

1 𝑢1
2

⋮ ⋮
1 𝑢𝑁−1

2

𝑎0
𝑎2

+

𝑤0

𝑤1

⋮
𝑤𝑁−1

𝑈𝑇𝑈] =

𝑁
𝑛=0

𝑁−1

𝑢𝑛
2

𝑛=0

𝑁−1

𝑢𝑛
2

𝑛=0

𝑁−1

𝑢𝑛
4

, 𝑈𝑇𝑧 =

𝑛=0

𝑁−1

𝑦𝑛

𝑛=0

𝑁−1

𝑢𝑛
2𝑦𝑛

ො𝑎0
ො𝑎2

=
1

1
𝑁
σ𝑛=0
𝑁−1𝑢𝑛

4 −
1
𝑁
σ𝑛=0
𝑁−1𝑢𝑛

2
2

1

𝑁

𝑛=0

𝑁−1

𝑢𝑛
4 −

1

𝑁

𝑛=0

𝑁−1

𝑢𝑛
2

−
1

𝑁

𝑛=0

𝑁−1

𝑢𝑛
2 1

1

𝑁

𝑛=0

𝑁−1

𝑦𝑛

1

𝑁

𝑛=0

𝑁−1

𝑢𝑛
2𝑦𝑛

Because results
in linear set of
equation.

14
Embedded Information systems, Lecture #12 December 1, 2020.

11.Please characterize the “function queue scheduling” method (max. 2 points)! Using
this method: What will be the worst-case response time (max. 1 point)?

12.By listing the steps of the corresponding program, please characterize the Positive
Acknowledgement or Retransmission (PAR) protocol (max. 2 points)! How and when the
communication error is detected (max. 1 points)?

void interrupt A_Handler() { Handle_HW_A();
PutFunction(Service_A); }
void interrupt B_Handler() { Handle_HW_B();
PutFunction(Service_B); }
void interrupt C_Handler() { Handle_HW_C();
PutFunction(Service_C); }
void Service_A();
void Service_B();
void Service_C();
void main() {

while (TRUE){
while (IsFunctionQueueEmpty());

CallFirstFromQueue();
}

}

maximum response time: execution time of the
longest task + the execution time of the ith task.

hardware is handled with interrupt
inter-task communication with shared variables: no
problem.
Between interrupt and task: pre-emption
(shared variables may cause problems)
development: easy
The service order from the queue can be: (1)
FIFO, (2) priority based
drawback: non preemptive
processor utilization:100%

(1) The client at the sender’s site initiates the
communication.

(2) The receiver has the authority to delay the sender via the bi-directional comm. channel.
(3) The communication error is detected by the sender, and not by the receiver.

The receiver is not informed when a communication error has been detected.
(4) Time redundancy is used to correct a communication error, thereby
increasing the protocol latency in case of errors.

15
Embedded Information systems, Lecture #12 December 1, 2020.

Program of the sender:
(1) The sender initializes a retry counter to zero.
(2) The sender starts a local time-out interval.
(3) The sender sends the message to the receiver.
(4) The sender receives an acknowledgement message from the receiver within the

specified time-out interval.
(5) The sender informs its client about the successful transmission, and duly terminates.
If the sender does not receive a positive acknowledgement message from the receiver
within the specified time-out interval:
(a) The sender checks the retry counter to determine whether the given maximum number

of retries has already been exhausted.
(b) If so, the sender aborts the communication, and informs its client about the failure.
(c) If not, the sender increments the retry counter by one, and returns to (2).

Program of the receiver:
(1) If new message arrives at the receiver, the receiver checks whether this message has
already been received.
(2) If not, the receiver sends an acknowledgement message to the sender, and delivers the
message to its client.
(3) If yes, it just sends another acknowledgement message back to the sender.

(In this case the previous acknowledgement message has arrived at the sender out of the
specified time-out interval or failed to arrive).

16
Embedded Information systems, Lecture #12 December 1, 2020.

Nonconventional modelling
Hybrid systems: Hybrid systems combine continuous and discrete dynamics.

Sometimes they are called modal systems, because controlled by a Finite State Machine (FSM),
they are switched into different modes of operation where they behave as continuous systems.

Concerning the mode changes, hybrid systems behave like discrete systems, but between these
mode changes time dependency is present.
Discrete systems:
Example:
Number of cars in a
parking house (max. M,
which is the capacity of
the house)

Condition1/action1: 𝑢𝑝 ∧ ¬𝑑𝑜𝑤𝑛 ∧ 𝑐 < 𝑀/𝑐 + 1
Condition2/action2: 𝑑𝑜𝑤𝑛 ∧ ¬𝑢𝑝 ∧ 𝑐 > Τ0 𝑐 − 1

Example: Thermostat with hysteresis
Condition1/action1: Temperature ≤ 18 Co/heating on

Condition2/action2: Temperature ≥ 22 Co/heating off

System input: Temperature of the environment
System output: heating on/heating off commands:

The corresponding time functions: ℎ(𝑡) = 1, ℎ(𝑡) = 0.

Timed automaton:
Example: Thermostat with timing instead of hysteresis: this is solved by the so-called timed
automaton, which is the simplest nontrivial hybrid system.

17
Embedded Information systems, Lecture #12 December 1, 2020.

These automata, behind their states measure the evolvement of time for a given value of
duration: ∀𝑡 ∈ 𝑑𝑚, and the derivative of the clock function is ሶ𝑐 𝑡 = 𝑎, i.e. its value
changes with the evolvement of time.

Condition1/action1: 𝑇(𝑡) ≤ 20 ∧ 𝑐(𝑡) ≥ 𝑑𝑐𝑜𝑜𝑙𝑖𝑛𝑔/𝑐(𝑡) =0.

Condition2/action2: 𝑇(𝑡) ≥ 20 ∧ 𝑐(𝑡) ≥ 𝑑ℎ𝑒𝑎𝑡𝑖𝑛𝑔/𝑐(𝑡) =0.
Comments:
(1) ℎ(𝑡) and 𝑐(𝑡) can be considered as tools of state refinement.They define some details of the

operation (Modal systems).
(2) On the time diagram 𝑇 > 20 𝐶°. If it would be lower, then immediately the heating mode

would start. This is served by the initial condition of the clock.
Example: Automated Guided Vehicle, AGV

ሶ𝑥 𝑡 = 𝑣 𝑡 cos(𝜑 𝑡)

ሶ𝑦 𝑡 = 𝑣 𝑡 sin 𝜑 𝑡

ሶ𝜑 𝑡 = 𝜔(𝑡)

Two-level control: The AGV runs
with a constant speed of 10 km/h.
It has four operational mode: left,
right, straight, stop.

To every mode of operation, a
separate differential equation
is assigned.

18
Embedded Information systems, Lecture #12 December 1, 2020.

ሶ𝑥 𝑡 = 𝑣 𝑡 cos(𝜑 𝑡)

ሶ𝑦 𝑡 = 𝑣 𝑡 sin 𝜑 𝑡

ሶ𝜑 𝑡 = 𝜔(𝑡)

ሶ𝑥 𝑡 = 10cos(𝜑 𝑡)

ሶ𝑦 𝑡 = 10 sin 𝜑 𝑡

ሶ𝜑 𝑡 = 0

ሶ𝑥 𝑡 = 10cos(𝜑 𝑡)

ሶ𝑦 𝑡 = 10 sin 𝜑 𝑡

ሶ𝜑 𝑡 = 𝜋

ሶ𝑥 𝑡 = 10cos(𝜑 𝑡)

ሶ𝑦 𝑡 = 10 sin 𝜑 𝑡

ሶ𝜑 𝑡 = −𝜋

ሶ𝑥 𝑡 = 0
ሶ𝑦 𝑡 = 0
ሶ𝜑 𝑡 = 0

straight: left: right: stop:original:

Four different modesThe sensor of the AGV:
a set of photodiodes perpendicular to
the direction of the movement.

Its output signal: 𝑒 𝑡 = 𝑓 𝑥 𝑡 , 𝑦 𝑡 .

If 𝑒 𝑡 > 0, then it deviates to the left,
if 𝑒 𝑡 < 0, then to the right.

𝑒1 > 0, 𝑒2 > 0The control law of the AGV:

if 𝑒(𝑡) < 𝑒1, then go straight;
if 0 < 𝑒2 < 𝑒 𝑡 , then go to right;
if 0 > −𝑒2 > 𝑒(𝑡), then go to left.

The set of the input events: 𝑢 𝑡 ∈ {𝑠𝑡𝑜𝑝, 𝑠𝑡𝑎𝑟𝑡, 𝑎𝑏𝑠𝑒𝑛𝑡}.
Since stop and start are instantaneous events, absent
gives the interpretation for other time instants.

State-transition generating conditions:

start = 𝑣 𝑡 , 𝑥 𝑡 , 𝑦 𝑡 , 𝜑(𝑡) ȁ𝑢 𝑡 = 𝑠𝑡𝑎𝑟𝑡
go straight = 𝑣 𝑡 , 𝑥 𝑡 , 𝑦 𝑡 , 𝜑(𝑡) ȁ𝑢 𝑡 ≠ 𝑠𝑡𝑜𝑝, 𝑒(𝑡) < 𝑒1

go right = 𝑣 𝑡 , 𝑥 𝑡 , 𝑦 𝑡 , 𝜑(𝑡) ȁ𝑢 𝑡 ≠ 𝑠𝑡𝑜𝑝, 𝑒2 < 𝑒(𝑡)
go left = 𝑣 𝑡 , 𝑥 𝑡 , 𝑦 𝑡 , 𝜑(𝑡) ȁ𝑢 𝑡 ≠ 𝑠𝑡𝑜𝑝, −𝑒2 > 𝑒(𝑡)

stop = 𝑣 𝑡 , 𝑥 𝑡 , 𝑦 𝑡 , 𝜑(𝑡) ȁ𝑢 𝑡 = 𝑠𝑡𝑜𝑝

19
Embedded Information systems, Lecture #12 December 1, 2020.

Qualitative modelling and control I.
Example:The design of such a controller which keeps the level of the liquid in the second tank
at a prescribed level.

This is possible by setting u(t) at pump1 properly.

Problems of the quantitative model:
a) The physical limits are not modelled;
b) The equations are linearized;
c) Numerical values are inaccurate and change with time.

Qualitative Reasoning: Only the orientation of the quantities is considered.
Possible “values”: −, 0, + .
The basic physical
constraints are kept!

If at branching of a node the liquid flows out in two
directions, then through the third tube the liquid
should flow in.

The qualitative value of a quantity “Q” with respect to “a”: 𝑄 𝑎

The qualitative value of the change of a quantity “Q” is the qualitative derivative:

𝛿𝑄 𝑎, 𝛿2𝑄 𝑎, …

20
Embedded Information systems, Lecture #12 December 1, 2020.

Operations: 𝑖𝑛𝑣𝑒𝑟𝑡 𝐴 : Changes the sign.
𝑣𝑜𝑡𝑒 𝐴1, 𝐴2, … , 𝐴𝑛 : Gives back the value in majority.

Qualitative control of the level of tank2: denotes the level relative to the desired value: 𝐿2

[𝐿2] = + : higher than required. [𝛿𝑈] = +: increase pumping rate.

[𝐿2] = 0 : equals. [𝛿𝑈] = 0: pumping rate is appropriate.

[𝐿2] = − ∶ lower than required. [𝛿𝑈] = −: decrease pumping rate.

[𝛿𝑈] = +: a fixed amount of increase of the pumping rate: Δ𝑈.

The qualitative values exist only at the sampling instants.
Between sampling instants there is no level detection.

𝐿2 𝑘 = 𝑎𝑐𝑡𝑢𝑎𝑙 𝑙𝑒𝑣𝑒𝑙 𝑘 − 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑙𝑒𝑣𝑒𝑙 𝑘

A very simple control law: 𝑄1 ฎ=
𝑑𝑒𝑓

𝛿𝑈 𝑘 = 𝑖𝑛𝑣𝑒𝑟𝑡 𝐿2 𝑘

Comment:

If 𝛥𝑈 is larger, then larger overshoot and oscillation can be expected, but the reaction is faster.
If 𝛥𝑈 is smaller, then the overshoot and the oscillation will be smaller, but also the reaction is
slower.
Improved controllers: Quantities considered:
Level error of tank2: +, 0, −

Speed of the level change of tank2: +, 0, −

Speed of the level change of tank1: +, 0, −

3 ∗ 3 ∗ 3 = 27

21
Embedded Information systems, Lecture #12 December 1, 2020.

𝑄2 ฎ=
𝑑𝑒𝑓

𝛿𝑈 𝑘 = 𝑖𝑛𝑣𝑒𝑟𝑡 𝑣𝑜𝑡𝑒 𝑣𝑜𝑡𝑒 𝐿2 𝑘 , 𝛿𝐿2 𝑘 , 𝛿𝐿1 𝑘
𝑘

𝑄3 ฎ=
𝑑𝑒𝑓

𝛿𝑈 𝑘 = 𝑖𝑛𝑣𝑒𝑟𝑡 𝑣𝑜𝑡𝑒 𝐿2 𝑘 , 𝛿𝐿2 𝑘 , 𝛿𝐿1 𝑘
𝑘

Determination of [δL1]: 𝛿𝐿1 = 𝐿2 𝑘 − 𝐿2 𝑘−1 − 𝐿2 𝑘−1 − 𝐿2 𝑘−2 = 𝛿2𝐿2

For the 27 combinations of the possible qualitative values the outputs of the three controllers
can be summarized in the table below:

𝑳𝟐 𝜹𝑳𝟐 𝜹𝑳𝟏 𝑸𝟏 𝑸𝟐 𝑸𝟑

1 + + + - - -

2 + + 0 - - -

3 + + - - 0 -

4 + 0 + - - -

5 + 0 0 - - -

⋯

20 - + 0 + 0 0

⋯

27 - - - + + +

Comments:

(1) A rule-based system was also elaborated
for this problem.
It could not handle the case: Tank2 shows a
constant value above the required level, and
the level of Tank1 lowers.

(2) Setting sampling rate and the value of ΔU is
a critical issue, and a crucial decision of the
designer.

