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1. Introduction (cont.) 

Real-time quantities, variables, images 

Real-time variables (RT entities/quantities): state variables of relevance for the given purpose, like the flow 

of a liquid in a pipe, the set-point of a control loop. It has static attributes that do not change during the 

lifetime of the RT variable, like the name, the type, the value domain, the maximum rate of change, and has 

dynamic attributes that change with time, like the value set at a point of time. Every RT variable is in the 

sphere of control (SOC) of a subsystem that has the authority to set the value of the RT variable. Outside its 

SOC the RT variable can only be observed, but not modified. For this very reason, it is a must to measure the 

proper operation of an actuator. An RT variable can have a discrete value set (discrete RT variable) or a 

continuous value set (continuous RT variable). A discrete RT variable can be undefined. Example: a garage 

door while it is opening is neither open, nor closed. In contrast, the set of values of a continuous RT variable 

is always defined.  

Observations: the information concerning an RT variable at a given point in time. 

Observation =<name, observation time, value> 

Observations in distributed systems: if the global time is not available, then the usability of timestamps is 

limited, therefore the observation time is often replaced by the arrival time. This can cause considerable 

error in state estimation.  

Indirect observations: In some situations, the direct observation of an RT variable is not possible. As an 

example, consider the temperature measurement within a slab of steel. The internal temperature 

measurement is replaced by measurement on the surface together with the mathematical modelling of the 

heat transfer. 

Such measurements are called indirect observations. 

State observations: Every observation is self-contained because it carries an absolute value. In many cases 

equidistant sampling is applied, i.e. periodic time-triggered readings.  

Event observations: an event is a state-change at a point of time. Since an observation is also an event, 

therefore it is not possible to observe and event in the controlled object directly. Problems: If the 

observation is time-triggered, the time of event occurrence is the rising edge of the interrupt signal. Any 

delayed response to this interrupt signal will cause an error in the timestamp of the event observation. If the 

event observation is time triggered, then the time of the event occurrence can be at any point within the 

sampling interval. Since the value of an event observation contains the difference between the old and the 

new state, the loss or duplication of a single event observation may cause problems. An event observation is 

sent if the RT variable changes its value. The latency of the detection of a failure at the observer node cannot 

be bounded, because if no new message arrives, the receiver assumes that the RT variables did not change. 

RT images: it is the picture of an RT variable within the computer program, if it is accurate copy of the RT 

variable both in the value and the time domains. We define the notion of temporal accuracy. While an 

observation records a fact that remains valid forever, since it was observed at a given point of time, the 

validity of an RT image is time-dependent, and will be invalid with time. An RT image can be an up-to-date 

state observation, or an up-to-date event observation, or a state estimation.  

RT objects: An RT object is analogous to a container within a node of a distributed computer system holding 

an RT image or an RT variable. A given granularity RT clock is associated with every RT object. Whenever 

this clock ticks, an object procedure is activated.  If this is periodic, we are talking about a synchronous RT 

object. If within a distributed system the copies of an RT object provide specific local services, we are 

talking about distributed RT objects. A good example is the global clock, because every node has a local 

copy, which operates with a prescribed precision.  

Temporal accuracy: The time of the observation and the time of the use of this information differ, this latter 

is delayed. This delay is caused by the time needed to create a message containing the information, the time 
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of sending this message to the receiver node, and the time to decode the message. If during this delay the 

information sent loses its validity, then the observation cannot be utilised directly. We define temporal 

accuracy by an interval of duration accuracy, during which the error in value is still tolerable. As an example 

let us investigate the required temporal accuracy intervals of the RT images that are used in a controller of an 

automobile engine.  

RT image within the computer max. change accuracy temporal accuracy 

Piston position 6000 rpm 0.1 3sec 

Accelerator pedal position 100%/sec 1% 10 msec 

Engine load 50%/sec 1% 20 msec 

Temperature of oil and water 10%/minute 1% 6 sec 

There is a difference of more than six orders of magnitude in the temporal accuracy of these RT images. 

Obviously, the position of the piston within the cylinder requires the use of state estimation.  

The time between of observation and utilisation in case of a variable 𝑣(𝑡) causes the following value error: 

𝑒𝑟𝑟𝑜𝑟(𝑡) ≅
𝑑𝑣(𝑡)

𝑑𝑡
[𝐶(𝑡𝑢𝑠𝑒) − 𝐶(𝑡𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛)], 

𝐶(𝑡) stands for the clock function of the corresponding node. 

If we use image of specified temporal accuracy, the worst-case error: 

𝑒𝑟𝑟𝑜𝑟 = 𝑚𝑎𝑥⏟ |
𝑑𝑣(𝑡)

𝑑𝑡
|

∀𝑡

𝑑𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 

If the design is properly balanced, this error should be in the range of measurement error of the magnitude. 

To get calculations of acceptable accuracy, we must meet the requirement:  

[𝐶(𝑡𝑢𝑠𝑒) − 𝐶(𝑡𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛)] ≤ 𝑑𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦. 

Example: Validity of an observation: On September 14, 1993, a Lufthansa A320 overran the runway at 

Warsaw Airport, killing a crew member and a passenger, and injuring 54. The validity problem related to 

the fact, that the A320 control logic required the airplane to be settled on both main landing gears before 

the brakes, ground spoilers and thrust reversers can be activated. Due to the side-wind the airplane did not 

settle on its second main landing gear for nine seconds, and was travelling to fast: → The instrumentation 

logic was wrong. 

A periodically updated RT image is called parametric or phase insensitive, if  

𝑑𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 > (𝑑𝑢𝑝𝑑𝑎𝑡𝑒 +𝑊𝐶𝐸𝑇𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑖𝑛𝑔). 

Here message forwarding includes the composition of the message at the sending node, the communication, 

and the message decoding at the receiving node. A parametric RT image can be used any time without 

considering the phase conditions, because the update always arrives in time.  

A periodically updated RT image is called phase sensitive, if  

𝑊𝐶𝐸𝑇𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑖𝑛𝑔 < 𝑑𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 < (𝑑𝑢𝑝𝑑𝑎𝑡𝑒 +𝑊𝐶𝐸𝑇𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑖𝑛𝑔) 

In this case it is not sure that the update will arrive within the interval of the temporal accuracy, therefore the 

time of update and use should be monitored.  

Example: Imagine that the information about the accelerator pedal needs 𝑊𝐶𝐸𝑇𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑖𝑛𝑔 =

4𝑚𝑠. If 𝑑𝑢𝑝𝑑𝑎𝑡𝑒 < 6𝑚𝑠, then the Rt image is parametric, if e.g. 𝑑𝑢𝑝𝑑𝑎𝑡𝑒 = 8𝑚𝑠, then it is phase 

sensitive.   

Phase sensitivity can be avoided by proper updating frequency, or by applying state estimation.  
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Important comment: The updating frequency here is completely different from the sampling frequency 

required when we address the reproducibility of continuous signals from its samples. It is a quite different 

problem! However, it might happen that both conditions are to be considered! 

 

Examples of specific time relations in embedded systems: 

- relativistic effect: the time conditions of the communication through channels may change the order of 

the event at the receiving node:  

The figure above illustrates, that in the case of client Q the message about event E2 precedes the message 

about event E1, which occurred earlier. Such a situation might cause problems, if the decisions made at 

client Q depend on the order of the messages. If the events E1 and E2 are not independent, after the 

arrival of the message about E2 to server Q, it might be reasonable to propose to wait for all those 

messages which were sent possibly at the same time instant or earlier as the message about E2. This 

waiting time is called action delay, which is the worst-case value of the possible message forwarding 

time for the case described above. The necessary action delay can be calculated if the minimum and the 

maximum of the message forwarding time is known, i.e. for the message forwarding time the following is 

valid:  

maxmin ddd  . 

If the global time is known for the nodes, i.e. a timestamp can be attached to the massage, the client can 

calculate, based on the time of the arrival and the timestamp, what is the worst-case arrival time for all 

simultaneous or previous messages. In this case the arrival time will be the sum of the sending time and 

𝑑𝑚𝑎𝑥, and therefore the action delay equals 𝑑𝑚𝑎𝑥. 

If for the nodes considered the global time is not known or their local clocks are not synchronized, the 

use of timestamps might cause problems, therefore only the time of the arrival is to be used to determine 

the action delay. Since the actual message forwarding time cannot be measured, let us suppose the 

shortest forwarding time 𝑑𝑚𝑖𝑛 before the arrival, then we must wait 𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛  before starting the 

action. However, since it might happen, that the arrived message was travelling for the worst-case value 

𝑑𝑚𝑎𝑥, then relative to the sending time till the action, there will be a waiting time of 2𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛 i.e. 

the action delay is 2𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛. 

Comments: 

1. The second case might be far more disadvantageous, if 𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛 is large. It worth keeping it low. 

2. Certain communication protocols may have large 𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛  differences: for example for a token 

controlled bus, if the token round takes 10 𝑚𝑠, and the message forwarding is 1 𝑚𝑠, then 𝑑𝑚𝑎𝑥 =
11𝑚𝑠, and 𝑑𝑚𝑖𝑛 = 1𝑚𝑠, because in the worst-case situation the sending node should wait 10 𝑚𝑠 for 

the token, and then send the message. 

t    t                t                           t 

event E2  

event E1  

P client    A server        B server        Q client 
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3. If we wait with the action as above, then for the given node it can be stated, that relative to the 

message arrived, all the simultaneously or previously sent messages are arrived, or will never arrive. 

This relation is called permanence, and such a message is called permanent.  

4. In case of irrevocable actions, neglecting the action delay/permanence can have serious consequences. 

Imagine a shooter with a machine gun or a catapulting pilot.  

5. In case of embedded systems the communication of the different nodes involves the technological 

devices: the changes due to the operation of actuators are detected by sensors. The physical processes 

among the actuators and the sensors act as hidden communication channels the timing properties of 

which must be remembered while we are calculating action delay.  

 Example: On the figure below the nodes A, B, C and D operate using processors. A: alarm monitor, 

B: actuator (setting of the valves), C: sensor (e.g. pressure or level), D: workstation of the operator. 

 If the alarm monitor receives messages from two other nodes, then the order of these messages is not 

indifferent. If the operator would like to prevent the action of the alarm monitor in case of exceeding 

the limit, then this message should arrive earlier to the alarm unit, i.e.:  

𝑡𝐷𝐴<𝑡𝐷𝐵 + 𝑡𝐵𝐶 + 𝑡𝐶𝐴 

 Otherwise the alarm unit will act, unless action delay is applied. 

 Comments:  

1. In 1986 the nuclear accident in Chernobyl was the consequence of an experiment on the 

technological process, during which the automatic protecting mechanisms were switched off.  

2. The green line indicates hidden communication channel. 

 

 

 

 

 

 

 

6. The value of the action delay may cause problems concerning the validity of the sent information: a 

measured value can become easily invalid, if it varies relatively fast.  

- Idempotency: If – to improve fault tolerance - the very same message arrives several times to a 

particular node, then this set of messages is called idempotent, if the effect is the same as in the case of a 

single one. This concept is important, because if the message is only a change, then its multiple 

application will result in multiple corrections, while the intention was only a single one.  Example: setting 

the valve to 45 (state message)  changing the valve by 5 (event message).   

- Programmable voltage divider:  

 

U(t) 

r 
 

 

R 

𝑈0(t) 

D 

A 

C 

B 
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𝑈(𝑡) = 𝑈0(𝑡)
𝑅

𝑟 + 𝑅
, 𝑖(𝑡) =

𝑈0(𝑡)

𝑟 + 𝑅
, 𝑈(𝑡) = 𝑖(𝑡)𝑅 

 

R should be programmable! Let us replace R by the programmable unit below! 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

The response of this system, due to the unavoidable delays, is: 𝑈(𝑡) = 𝑅𝑖(𝑡 − Δ𝑡). If 

𝑈0 is a step value, then 𝑖(𝑡 = 0) =
𝑈0

𝑟
, since: 𝑈(𝑡 = 0) = 0. After ∆𝑡 the current will 

reach 

𝑈(𝑡 = ∆𝑡) = 𝑅
𝑈0

𝑟
, 𝑖(𝑡 = ∆𝑡) = (𝑈0 − 𝑅

𝑈0

𝑟
)
1

𝑟
= (1 −

𝑅

𝑟
)
𝑈0

𝑟
. 

After another ∆𝑡 the current steps in, resulting in: 

𝑈(𝑡 = 2∆𝑡) = 𝑅 (1 −
𝑅

𝑟
)
𝑈0
𝑟
, 𝑖(𝑡 = 2∆𝑡) = [𝑈0 − 𝑅 (1 −

𝑅

𝑟
)
𝑈0
𝑟
]
1

𝑟
= [1 −

𝑅

𝑟
+ (
𝑅

𝑟
)
2

]
𝑈0
𝑟

 

It can be seen that at ∆𝑡 the voltage will increase, while the current decreases, at 2∆𝑡 the voltage decreases, 

and the current increases. The magnitude of the growth and the decrease is influenced by 
𝑅

𝑟
. After 𝑛∆𝑡, if 

𝑅

𝑟
< 1: 

𝑈(𝑡 = 𝑛∆𝑡) = 𝑅 [1 − (
𝑅

𝑟
) + (

𝑅

𝑟
)
2

∓⋯± (
𝑅

𝑟
)
𝑛−1

]
𝑈0
𝑟 𝑛→∞
→   𝑈0

𝑅

𝑟 + 𝑅
 

 

𝑖(𝑡 = 𝑛∆𝑡) = [1 − (
𝑅

𝑟
) + (

𝑅

𝑟
)
2

∓⋯∓ (
𝑅

𝑟
)
𝑛

]
𝑈0
𝑟 𝑛→∞
→   

𝑈0
𝑟 + 𝑅

. 

 

Here we utilized the properties of the geometric series. Both the current and the voltage reach their steady 

state by a decreasing magnitude oscillation. This process is slower, if the ratio 
𝑅

𝑟
 is closer to one. In case of 

equality the oscillation is undamped. If 
𝑅

𝑟
> 1, then the magnitude of the oscillation will increase with time.  

Comments: 

1. The above example emphasises the fact of a delay. The magnitude of the delay here does not influence 

the amplitudes, because the components are resistive. In case of capacitive or resistive components the 

magnitude of the voltage and current values would depend on the delay. 

2. In this example, the stability of the system is a function of the ratio of the resistances. 

 

0U

𝑖(𝑡) 

A/D D/A r 

𝑅

𝑟
 

𝑈(𝑡) = 𝑖(𝑡)𝑅 

µP, DSP, “cloud”, … 

? 
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- Event triggered (ET) and time triggered (TT) systems: 

The event triggered systems execute the program associated with the event immediately after the arrival 

of the request. With this approach, we can get good response times, but if the number of (almost) 

simultaneous events increase, the throughput/capacity of the system might be insufficient, therefore to 

meet the deadlines will be impossible. Within the time-triggered systems a separate time-slot is assigned 

to every task in design time, therefore in the case of a priori known response times, the program 

execution can be guaranteed.  

Example: A technological process is supervised by 10 nodes. Each node monitors 40 binary signals 

(alarm signals, e.g. limit crossings, etc.). The communication of the nodes is solved via a bus. To this bus 

a system-level alarm unit is also connected. The speed of the bus is 100 kbit/s.  The monitoring nodes 

should send an alarm message to the alarm unit within 100 ms.  

 

 

 

 

 

 

 

Event triggered operation: ET/CAN protocol is applied. The shortest message is one byte. According to 

the protocol the message will contain: 44 bits overhead, 1-byte data, followed by a 4-bit length inter-

message gap. The total size is 56 bits. 100 kbit/s means, that within 100 ms 10 000 bits can get through. If 

the messages are of 56 bits, then 10 000/56 ~ 180 messages can arrive to the alarm unit within the 

specified time. Since 180 < 400, therefore it is not possible to send all the possible changes, the 

communication channel for ~180 simultaneous messages will completely saturate. 

Time triggered operation: TT/CAN protocol is applied. The nodes periodically send all the signalling 

bits to the alarm unit. This can be performed for every 40 binary signals using a single message. 

According to the protocol the message will contain: 44 bits overhead, 5-byte data, followed by a 4-bit 

length inter-message gap. The total size is 88 bits. 100 kbit/s means, that within 100 ms 10 000 bits can 

get through. If the messages are of 88 bits, then 10 000/88 ~ 110 messages can arrive to the alarm unit 

within the specified time. Since 110 > 10, therefore all the signalling bits will arrive to the alarm unit, and 

what is more, at a load level of ~ 10%. 

 

Alarm unit 

Technological process 

…       nodes 1-10      … 
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1. Introduction (cont.) 

- The importance of agreement protocols 

Example: brake-by-wire: 

 

 

 

 

 

 

 

 

In this example, for safety reasons, duplicated brake pedal sensors are applied. The brakes of each wheel 

have separate control nodes. The nodes inform each other about their knowledge of the actual sensor value, 

and calculate the braking force. If a node is violated and fails, the corresponding wheel will run free 

automatically, and braking force will not be provided. The other three nodes, after observing this situation, 

recalculate the braking forces, and will brake safely.  

In distributed systems there are several situations where run-time agreements are needed: time 

synchronisation, consistency of distributed states, distributed mutual exclusion, distributed transactions, 

distributed completion, distributed election, etc. A further problem is that even in case of errors, an 

agreement would be needed. This is not always possible.  

Example: Two armies’ problem: The allied armies, A and B together have more soldiers than the enemy, 

but separately each has less. A and B have decided the attack, but an agreement upon the time is still needed. 

The agreement needs communication, e.g. a messenger (M) should be send, but the messenger can be 

captured by enemy E, i.e. the communication is not error-free.  

If the general of army A sends a messenger to the general of army B 

with the message: „Let’s attack tomorrow afternoon at four 

o`clock”, an acknowledgement is needed, since the communication 

channel is not error-free. (And what is more, it is also possible, that 

the general of army B sends a message to A with a different timing 

proposal.) 

The problem is obvious: 

-   If M does not return to A, what is the conclusion? If M is captured on the way to B, A will be in danger, 

if acts alone. If M is captured on the way back to A, then B might depart with a given probability, but A 

will not, because acknowledgement was not returned.  

- If M returns to A, there is a given probability that B will not depart, because B does not know whether the 

messenger returned. To avoid such a problem B might send his own messenger to A to check the arrival 

of the acknowledgement.  

If we send newer messengers, the probability of an acknowledgement will increase, however the problem 

will not be solved, because there is always a finite probability of capturing the messenger.  

Impossibility Result: It can be proven by formal methods, that to reach to an agreement of two or more 

distributed units in limited time, and through an asynchronous medium, which is lossy, cannot be 

guaranteed. What we can do: to increase the probability of the agreement.  

 

duplicated 
brake pedal 

sensor 

Nodes 

Communication 

A E B 
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Agreement in case of Byzanthine errors: 

Example: Synchronisation of clocks:  

The position of clock A is 4h00m, and that of B is 4h05m. Clock C does not operate properly, because 

communicating with A sends 3h.55m, and to B 4h10m. This type of error is called Byzanthine error. In such 

a situation the agreement is not possible, because both clocks A and B realize that their value is the 

arithmetic mean of the two other clocks, thus there is no reason to change. To filter out a node with 

Byzanthine error is possible only if at least 3k+1 nodes participate in the synchronization, where k is the 

number of nodes having Byzanthine error. In our case one further correctly operating clock-node (D) is 

required. 

Example: Problem of the Byzanthine generals:  

According to the figure below, the generals of the “blue” armies try to agree the total number of soldiers 

available for a joint action. In the meantime it turns out that one of the generals sends wrong information 

(there is a bug in the software). The enemy has 5000 soldiers. 

 

 

 

 

 

 

The generals of the allied armies inform each other about the number of the available soldiers. Suppose that 

thez can communicate without any error. At the different nodes the following data are available:  

#1: (1K, 2K, xK, 4K), #2: (1K, 2K, yK, 4K), #3: (1K,2K,3K,4K), #4: (1K, 2K, zK, 4K), where x, y, z are 

values which differ from the true values and from each other, because the general of node #3 sends wrong 

data (software bug). For nodes #1, #2 and #4 this error is not known, only the given data are available.  

To check the values, all the nodes send their information vector to the other nodes. The node with 

Byzanthine error will send wrong values. Finally the information available at the correctly operation nodes 

(in units of 1000 soldiers): 

#1: [
1 2
𝑎 𝑏

𝑦 4
𝑐 𝑑

1 2 𝑧 4
]  #2: [

1 2
𝑒 𝑓

𝑥 4
𝑔 ℎ

1 2 𝑧 4
]  #4: [

1 2
1 2

𝑥 4
𝑧 4

𝑖 𝑗 𝑘 𝑙
] 

The generals of the three properly operating nodes will get the same information from two nodes, but from 

the third, from general #3, the information is different. Their conclusion is  [1 2 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 4], i.e. 

minimum 7000 soldiers will participate, and the general of node #3 is the source of wrong information. 

Hard RT Systems versus Soft RT Systems: 

•  hard real-time system (HRT): which must produce the result at the correct instant, because if we do not 

meet the time limitation, it might result in catastrophic consequences. (See e.g. the electronic control of 

vehicles).  

•  soft real-time system (SRT), online system: the result hase value also if we do not meet the time 

limitation, only the quality of the service will degrade (See e.g. transaction processing systems).  

 

 

#3 
3000 

5000 

#4 
4000 

#2 
2000 

#1 
1000 
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Characterisation of HRT and SRT systems:  

characteristic hard real-time soft real-time (on-line) 

response time hard-required soft-desired 

peak-load performance predictable degraded 

control of pace environment computer 

safety often critical non-critical 

size of data files small/medium large 

redundancy type active checkpoint-recovery 

data integrity short-term long term 

error detection autonomous user assisted 

•  Response time: In case of HRT systems often int he order of millisceconds or less, preclude direct 

human intervention during normal operation and in critical situations. A HRT system must be highly 

autonomous to maintain safe operation of the process. In contrast, the response time requirements of 

SRT and on-line systems are often in the order of seconds. Furthermore, if a deadline is missed in a 

SRT system, no catastrophe can result.  

•  Peak-load performance: In a HRT system, the peak-load scenario must be well-defined. It must be 

guaranteed by design that the computer system meets the specified deadlines in all situations, since the 

utility of many hard RT applications depend on their predictable performance during rare event 

scenarios leading to peak load. This is in contrast to the situation in a SRT system, where the average 

performance is important, and a degraded operation in a rarely occurring peak load case is tolerated for 

economic reasons.  

•  Control of pace: A HRT system must remain synchronous with the state of the environment (the 

controlled object and the human operator) in all operational scenarios. It is thus paced by the state 

changes occurring in the environment. This is in contrast to an on-line system, which can exercise 

some control over the environment in case it cannot process the offered load. Consider the case of a 

transaction system. If the computer cannot keep up with the demands of the operators, it just extends 

the response time and forces the operator to slow down.  

•  Safety: The safety criticality of many RT applications has a number of consequences for the system 

designer. In particular, error detection must be autonomous so that the system can initiate appropriate 

recovery actions within the time intervals dictated by the application.  

•  Size of data files: RT systems have small data files, which constitute the RT database that is composed 

of the temporally accurate images of the RT-entities. The key concern in HRT systems is on the short-

term temporal accuracy of the RT database that is invalidated due to the flow of real-time. In contrast 

in on-line transaction processing systems, the maintenance of the long-term integrity of large data files 

is the key issue.  

•  Redundancy type: After an error has been detected in a SRT system, the computation is rolled back to 

a previously established checkpoint to initiate a recovery action. In HRT systems, roll-back/recovery is 

limited utility for the following reasons: (1) It is difficult to guarantee the deadline after the occurrence 

of an error, since the roll-back/recovery action can take an unpredictable amount of time, (2) An 

irrevocable action which has been effected on the environment, cannot be undone, (3) The temporal 

accuracy of the checkpoint data is invalidated by the time difference between the checkpoint time and 

the instant now.  
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2. Scheduling 

Problem: the processors should execute various tasks with different timing requirements. The timing 

conditions can be interpreted using the following figure:  

 

 

 

 

 

 

 

Here ai or ri is the arrival/release/request time, si is the start time of execution, its finishing time is fi, di 

stands for deadline, Ti is the period time, Di=di-ai is the deadline relative to the request time, Ci stands for 

computation time, and finally Ri=fi-ai is the response time.  

1. Periodic scheduling: this is the simplest method: in design time fix time slots are assigned for the 

completion of the periodic requests, and this is repeated periodically. The assignment is typically clock-

driven; therefore these types of scheduling are called time-triggered. They have different versions, but what 

is common: the decisions concerning schedules are made in design-time, thus their run-time overhead is 

low. A further feature is that the parameters of the HRT tasks are known and fixed in advance.  

Example: To each task there is assigned a frame of 10 ms. We implement 4 functions in the following way: 

The first function operates with a periodicity of 50 Hz, i.e. it receives 10 ms in every 20 ms. The second 

function operates with a periodicity of 25 Hz, i.e. it receives 10 ms in every 40 ms. The third function at a 

rate of 12.5 Hz, i.e. in every 80 ms receives 10 ms, and finally at a rate of 6.25 Hz, i.e. in every 160 ms 10 

ms is assigned to the fourth function. 

Obviously the assignment of the frames can be different; however, it can be done only in design time. Such 

a scheduling can be rather unpleasant and rigid.  

Comment: In the example above the first function utilises one half of the processor time, the second the one 

fourth, the third the one eights, etc. It worth bringing back the result:  

1...
8

1

4

1

2

1
→+++ , 

i.e. the number of the functions can be increased to the infinity, if the required overall processor time is 

always one half of the previous. This property was utilised by the designers of the first real-time 1/3 octave 

spectrum analyser (Brüel & Kjaer 2131) based on digital filters in 1977! This device performs 1/3 octave 

analysis in the frequency range of 1.6 Hz and 20 kHz, altogether in 42 bands. The hardware is based on 

octave filters, for which the ratio of the frequencies at 3 dB attenuation is 1:2. This property is utilised in the 

following way: imagine an octave filter with a centre frequency of 16 kHz and sampling frequency of 

fm=66.667 kHz.  If the signal is properly bandlimited, then the octave filter with a centre frequency of 8 kHz    

can be successfully operated at a sampling frequency of fm/2, etc. The evaluation of the highest frequency 

range takes one half of the time, all the other ranges share the second half of the time.  

2. Time-shared/round-robin scheduling: The tasks ready to run are placed into a FIFO (First-In First-Out), 

and the task first on the list will get the processor for a fixed amount of time. This time slot is typically few 

times 10 ms, and independent of the tasks. If the given task is not completed within the slot, it will be 

interrupted, and placed to the last position of the FIFO.  

Ci 

Ti 

Di 

ai/ri   si       Ri                fi         di 
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3. Priority based scheduling: From the set of tasks ready to run the one having the highest priority will run. 

Priority assignment can be performed either in design or in run-time. For simplicity imagine that to every 

task a different priority level is assigned. The operation is illustrated by the figure below. We have one low 

priority (L=low), one medium priority (M=medium) and one high priority (H=high) task. This assignment 

happened in design-time. All the tasks start running immediately after the request, if their priority is the 

highest among the tasks ready to run:   

 

 

 

 

 

The response time of the lowest priority task on the figure is: RL=CL+CM+CH. If the medium and/or the high 

priority task are released periodically, then depending on the time relations, it might happen, that these tasks 

will run more than one time during RL. In a more general case, for a task at priority level i, the worst-case 

response time can be calculated using the following formula:  
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where Ii is the so-called interference. The interference time is the total computation time of those higher 

priority tasks, which prevent task i to complete its actual run. ihpk refers those tasks, which have higher 

priority than i (hp=higher priority). The    sign is the operator of assigning the upper integer.   202.1 = , 

  20.2 = . Since in the above formula the unknown Ri on the left-hand side is present also in the argument of 

the highly nonlinear function on the right-hand side, it can be evaluated only via an iterative procedure: 
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The iteration will stop at step n0 where 00 1 n

i

n

i RR =
+ . The name of this method in the literature is Deadline 

Monotonic Analysis (DMA). It supposes priority assignment according to the deadlines: tasks with larger Di 

will have in lower priority. Only such cases are considered, where .ii TD   The method is suitable both for 

periodic and sporadic tasks. 

Periodic task: is characterised by known and fixed period 𝑇𝑖. 
Sporadic task: the requests are not periodic, but there is a known and fixed 𝑇𝑖 value that is the minimum 

time between two subsequent requests.  

Aperiodic task: the requests are not periodic, and there is no specified Ti between two requests, i.e. a request 

can be followed immediately by a second request. Obviously in the case of aperiodic tasks the DMA 

methos cannot be applied.  

It might be important to emphasize, that by the application of the DMA method not the response time but the 

worst-case response time will be derived.  

Example: A system with four tasks can be characterized with the following time values (the time is 

measured in miliseconds): 

 

 

H 
 
M 
 
L 
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Task T C D 

1 250 5 10 

2 10 2 10 

3 330 25 50 

4 1000 29 1000 

The priority order corresponds to the order of the tasks in the list. If the deadline values are equal secondary 

conditions are used to decide priority order. In the example, the first task has higher computation time, i.e. 

its laxity is smaller, therefore the higher priority might be a better choice. Let us calculate the worst-case 

response time of task 3. The iterative procedure:  

step Rn I Rn+1 

1 0 0 25 

2 25 5+3*2 36 

3 36 5+4*2 38 

4 38 5+4*2 38 

Comments: 

1. 38<50, thus task 3 will meet the deadline also under worst case conditions.  

2. Note that the data of task 4 were not utilized at all. They are not required.   

3. Note that the tasks up till now were considered independent from each other. However, if they are 

not independent, i.e. they are communicating. In this case might happen, that higher priority tasks 

should wait for data provided by lower priority. This additional waiting time will increase both the 

response time and its worst-case version.  
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2. Scheduling (Cont.) 

Example: An embedded system, devoted to executing requests of four periodic/sporadic tasks and one 

periodic/sporadic interrupt, has the following parameters (time values are in ms): 

Task T C D 

i1 10 0.5 3 

t1 3 0.5 3 

t2 6 0.75 6 

t3 14 1.25 14 

t4 50 5 50 

Let us calculate the worst-case response time of task t4 using the iterative procedure! The interrupt will be 

served on the highest probability, otherwise the priority level of the tasks follows the deadline monotonic 

assignment. The iterative procedure: 

Step Rn I Rn+1 

1 0 0 5 

2 5 0.5+1.0+0.75+1.25 8.5 

3 8.5 0.5+1.5+1.50+1.25 9.75 

4 9.75 0.5+2.0+1.50+1.25 10.25 

5 10.25 1.0+2.0+1.50+1.25 10.75 

6 10.75 1.0+2.0+1.50+1.25 10.75 

Since 10.75<50, the deadline is met. 

Example: A modified version of DMA method can be used also if the operation is not pre-emptive, i.e. 

when the running task will not be pre-empted. The example is the response time analysis of the priority-

based CAN bus.  

The key features of the communication through the CAN (Control Area Network, ISO 11898, Bosch) bus 

can be seen on the figure below. Here the forwarding of three messages of different priority is to be solved.  

 

 

 

 

 

The vertical dashed lines on the figure indicate the so-called arbitration points. At these time locations is 

decided which message (frame) will be forwarded next. The priority is decreasing from the top. The first 

requests are simultaneous. Till the arbitration time all should wait. At the arbitration, the forwarding of 

frame#1 is decided. C1 stands for the communication time that corresponds to the computation time. In this 

example, the communication time is the same for every frame. After the second arbitration comes the 

forwarding of frame#2. Within this communication interval the next highest priority request arrives. It 

should wait till the arbitration, but after the arbitration this message is immediately forwarded. At the fourth 

arbitration, it turns out that only the request concerning frame#3 is on the list, therefore it will be forwarded. 

In the meantime, simultaneous high and medium priority requests arrive. The waiting time of the medium 

priority can be divided into two parts: one is the so-called blocking time B2, during which lower priority 

frame is forwarded, the other is the so-called I2, during which higher priority frame is forwarded. Based on 

these components, the response time calculation is based on the following formulas:  

Q1 C1                 Q1              C1         Q1           C1 
 
            B2              I2 

 Q2        C2         Q2                  C2 
 
         Q3    C3 

arbitration 

Frame #1 
 
Frame #2 
 
Frame #3 
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Here 𝑄𝑖 is the worst-case waiting time of the frame denoted by i. Bi is blocking time, which is the longest 

message forwarding time of any lower priority frame. From the figure, the worst-case blocking time is the 

time between two arbitrations. This is the case if the request arrived immediately after the previous 

arbitration. 

Let us have the following set of messages:  

Message T [ms] C[ms] 

1 3 1.35 

2 6 1.35 

3 10 1.35 

4 30 1.35 

5 40 1.35 

6 40 1.35 

7 100 1.35 

The messages are periodic, and their priority is decreasing from the top. The requests are asynchronous. The 

7th message is related to braking, it should be received in 100 ms. The iteration for the waiting time:  

Step Qn I  B Qn+1 

  1 2 3 4 5 6 Sum   

1 0 - - - - - - 0 1.35 1.35 

2 1.35 1 1 1 1 1 1 8.1 1.35 9.45 

3 9.45 4 2 1 1 1 1 13.5 1.35 14.85 

4 14.85 5 3 2 1 1 1 17.55 1.35 18.9 

5 18.9 7 4 2 1 1 1 21.6 1.35 22.95 

6 22.95 8 4 3 1 1 1 24.3 1.35 25.65 

7 25.65 9 5 3 1 1 1 27 1.35 28.35 

8 28.35 10 5 3 1 1 1 28.35 1.35 29.7 

9 29.7 10 5 3 1 1 1 28.35 1.35 29.7 

The worst-case waiting time is 29.7 ms, thus the worst-case response time: 29.7ms+1.35ms=31.05 ms. This 

value is smaller than the specified 100 ms: the deadline is met.  

Comment: The different versions of the DMA analysis are widely used for worst-case response time 

analysis to optimize products concerning the necessary clock frequencies/bandwidths to increase noise 

immunity and reduce costs. (Volvo Corporation has introduced this technique already in 1995, first 

regarding S80.) 

Schedulability, schedulability tests: 

- necessary: if the necessary condition is not met, then no schedule exists. 

- sufficient: if the sufficient condition is met, then a schedule always exists.  

- exact: gives the necessary and sufficient conditions, and shows the existence of the schedule. The 

complexity of the exact schedulability test is high, these are so called NP-complete problems, which are 

hard to handle, and therefore they will not be considered.  

For periodic tasks among the necessary conditions the processor utilization factor can be mentioned, which 

is the sum of the processor demands relative to the unit of time: 


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For a single processor system if 1  is not met, then the tasks are not schedulable, i.e. 1 is a necessary 

condition. 

Scheduling strategies:  

Rate-monotonic (RM) (1973): For periodic and independent tasks if Di=Ti and Ci are known and constant. 

The highest priority is assigned to the task with the shortest period. The procedure is pre-emptive. We 

assume that the time of context switching between tasks is negligible. For the RM algorithm sufficient test is 

available. If the above conditions hold, and for the processor utilisation factor the following inequality is met 

7.0~2ln12
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(Where n denotes the number of the tasks to be scheduled), then the tasks are schedulable. It might happen 

that the actual set of tasks is schedulable with the RM strategy even at higher processor utilisation; however 

there is no guarantee for it. Simulations with randomly selected Ti and Ci values were reported successful up 

to 𝜇 = 0.88. To achieve 100% utilization when using fixed priorities, assign periods so that all tasks are 

harmonic. This means that for each task, its period is an exact multiple of every other task that has a shorter 

period.  

Example: This example illustrates that under what period and computation time conditions reaches the RM 

strategy the limits of schedulability. If n=2, setting 
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For a system consisting of two tasks we have: 1001 =T , 411 =C , 1412 =T , 592 =C , all in ms. The processor 

utilisation factor 8284.04184.041.0
141

59

100

41
=+=+ , i.e. nearly the value given by the above formula. If the 

requests are simultaneous, the time conditions are the following:  

 

 

 

 

  

 

If there is slight increase in the computation time, then the RM strategy will fail. At the same time between 

241 and 282 there is no schedulable task, thus the processor utilisation cannot be increased.  

Comments:  

1. If the RM scheduling strategy is applied, the most disadvantageous is the case when all the tasks start with 

zero phase, i.e. the first requests are simultaneous. From schedulability point of view it is advantageous, 

if the starting phases of the tasks are different, i.e. non-simultaneous. 

2. If the RM scheduling strategy is applied, and the necessary condition is met, but the sufficient not, then 

the schedulability analysis should be performed for smallest common multiple of the periods that can be 

extremely large.  

 

41  100        141            200    241              282 

        41                   59                     41                       59                       41                41 
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2. Scheduling (Cont.) 

Earliest Deadline First (EDF) strategy: We assume that the tasks are periodic, independent of each other, 

ii TD   and Ci are known and are constant. Priority assignment is in run-time, and the processor is given to 

the task having the earliest deadline. The operation is pre-emptive. Here we also assume that the time of 

context switching is negligible. For the EDF algorithm sufficient schedulability test can be given: tasks 

meeting the above conditions are schedulable up to 1 , i.e. 100% processor utilisation is possible. The 

operation is illustrated by the following figure:  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

In the first line, we can see the periodic requests and runs of task p (p…) and the corresponding deadlines 

(d…p). During the run of p1, indicated in the second line, the request of task q arrives. Since its deadline is 

earlier than that of p1, therefore q will run. The third line shows the request and the deadline of task r. The 

fourth line gives the summary of the runs: after completing the runs of q and p1, task r will run, since there 

is no other task ready to run which has earlier deadline. As the request of p2 arrives it will have the earliest 

deadline, thus r will be pre-empted, and p2 will run. After completing its operation r will be resumed. The 

deadline of p3 is later than that of r, therefore first r will finish, but p3 will also be completed before 

deadline.  

Least Laxity First (LLF) strategy: Like EDF. The conditions of its application are the same, but instead of 

the task having the earliest deadline, the processor is assigned to the task having the smallest laxity. This is 

the difference of the deadline and the remaining computation times at the time instant of investigation. For 

the LLF algorithm sufficient schedulability test can be given: tasks meeting the above conditions are 

schedulable up to 1 , i.e. 100% processor utilisation is possible.  

Comment: The EDF and LLF strategies are applicable also for aperiodic tasks, but since the processor 

utilisation factor can only be interpreted in a different way, the sufficient condition above cannot be used.  

 

Example: Comparison of the RM and EDF algorithms. We have two tasks. The deadlines equal the periods. 

T1=5 ms, C1=2 ms, T2=7 ms, C2=4 ms. The processor utilisation factor: 

97.057.04.0
7

4

5

2
=+=+ . 

Here the necessary condition of the schedulability is met, but the sufficient condition only for the EDF 

strategy. If at the beginning the requests are simultaneous, the RM, the EDF and the LLF algorithms will 

give the following schedules: 

 

 

 

               p1               d1p p2  d2p     p3    d3p      p4                              d4p 
 
 
 
       p1      q         p1          dq   d1p p2  d2p     p3    d3p      p4                              d4p 
 
 
 
   r                    dr 

 
 
 
 
       p1      q    r     dq  d1p               p2        r         d2p r                p3             dr  d3p      p4                              d4p 
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If the RM strategy is applied, then the second task will miss the deadline at 7 ms, but using EDF or LLF the 

tasks are schedulable. Both for EDF and LLF it is obvious that if the deadlines are equal, the applied 

schedule should result in less context switching, because context switching take time.  All the task-specific 

information of the pre-empted task must be saved: typically, the content of the processor’s registers must be 

copied into the task-specific Task Control Block (TCB), while TCB of the task decided to run should be 

loaded into the registers of the processor. These copying are supported by fast mechanisms, but still they 

need time. 

Proof of the EDF schedulability 

The proof is given for periodic tasks with Di=Ti. The statement is the following: A set of periodic tasks is 

schedulable with EDF if and only if  
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Proof: Only if: We show that a task set cannot be scheduled if 𝜇 > 1. In fact, by defining 𝑇 = 𝑇1𝑇2…𝑇𝑛, the 

total demand of computation time requested by all tasks in T can be calculated as 
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If  1  – that is, if the total demand 𝜇𝑇exceeds the available processor time 𝑇 – there is no feasible 

schedule for the task set.  

Proof: If: We show the sufficiency by contradiction. Assume that the condition 1  is satisfied and yet the 

taskset is not schedulable. The next figure helps to understand the proof. Here we can see the schedule of 

periodic tasks according to EDF. 

 

 

 

 

 

 

 

 

 

 

If our assumption is that the task-set is not schedulable, then there must be such a task, which misses its 

deadline. Let t2 be the instant at which the time/overflow occurs and let [𝑡1, 𝑡2] be the longest interval of 

continuous utilisation before the overflow, such that only instances with deadline less than or equal to t2 are 
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executed in [𝑡1, 𝑡2]. Note that 𝑡1 must be the release time of some periodic instance.   Let 𝐶𝑃(𝑡1, 𝑡2) be the 

total computation time demanded by periodic tasks in [𝑡1, 𝑡2], which can be computed as: 
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where  ...  denotes the lower-integer function. (Note that for task1 the response to the third request is not 

considered, therefore the assignment of the lower-integer is correct.) Now, observe that: 
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Since a deadline is missed at 𝑡2, 𝐶𝑃(𝑡1, 𝑡2) must be greater than the available processor time ((𝑡1 − 𝑡2)); 
thus, we must have:  

( )122112 ),()( ttttCtt P −− , 

that is, 1 , which is a contradiction, i.e. the original statement is false. 

Combined Scheduling of hard RT and soft RT tasks:  

Two rules are applied:  

Rule#1: Every task should be schedulable with average execution and average arrival times.  

Rule#2: Every hard RT task should be schedulable with worst-case execution and worst-case arrival time.  

 

Combined Scheduling of periodic and aperiodic tasks: Fixed Priority Servers 

We concentrate on hard RT systems, and soft aperiodic systems, but soft RT systems can also be considered. 

The algorithms presented here rely on the following assumptions: 

1. Periodic tasks are scheduled based on a fixed-priority assignment; namely, the RM algorithm; 

2. All periodic tasks start simultaneously at time t=0 and their relative deadlines are equal to their 

periods; 

3. Arrival times of aperiodic requests are unknown; 

4. When not explicitly specified, the minimum interarrival time of a sporadic task is assumed to be 

equal to its deadline. 

 

Background Scheduling: 

 

 

  

 

 

 

 

 

The major advantage of background scheduling is its simplicity. Its drawback is that the response time of the 

aperiodic tasks can be very large. (FCFS=First-Come-First-Served.) 

If the response time of the aperiodic tasks is critical, the so-called server methods give better result. The 

server method provides processor time for the aperiodic tasks in a separated way. The tool of this solution is 

the server task, which is scheduled together with the periodic tasks.  

Polling Server (PS): The aperiodic requests are scheduled with the help of the so-called server task (S) 

using the server capacity (TS,CS), and a separated scheduling mechanism. Is there is no aperiodic request 

while the server task could run, the server task suspends itself, and its capacity will not be preserved.  

  Periodic tasks    RM 

      High-priority queue             CPU 

 Aperiodic tasks    FCFS 

Low-priority queue 
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Example: Let us have TS=5, CS=2. There are two additional tasks to be scheduled: 

 C T 

1  1 4 

2  2 6 

The server task (according to RM) will have medium priority. Assuming simultaneous start, the schedule 

will be the following:  

 

 

 

 

 

 

 

 

 

In worst case situations, the fulfilment of the aperiodic request will occur only after an almost complete 

server period.  

Deferrable Server (DS): The aperiodic requests are scheduled with the help of the so-called server task (S) 

using the server capacity (TS,CS), and a separated scheduling mechanism. Is there is no aperiodic request 

while the server task could run, the run of the DS will be postponed, its capacity is preserved till the end of 

the period. With this method, much better response times to aperiodic requests can be achieved.  

Example: For the previous example the schedule will be the following:  

 

 

 

 

 

 

 

 

 

The response times, obviously depending also on the priority level of the server task, are much better.  
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2. Scheduling (Cont.) 

Priority Exchange Server (PE): Like DS, the PE algorithm uses a periodic server (usually at a high 

priority) for servicing aperiodic requests. However, it differs from DS in the manner in which the capacity is 

preserved. Unlike DS, PE preserves its high-priority capacity by exchanging it for the execution time of a 

lower-priority periodic task. When a priority exchange occurs between a periodic task and a PE server, the 

periodic task executes at the priority level of the server while the server accumulates a capacity at the 

priority level of the periodic task. Thus, the periodic task advances its execution, and the server capacity is 

preserved at a lower priority.  

Example: The PE server has TS=5, CS=1. The further tasks to be scheduled: 

 C T 

1  4 10 

2  8 20 

The server task has the highest priority (RM strategy). Note, that the processor utilization factor is:

1
20

8

10

4

5

1
=++= . Supposing simultaneous start the schedule is the following:  

 

 

 

 

 

 

 

 

 

 

Since there is no aperiodic request to process, the server capacity is used by task 𝜏1. As a consequence task 

𝜏2 can run earlier, i.e. the server capacity will be used at this level. The server capacity of the second period 

is used immediately. The server capacity of the third period is used by 𝜏1, but it is given back to fulfil the 

second aperiodic request. The server capacity of the fourth period is used by 𝜏2. Between [18-20], at the 

priority of 𝜏2, remaining server capacity is available, which could be used to serve further aperiodic 

requests.  

Example: The PE server has TS=5, CS=1. The further tasks to be scheduled: 

 C T 

1  2 10 

2  12 20 

The server task has the highest priority (RM strategy). Note, that the processor utilization factor is:

1
20

12
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5

1
=++= . Supposing simultaneous start the schedule is the following:  
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On the figure we can see, that if we pass capacity to another task, then it can be utilized at the priority of the 

receiving task. At time instant 11 the first unit of the requested two can be found at 𝜏1, while the second at 

𝜏2. Therefore at 12 the execution of 𝜏1 is continued, and the aperiodic task should wait. At 18 the aperiodic 

task will get processor time from 𝜏2. Between [19-20], at the priority of 𝜏2, remaining server capacity is 

available, which could be used to serve further aperiodic requests. 

Sporadic Server (SS): Allows enhancing the average response time of aperiodic tasks without degrading 

the utilization bound of the periodic task set. The SS algorithm creates a high-priority task for servicing 

aperiodic requests and, like DS, preserves the server capacity at its high-priority level until an aperiodic 

request occurs. However, SS differs from DS in the way it replenishes its capacity. Whereas DS and PE 

periodically replenish their capacity to its full value at the beginning of each server period, SS replenishes its 

capacity only after it has been consumed by aperiodic task execution.  

Example: The SS server has TS=8, CS=2. The further tasks to be scheduled: 

 C T 

1  3 10 

2  4 15 

 The server task has the highest priority (RM strategy). Supposing simultaneous start the schedule is the 

following:  

 

 

 

 

 

 

 

 

  

Slack stealing: Offers substantial improvements in response time over the previous methods. Unlike these 

methods, the Slack Stealing algorithm does not create a periodic server for the aperiodic service. Rather it 

creates a passive task, referred to as the Slack Stealer, which attempts to make time for servicing aperiodic 

tasks by “stealing” all the processing time it can from the periodic tasks without causing their deadlines to be 

missed.  If 𝐶𝑖(𝑡) is the remaining computation time at time t, then the slack of a task 𝜏𝑖 is 

𝑆𝑙𝑎𝑐𝑘𝑖(𝑡) = 𝑑𝑖 − 𝑡 − 𝐶𝑖(𝑡) 
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The price to be paid for the good response times is: larger computational and implementation complexity, 

larger memory requirement.  

Example: 

 

According to the normal RM strategy: 

 

 

 

 

 

 

Upon arrival of aperiodic request, the slack is calculated, and this amount of processor time is given to the 

aperiodic task at the highest priority:  

 

 

 

 

 

 

 

 

 

Dual Priority Scheduling: Idea: there is no benefit in early completion of hard tasks. Use three ready 

queues: High, Middle and Low. The hard RT tasks start running at Low priority. The soft RT and the 

aperiodic tasks run at middle priority.  The hard RT tasks at approaching the so-called promotion time (𝑥𝑖) 
before their deadline (𝑑𝑖) are promoted and put in the High queue just to able to meet their deadline. The 

promotion time can be calculated as follows: 

𝑥𝑖 = 𝑑𝑖 − 𝑅𝑖 

(where iiii ICBR ++= ). Obviously the three priority queues can be subdivided into further priority levels.  

Comment: The server tasks introduced above were scheduled using the RM strategy. Similar solutions can 

be derived in the case of the EDF strategy. These are dynamic priority servers.  

 

Schedulability if 𝑫𝒊 < 𝑻𝒊: almost all the methods, statements and proofs discussed up till now cover cases 

where 𝐷𝑖 = 𝑇𝑖. If the deadline is earlier than the period, then the priority can be assigned according to the 

deadlines. One such a technique is the Deadline Monotonic (DM) algorithm, where the highest priority is 

assigned to the task having earliest deadline relative to the request time. Obviously the condition 
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can be a sufficient schedulability test, however, this is not necessary, and sometimes rather pessimistic. Less 

pessimistic, if assuming simultaneous start (since concerning processor demand this is the most 

disadvantageous) for all the tasks we investigate the fulfilment of the condition ii DI +iC . Here
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= . This condition is sufficient but not necessary. The necessary and sufficient condition is 

given by the already discussed worst/case response time analysis:  
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If the EDF strategy is applied while 𝐷𝑖 < 𝑇𝑖, then the processor utilisation factor cannot be used. Instead the 

so-called processor demand approach can be suggested. First this will be introduced for the 𝐷𝑖 = 𝑇𝑖 case. In 

general within an arbitrary interval [𝑡, 𝑡 + 𝐿]the processor demand of a task 𝜏𝑖 is the time needed to become 

completed till the time instant 𝑡 + 𝐿 or before. In the case of such periodic tasks, which start running at 𝑡 =
0, and for which 𝐷𝑖 = 𝑇𝑖, the total processor time in any [0, 𝐿] interval is:   
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Statement: A periodic task set can be scheduled by EDF if and only if for any 𝐿 > 0: 
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 . On the other, if 1 , 

then there exists such 𝐿 > 0, for which (*) does not hold, since if e.g. 𝐿 = 𝑙𝑐𝑚( 𝑇1𝑇2… 𝑇𝑛), then:  
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If 𝐷𝑖 < 𝑇𝑖, then the calculation of 𝐶𝑝(0, 𝐿) is different. To see this, consider the case of the two tasks on the 

next figure. For simplicity let us have the same period but different deadlines:  

 

 

 

 

 

 

 

 

 

Based on the figure, since deadline of the third period is out of the range of the interval of length L, the 

processor demand of 𝜏1: 1
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the figure, it is easy to understand that the two cases can be handled with a single formula of the form:  
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With this formula: A periodic task/set can be scheduled by EDF if and only if for every 𝐿 > 0 
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Extensions of the response time calculation: 

1. Cooperative scheduling: At a given point of the task execution it might be a requirement the completion 

of the task as early as possible. This can be achieved if the pre-emption of the task is prohibited till the 

end it’s run. If this takes time 𝐹𝑖, then the response time can be written in the form of 𝑅𝑖 = 𝑅𝑖
′ + 𝐹𝑖, where  
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 In this case the last part of the execution if runs, it will run on the highest priority.  

2. Fault tolerance: exception handlers, recovery blocks, etc., generally require additional computation time: 
f

iC extra computation time for every task. 

 For a single fault the extended formula: 


f

k

hepk

k

hpk k

i
iii CC

T

R
CBR

ii 

+







++=  max . 

 Here, since we do not know which higher-priority task execution was faulty, for the worst-case 

calculation we select the longest computation time. (hep=higher or equal priority) 

 For F faults: 
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 If 𝑇𝑓 denotes the shorter inter arrival time between two faults, then:  
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3. The time demands of the clock handler and that of the context switches:  

- In many applications the scheduler is triggered by a clock interrupt (tick scheduling). In this case the 

response time should be increased by the worst case time difference of the arrival and the clock tick. If 

the time of the arrival is not measurable, then the time between two clock ticks is the correcting value.   

- If the scheduler decides a task to run, then first the registers of the processor should be saved, after this 

the context of the new task should be loaded into the registers, and then comes the execution of the 

task.  The response time should be increased by time of this „context switch”. The computation time of 

the higher priority tasks, which pre-empt the execution of an actual task, should be increased by the 

time needed to perform context switching, as well.  
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Scheduling if the tasks are not independent: Resource Access Protocols 

Except for the time-sharing systems, where the processor’s capacity is shared among independent users, for 

most of the applications the runs of the different tasks are not completely independent. Tasks are 

communicating with each other, exchange data, they are waiting for results from other tasks, they use 

common resources, and it can happen, that higher priority tasks are blocked by runs of lower priority tasks. 

Let us recall the illustration of the priority based scheduling! If here task L would use such a resource, which 

is later also used by task H, then it might happen that task H should wait until the resource will be released.   

 

 

 

 

 

This is illustrated by the following figure: 

 

 

 

 

 

 

Task L locks a common resource using semaphore S1, and starts its critical section. After the request of task 

M task L will be pre-empted. The execution of M is pre-empted by task H upon its arrival. Task H would 

like to use the common resource locked by task L. Task H should wait for unlocking semaphore S1. This 

type of waiting is called blocking, because lower priority task forces higher priority task to wait. To unlock 

semaphore S1 task L should get back the processor. This is possible only after completing task M. Thus, 

task H can be considerably delayed. This situation is called priority inversion, because seemingly the 

priorities of task M and H are inverted.  With semaphore S1 we implement mutual exclusion: if a resource is 

locked, it will be unlocked after completing the critical section.  

Priority Inheritance Protocol (PIP):  

To avoid priority inversion, task L should dynamically inherit the priority of task H upon its request to enter 

the critical section. Thus, task L can complete the critical section much earlier and unlock semaphore S1. 

The inherited priority is called dynamic priority valid only for the critical section. After unlocking 

semaphore S1 the static priority will be restored. The effect of this modification is indicated by the following 

figure: 

 

 

 

 

 

 

The response time of task H will be much shorter, and the worst-case blocking time equals the duration of 

the critical section of task L.  
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The worst-case response time will increase with the worst-case blocking time:  
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2. Scheduling (Cont.) 

Deadlock avoidance 

The Priority Inheritance Protocol should be extended/modified if more common resources are to be handled. 

This is illustrated by the following figure:  

 

 

 

 

 

 

 

Task L by locking semaphore S1 enters a critical section. Within this critical section semaphore S2 will be 

also locked by task L. These two resources – with the given timing – are used by task H, as well. As task H 

would like to lock semaphore S1, it will be blocked. Task L inherits priority H, but trying to lock semaphore 

S2 it will also block. Both task H and L will wait for the other. This situation is called: deadlock. To avoid 

deadlock priority ceiling protocols are used.  

Priority Ceiling Protocol (PCP): The basic idea of this method is to extend the PIP with a rule for granting 

a lock request on a free semaphore. To avoid multiple blocking, this rule does not allow a task to enter a 

critical section if there are locked semaphores that could block it. This means that, once a task enters its first 

critical session, it can never be blocked by lower-priority tasks until its completion.  

To realize this idea, each semaphore is assigned a priority ceiling equal to the priority of the highest-priority 

task that can lock it. Then, a task i can enter a critical section only if its priority is higher than all priority 

ceilings of the semaphores currently locked by tasks other than i.  

The PCP protocol: 

- Each semaphore 𝑆𝑘 is assigned a priority ceiling 𝐶(𝑆𝑘) equal to the priority of the highest-priority 

task that can lock it. Note that 𝐶(𝑆𝑘) is a static value that can be computed offline. 

- Let 𝜏𝑖 be the task with the highest-priority among all tasks ready to run; thus, 𝜏𝑖 is assigned to the 

processor.  

- Let 𝑆∗ be the semaphore with the highest-priority ceiling among all the semaphores currently locked 

by tasks other than 𝜏𝑖, and let 𝐶(𝑆∗) be its ceiling.  

- To enter a critical section guarded by a semaphore 𝑆𝑘, 𝜏𝑖 must have a priority (𝑃𝑖) higher than 𝐶(𝑆∗). 
If 𝑃𝑖 ≤ 𝐶(𝑆

∗), the lock request is denied and 𝜏𝑖 is said to be blocked on semaphore 𝑆∗ by the task 

that holds the lock on 𝑆∗. 
- When a task 𝜏𝑖 is blocked on a semaphore, it transmits its priority to the task, say 𝜏𝑘, that holds that 

semaphore. Hence, 𝜏𝑘 resumes and executes the rest of its critical section with the priority of 𝜏𝑖. In 

general, a task inherits the highest priority of the task blocked by it. 

- When 𝜏𝑘 exits a critical section, it unlocks the semaphore and the highest-priority job, if any, blocked 

on that semaphore is awakened. Moreover, the active priority of 𝜏𝑘 is updated as follows: if no other 

jobs are blocked by 𝜏𝑘, its priority is set to the nominal (static) priority; otherwise it is set to the 

highest-priority of the tasks blocked by 𝜏𝑘. 

Example: The tasks to be scheduled with descending priority are: 210 ,,  . Their priorities: P0, P1 and P2. 

The resources are guarded by semaphores S0, S1 és S2. Their priority ceilings: C(S0) = P0, C(S1) = P0, C(S2) 

= P1. 
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Note that task 0 will be blocked even though the requested resource is not blocked. The reason of this 

blocking is that task 2  is within a critical section guarded by semaphore 𝑆1 the priority of which is equal of 

that of 𝜏0.  

Example: The tasks to be scheduled with descending priority are: 3210 ,,,  . Their priorities: P0, P1, P2 and 

P3. The resources are guarded by semaphores S1 and S2. Their priority ceilings: C(S1) = P0, C(S2) = P0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the figure it is easy to follow the operation of the PCP protocol.  “I” denotes the interference intervals, 

while B stands for the blocking intervals. The sum of these latter gives the effective blocking time, the 

worst-case value of which equals length of the critical section of task 𝜏3.  

Properties of the PIP: 

- Priority inheritance is transitive; that is, if a task 𝜏3 blocks a task 𝜏2, and 𝜏2 blocks task 𝜏1, then 𝜏3 
inherits the priority of 𝜏1 via 𝜏2. 

- If a task 𝜏𝑘 is pre-empted within a critical section by a task 𝜏𝑖 that enters another critical section, 

then, under the PCP, 𝜏𝑘 cannot inherit a priority higher than or equal to that of task 𝜏𝑖 until 𝜏𝑖 
completes. 

- The PCP prevents transitive blocking. 

- The PCP prevents deadlocks. 

- Under PCP, a task 𝜏𝑖 can be blocked for at most the duration of one critical section. 

- The maximum blocking time 𝐵𝑖 of task 𝜏𝑖 can be computed as the longest critical section among 

those belonging to tasks with priority lower than 𝑃𝑖 and guarded by a semaphore with ceiling higher 

than or equal to 𝑃𝑖. 
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Immediate Priority Ceiling Protocol (IPCP): The essence of the protocol is that the tasks entering a critical 

section immediately inherit the ceiling priority of the semaphore which guards the critical section. Thus, on 

the figure below, task 3  at entering the critical section receives as dynamic priority P0, and will operate at 

this priority level till the end of the critical section. The implementation of IPCP is easier than that of the 

PCP, and there are less task-switching, and consequently context switching. It is interesting to note that the 

semaphores do not need implementation because after leaving the first critical section they are and remain 

unlocked. It is also interesting to realize that using IPCP the response time of the highest priority task 

became shorter.  

 

 

 

 

 

 

 

 

 

 

 

The name IPCP in POSIX is Priority Protect Protocol, and in Real-Time Java: Priority Ceiling Emulation. 

3. Memory management 

Scheduling not independent tasks we faced some problems of handling resources. Here we discuss the 

problems of memory management from the viewpoint of embedded systems. In the case of embedded 

systems, it is typically not possible to eliminate the side-effects of not completely correct resource handling 

time-to-time by resetting the device. We must design such systems, where the performance of the resources 

remains stable, degradation is not possible.  

- Static memory allocation: If the memory is allocated statically, then it can be established at compile 

time exactly how each byte of RAM will be used during the running of the program. This has the 

advantage, for embedded systems, that the whole issue of bugs due to leaks and failures due to 

fragmentation simply does not exist. The global and static data is allocated in a fixed location, since it 

must remain valid for the life of the program. This approach prohibits the use of recursion, function 

pointers, or any other mechanisms that require re-entrant code. For example, and interrupt routine cannot 

call a function that may also be called by the main flow of execution.  

- Stack based management: The next step up in complexity is to add a stack. Now a block of memory is 

required for every call of a function, and not just a single block for each function in existence. The blocks 

are now stored on a stack, which usually has some hardware support including special instructions in the 

processors instruction set.  

 The stack grows and shrinks as the program executes, and for many programs it is not possible to predict, 

at compile time, what the worst-case stack size will be. In multitasking system, there will be one stack per 

task to manage, plus possibly an extra one for interrupts. Some judgement must be exercised to make sure 

that each stack is big enough for all its activities. It is awful shame to suffer from an untimely stack 

overflow, when one of the other stacks has reserve of space that it never uses. Unfortunately, most 

embedded system does not support any kind of virtual memory management that would allow the tasks to 

draw from a common pool as the need arises.  

 One rule of thumb is to make each stack 50% bigger than the worst case seen during testing. One simple 

technique is to paint the stack space with simple pattern. As the stack grows and shrinks, it will overwrite 

the area with its data. At a later time, a simple loop can run through the stack’s predefined area to detect 

the furthest extent of the stack. This technique is called watermarking. Many RTOS’s support this 

mechanism. It’s worthwhile to bind this testing with the start of a watchdog timer.  
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- Heap based management: In C programs heap management is carried out by the malloc() and free() 

functions. Malloc() allows the programmer to acquire a pointer to an available block of memory of a 

specified size. Free() allows the programmer to return a piece of memory to the heap when the 

application has finished it. In this way, a piece of memory that is used to store of data from a serial port at 

one point in time may be used to store a structure controlling a graphics window at another time.  The 

programmer has simple interface to the heap so it is not necessary for the programmer to establish at 

design time which items are not going to be in use simultaneously. 

 While stack management is handled by the computer, using heap management requires care by the 

programmer, or many particular devious bugs can creep into the program. 

 At a certain point in the code you may be unsure if a particular block is no longer needed. If you free() 

this piece of memory, but continue to access it (probably via a second pointer to the same memory), then 

your program may function perfectly, until that particular piece of memory is reallocated to another part 

of the program. Then two different parts of the program will proceed to write over each other’s data. If 

you decide not to free the memory, on the grounds that it may still be in use, then you may not get 

another opportunity to free it, since all pointers to the block may have gone out of scope, or been 

reassigned to point elsewhere. The result is: memory leakage. In this case the program logic will not be 

affected, but if the piece of code that leaks memory is visited on a regular basis then the leak will tend 

toward infinity, and the execution time of the program increases. 

 Any leak is a bug, which can be rectified by correcting the logic of the program. There is another problem 

called fragmentation, which cannot be corrected at the application program level. This is a property 

inherent in most applications of malloc(). It is caused by blocks of memory available being broken down 

into smaller pieces as many allocations and frees are performed.  

 

 

 

The figure shows the allocation of the first 10 bytes. (These two figures are from the lecture of Niall Murphy 

(Panelsoft) entitled Memory Management, presented among others at the Embedded Systems Conference 

Europe in 2000.) 
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On the left-hand side of the figure the allocation of 10, 15 and 8 bytes is illustrated. On the right-hand side 

the freeing of the block of 15 bytes is presented.  

Example: In a survey of a number of Unix applications it was found that 90% of allocations were covered 

by 6 sizes. 99.9% of allocations were covered by 141 sizes. In embedded systems this range is far smaller, 

since file and string handling is much rarer. It seems to advantageous to have only few sizes. 

Fragmentation can also be reduced by using the appropriate policy when allocating and freeing blocks. 

Allocation policies include: 

- Allocate (and possibly split) first block found, larges than the request (First Fit). 

- Allocate the best fit after exhaustive search (Best Fit). 

Free list policies include: 

- Maintaining the list in order of address, to simplify merging of free blocks. 

- Maintain the list in most recently used order, to match patterns of use where similar sizes are 

allocated and freed in bursts. 

Seeing the difficulties, the conclusion is that mission critical project cannot afford these dynamic memory 

allocation mechanisms. Systems that need to be very reliable, but not 100% reliable, can use a heap, if 

appropriate testing and measurement is performed.  

- Recommendation: limited heap functionality: static allocation: (1) malloc() is used only during 

initialization, and freeing is not applied. (2) It worth writing a separate program which does not have the 

overhead of the block headers. (E.g. salloc( ) (static allocation)). (3) Following the initialization salloc( ) 

is inhibited. 

- Recommendation: dynamic allocation but fixed block size. (Partitions or pools of fixed size memory 

blocks.)  

- Multitasking: While each task must have its own stack, it may or may not have its own heap, regardless 

of whether the heap is based on the static scheme, pools, or general purpose allocation scheme. Having 

more than one heap means that you have to tune the size of a number of heaps, which is a disadvantage. 

However one heap for many tasks must be re-entrant, which means adding locks that will slow down 

each allocation and deallocation.  
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 A single heap also allows one task to allocate a piece of memory which may be freed by another task. 

This is useful for passing inter-task messages. When memory is passed between tasks in this way, make 

sure that it is always well defined who owns the memory at each point. It is obviously important that two 

tasks do not both believe that they own a piece of memory at the same time leading to two calls to free 

the memory. 

- Libraries: Problems: (1) Memory should be allocated by the library. (2) Freeing memory is the role of 

the application program. (3) We can assign static memory to the library; however, this is not suitable for 

re-entrant code, which is so essential to many embedded systems. (4) All these problems should be 

considered by the programmer of the library: possibly by offering library routines for freeing memory. 

(So-called Pluggable memory management). 

- Automatic garbage collection: e.g. Java, LISP, Smalltalk offer such a service. Two basic mechanisms: 

(1) The pointers can be objects in their own right, which have destructors that are called when the pointer 

goes out of scope.  In C++ this is possible with smart pointers. (2) To test whether a piece of memory is 

free a search is performed within the memory in use to find a pointer to that block. If no pointers to the 

block are found then the block is free. This is obviously an expensive way to check for available memory. 

4. Measuring time, clocks, clock synchronization 

Concept/knowledge of global clock: GPS, … 

Local clocks: synchronization to the global clock, synchronization to each other → consequences.. 

 

Measuring time: 

(1) Using a single electronic counter: We count the clock ticks during the time interval to be measured:  

 

 

 

 

 

 

 

 

The gate time 𝑇𝑥 generated by the source is the time duration to be measured. Before starting the 

measurement the counter is zeroed. The counter counts the impulses during the gate time. 
0f

N
Tx  , where 𝑁 

is the content of the counter, and fo stands for the clock frequency. The approximate equality refers that 𝑁 is 

always integer, while 𝑇𝑥𝑓0 is not necessarily. The difference is the quantization error. The measurement is 

accurate if 𝑇𝑥 is the integer multiple of 
1

𝑓0
.  The worst-case relative error of the time measurement is:  
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4. Measuring time, clocks, clock synchronization (cont.) 

Concept/knowledge of global clock: GPS, … 

Local clocks: synchronization to the global clock, synchronization to each other → consequences. 

 

Measuring time: 

(1) Using a single electronic counter: We count the clock ticks during the time interval to be measured:  

 

 

 

 

 

 

 

 

The gate time 𝑇𝑥 generated by the source is the time duration to be measured. Before starting the 

measurement, the counter is zeroed. The counter counts the impulses during the gate time. 
0f

N
Tx  , where 𝑁 

is the content of the counter, and fo stands for the clock frequency. The approximate equality refers that 𝑁 is 

always integer, while 𝑇𝑥𝑓0 is not necessarily. The difference is the quantization error. The measurement is 

accurate if 𝑇𝑥 is the integer multiple of 
1

𝑓0
.  The worst-case relative error of the time measurement is:  
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i.e. to get an accurate value we need a relatively high frequency clock, since otherwise the value of N will 

not be high enough. The above equation can be derived from the complete differential:   
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x −= . Obviously, N can take only integer value, 

therefore it can change only by integer multiple of 1 . In principle the relative change of N and f0 could 

result in a compensating effect, however the sign of the changes is not known, therefore we use the absolute 

value of the changes and express the worst case relative error.   

(2) The dual vernier method: This method applies three oscillators: the free-running reference oscillator, and 

two phase-startable phase-lockable oscillators (PSPLO). These latter oscillators have a slightly longer period 

of oscillation than the reference oscillator such that once started, they will reach coincidence with the 

reference oscillator some number of cycles later dependent on the initial phase. The beginning (sliding edge) 

of the time interval to be measured and the end (falling edge) of the time interval start the phase-startable 

phase-lockable oscillators having periods of )1(0 +T . 
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The time from the start till the coincidence is )1(01 +TN , while from the end till the coincidence it is

)1(02 +TN . The time between the two coincidences is 00TN . Based on these values 

( )( ) +−+= 12100 NNNTTx , 

where the sign before N0 is determined by the order of the two coincidences. If T0=5 nsec and δ=0.004, then 

the shortest measurable duration is 20psec. Remark: it is a challenging task to implement startable oscillators 

with an accuracy of quartz. Similarly, it is a great challenge to detect coincidences at these frequencies.   

 

Clocks are the sources of the knowledge of time with a given accuracy:  

The source of the knowledge of time is called clock. Clock k is a function 𝐶𝑘(𝑡)  
of time, which maps real time to the time at clock k.  

Reference clock or standard clock: if 𝐶𝑘(𝑡) = 𝑡; ∀𝑡. 

The correctness of the clock, at any point of time, depends on the difference between its readout and that of 

the standard clock, at that point of time. The quality of this correctness is one characteristic of the quality of 

knowledge of time t localities for which this clock is the source of this knowledge. 

Correct clock: Clock k is correct in 𝑡0, if 𝐶𝑘(𝑡0) = 𝑡0. 

Another characteristic of the quality of knowledge of time at the localities for which some clock is the 

source of this knowledge is the quality of this clock’s rate. 

Accurate clock: Clock k is is accurate in 𝑡0, if  
𝜕𝐶𝑘(𝑡)

𝜕𝑡
= 1; 𝑡 = 𝑡0.  

If a clock is inaccurate at some point of time, we say that the clock drifts at that point of time.  

Physical clock: Oscillator + counter, its granularity 𝑔 =
1

𝑓
 is the time between two microticks.  

 

 

 

 

 

 

 

 

             

 

 

The figure above shows the structure of a digital clock: the output of the high-frequency oscillator is divided 

by a down counter, which outputs an impulse at its ZE output as it reaches zero. This gives a macrotick, and 

simultaneously loads the content of the reload register into the counter. The rate of the macrotick is 

controlled by N.   

The physical reference clock: denoted by C, its granularity is gC. E.g.: 1015 microticks/sec →  gC = 10-15 sec. 

The frequency of this reference clock is in perfect agreement with the international standard of time.  

Timestamp: C(e) is the absolute timestamp of the event e. 

The duration between two events is measured by counting the microticks of the reference clock that occur in 

the interval between these two events. The granularity 𝑔𝑘 of a given clock 𝑘 is given by the nominal 

number 𝑛𝑘 of microticks of the reference clock 𝐶 between two microticks of this clock 𝑘. 

Clock drift: The drift of a physical clock 𝑘 between microtick 𝑖 and microtick 𝑖 + 1 is the frequency ration 

between this clock 𝑘 and the reference clock, at the instant of microtick 𝑖. The drift is determined by 
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measuring the duration of a granule of clock 𝑘 with the reference clock 𝐶 and dividing it by the nominal 

number of 𝑛𝑘 of reference clock microticks in a granule:  

𝑑𝑟𝑖𝑓𝑡𝑖
𝑘 =

𝐶(𝑚𝑖𝑐𝑟𝑜𝑡𝑖𝑐𝑘𝑖+1
𝑘 )−𝐶(𝑚𝑖𝑐𝑟𝑜𝑡𝑖𝑐𝑘𝑖

𝑘)

𝑛𝑘
. 

A perfect clock has a drift of 1. Therefore, the so-called drift rate 𝜌𝑖
𝑘 is also introduced: 

𝜌𝑖
𝑘 = |𝑑𝑟𝑖𝑓𝑡𝑖

𝑘 − 1| = |
𝐶(𝑚𝑖𝑐𝑟𝑜𝑡𝑖𝑐𝑘𝑖+1

𝑘 )−𝐶(𝑚𝑖𝑐𝑟𝑜𝑡𝑖𝑐𝑘𝑖
𝑘)

𝑛𝑘
− 1|. 

A perfect clock will have a drift rate of 0. Real clocks have a varying drift rate that is influenced by 

environmental conditions, e.g., a change in the ambient temperature, a change in the voltage level that is 

applied to a crystal oscillator, or aging of the crystal. Within specified environmental parameters, the drift 

rate of an oscillator is bounded by the maximum drift rate 𝜌𝑚𝑎𝑥
𝑘 , which is documented in the data sheet of 

the oscillator. Typical maximum drift rates 𝜌𝑚𝑎𝑥
𝑘  are in the range of 10−2 to  10−7 𝑠𝑒𝑐/𝑠𝑒𝑐, or better.  

Because every clock has a non-zero drift rate, free-running clocks, i.e., clocks that are never resynchronized, 

leave any bounded relative time interval after a finite time, even if they are fully synchronized at start-up. 

Example: During the Gulf war on February 25, 1991 a Patriot missile defence system failed to intercept an 

incoming scud rocket. The clock drift over 100-hour period (which resulted in a delay of 0.3433 sec causing 

a tracking error of 678 meters) was blamed for the Patriot missing the scud missile that hit an American 

military barrack in Dhahran, killing 29 and injuring 97.   

The explanation of the error mentions that originally the Patriot systems were designed against muck slower 

devices, and they were further developed against scud systems only during the Gulf war. The error causing 

this tragedy was identified already during the early days of February, and the modified software was 

released on 16th of February, but unfortunately it was not forwarded to the system activated on February 25.  

 

Offset: The offset at microtick 𝑖 between two clocks 𝑗 and 𝑘 with the same granularity is defined as: 

𝑜𝑓𝑓𝑠𝑒𝑡𝑖
𝑗𝑘
= |𝐶(𝑚𝑖𝑐𝑟𝑜𝑡𝑖𝑐𝑘𝑖

𝑗
) − 𝐶(𝑚𝑖𝑐𝑟𝑜𝑡𝑖𝑐𝑘𝑖

𝑘)|. 

The offset denotes the time difference between the respective microticks of the two clocks, measured in the 

number of microticks of the reference clock. 

Precision: Given an ensemble of clocks (1, 2, … , 𝑛), the maximum offset between any two clocks of the 

ensemble  

𝛱𝑖 = max
∇1≤𝑗,𝑘≤𝑛

{𝑜𝑓𝑓𝑠𝑒𝑡𝑖
𝑗𝑘
} 

is called the precision 𝛱𝑖 of the ensemble at microtick 𝑖. The maximum of 𝛱𝑖 over an interval of interest is 

called the precision 𝛱 of the ensemble. The process of mutual resynchronization of an ensemble of clocks to 

maintain a bounded precision is called internal synchronization.  

Accuracy: the offset of a clock 𝑘 with respect to the reference clock 𝐶 at microtick 𝑖 is called 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖
𝑘: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖
𝑘 = 𝑜𝑓𝑓𝑠𝑒𝑡𝑖

𝑘,𝑟𝑒𝑓
= |𝐶(𝑚𝑖𝑐𝑟𝑜𝑡𝑖𝑐𝑘𝑖

𝑗𝑘
) − 𝐶(𝑚𝑖𝑐𝑟𝑜𝑡𝑖𝑐𝑘𝑖

𝑟𝑒𝑓
)|. 

The maximum offset of all microticks i that are of interest is called the 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑘 of clock k. To keep the 

clock within a bounded interval of the reference clock, it must be periodically resynchronized with the 

reference clock. This process of resynchronization of a clock with the reference clock is called external 

synchronization.  

Example: If all clocks of an ensemble are externally synchronized with accuracy A, then the ensemble is 

also internally synchronized with a precision of at most 2A. The converse is not true. An ensemble of 

internally synchronized clocks will drift from the external time if the clocks are never resynchronized with 

the external time base. 
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Time measurement using more clocks 

Global time: In a distributed system all nodes have their own clock 𝐶𝑘 that ticks with granularity 𝑔𝑘. 

Assume that all the clocks are internally synchronized with a precision 𝛱, i.e., for any two clocks 𝑗, 𝑘 and all 

microticks 𝑖 

|𝐶(𝑚𝑖𝑐𝑟𝑜𝑡𝑖𝑐𝑘𝑖
𝑗
) − 𝐶(𝑚𝑖𝑐𝑟𝑜𝑡𝑖𝑐𝑘𝑖

𝑘)| <  𝛱. 

It is then possible to select a subset of the microticks of each local clock k for the generation of the local 

implementation of a global notion of time. We call such a selected local microtick 𝑖 a macrotick (or tick) of 

the global time.  

The global time is of the same accuracy as the reference clock, however its granularity is worse: it produces 

macroticks. These macroticks can be properly used, if 𝑔 > Π, i.e. the synchronisation error is smaller than 

the resolution. The difference of the timestamps of an event e, at nodes j and k, differ at most one tick.  

1)()( − eCeC kj . 

This is the maximum we can achieve, since it is always possible that first clock j ticks, event e occurs, clock 

k ticks. In this case the event will be timestamped with one tick difference.   

Example: (every macrotick corresponds to 10 microticks): 

 

 

 

 

 

 

 

 

 

 

At microtick e:22 clock j shows 2, while clock k shows 1. 

 

One tick difference: what does it mean? 

 

 

 

 

 

 

 

 

  

 

 

At microtick e:17 j:2, k:1. At microtick e:42 j:4, k:3. If the time difference of e:42 and e:17 is expressed by 

the difference of the Ck and Cj values, then the measurement will give 1 expressed in global time, while the 

real difference is 25 microticks.  

At microtick e:67 j:7, k:6. At microtick e:69 j:7, k:6. If the time difference of events e:69 and e:67 are 

measured by the difference of Cj and Ck, then it gives 1, the actual difference is only 2 microticks. 

Problem: The order of time is not decidable: at microtick e:67 j:7, at microtick e:69 k:6! 
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An interval is delimited by two events: the start event and the terminating event. The measurement of these 

two events relative to each other can be affected by the synchronization error and the digitalization error. 

The sum of these two errors is less than 2𝑔 because the local implementation of the global time satisfies the 

condition 𝑔 > Π. Thus, if the difference is two macroticks then the order of time is decidable.   

Measurement of time interval:  
(𝑑𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 2𝑔) < 𝑑𝑡𝑟𝑢𝑒 < (𝑑𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 + 2𝑔), 

where 𝑑𝑡𝑟𝑢𝑒 is the true duration of the interval 𝑑𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 is the observed difference of the start event and the 

terminating event. See illustration: 

 

  

 

 

 

 

 

 

 

            

 

   

 

 

 

 

 

 

 

On the upper figure if we measure the difference of microticks e:42 and e:17 as the difference of clocks Ck 

and Cj, then the result in macroticks is 1, in contrast to the fact that the true difference in microticks is 25.  

On the lower figure the time difference of microticks e:47 and e:22 is measured by the difference of clocks 

Cj and Ck: the result in macroticks is 4in contrast to the true difference in microticks is 25. 

Types of clock systems: 

• Central clock systems:  

- One accurate clock provides the time knowledge to the whole system. The existence of other clocks in 

the system is „ignored” if there is no detectable failure of the central clock.  

- For fault tolerance a standby redundancy for the central clock is used.  

- The method is accurate (within ns to ms) and expensive. 

- This method needs special purpose integrated into the processor. The central clock sets this hardware 

to the proper value and any executing process can read it.  

- The communication cost of this category is very low: Only one message is required for synchronizing 

a clock at any site. In a broadcasting environment, one message is required for synchronizing a group 

of sites.  

- An example of this category is the GPS (Global Positioning System), which uses 4 broadcasting 

satellites and achieves a clock synchronization with correctness within a few nanoseconds.  

• Centrally controlled clock systems: In this category we distinguish between two types of nodes: master 

nodes and slave nodes. 

- A nominated master clock polls slave clocks.  

- Clock differences are measured, and the master dictates corrections to the slaves.  

- If the master clock fails, an election of a new master (from the slaves) is initiated.  
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- Transmission times and delays are estimated, since they affect significantly the clock difference 

measured.  

- Communication costs are higher than in the previous case.  

• Distributed clock systems 

- All the nodes are homogeneous and each runs the same algorithm.  

- Each node updates its own clock after receiving the time from other clocks and after estimating their 

correctness.  

- The fault tolerance is protocol based. If a node fails, the other nodes are not affected; they only detect 

the failure and ignore the failed node thereafter.  

- Generally, relatively heavy communication traffic is involved in this category, especially when 

robustness in the presence of malicious faults is required.  

Time standards 

Two are used in distributed real-time systems:  

• International Atomic Time (Temps Atomique Internationale, TAI): TAI defines the second as the duration 

of 9 192 631 770 periods of the radiation of a specified transition of the Cesium atom 133. The intention 

was to define the duration of the TAI second so that it agrees with the second derived from astronomical 

observations. TAI is a chronoscopic timescale, i.e., a timescale without any discontinuities. 

• Universal Time Coordinated (UTC): UTC is a time standard that has been derived from astronomical 

observations of the rotation of the earth relative to the sun.  

- The UTC time standard was introduced in 1972, replacing the Greenwich Mean Time (GMT) as an 

international time standard.  The duration of the second conforms to the TAI standard. 

- Because the rotation of the earth is not smooth, but slightly irregular, occasionally a leap second is 

inserted into the UTC to maintain synchrony between the UTC and astronomical phenomena, like day 

and night. Because of this leap second, the UTC is not a chronoscopic time scale, i.e., it is not free of 

discontinuities. 

- It was agreed that on January 1, 1958 at midnight, both the UTC and the TAI had the same value. 

Since then the UTC hs deviated from TAI about 30 seconds.  

- The US National Institute of Standards and Technology: NIST provides a short-wave radio broadcast 

of continuous frequency and time signal at frequencies 2.5, 5., 10, 15 és 20 MHz. The accuracy of 

these time signals is 1 msec, but due to random atmospheric disturbances at the receiver this 

accuracy will be about 10 msec. (In case of geostationary satellites: 5.0 msec.) 

• Time Format: Network Time Protocol (NTP). This time format with a length of 8 bytes contains 2 fields: 

a 4-byte full second field, where the seconds are represented according to UTC, and a fraction of a 

second field, where the fraction of a second is represented as a binary fraction with a resolution of about 

232 picoseconds. On January 1, 1972, at midnight the NTP clock was set to 2 272 060 800.0 seconds, i.e., 

the number of seconds since January 1, 1900 at 00:00h. This ranges up to the year 2036, i.e., it has 136 

years wrap around cycle. 

Synchronizing clocks: Cristian algorithm 

Synchronization is initiated by the client at time T0 by requesting a server, which has a UTC receiver. After 

the arrival of the request and interrupt routine is executed and the UTC radio is requested. Finally, the value 

of the UTC clock is send to the client. The message arrives at T1. The received clock value must be corrected 

by the time needed for communication. If the communication requires nearly the same amount of time in 

both directions, then a good approximation of this correction is:  
2

~ 01 ITT −−
. 
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Comment: It might cause problems if CUTC+correction < T1, i.e., the clock of the client is to be reset to an 

earlier time. If the client clock is just timestamping subsequent events, it might happen that due to the reset a 

later event receives earlier time, i.e., seemingly changes the order. If such a situation is a real danger, then it 

is not allowed to reset the clock, only the slowing of the clock is permitted until its run will be synchronous 

with the UTC clock.  

Synchronizing clocks: Master-slave algorithms 

1. The master clock i initiates synchronization at T1. The error of the timestamp is e1. (T1 = Ci(T1) + e1). The 

slave is node j. The message sent in T1 will travel for j

i time before it arrives to j at time T2. The 

timestamp is Cj(T2), and T2 = Cj (T2) + e2. 

2. The slave computes the difference:  

)()( 121 TCTCd ij −=  

Comparing the times of sending and receiving the message: 

( )211212211 )()()()( eeTCTCdeTCeTC j

iijj

i

ii −+=−=→+=++   

If 
j  denotes the mean of the difference of the slave clock and the master clock, then  

( ) 1

21 jj Eee +−= , 

where 
1

jE represent noise. ( ( )21 ee −  is difference of actual values.) Replacing this difference by the mean 

value + noise: 

( ) 1

21121 )()( jj

j

i

j

iij EeeTCTCd −+=−+=−=   

3. The slave sends its clock value at 
333 )( eTCT j +=  to the master. This message arrives at 444 )( eTCT i +=

following a travel of
i

j  duration. The master computes the  

)()( 342 TCTCd ji −=  

difference. Again, comparing the actual times of the events: 

( )433424433 )()()()( eeTCTCdeTCeTC i

jjii

i

jj −+=−=→+=++  . 

The mean difference of the slave and the master clocks 
j can be expressed by: ( ) 2

43 jj Eee +−=−  

where
2

jE  represents noise. Thus,
2

2 jj

i

j Ed −−=  . 

The half of the difference of 𝑑1 − 𝑑2 can be used to give the necessary correction value at the slave node: 

( ) ( ) ( ) jjjj

i

j

j

ij hEEdd +=−−−+=−  2/2/2/ 21

21 , 

where hj stands for errors coming from the difference of the communication times and the quantization 

effects. The random components can be reduced by averaging. 

 

 

 

 

 

After the synchronization the remaining error will increase due to the drift. See the figure below: 

 

 

 

 

 

Slave              T2              T3   correction 

                  

 
Master  T1       T4 

         

  

 
  τ 
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The figure illustrates that due to the remaining error and the drift, after a time duration of 𝜏, the worst-case 

time distance of the clocks will be:   












+ j

j

j

j

hmaxmax2  . 

Example: Tempo algorithms: master-slave synchronization in the distributed Berkeley Unix.  

 

Comment: (1) The accuracy of the correction has improved after repeating the measurement several times, 

and averaging the results. (2) If the details of the communication between master and slave are known (e.g. 

in LAN environment), the correction can be further refined. (3) If the requirement is the synchronization of 

n processors, and every slave is requested p times, then the communication demand of the master-slave 

synchronization can be characterized by (2𝑝 + 1)𝑛 in every 𝜏 period. 

 

 

Master side: 

The basic algorithm is repeated N times: 

for k=1 to N 

do 

Initialization: 

do 

 )(nowCT iA   

 ij   Send TA to j 

endo 

Processing data received from the slaves: 
:ij   

do 

 
Bi

j TnowCd − )(2
 

( ) 2/)( 21

jj

j ddk −  

endo 

endo ; N differences are available for ∀𝑗: 
 

:ij   

do 

 ( ) )(/1
1

kN
N

k jj  =
=  

 Send ( )j  to j 

endo 

Slave side: 

 

 

 

 

 

 

do 

 Aj

j TnowCd − )(1  

 )(nowCT jB   

 Send (TB,
jd1 ) to i 

endo 

 

 

 

 

 

 

 

 

do 

 
jjj tCtC − )()(  

end 
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4. Measuring time, clocks, clock synchronization (cont.) 

Clock synchronization: Distributed clock algorithms 

The major advantage of the distributed approach is the higher degree of fault tolerance it achieves. This 

achievement increases the cost mainly in communication rather than in special hardware. The load imposed 

on the communication network by the distributed approach is therefore expected to be higher than that of the 

MS approach. 

In the distributed clock systems all the time servers use uniform approach with the following characteristics: 

-  Each node polls the rest of the clocks or a subset of them. 

-  Each applies a specific algorithm to the responses of the poll. 

-  Each node updates the local clock accordingly. 

Some examples: 

I. A Fundamental Ordering Approach 

Let us consider an ordering approach based on message timestamping with the following properties: 

- The accuracy of clock i is bounded by a drift rate 𝛿: ∀𝑡: |1 −
𝑑

𝑑𝑡
𝐶𝑖(𝑡)| < 𝛿𝑖 ≪ 1. 

- The communication graph of the algorithm is closely connected (every vertex/node can send 

synchronization messages to the rest of the vertices/nodes) with a diameter d (minimum number of 

hopes). 

- The network imposes an unpredictable (yet bounded) message delay D. In other words, 𝜇 < 𝐷 < 𝜂 holds, 

where 𝜇 and 𝜂 are the lower and upper bounds on D. 

Each clock implements the following algorithm: 

- On every local clock event occurrence, increment the local clock 𝐶𝑖(𝑡) ← 𝐶𝑖(𝑡) + 1. 

- Each node with a clock sends messages to the others at least every 𝜏 seconds. Each message includes its 

timestamp 𝑇𝑚. 

- Upon reception of an external 𝑇𝑚, the receiver sets its clock 𝐶𝑖(𝑡) ← 𝑚𝑎𝑥(𝐶𝑖(𝑡), 𝑇𝑚 + 𝜇). 
The communication cost of one update of the whole network is 𝑛(𝑛 − 1) messages. The correctness of each 

clock due to this synchronization algorithm is ∀𝑖: ∀𝑗: |𝐶𝑖(𝑡) − 𝐶𝑗(𝑡)| < 𝑑(2𝛿𝜏 + 𝜂) for all t. This 

algorithm achieves only the ordering goal, bounding clock differences between sites. The algorithm 

results in updates according to the fastest clock in the system, and not necessarily the most accurate one. 
 

II. Minimize Maximum Error 

Every clock i “knows” it is correct within the interval: [𝐶𝑖(𝑡) − 𝐸𝑖(𝑡), 𝐶𝑖(𝑡) + 𝐸𝑖(𝑡)] where 𝐸𝑖(𝑡) is a bound 

on the error of clock i. The error interval is constructed from the following contributors: 

- The error that comes into effect right on the clock reset time (𝜌𝑖), as discretization and other constant 

errors (𝜀𝑖). 

- The delay from the time this clock i is read until another clock j uses the readout for its update (𝜇𝑖
𝑗
). 

- The degradation of time-counting that develops between consecutive resets (𝛿𝑖). 

The algorithm consists of two rules: a response rule and a synchronizer rule. A request is transmitted by the 

synchronizer rule at node j activates i’s response. In this response, node i first updates its bound on the error, 

𝐸𝑖(𝑡). It then replies its clock value 𝐶𝑖(𝑡) and the above bound on that clock’s error. This message expresses 

a time interval within which the clock is correct. 

The synchronizer rule is periodic, performed at least every 𝜏 time units. Its first step is a request for 

responses which it sends to the rest of the nodes. Then, for each of these nodes, it performs a response 

reception and a conditional clock reset. Two conditions must hold for a reset: 
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1. The interval [𝐶𝑖(𝑡) − 𝐸𝑖(𝑡), 𝐶𝑖(𝑡) + 𝐸𝑖(𝑡)] that expresses the local knowledge of time must be consistent 

with the incoming interval [𝐶𝑗(𝑡) − 𝐸𝑗(𝑡), 𝐶𝑗(𝑡) + 𝐸𝑗(𝑡)]. The consistency requires a nonempty 

intersection of these two intervals. 

2. The error of the response, 𝐸𝑗(𝑡), plus the error of the response delay, (1 + 𝛿𝑖)𝜇𝑗
𝑖  generate an error smaller 

than the local one. 

If these two conditions hold, the node can reset its clock and enhance its knowledge of time. The reset 

involves three parameters. The local clock 𝐶𝑖(𝑡) is set to the value of the response clock. The error at local 

clock reset, 𝜀𝑖, is set to the value of the response error and the delay combined. The time-of-reset record, 𝜌𝑖, 
is also set to the value of the response clock. If on the other hand one of these conditions does not hold, the 

algorithm ignores the response. The algorithm’s two rules are given below: 

 

Upon receiving a time Request from 𝑗 ≠ 𝑖:  
do 

 ( ) iiiii tCtE  −+ )()(    Rule#1 (from the viewpoint of clock i). 

 Send ( ))(),( tEtC ii   to j. 

endo 

At least once every 𝜏 time units: 

:ij    Request ( );)(),( tEtC jj
 

for ij   do begin 

 Receive ( );)(),( tEtC jj
 

if ( ))(),( tEtC jj
 is consistent with  ( ))(),( tEtC ii  

 then if  ( ) )(1)( tEtE i

i

jij ++   

  then  begin     Rule#2 

   )()( tCtC ji   

   ( ) i

jiji tE  ++ 1)(  

   )(tC ji   

   end 

  else ignore it 

end 

endo 

 

III. Intersection of time intervals 

This algorithm also consists of two rules: a response rule and a synchronizer rule. The response rule is 

identical to the response of the previous algorithm. The synchronizer rule here is also periodic, performed at 

least every 𝜏 time units.  

The first step of the synchronizer rule is a request for responses, which the algorithm sends to the rest of the 

nodes. The similarity to the previous algorithm ends here. The second step of this algorithm is to receive all 

the responses. Each response interval has a left boundary 𝐿𝑗(𝑡) and a right boundary 𝑅𝑗(𝑡) and the algorithm 

calculates both of them. Then the algorithm selects the highest left boundary in the responses, 𝛼, and the 

lowest right boundary, 𝛽. If the responses are consistent, there must be a nonempty intersection of them all, 

and thus, 𝛼 < 𝛽. Otherwise the responses are considered inconsistent and therefore ignored. If they are 

consistent, we can conclude that the real-time clock is within the interval [𝛼, 𝛽]. Therefore the algorithm sets 

its error to equal half this interval and the local clock to equal the interval’s midpoint. 

The first rule is exactly the same as in the previous algorithm. The continuation: 
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At least once every 𝜏 time units: 

:ij   Request ( ))(),( tEtC jj
; 

:ij   Receive ( ))(),( tEtC jj
; 

:ij    ( ))()()( tEtCtL jjj − ; the left boundary of j 

:ij   ( ) ( ) i

jijjj tEtCtR +++ 1)()()( ; the right boundary of j 

( )jLmax ; ( )jRmin  

if    

 then 

  ( ) −
2

1
i

; 

  ( ) +
2

1
)(tCi

; 

  ( ) +
2

1
i

 

end 

else ignore them all 

endo 

 

Comments:  

(1) The intersection algorithm is superior in its accuracy, however, less robust. It may ignore the responses 

of all the participants because of an erroneous response from one participant.  

(2) The communication demand of the distributed algorithm in case of n clocks is 2𝑛(𝑛 − 1) in every τ time 

units.  

(3) The distributed algorithms require good knowledge of time. 

Jitter of the synchronization message: 

Jitter: minmax dd −  

 - at the application software level:    500𝜇𝑠 …5𝑚𝑠 
 - in the kernel of the operating system:   10𝜇𝑠…100𝜇𝑠 
 - int he hardware of the communication controller:  < 10𝜇𝑠. 

The important role of the latency jitter 𝜀 for internal synchronization is emphasized by an impossibility 

result: It is not possible to internally synchronize the clocks of an ensemble consisting of N nodes to a better 

precision than  

 

 

𝛱 = 𝜀 (1 −
1

𝑁
). 

 

IV. Fault-Tolerant-Average (FTA) algorithm: 

In a system with N nodes k Byzantine faults should be tolerated. The FTA algorithm is a one-round 

algorithm that works with inconsistent information, and bounds the error introduced by inconsistency. At 

every node, the N measured time differences between the node’s clock and the clocks of all other nodes are 

collected (the node considers itself a member of the ensemble with time difference zero). These time 

differences are sorted by size. Then the k largest and the k smallest differences are removed (if the erroneous 

time value is either larger or smaller than the rest). The remaining 𝑁 − 2𝑘 time differences are, by 

definition, within the precision window. The average of these remaining time differences is the correction 

term for the node’s clock.  
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5. Quantities and variables in real-time systems (cont.) 

Modelling of the recipient environment: 

Measurement process: part of the cognition process, in which the a priori knowledge is improved and 

extended. The figure below helps the interpretation. While taking measurement, we try to grasp the different 

phenomena of the real world. This is made preferably by quantities which show stability. Obviously, such 

quantities are results of abstractions. The following quantities/features play key role:  

- state variables (x), the changes of which follow energy processes (voltage, pressure, temperature, speed, 

etc.) due to interactions;  

- parameters (a), which characterize the strength of the interactions; and 

-  structures (S), which describe the relations of the system components.  

 

 

 

 

 

 

The Space of the real world is such an abstraction, where the values of the investigated features correspond 

to one point of the space. The coordinates of this points are unknown before the measurement. With the 

measurement we try to determine these coordinates. It is well known, that due to measurement errors, only 

an estimate of the measurand can be provided. Further difficulty, that there is no direct access to the quantity 

to be measured, only some kind of indirect mapping is possible. This mapping is called observation. The 

path between the quantity to be measured and the observation is called measuring channel.  

Observation in case of deterministic channel: the illustrative example below presents a discrete observer. 

The observed reality is described by a discrete model, and it is supposed to be an autonomous system. The 

state equations and the observation equation describing the reality and the observation:  

)()1( nAxnx =+ ,      (1) 

)()( nCxny = ,      (2) 

 

 

 

 

 

 

where the state variable x(n) is of N dimension, the state-transition matrix is of N*N dimension, the 

observation vector y(n) is of M≤N dimension, and finally the observation matrix C is of M*N dimension. 

Our aim is the estimation of the state variable x(n). The tool of this estimation is the observer mechanism, 

which tries to produce a copy of the reality. This performed by a computer program capable to follow the 

reality as a result of a correction/training/adaptation process. The result of this process is the estimation of 

the value to be measured. After convergence, this estimator )(ˆ nx can be read from the observer. The state 

and the observation equations of the observer are:  

)()(ˆ)1(ˆ nGenxAnx +=+ ,     (3) 

Space of the real world  Space of the observations      Space of Decisions/Estimations  
 
                       
                       

                       

 

-1 
 

y(n)    e(n)                  

 

 

 

 
 

Correction 
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)(ˆ)(ˆ nxCny = ,      (4) 

where correction matrix G is of  N*M dimension, )(ˆ)()( nynyne −= . Matrix G is to be designed in such a 

way that )(ˆ nx → x(n). The difference of (1) and (3): 

))(ˆ)()(()()(ˆ)()1(ˆ)1( nxnxGCAnGenxAnAxnxnx −−=−−=+−+ .   (5) 

Introducing notations: )1(ˆ)1()1( +−+=+ nxnxn , and GCAF −= , the state transition matrix of the so-

called error system is: 

)()1( nFn  =+ .      (6) 

The correction matrix G is designed to result in 0)( ⎯⎯ →⎯
→n

n , possibly with  ‖𝜀(𝑛 + 1)‖ < ‖𝜀(𝑛)‖, for  

n, i.e. matrix F reduces the size of vector, i.e. it is  „contractive”.  

Comment: 

Obviously it is not a necessary condition to decrease the state error in every step: only the stability of the 

error system is required, i.e. the convergence of the error to zero for zero input. This property can be 

interpreted also in such a way that the internal energy of the error system is dissipated. If this is the case in 

every step then the decrease of the size of the error vector will be a monotonic process.  

Special cases: 

1. 0=−= GCAF . In this case
1−= ACG . This is possible if C is a square matrix, i.e. the observation has as 

many components as the state vector itself. In this case the observer, and the copy of the system 

investigated can follow the system without iteration, in one step.  

2. 0)( =−= NN GCAF . In this case the error system converges in N steps:  

0))0(ˆ)0(()()(ˆ)( =−−=− xxGCANxNx N
     (7) 

The matrices with the property 0=NF  can be characterized by the fact that all they eigenvalues are zero. 

Systems having state transition matrix of this property are of finite impulse response (FIR) systems, since 

the initial error will disappear in finite steps. (Comment: if 0=MF , where M<N, then the error system 

will converge in M steps.) 

3. If 0)( −= NN GCAF , then the size of the state vector of a stabile error system will decrease 

exponentially. The error system is stable, if all its eigenvalue is within the unit circle. Systems having 

state transition matrix of this property have infinite impulse response (IIR systems), because the initial 

error will disappear in infinite steps.  
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5. Quantities and variables in real-time systems (cont.) 

Modelling of the recipient environment: 

Observation in case of deterministic channel: the illustrative example below presents a discrete observer. 

The observed reality is described by a discrete model, and it is supposed to be an autonomous system. The 

state equations and the observation equation describing the reality and the observation:  

)()1( nAxnx =+ ,      (1) 

)()( nCxny = ,      (2) 

 

 

 

 

 

 

where the state variable x(n) is of N dimension, the state-transition matrix is of N*N dimension, the 

observation vector y(n) is of M≤N dimension, and finally the observation matrix C is of M*N dimension. 

Our aim is the estimation of the state variable x(n). The tool of this estimation is the observer mechanism, 

which tries to produce a copy of the reality. This performed by a computer program capable to follow the 

reality as a result of a correction/training/adaptation process. The result of this process is the estimation of 

the value to be measured. After convergence, this estimator )(ˆ nx can be read from the observer. The state 

and the observation equations of the observer are:  

)()(ˆ)1(ˆ nGenxAnx +=+ ,     (3) 

)(ˆ)(ˆ nxCny = ,      (4) 

where correction matrix G is of  N*M dimension, )(ˆ)()( nynyne −= . Matrix G is to be designed in such a 

way that )(ˆ nx → x(n). The difference of (1) and (3): 

))(ˆ)()(()()(ˆ)()1(ˆ)1( nxnxGCAnGenxAnAxnxnx −−=−−=+−+ .   (5) 

Introducing notations: )1(ˆ)1()1( +−+=+ nxnxn , and GCAF −= , the state transition matrix of the so-

called error system is: 

)()1( nFn  =+ .      (6) 

The correction matrix G is designed to result in 0)( ⎯⎯ →⎯
→n

n , possibly with  ‖𝜀(𝑛 + 1)‖ < ‖𝜀(𝑛)‖, for  

n, i.e. matrix F reduces the size of vector, i.e. it is  „contractive”.  

Comment: 

Obviously it is not a necessary condition to decrease the state error in every step: only the stability of the 

error system is required, i.e. the convergence of the error to zero for zero input. This property can be 

interpreted also in such a way that the internal energy of the error system is dissipated. If this is the case in 

every step then the decrease of the size of the error vector will be a monotonic process.  

Special cases: 

1. 0=−= GCAF . In this case
1−= ACG . This is possible if C is a square matrix, i.e. the observation has as 

many components as the state vector itself. In this case the observer, and the copy of the system investigated 

can follow the system without iteration, in one step.  

-1 
 

y(n)    e(n)                  

 

 

 

 
 

Correction 
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2. 0)( =−= NN GCAF . In this case the error system converges in N steps:  

0))0(ˆ)0(()()(ˆ)( =−−=− xxGCANxNx N
     (7) 

The matrices with the property 0=NF  can be characterized by the fact that all they eigenvalues are zero. 

Systems having state transition matrix of this property are of finite impulse response (FIR) systems, since 

the initial error will disappear in finite steps. (Comment: if 0=MF , where M<N, then the error system will 

converge in M steps.) 

3. If 0)( −= NN GCAF , then the size of the state vector of a stabile error system will decrease 

exponentially. The error system is stable, if all its eigenvalue is within the unit circle. Systems having state 

transition matrix of this property have infinite impulse response (IIR systems), because the initial error will 

disappear in infinite steps.  

Examples: 
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By replacing the values of the side diagonal into the main diagonal we have: 021 0 =− g , and 021 1 =+ g , 

where from: 5.00 =g  and 5.01 −=g . As a control we can write:  









=









−

−









−

−

00

00

5.05.0

5.05.0

5.05.0

5.05.0
. 

3. Example: Let us compute the eigenvalues of  GCA−  using the results of Example 2:  

  025.025.025.0)5.0)(5.0(
5.05.0

5.05.0
det0det 2 =+−=++−=









+−

−
==+− 




 GCAI . 

Both eigenvalues are zero. 

Comments:  

1. This property is valid in every system capable to converge in finite steps.  

2. The transfer function of such systems is a rational function having all its poles at the origin:  

N

N

NNNN

N
z

zazazaa
zazazazH

1

1

2

212

2

1

1

...
...)(

−

−−−−− ++++
=+++=    (8) 

These are the so-called Finite Impulse Response (FIR) filters. The time-domain equivalent of (8): 

)(...)2()1()( 21 Nnxanxanxany N −++−+−= ,     (9) 

where due to computability reasons only previous samples of )(nx  are used. 

3. The condition for the eigenvalues (See Example 3) can be used to compute 0g and
1g : 
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Where from: 010 =+ gg , and 110 =− gg , Thus: 5.00 =g  and 5.01 −=g . 

 

Comments: 

1. Thanks to the principle of superposition, the system observed and the observer itself can have an 

additional, common external excitation without any change in the convergence properties.  

2. The observer of Figure 2 is called Luenberger observer. According to Luenberger almost any system 

is an observer. The only requirement is that the observer should be faster than the observed system; 

otherwise it will not be able to follow its changes.  

3. The bridge-branch containing the impedance to be measured within an impedance measuring bridge 

implements the physical model of the realty, while the tuneable bridge-branch correspond to the model built 

into the observer. The difference between the outputs of the voltage divider bridge-branches controls the 

correction mechanism. Finally the value of the unknown impedance will be computed from the correction 

value. This setup, together with the operator responsible for tuning, implements an observer.  

Observation in the case of noisy observation channel: In this case our expectation is not‖𝜀(𝑛)‖
𝑛→∞
→   0, 

but the trace of 𝐸{⟦𝜀(𝑛)𝜀𝑇(𝑛)⟧}
𝑛→∞
→   𝑚𝑖𝑛. The state equation (6) will be replaced by 

TTT FnnFEnnE )]()([)]1()1([  =++ .    (8) 

This matrix will play a central role in the famous Kalman predictor and filter.  

Linear Least Squares (LS) Estimation/Estimator: No a priori information is available neither from the 

parameter to be measured, nor from the channel characteristics/noise. Let us suppose that the observation 

equation is linear: nUaz += , where z stands for the observation vector, a for the unknown parameter, U is 

of full rank, and n represents the additive noise vector. We assume that parameter a takes the value â .  The 

model of the observation is: aU ˆ . We compare this value with the observation, and we are looking for the 

best value of â  by minimizing the LS cost: 

=+−−=−−= aUUazUaaUzzzaUzaUzaaC TTTTTTT ˆˆˆˆ)ˆ()ˆ()ˆ,( 2−zzT aUUazUa TTTT ˆˆˆ +  

             (11) 

The gradient is: 0ˆ22
ˆ

)ˆ,(

ˆˆ

=+−=




=

aUUzU
a

aaC TT

aa LS

, therefore  

zUUUa TT

LS

1][ˆ −=        (12) 

Comment:  

The LS criterion can be modified by including a positive definite (symmetric) weighting matrix Q:  

)ˆ()ˆ()ˆ,( aUzQaUzaaC T −−= ,     (13) 

that leads to the following estimator:  

QzUQUUa TT

LS

1][ˆ −= .      (14) 

 

Model fitting 

In the case of LS estimators, we do not have priori information about parameter to be measured, therefore 

what we do is model fitting. The problem of model fitting is manifold. A classical version is regression 

calculus.  

Regression calculus: The determination of a possibly deterministic relation of independent and dependent 

variables can be considered as a special case of model fitting. On the figure below the function to be 

modelled ),( nugy =  has two types of independent variables: the one denoted by u(n), is known and can be 

influenced, while the other, denoted by n(n), is unknown, and cannot be influenced. This latter is typically a 

noise process, or disturbance modelled as a noise process. In the argument of the independent variables 𝑛 
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stands for discrete time index, that can be considered as a timestamp assigned to an actual value of the 

variable. 

 

  

 

 

 

 

Comments:  

1. In the following sections the independent discrete variable n will identify an iteration index or a 

discrete time index, which appears time to time as explicit index, as well. Consequently, nunu =)( , and 

nyny =)(  are equivalent. 

2. Note the double use of n: it can be an iteration or time index, or standing alone, it denotes a noise 

process.  

For modelling we use a “tuneable” function )(ˆˆ ugy =  the free parameters of which are tuneable. The  in least 

squares sense optimal setting of the parameters might be a useful strategy: 

 )ˆ()ˆ( yyyyE T −−=      (15) 

Linear regression: The function to be fitted is a scalar linear function uaaug 10)(ˆ += , the parameters of 

which are set to minimize  2)(ˆ( ugyE − . Let us denote the expected value and the standard deviation of u 

and y by yuyu  ,,, , and the normalized cross-correlation by: 
 

yu

yu yuE






−−
=

)((
. If we minimize  
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by 0a  and 
1a : 

0222 10
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


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a



, where from uy aa  10 −= ,    (17) 

which is replaced into uyuyuuu aa
a



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ˆ

      (18) 

Comments: 

1. Deriving (18) we utilized the relations  

       2222)( uuu uEuE  −==− , and     yuyu uyEyuE  −=−− ))(( . 

2.  A possible generalization of the linear 

regression problem is the polynomial regression. The modelling function is   

      
k

N

k

kuaug 
=

=
0

)(ˆ ,      (19) 

 which is linear in its parameters. We prefer models linear in their parameters, because in case of 

squared error criterion, finding the optimum requires the solution of a set of linear equations.  

Linear regression based on measured data: The above development can be carried out also for the case 

where no a priori information is available.  Here for the measured values we have nnn wuaay ++= 10 , where 

 n 
u 
      y    Kritérium függvény 
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Embedded information systems: Lecture 20.10.2017. 

52 
 

wn denotes additive noise, n=0,1, …, N-1. With vector notation: wUaz += . Using the least squares 

estimation (LS) method: 
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Comment: In the result above we can identify the estimators of the statistical descriptors used in (16), and 

by converting one to the other, we can find a complete correspondence.  Do it! 

Generalization of the regression scheme:  On the figure below the model fitting problem is presented as a 

regression scheme: 

 

 

 

 

 

 

The response y to the input u is to be compared with the response ŷ  of the model. (It worth comparing this 

structure with the observer scheme: the similarity is obvious; we are fitting a model in both cases. For the 

observer we know the parameters, and the state variables are to be estimated, while for the regression 

scheme the state variables are known and the parameters are to be estimated. Both schemes are parallel in 

the sense that both input signals enter parallel.  

Adaptive linear combinator: A frequently used model-family. The model consists of two parts: (1) a fix, 

multiple output function, and (2) a linear combinatory with variable/tuneable weights:   

 

 

 

 

 

 

The fix part generates a sequence of values  )()()()( 11 nxnxnxnX No

T

−=   from u(n), and the linear 

combination of these values results in  )(ˆ ny . We are looking for the minimum squared error by searching 

the optimum  )()()()( 110 nwnwnwnW N

T

−=   parameters. We are minimizing 

 =−−= )]()()([)]()()([)( nWnXnynWnXnyEn TTT  

      )()()()()()()(2)()( nWnXnXEnWnynXEnWnynyE TTTT +−= .  (20) 
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Let us introduce the following notations:   PnynXE =)()( , and   RnXnXE T =)()( ! The minimum will be 

obtained at 0)(22
)(

)(
=+−=




nRWP

nW

n
, thus the optimum setting is:  PRW 1* −=   (21) 

Expression (21) is called Wiener-Hopf equation.  

Example: Imagine  NnNnnX T /)1(2sin()/2sin()( −=  , i.e. two subsequent sample of a sine wave:  

 

 

 

 

 

 

 

 

In this example the regression and the parameter vectors are of two dimensions. Here N denotes the number 

of samples taken from one period.  The signal to be approximated let )/2cos(2)( Nnny = . How to select 

parameters 

 )()()( 10 nwnwnW T =        (22) 

to minimize the mean square error? The matrices R and P can be computed by averaging sine and cosine 

waveforms for the complete period (N>2): 
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Comments: 

1. )/2cos(2
)/2sin(

)/)1(2sin(
2

)/2tan(

)/2sin(
2)( * Nn

N

Nn
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Nn
WnX T 
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
=

−
−= . 

2. Since cosine waveforms can be generated as linear combination of different phase sine waves, 

therefore for the case of the example 0min = , i.e. the lowest point of the error surface (paraboloid) reaches 

the hyper-plane of the parameters. 

Towards adaptive procedures: Based on (20) and (21): PRW 1* −= , ))((2)( PnRWn −= . Multiplying 

both sides by 
1

2

1 −R :     )(
2

1
)( 1* nRnWW −= −

.     (25) 

If we have only approximate knowledge about matrix R, and consequently about the gradient, (25) can be 

rewritten to an iterative form: )(ˆˆ
2

1
)()1( 1 nRnWnW −=+ −

, or by introducing a convergence factor and 

assuming the perfect R and the perfect gradient, we have: 
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    )()()1( 1 nRnWnW −=+ −  .     (26) 

Comments: 

1. If matrix R matrix and the gradient are perfectly known, then setting
2

1
=  provides one-step 

convergence from an arbitrary (but finite) initial value W(n). 

2. Since ])([2)( *WnWRn −= , therefore by introducing this into (26), and subtracting *W  from both 

sides of the equation: 

)0()21()1())()(21()1( 1** VnVWnWWnW n+−=+=−−=−+  , i.e. the initial parameter error will 

decrease exponentially, if 
2

1
 . If 5.00   , then the error will decrease monotonically, otherwise with 

oscillating sign.  

3. The gradient methods of model fitting are distinguished by the a priori knowledge available to 

evaluate (26).  

If the R and P matrices are known, the equations describing the behaviour of adaptive linear combinator are 

as follows: 

)()()1( 1 nRnWnW −=+ − , and )()21()1( nVnV −=+  .   (27) 
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5. Quantities and variables in real-time systems (cont.) 

Replica determinism 

The reliability of a system can be improved by active redundancy, i.e. by replicated physical components. A 

set of replicated RT objects is replica determinate if all the members of this set have the same externally 

visible RAM state, and produce the same output messages at points in time that are at most an interval of d 

time unit apart (as seen by the omniscient outside observer with the reference clock C). In a fault-tolerant 

system, the time interval d determines the time it takes to replace a missing message or an erroneous 

message from a node by a correct message from redundant replicas. This time must be derived from the 

dynamics of the application.  

A major decision point is a decision point in an algorithm that provides a choice between a set of 

significantly different courses of actions. 

Example: Consider an airplane with a three-channel flight-control system and a majority voter. Each 

channel has its own sensors and computers to minimize the possibility of a common-mode error. Within a 

specified time interval after the event “start of take-off”, the control system must check whether the plane 

has attained the take-off speed. In case the take-off speed has been attained, the lift-off procedure is initiated, 

and the engines are further accelerated. In case the take-off speed has not been reached within this specified 

time interval, the take-off must be aborted, and the engines must be stopped. The decision whether or not to 

take off occurs at a major decision point.  The table below describes such a situation, where the condition of 

replica determinism is not met, and the faulty channel governs the decision.  

Channel Decision Action 

Channel 1 Take off Accelerate engine 

Channel 2 Abort Stop engine 

Channel 3 Abort Accelerate engine 

Assume that the speed of the plane at the major decision point is about the same as the specified limit of the 

take-off speed. Because of random effects (deviation in the sensor calibration, digitalization error, slightlz 

different points in the time of speed measurement), channels 1 and 2 reach different conclusions: channel 1 

decides that the take-off speed has been reached and that the plane should take off. Channel 2 decides that 

the take/off speed has not been reached and the take-off speed and the take-off should be aborted. Both 

channels take the correct decision, although the decisions are not replica determinate. Channel 3 is faulty 

and decides to abort, and to accelerate the engine. In the majority vote of the action, the faulty channel wins, 

because the correct channels are not replica determinate.  

Sampling and polling: 

We use the term sampling, if the data is written into a memory element at the sensor:  

 

 

 

From the point of view of system specification, a sampling system can be seen as protecting a node from 

more events in the environment than are stated in the system specification. The memory is at the sensor and 

thus outside the sphere of control of the computer.  

We use the term polling, if the data memory is resided inside the computer:  

 

 

 

memory computer 

computer memory 
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From functional point of view, there is no difference between sampling and polling as long as no faults 

occur. Under fault conditions, the sampling system is more robust than the polling system.  

Comment: The interrupt mechanism can be characterized by the figure introduced for polling. The interrupt 

mechanisms empower a device outside the sphere of control of the computer to govern the temporal control 

pattern inside the computer. This is a powerful a potentially dangerous mechanism that must be used with 

great care. From the fault-tolerance point of view, an interrupt mechanism is even less robust than the 

already denounced polling mechanism. Every transient error on the transmission line will interfere with the 

temporal control scheme within the computer. It will generate an additional unplanned processing load for 

the detection of a faulty sporadic interrupt, making it more difficult to meet the specified deadlines.  

6. Real-Time (RT) communication 

The general scheme: 

 

 

 

 

 

 

 

 

 

 

Comment: In general complicated mechanisms, different queues. The RT requirements are hard to meet.  

The criticality of time conditions can be identified even on the physical level. In case of asynchronous 

communication, some kind of synchronization or handshaking is unavoidable. Handshaking with two wires: 

 

 

 

 

 

 

The speed and time conditions of the asynchronous communication are determined by both actors, since till 

the processing of the received data, the transmitter cannot forward the next data.  

Real/time communication requirements: 

1. A RT communication protocol should have a predictable, and small maximum protocol latency and a 

minimal jitter. The standard communication topology in distributed real/time systems is multicast, not 

point-to-point. A message should be delivered to all receivers within a short and known time interval. 

2. Support for Composability: (1) Temporal encapsulation of the nodes: the communication system should 

erect a temporal firewall around the operation of the host, forbidding the exchange of control signals 

across the Communication Network Interface (CNI). Thus, the communication system becomes 

autonomous and can be implemented and validated independently of the application software in the host. 

i-th HOST      k-th HOST 
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(2) Fulfilling the obligations of the Client: a host implementing server functions can guarantee its 

deadlines if the clients fulfill their obligations, and do not overload the host with too many, uncoordinated 

service requests.  

3. Flexibility: An RT protocol should be flexible to accommodate different system configurations without 

requiring a software modification and retesting of the operational nodes that are not affected by the 

change.  As an example, imagine a car with and without extras. 

4. Error detection: The communication system must provide predictable and dependable services. Errors 

must be detected and corrected without increasing the jitter of the protocol latency. If the errors cannot be 

corrected, the receivers should be informed about the error with low latency. Loss of information is of 

particular concern. Consider a node, at a control valve, that receives output commands from another 

node. In case the communication is interrupted because the wires are cut, the control valve node should 

enter a safe state autonomously, e.g. it should close the valve. The communication system must inform 

the control valve node about the loss of communication with low error detection latency. End-to-end 

protocols are needed (Three Mile Island Nuclear Reactor #2 accident on March 28, 1978). 

5. Physical structure: point-to-point communication can easily result in high costs. Physical networks should 

be based on a bus or a ring structure.  

Flow control: 

Explicit Flow Control: 

Example: PAR (Positive Acknowledgement or Retransmission) protocol: Many variants of the basic PAR 

protocol are known, but they all rely on the following principle:  

(1) The client at the sender’s site initiates the communication. (2) The receiver has the authority to delay 

the sender via the bi-directional communication channel. (3) The communication error is detected by 

the sender, and not by the receiver. The receiver is not informed when a communication error has 

been detected. (4) Time redundancy is used to correct a communication error, thereby increasing the 

protocol latency in case of errors. 

 

 

 

 

 

 

Program of the sender: 

(1) The sender initializes a retry counter to zero. 

(2) The sender starts a local time-out interval. 

(3) The sender sends the message to the receiver. 

(4) The sender receives an acknowledgement message from the receiver within the specified time-out 

interval. 

(5) The sender informs its client about the successful transmission, and duly terminates. 

If the sender does not receive a positive acknowledgement message from the receiver within the specified 

time-out interval: 

(a) The sender checks the retry counter to determine whether the given maximum number of retries has 

already been exhausted.  

(b)  If so, the sender aborts the communication, and informs its client about the failure.  

(c) If not, the sender increments the retry counter by one, and returns to (2). 

 

Program of the receiver: 

Client 
 

Client Sender Receiver 
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(1) If new message arrives at the receiver, the receiver checks whether this message has already been 

received. 

(2) If not, the receiver sends an acknowledgement message to the sender, and delivers the message to its 

client.   

(3) If yes, it just sends another acknowledgement message back to the sender. (In this case the previous 

acknowledgement message has arrived at the sender out of the specified time-out interval, or failed to 

arrive.  

Comment: 

The point in time at which the sender’s client is informed about a successful transmission, can be 

significantly different from the point in time at which the receiver’s client accepts the delivery of the 

message. 

Example: Consider a bus system where a token protocol controls media access to the bus. The maximum 

token rotation time (TRT) is 10 ms. The time needed to transport the message on the bus is 1 ms.  

The length of time-out interval: 10+1+10+1=22 ms, since in worst-case the sender should wait 10 ms for the 

token, the message takes further 1 ms, and on the way back the worst case is the same. Here dmin=1 ms, dmax= 

(number of retries) *time-out+10 ms+1 ms. If the number of retries is two (i.e. we apply three trials), then 

dmax= 55 ms. 

- The jitter of this PAR protocol: jitter= dmax- dmin=54 ms. 

-  The action delay, if we have global clock: dmax = 55 ms. If the granularity of the global clock is 100 𝜇𝑠, 
then the message becomes permanent after 𝑑𝑚𝑎𝑥 + 2𝑔 = 55.2𝜇𝑠. 

- The action delay, if the global clock is not available: 2* dmax - dmin= 109 ms. 

- The error detection latency: 3*time-out: 66 ms. 

This example illustrates that the explicit flow control in RT applications might be disadvantageous due to 

the large jitter and error detection latency.  

Implicit flow control: 

 

 

 

 

 

 

 

The communication is time-triggered. Both the sender and the receiver have a message scheduling time 

table, which were fixed in design-time.  From this schedule it is clear at what time the message is to be sent 

and received. The sender at the corresponding clock tick pushes the message, while at the same time the 

receiver pulls the message (push-pull mechanism). This approach fits better to the real-time requirements in 

many cases. E.g. error detection by the receiver is immediately possible, if the expected message fails to 

arrive. (For the sender this means a so-called fail-silent mode, where the absence of the message means the 

error state of the sender.) 

Global time-base is needed. The sender transmits only at fixed time instants, no handshaking is applied, 

error detection is the role of the receiver, since it knows when a message should arrive.  Fault tolerance is 

solved by active redundancy: k copies of the message are transmitted, and the transmission is successful 

unless at least one message arrives. Summary of implicit flow control: 

(1) The communication is initiated by clock tick.  

(2) The receiver is expecting the message following the clock tick.  

(3) Error is detected by the receiver, typically by realizing the absence of the message.  

(4) For error correction active/hardware redundancy is applied.  

Client Client Sender Receiver 

Clock 
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The Time Triggered Architecture (TTA) and the Time-Triggered Protocols (TTPs) 

A detailed description can be found in 

HERMANN KOPETZ, GÜNTHER BAUER: The Time-Triggered Architecture, PROCEEDINGS OF THE IEEE, VOL. 91, NO. 

1, JANUARY 2003, pp. 112-126. (This paper is available also on the homepage of the subject.) 

Here follows only a brief description of TTA and TTP: 

It is devoted to implement hard real-time (HRT) systems. The basic building block of the TTA is a node. A 

node comprises in a self-contained unit (possibly on a single silicon die) a processor with memory, an input–

output subsystem, a TT communication controller, an operating system, and the relevant application 

software 3. Two replicated communication channels connect the nodes, thus forming a cluster. The cluster 

communication system comprises the physical interconnection network and the communication controllers 

of all nodes of the cluster. In the TTA, the communication system is autonomous and executes periodically 

an a priori–specified time-division multiple access (TDMA) schedule. It reads a state message from the 

Communication Network Interface (CNI) at the sending node at the a priori–known fetch instant and 

delivers it to the CNIs of all other nodes of the cluster at the a priori–known delivery instant, replacing the 

previous version of the state message. The times of the periodic fetch and delivery actions are contained in 

the message scheduling table [the message descriptor list (MEDL)] of each communication controller. It has 

two versions: the TTP/C, which serves fault tolerant solutions, and the TTP/A, which is suitable for cheap 

field bus applications. Each node consists of a Host computer and a Communication Controller (CC). The 

CNI is the interface within node between the host and the CC. It is a dual-port RAM (DPRAM). Data 

integrity is solved by the Non-Blocking Write (NBW) Protocol (see later). The local memory of the CC 

contains the Message Description List (MEDL), that determines which node can send, and which can 

receive a message at a given time.  The size of the MEDL is determined by the cluster round. The TTP 

controllers contain - as independent hardware so-called Bus Guardian units, which monitor the bus access 

patterns of the controlling bus, and stop the operation of the controller, if the timing of the regular access 

patterns fails.  

Important properties: (1) The TTP is a time-division-multiple-access (TDMA) protocol. (2) The CC is 

autonomous, which is controlled by the MEDL and the global clock. This serves composability. The error of 

the hosts cannot influence the communication system, because control signal cannot get through the CNI, 

and neither the MEDL can be accessed from the host. (3) The communication system is decided in design 

time (it is like a time table at the railways): it knows in advance when a message arrives, and when a 

message is to be sent. If the message fails to arrive, the error is immediately detected. (4) Naming: the name 

of the message and the sender should not be part of the message, it can be read from the MEDL. At the same 

time, we can give different names to a given RT variable within the software of different hosts. (5) 

Acknowledgement: We know in advance that all correct receivers the message of the correct sender. As one 

of the receivers acknowledges the message, it can be assumed that all correctly operating host has also 

received it.  (6) Fail-silence in the time domain: TTP assumes that the nodes support the “fail silence” 

abstraction in the time domain, which means that the node either sends a message at right time, or sends 

nothing. This property within the TTP controller is solved by the bus guardian. The error handling in the 

magnitude domain is the responsibility of the host. The TTP provides only CRC.  
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The basic CNI: 

The CNI is the most important interface within a time-triggered architecture, because it is the only interface 

of the communication system that is visible to the software of the host computer. It thus constitutes the 

programming interface of a TTP network.  The Status Registers are written by the TTP controller, while the 

Control Registers by the host. 

 

Status Registers Control Registers 

(S1) Global Internal Time (C1) Watchdog 

(S2) Node Time (C2) Timeout Register 

(S3) Message Description List (C3) Mode Change Request 

(S4) Membership (C4) Reconfiguration Request 

(S5) Status Information (C5) External Rate Correction 

 

S1: The common clock of the cluster on two bytes. S2: The clock of node. S3: MEDL Pointer. S4: As many 

bits as the number of participants within the cluster. If one of the bits is “TRUE”, then that node was in 

operation within the last time-slot. C1: The host periodically restarts; the controller checks it. If the restart 

fails, then the controller – supposing error – stops sending messages. C2: Written by the host. If the time is 

over, it will cause interrupt. For example, later, the host can synchronize its clock to that of the cluster. C3: 

Using this a new scheduling can be introduced. C4: In case of error a reconfiguration can be initiated. C5: 

Makes possible external clock synchronization. 

The Message Description List (MEDL)  

Node Time Address D L I A 

When What: Pointer to the Message direction length   

      

      

I: specifies whether the message is an initialization message or a normal message. A: contins additional 

protective information concerning mode changes and mode role changes. 

Fault-Tolerant Units: Its role is to mask the failure of a node. If it implements fail-silent abstraction, then it 

is enough to duplicate the nodes to tolerate a single value failure. If the node does not implement the fail-

silent abstraction, and can have value-failure at the CNI, then Triple Modular Redundancy (TMR) is to be 

applied. If in case of node failure, nothing is known about the behaviour of the node, then byzantine error 

might also occur, i.e. four nodes can mask the error.  

 

 

TTP Bus 

Host computer 

CNI in DPRAM 

Protocol 
Processor 

TTP Control Data 
in ROM 

BG BG 
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2. Fundamental conflicts in protocol design 

A balanced protocol design tries to reconcile many requirements. It is important to understand which 

requirements are compatible with each other, and which requirements are in fundamental conflict with each 

other, and cannot be reconciled by any design decisions that are made.  

External control ↔ Composability 

Consider a distributed real-time system consisting of a set of nodes that communicate with each other. Each 

node has a host computer with CNI. Composability in the temporal domain requires that:  

- The CNI of every node is fully specified in the temporal domain;  

- The integration of a set of nodes into the complete system does not led to any change of the temporal 

properties of the individual CNIs, and  

- The temporal properties of every host can be tested in isolation with respect to the CNI.  

If the temporal properties are not contained in the CNI specification, e.g. because the moment when a 

message must be transmitted is external and unknown to the communication system, then it is not possible to 

achieve composability in the temporal domain.  If the temporal properties of the CNI are fully specified, 

then low-level composability can be achieved. There is, however, always the possibility that the application 

functions interact in an unpredictable manner that precludes high-level composability.  

In an event-triggered system, the temporal signals originate external to the communication system, in the 

hosts of the nodes. It is thus not possible to achieve low-level composability.  

Example: If all the nodes can compete at any point in time for a single communication channel on a demand 

basis, then, it is impossible to avoid the side effects caused by the extra transmission delay resulting from 

conflicts regarding the access to this single channel, no matter how clever the medium access protocol may 

be. These extra transmission delays can invalidate the temporal accuracy of the real-time images that are 

transported in the message.  

Flexibility ↔ Error detection 

Flexibility implies that the behaviour of a node is not restricted a priori. In an architecture without 

replication, error detection is only possible if the actual behaviour of the node can be compared to some a 

priori knowledge of the expected behaviour. If such knowledge is not available, it is not possible to protect 

the network from a faulty node.  

Example: Consider an event-triggered system with no regularity assumptions, where access to a single bus is 

determined solely by the message priority: if there is no restriction on the rate at which a node may send 

messages, it is impossible to avoid the monopolization of the network by a single (possibly erroneous) node 

that sends a continuous sequence of messages of the highest priority.  

Example: If a node is not required to send a “heartbeat message” at regular intervals, it is not possible to 

detect a node failure with a bounded latency.  

Sporadic data ↔ Periodic data 

A RT protocol can be effective in either the transmission of periodic data or the transmission of sporadic 

data, but not with both. The transmission of periodic data (e.g. data exchanges needed to coordinate a set of 

control loops) must take place with minimal latency jitter. Because the repetitive intervals between the 

transmissions of periodic data are known a priori, conflict-free schedules can be designed in design time. 

Sporadic data must be transmitted with minimal delay, on demand, at a priori unknown points in time. If an 

external event requiring the transmission of a sporadic message occurs at the same time as the next 

transmission of the periodic data, then, the protocol must decide either to delay the sporadic data, or to 

modify the schedules of the periodic data. In either case, the latency jitter increases: one cannot satisfy both 

goals simultaneously.  
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Single locus of control ↔ Fault tolerance 

Any protocol that relies on a single locus of control has a single point of failure. This is evident for a 

communication protocol that relies on a central master. However, even the access method of token passing 

relies on a single locus of control at any particular moment, with no consideration of time as the control 

element. If the station holding the token fails, no further communication is possible until the token loss has 

been detected by an additional time-out mechanism, and the token has been recovered. This takes time, and 

also interrupts the real-time communication. In some respects, the nontrivial problem of token recovery is 

related to the problem of switching from a central master to a standby master in a multi-master protocol.   

Probabilistic access ↔ Replica determinism 

Another fundamental conflict exists between the property of replica determinism (needed if active 

redundancy is to be applied) and that of medium access based on probabilistic mechanisms. Is systems that 

rely on a single winner emerging from fine-grained race conditions (e.g. bit arbitration, conflict resolution 

based on random numbers), it cannot be guaranteed that the access to the replicated communication channels 

is always resolved identically by competing nodes. Without replica determinism, each replica can come to 

different correct result, thereby leading to inconsistency in the system as a whole.  

Performance Limits in TT systems 

As in any distributed computing system, the performance of the TTA depends primarily on the available 

communication bandwidth and computational power. Because of physical effects of time distribution and 

limits in the implementation of the guardians, a minimum interframe gap of about 5 µs must be maintained 

between frames to guarantee the correct operation of the guardians. If a bandwidth utilization of about 80% 

is intended, then the message-send phase must be in the order of about 20 µs, implying that about 40 000 

messages can be sent per second within such a cluster. With these parameters, a sampling period of about 

250 µs can be supported in a cluster comprising ten nodes. The precision of the clock synchronization in 

current prototype systems is below one microsecond. If the interframe gap and bandwidth limits are 

stretched, it might be possible to implement in such a system a 100 µs TDMA round (corresponding to a 10-

kHz control loop frequency), but not much smaller if the system is physically distributed (to tolerate spatial 

proximity faults). The amount of data that can be transported in the 20 µs window depends on the 

bandwidth:  

In a 5-Mb/s system it is about 12 bytes: 5*106*20*10-6 = 100 bit (~12 byte);  

In a 1-Gb/s system it is about 2500 bytes: 1*109*20*10-6 = 20 000 bit (2500 byte)  bytes.  

Synchronizing ET and TT systems  

The processor of the host operates in ET mode, while the network in TT mode. This means that the CNI 

cannot be blocked without consequences. The writing from the network is investigated.  

Non-blocking Write Protocol (NBW): At the interface there is one writer, the communication system, and 

many readers, the tasks of the host. A reader does not destroy the information written by the writer, but the 

writer can interfere with the operation of the reader. In the NBW protocol, the writer is never blocked. It wiil 

thus write a new version of the message into the DPRAM of the CNI whenever a new message arrives. If a 

reader reads the message while the writer is writing a new version, the retrieved message will contain 

inconsistent information and must be discarded. If the reader is able to detect the interference, then the 

reader can retry the read operation until it retrieves a consistent version of the message. It must be shown 

that the number of retries performed by the reader is bounded.  

The protocol requires a concurrency control field, CCF, for every message written. Atomic access to the 

CCF must be guaranteed by the hardware. The CCF is initialized to zero and incremented by the writer 

before start of the write operation. It is again incremented after the completion of the write operation. The 

reader starts by reading the CCF at the start of the read operation. If the CCF is odd, then the reader retries 

immediately because a write operation is in progress. At the end of the read operation the reader checks 
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whether the CCF has been changed by the writer during the read operation. If so, it retries the the read 

operation again until it can read an uncorrupted version of the data structure.  

 

Inicialization: CCF:=0 

 

Writer: 

Start:  CCF_old:=CCF; 

  CCF:=CCF_old+1; 

  <write into data structure> 

  CCF:=CCF_old+2; 

 

Reader: 

Start: CCF_begin:=CCF; 

  if CCF_begin=odd then goto Start; 

  <read data structure> 

  CCF_end:=CCF; 

  if CCF_end  CCF_begin then goto Start; 

 

It can be shown that upper bound for the number of read retries exists if the time between write operation is 

significantly longer than the duration of a write or read operation.  

 



Embedded information systems: Lecture 03.11.2017. 
 

64 
 

6. Real-Time (RT) communication (cont.) 

Characteristics of a Communication Channel: 

A communication channel is characterized by its bandwidth and its propagation delay. 

Bandwidth: The bandwidth indicates the number of bits that can traverse a channel in unit time. It is 

determined by the physical characteristics of the channel. In a harsh environment, such as a car, it is not 

possible to transmit more than 10kbit/sec over a single-wire channel or 1 Mbit/sec over an unshielded 

twisted pair because of EMI constraints. In contrast, optical channels can transport gigabits of data per 

second. 

 

Propagation Delay: The propagation delay is the time interval it takes for a bit to travel from one end of the 

channel to the other end. It is determined by the length of the channel and the transmission speed of the 

wave (electromagnetic, optical) within the channel. The transmission speed of an electromagnetic wave in 

vacuum is about 300 000 km/sec, or 1 foot/nsec. Because the transmission speed of a wave in a cable is 

approximately 2/3 of the transmission speed of light in vacuum, it takes a signal about 5 µs to travel across a 

cable of 1 km length.  

The term bit length of a channel is used to denote the number of bits that can traverse the channel within one 

propagation delay. For example, if the channel bandwidth is 100 Mbit and the channel is 200 m long, the bit 

length of the channel is 100 bits, since the propagation delay of this channel is 1 µs.  

Limit to Protocol Efficiency: In a bus system, the data efficiency of any media access protocol to a single 

channel is limited by the need of to maintain a minimum time interval of one propagation delay between two 

successive messages. Assume the bit length of a channel to be bl bits and the message length to be m bits. 

Than an upper bound for the data efficiency of any media access protocol in a bus system is given by: 

𝑑𝑎𝑡𝑎 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 <
𝑚

𝑚 + 𝑏𝑙
 

 

Example: Consider a 1 km bus with a bandwidth equal to 100 Mbits/sec. The message length that is 

transmitted over the channel is 100 bits. It follows that the bit length of the channel is 500 bits, and the limit 

to the data efficiency is 100/(500+100)=16.6%.  

 

 

 

 

 

Comments to the topic of real/time communication: 

1. Properties of Transmission Codes:  

The terms asynchronous and synchronous have different meanings depending on whether they are used in 

the computer-science community or in the data-communication community.  

In asynchronous communication, the receiver synchronizes its receiving logic with that of the sender only at 

the beginning of a new message. Since the clocks of the receiver and the sender drift apart during the 

interval of the message reception, the message length is limited in asynchronous communication, e.g. to 

about 10 bits in a UART (Universal Asynchronous Receiver Transmitter) device that uses a low-cost 

resonator with a drift rate of 10−2𝑠𝑒𝑐/𝑠𝑒𝑐.  

In synchronous communication, the receiver resynchronizes its receive logic during the reception of a 

message to the ticks of the sender’s clock. This is only possible if the selected data encoding guarantees 

m m 

5 µs 

trasmission reception 
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frequent transitions in the bit stream. A code that supports the resynchronization of the receiver’s logic to the 

clock of the sender during transmission is called synchronizing code.  

NRZ code: (non-return-to-zero): non-synchronizing code 

11010001: “1” corresponds to high level, “0” correspond to low level 

Manchester code: synchronizing code 

11010001: “1” corresponds to rising edge: from low to high, “0” corresponds to a falling edge: from high 

to low.  These edges appear in the middle of the clock interval. Always the next bit tells whether the signal 

should return to the other level at time instant of the clock, or not. If the new bit equals the previous one, 

then it should return. This code is ideal from the point of view of resynchronization, but it has the 

disadvantage that the size of a feature element, i.e. the smallest geometric element in the transmission 

sequence, is half of the bit cell.  

Modified Frequency Modulation Code (MFM): The MFM code is a code that has a feature size of one bit 

cell and is also synchronizing. The encoding scheme requires distinguishing between a data point and a 

clock point. A “0” is encoded by no signal change at data point; a “1” requires a signal change at data point. 

If there are more than two “0”s in sequence, the encoding rules require a signal change at clock points. 

2. Time Synchronization in Wireless Sensor Networks 

Classes of Synchronization: 

- Internal versus external 

 The synchronization of all clocks in the network to a time supplied from outside the network is referred 

to as external synchronization. NTP performs external synchronization, and so do sensor nodes 

synchronizing their clocks to a master node. Internal synchronization is the synchronization of all clocks 

in the network, without a predetermined master time. The only goal here is the consistency among the 

network nodes.  

- Lifetime: Continuous versus on-demand  

 The lifetime of synchronization is the the period of time during which synchronization is required to hold. 

If time synchronization is continuous, the network nodes strive to maintain synchronization (of a give 

quality) at all times. For some sensor-network applications, on-demand synchronization can be as good as 

continuous synchronization in terms of synchronization quality, but much more efficient. During the 

(possibly long) periods of time between events, no synchronization is needed, and communication and 

hence energy consumption can be kept at a minimum. As the time intervals between successive events 

become shorter, a break-even point is reached where continuous and on-demand synchronization perform 

equally well. There are two kinds of on-demand synchronizations: 

 Event-triggered on-demand synchronization is based on the idea that in order to time-stamp a sensor 

event, a sensor needs a synchronized clock only immediately after the event has occurred. It can then 

compute the time-stamp for the moment in the recent past when the event occurred (Post-facto 

synchronization).  

 Time-triggered synchronization is used if we are interested in obtaining sensor data from multiple sensor 

nodes for a specific time. This means that there is no event that triggers the sensor nodes, but the nodes 

have to take a sample at precisely the right time. This can be achieved via immediate synchronization 

(where sensor nodes receive the order to immediately take a sample and time-stamp it) or anticipated 

synchronization (where the order is to take the sample at some future time, the target time). Anticipated 

synchronization is necessary if it cannot be guaranteed that the order can be transmitted rapidly ans 

simultaneously to all involves sensor nodes. This is especially the case if sensor nodes are more than one 

hop away from the node giving the order.  

 Note that for successful anticipated synchronization, it is sufficient to maintain a synchronization quality 

which guarantees that the target time is not missed. This means that the required synchronization quality 
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grows as the real time approaches the target time. There is no need to synchronize with maximum quality 

right from the beginning. 

 Analogously to the event-triggered post-facto synchronization, we might refer to time-triggered 

synchronization as pre-facto synchronization. 

- Scope: all nodes versus subsets 

The scope of synchronization defines which nodes in the network are required to be synchronized. 

Depending on the application, the scope comprises all or only a subset of the nodes (where and when 

synchronization is required).  Event-triggered synchronization can be limited to collocated subset of 

nodes which observe the event in question.   

- Rate synchronization versus offset synchronization 

Rate synchronization means that nodes measure identical time-interval lengths. In a scenario where 

sensor nodes measure the time between the appearance and disappearance of an object, rate 

synchronization is a sufficient and necessary condition for comparing the duration of the object’s 

presence within the sensor range of different nodes.  

Offset synchronization means that nodes measure identical points in time, that is at some time t, the 

software clocks of all nodes in the scope show t. Offset synchronization is needed for combining time 

stamps from different nodes.  

- Timescale transformation versus clock synchronization  

Time synchronization can be achieved in two fundamentally different ways. We can synchronize clocks, 

that is make all clocks display the same time at any given moment. To achieve this, we must perform rate 

and offset synchronization (or continuous offset synchronization, which however is costly in terms of 

energy and bandwidth and requires reliable communication links). The other approach is to transform 

timescales, that is to transform local times of one node into local times of another node.  

The approaches in that clock synchronization requires either communication across the whole network or 

some degree of global coordination.  Timescale transformation does not have this drawback, but instead 

requires additional computations and memory overhead, since the received timestamps must be 

transformed. 

- Time instants versus time intervals  

Time information can be given by specifying time instants (e.g., “t=5”) or time intervals (“t∈ [4.5,5.5]”). In 

both cases, the time information can be refined by adding a statement of quality. E.g., the time 

information may be guaranteed to be correct with a certain probability, or even probability distributions 

can be given. Typically, the term time uncertainty is used. In sensor networks the use of guaranteed time 

intervals can be very attractive. 

Synchronization techniques: Taking one sample 

 

Unidirectional Synchronization: 

 

 

 

Node Nj is not familiar with d, its knowledge is only the fact, that the clock of node Ni displayed the value 

Ci(a) before the clock of node Nj displayed Cj(b). To perform synchronization, we must estimate either the 

value of Cj(a) or Ci(b). If the limits dmin ≤ d ≤ dmax are known, then 

𝐶̂𝑗(𝑎) ≈ 𝐶𝑗(𝑏) −
𝑑𝑚𝑖𝑛+𝑑𝑚𝑎𝑥

2
  or  𝐶̂𝑖(𝑏) ≈ 𝐶𝑖(𝑎) +

𝑑𝑚𝑖𝑛+𝑑𝑚𝑎𝑥

2
. 

Nj 

Ni 

Ni Nj 

d 

Ci(b) Cj(b) 
 (b) 

Cj(a) 
 

Ci(a) 
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Having these estimates, the clock of node Nj should be modified by 𝐶̂𝑗(𝑎) − 𝐶𝑖(𝑎) or 𝐶𝑗(𝑏) − 𝐶̂𝑖(𝑏). If the 

communication jitter (dmax-dmin) is large, then the synchronization will be inaccurate, because the lower 

bound of Cj(a) will be Cj(b) − dmax, and the upper bound will be Cj(b) − dmin, which is a wide range.  

Bidirectional (round trip) synchronization:  

 

 

 

 

 

Here node Nj knows that 0≤ 𝑑 ≤ 𝐷. 𝐷 = 𝐶𝑗(𝑐) − 𝐶𝑗(𝑎). If dmin ≤ d ≤ dmax, then max (𝐷 − 𝑑𝑚𝑎𝑥, 𝑑𝑚𝑖𝑛) and 

min (𝑑𝑚𝑎𝑥, 𝐷 − 𝑑𝑚𝑖𝑛) give the limits of d. The estimate that can be computed here. 

𝐶̂𝑗(𝑏) ≈ 𝐶𝑗(𝑐) −
𝐷

2
, having lower bound 𝐶𝑗(𝑐) − (𝐷 − 𝑑𝑚𝑖𝑛), and upper bound 𝐶𝑗(𝑐) − 𝑑𝑚𝑖𝑛. 

The clock of node Nj is to be modified by 𝐶̂𝑗(𝑏) − 𝐶𝑖(𝑏). With such a method the quality of the 

synchronization will be better. The worst-case synchronization error: 
𝐷

2
− 𝑑𝑚𝑖𝑛, that can be proved using the 

above figure. The method can be improved using the so-called probabilistic time synchronization, where 

node Nj after receiving the timestamp checks weather the value of 
𝐷

2
− 𝑑𝑚𝑖𝑛 < than a defined threshold. If 

not, then the request will be repeated.  

Reference broadcasting synchronization: 

In this case also a so-called beacon node 𝑁𝑘 is involved. The beacon sends a broadcast message to the other 

nodes. The delays are almost equal: 𝑑 ≈ 𝑑′. 

 

 

 

 

 

 

Thus 

𝐶̂𝑖(𝑏) ≈ 𝐶𝑖(𝑎) + 𝐷,  

i.e., the clock of node Nj should be modified by 𝐶𝑗(𝑏) − 𝐶̂𝑖(𝑏). It is n important property, that the 

synchronization of node Nj is performed without using it radio channel.  

Synchronization of multiple nodes: 

 (1) Single-hop synchronization with a set of master nodes which are synchronized out of ban (e.g. using 

GPS); (2) Partitioning the network into clusters: all nodes within a cluster can broadcast messages to all 

other members of the cluster and thus reference-broadcast techniques can be used to synchronize the cluster 

internally. Some nodes are members of several clusters and participate independently in ll corresponding 

synchronization procedures. These nodes act as time gateways to translate time stamps from one cluster to 

the other.; (3) Tree construction: The most common solution of the multi-hop synchronization problem is to 

construct a synchronization tree with a single master at the root. The accuracy degrades with the hop 

distance from the root. 
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7. Embedded operating systems  

7.1. Software aspects of Embedded Systems: Typical software architectures  

Concerns: computational capacity, memory size (RAM, ROM), development, flexibility, reaction time to 

external, asynchronous event, (memory) protection, recursion, re-entrant calls, processor utilization, etc.  

Features used in characterization: 

• maximum response time, 

• handling hardware, 

• inter task communication, 

• design technologies, 

• application area. 

Classification of software architectures: periodic, priority-based, event-triggered, time-triggered.  

Practical implementations: 

• cyclic architecture 

• cyclic architecture together with external interrupt 

• function queue scheduling 

• RTOS  

Cyclic architecture 

• round-robin 

• weighted round-robin 

• time-triggered round-robin 

• strictly time-triggered 

• round-robin with interrupt 

Simple cyclic architecture: the processor runs in an infinite loop, even if there is no service request.  

void main() { 

while (TRUE){ 

if (DeviceA_Needs_Service()) {Service_A}; 

if (DeviceB_Needs_Service()) {Service_B}; 

if (DeviceC_Needs_Service()) {Service_C}; 

... 

} 

} 

Properties: 

• maximum response time: tA+ tB+ tC+ ..., i.e. maximum cycle time. 

• hardware is handled with polling 

• inter-task communication with shared variables (non preemptive!) 

• development: hard 

• hard RT behaviour: slow (e.g. printer task) (however, it can be RT) 

• processor utilization:100% (this is wrong!) 

• application area: where the time constant of the system is larger than the cycle time (fast and rare 

events). 

 

Weighted round-robin: the more frequent tasks can be called more than once within the cycle.  

 

void main() { 

while (TRUE){ 

if (DeviceA_Needs_Service()) {Service_A}; 

if (DeviceB_Needs_Service()) {Service_B}; 
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if (DeviceA_Needs_Service()) {Service_A}; 

if (DeviceC_Needs_Service()) {Service_C}; 

if (DeviceA_Needs_Service()) {Service_A}; 

... 

} 

} 

Properties: 

• maximum response time: tA+ tB+ tA+ tC+ tA+.., but for more frequent tasks it is less than the 

maximum cycle time.  

• hardware is handled with polling 

• inter-task communication with shared variables (non preemptive!) 

• development: hard 

• processor utilization:100% (this is wrong!) 

• further property: priority-like behaviour, still not preemptive 

Time-triggered round-robin: The boundaries of the cycle are determined by a timer. For every timer 

interrupt the cycle runs once or several times. The cycle itself can be weighted round-robin.  

Properties: 

• maximum response time: cycle period. 

• hardware is handled with polling 

• inter-task communication with shared variables  

• development: hard 

• hard RT behaviour: slow (e.g. printer task) (however, it can be RT) 

• processor utilization: <100% (standby exists) 

Strictly time-triggered: Every task starts running at predefined time instant. Administration:  the 

predefined time instants and function references are collected into a table, which is used by a micro run-time 

system to start the scheduled task at right time. 

Properties: 

• maximum response time: the scheduling rate of the task + its computation time  

• inter-task communication with shared variables  

• development: hard 

• processor utilization: <100% (standby exists) 

• hard real-time behaviour: OK, its application is typical in safety-critical systems 

 

Round-robin with interrupt: signalling is performed with interrupt instead of polling 

 

FLAG A, B; 

void interrupt A_Handler() { Handle_HW_A(); A=TRUE; } 

void interrupt B_Handler() { Handle_HW_B(); B=TRUE; } 

void interrupt C_Handler() { Handle_HW_C(); C=TRUE; } 

void main() { 

while (TRUE){ 

 if A {A=FALSE; Service_A(); } 

 if B { B=FALSE; Service_B(); } 

 if C { C=FALSE; Service_C(); } 

... 

} 

} 

Properties: 

• maximum response time: tA+ tB+ tC+ ...(+ IT) only the signalling will be faster, the service not 

• hardware is handled with interrupt, priority assignment to interrupts is possible 
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• inter-task communication with shared variables: no problem. Between interrupt and task:  pre-

emption (shared variables may cause problems)  

• development: concerning interrupts it is good, but by introducing new tasks time conditions will 

change 

• application field: if the execution time of the tasks is nearly the same. This is the most widely used 

solution.  

Function-Queue Scheduling 

 

void interrupt A_Handler() { Handle_HW_A(); PutFunction(Service_A); } 

void interrupt B_Handler() { Handle_HW_B(); PutFunction(Service_B); } 

void interrupt C_Handler() { Handle_HW_C(); PutFunction(Service_C); } 

void Service_A(); 

void Service_B(); 

void Service_C(); 

void main() { 

while (TRUE){ 

while (IsFunctionQueueEmpty()); 

CallFirstFromQueue(); 

} 

} 

Properties: 

• maximum response time: execution time of the longest task + the execution time of the ith task  

• hardware is handled with interrupt 

• inter-task communication with shared variables: no problem. Between interrupt and task:  pre-

emption (shared variables may cause problems) 

• development: easy 

• The service order from the queue can be: (1) FIFO, (2) priority based 

• drawback: non preemptive 

• processor utilization:100% 

Question: how to modify to have less than 100%? 

Software based on Real-time Operating System 

 

void interrupt A_Handler() { Handle_HW_A(); Signal_A(); } 

void interrupt B_Handler() { Handle_HW_B(); Signal_B(); } 

void Service_A(); 

void Service_B(); 

void task_A(void) { 

while (TRUE){ 

Wait_for_Signal_A(); Service_A(); 

} 

} 

void task_B(void) { 

while (TRUE){ 

Wait_for_Signal_B(); Service_B(); 

} 

} 

Properties: 

• maximum response time: a feature of the operating system (~10 µsec) + the execution time of the 

task together with the sum of the execution time of higher priority tasks 

• hardware is handled with interrupt 
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• inter-task communication: using RTOS communication functions. This solves synchronization, as 

well. 

• development: easy 

• hard real-time behaviour: good 

• processor utilization:<100% (In idle state sleep is possible) 

• application area: everywhere 

• drawback: The Operating System (OS) involves additional code and time  

 

Terms: 

embedded OS: small resource requirement (micro-controllers (µC) are enough) 

real-time OS: provides finite, deterministic response time  

task:   series of inter-dependent activities 

job:   parts, subunits of the tasks  

process:  unit of schedule with separate memory block (implementation of tasks) 

thread:   unit of schedule without separate memory block  

kernel:   the key components of the OS 

scalability:   the services of the OS can be switched on/off in compilation time;   

availability with source code 

 

The role of the kernel: 

• to provide parallel programming environment, 

• scheduling, 

• inter-task communication, 

• handling interrupts, 

• handling timers, and timing services, 

• (possibly) memory management 

Further OS features: 

• handling peripherals and system programs (APIs: Application Programming Interfaces) 

• handling communication channels 

• virtual memory management, file system, etc. 

7.2. Comparison of desk-top OSs and embedded OS-s  

a. Desk-top OS-s are not suitable in embedded systems, because:   

- the services are too extensive; 

- non-modular, non-fault tolerant, non-configurable, non-modifiable; 

- require large memory; 

- not optimized for power consumption; 

- are not designed for mission-critical application; 

- timing uncertainties are too large. 

b. Configurability is needed because: 

- a single OS is unable to meet all the requirements; 

- the overhead caused by the unused functions and data is not tolerable; 

- there are many embedded systems not having disc, keyboard, display, mouse.  

Typical tools of configuration: 

- removal of the unnecessary functions e.g. by the linker; 

- applying conditional compilation (using #if and #ifdef commands); 

Comment: The verification of systems, having operating systems generated by configuration, is difficult:  

- every OS generated by configuration should be thoroughly tested.  
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- E.g. the number of the configuration points of the OS eCos (an open source RT OS of Red Hat) is 

between 100 and 200. 

c. The device handlers of the embedded OS are handled by the tasks, and not by the integrated drivers; 

- the predictability is improved, if everything is handled by the scheduler; 

- practically there is no such a device, which would be supported by all versions of the OS, apart from 

the timer.  

Embedded RTOS Standard OS 

application software application software 

middleware middleware 

devices drivers devices drivers 

real-time kernel device drivers 

 

d. In embedded systems every task can use interrupt:  

- In standard OS this would be a serious source of unreliability; 

- Embedded programs are supposed to be tested; 

- It is allowable that an interrupt starts or stops tasks by putting the start addresses of the tasks into the 

interrupt table. This is more efficient and predictable than via OS functions.   

Comment: 

- However, composability will fail: if the run of a task depends on an interrupt, then it is difficult to add 

another task to be started by the very same event.  

- If RT processing is a concern, then the time required by the interrupt services should also be 

considered. In this case the interrupts should also be handled by the scheduler.  

e. In embedded operating systems the protecting mechanisms are not necessary in every case:  

- The embedded systems are designed for dedicated purposes, untested programs are rarely used, the 

software is reliable.  

- There is no need for privileged I/O instructions, the tasks can manage the I/O operations related to 

them. 

i- However, in case of security concerns protecting mechanisms might be required.  

f. The real-time operating systems (RTOS) support creating real-time systems. Requirement: 

- The time-domain behaviour is predictable: the maximum execution time of every operating system 

function should be known. The RTOS behaves in a deterministic way, almost all activity is supervised 

by the scheduler.    

- the RTOS manages timing and scheduling: to do this it should familiar with deadlines of the tasks, and 

should provide high-resolution timing services.  

- The RTOS should be fast (due to practical considerations).  

-  The RTOS should provide process management functions, so-called Application Program Interface 

(API), like:  

create_thread,  

suspend_thread,  

destroy_thread; … 

create_timer,  

timer_sleep, 

timer_notify; … 

open,  

read; …  

other system calls. 
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The role of the kernel: 

- Execution of concurrent (quasi-parallel) programs in forms of tasks or threads:  

- by handling the states of tasks/threads, and by ordering them into queues; 

- by executing preemptions (fast context switching, see Figure below) and fast interrupt handling;  

- Scheduling the CPU (guaranteeing deadlines, minimizing waiting, reasonable distribution of 

computing power); 

- Synchronizing tasks (Critical sections, semaphores, monitors, mutual exclusion);  

- Inter-task communication (buffering); 

- Supporting RT clock serve as internal reference. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 TCB: task control block: contains the run-time environment (context, state) of a task. While it is running, 

it is typically loaded into the registers of the processor, and saved into the memory in case of pre-

emption. 

  

g. Real-time extensions of standard operating systems  

A possible solution: Every real-time task is executed by a real-time kernel, and the standard operating 

system is a single task: 

runs 

runs 

save state into TCB0 

restore state from TCB1 

save state into TCB1 

restore state from TCB0 

Task0 

waits 

waits 

runs 

Task1 

waits 

Task execution Timer interrupts 

System calls 

External interrupts 

Kernel 

Immediate 
interrupt service 

Time services 

System 
functions 

Scheduler 
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RT-task 1 RT-task 2 non-RT task 1 non-RT task 2 

device driver device driver Standard-OS 

real-time kernel 

Comments: 

- Problems within the standard OS do not influence the execution of the real-time tasks.  

- Since the real-time tasks are unable to use the standard OS function this solution is below the 

expectations.  

Example: RT Linux 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example: Posix 1.b RT-extensions to Linux 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The ordinary Linux scheduler cn be replaced by the POSIX scheduler, which provides priority fro the real-

time tasks. Among the standard OS functions special real-time functions are also offered. Programming is 
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simple, however, there is no guarantee to meet the deadlines. (POSIX: "Portable Operating System Interface 

for uniX".) 

 

Virtualization in embedded systems 

Virtualization: supports portability, i.e. the use of software on different hardware platforms. A so-called 

virtual machine (VM: Virtual Machine) provides such a software environment for the given software, like it 

would run on a real hardware in the following structure:   

 

Application 

Operating system 

Hypervisor 

Processor 

 

The software layer, which provides the virtual environment is the so-called virtual machine monitor (VMM) 

or hypervisor. It has three key features: 

- provides an identical software environment than the original machine;  

- at maximum it runs slower; 

- completely supervises the system resources.  

The majority of the VM instructions are immediately executable on the hardware applied, some of them 

requires interpretation. Among them there are: 

- control-sensitive instructions, which modify the privileged machine states, therefore interfere with the 

supervision of the resources by the hypervisor.   

- behaviour-sensitive instructions, which can reach (read) the privileged machine-states.  

 

Concurrent operating systems on virtual machines 

 

User Interface Software Access Software 

Standard OS RTOS 

Hypervisor 

Processor 

 

 

Improvement of security using virtualization 

 

 

User Interface 

Software 

Access Software 

↓                    OS                     ↑ 

 Buffer overflow  

OS 

Processor 

 

The error caused by an application does not propagate towards another, because it has its own operating 

system.  

Licence separation using virtualization 

 

 

 

 

User Interface 
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↓   OS   ↑ OS 
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User Interface Software Access Software 

Linux GPL RTOS 

 Stub    Driver   

Hypervisor 

Processor 

 

GPL: General Public Licence. Linux is licenced under the GPL which requires open-sourcing of all 

delivered code. Therefore, all software written using Linux is open-source.  Where this would cause 

problems, the Linux and the dedicated application run on different virtual machines. A stub (or proxy) driver 

is used to forward Linux driver requests to the real device driver, using hypercalls.  

Limits of virtualization in embedded systems:  

- Using more operating systems together with applications of increasing complexity results in large amount 

of code, which can be a source of error, requires larger memory, consumes more energy.  

- The different subsystems should intensively cooperate: separated implementation does not fit.  

- The inter-subsystem communication is not supported by the virtual machine.  

- To share common resources among subsystems is hard to organize if more operating systems re running 

parallel.  

- Due to the virtualization scheduling is performed at two levels: (1) Between the hypervisor and the VM, 

(2) within every operating system running on the VM.  

- The fulfilment of critical security requirements is not supported by the virtualization alone.  The critical 

code segments (so-called trusted computing base, TCB) must be executed in privileged mode on the 

processor. The hypervisor is part of the TCB. The correctness of such a code should be proved. 

- Virtualization increases the size of the code.  

What kind of supporting software is required by the embedded?  

- support for virtualization with all its benefits;  

- support for lightweight but strong encapsulation of medium-grain components that interact strongly, to 

build robust systems that can recover from faults;  

- high-bandwidth, low-latency communication, subject to configurable, system-wide security policy;  

- global scheduling policies interleaving scheduling policies of threads from different subsystems;  

- ability to build subsystems with very small trusted computing base (TCB).  

Microkernel (microvisor) technology: a better solution to embedded systems 

A microkernel (microvisor) is a minimal privileged software layer that provides only general mechanisms. 

Actual system services and policies are implemented on top in user-mode components. A microkernel is 

defined by Liedtke’s minimalism principle (1995): A concept is tolerated inside the microkernel only if 

moving it outside the kernel, i.e., permitting competing implementations, would prevent the implementation 

of the system’s required functionality. This minimality implies that a microkernel does not offer any 

services, only the mechanisms for implementing services. The microkernel approach leads to a system 

structure that differs significantly from that of classical “monolithic” operating systems:   

 

Application 

Virtual File System 

IPC, File System 

Scheduler, Virtual memory 

Device drivers, dispatcher 

Hardware 

 

The classical structures have a vertical structure of layers, each abstracting the layers below, a microkernel-

based system exhibits a horizontal structure. System components run beside application code, and are 

invoked by sending messages. In case of a microkernel system there is no real difference between “system 

Application IPC Unix server Device driver File server 

Virtual memory 

Hardware 

kernel 
mode 
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services” and “applications”, all are simply processes running in user mode. Each such user-mode process is 

encapsulated in its own hardware address space, set up by the kernel. It can only affect other parts of the 

systems (outside its own address space) by invoking kernel mechanisms, particularly message passing (Inter 

Process Communication, IPC). It can only directly access memory or other resources if they are mapped into 

its address space via a system call.  A more detailed description about microkernels, e.g.: 

https://gdmissionsystems.com/cyber/products/trusted-computing-cross-domain/microvisor-products/ 

 

https://gdmissionsystems.com/cyber/products/trusted-computing-cross-domain/microvisor-products/
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8. Power Aware Systems – Low Power Design 

Example: The capacity/capability of two AA (Mignon) type battery cells in sensor network applications 

(microcontroller+radio+sensors): 

2 pieces of AA battery cells have an average capacity of 3000 mAh. How long can we use our system in a 

day, if we require a total availability of services for minimum 1 year (8760 hours), while Pon=150 mW 

(Ion=50mA) and Istandby=50µA. 

 

 

 

 

 

𝐼𝑎𝑣𝑔 =
𝐼𝑜𝑛𝑇𝑜𝑛

𝑇𝑜𝑛+𝑇𝑠𝑡𝑎𝑛𝑑𝑏𝑦
+
𝐼𝑠𝑡𝑎𝑛𝑑𝑏𝑦𝑇𝑠𝑡𝑎𝑛𝑑𝑏𝑦

𝑇𝑜𝑛+𝑇𝑠𝑡𝑎𝑛𝑑𝑏𝑦
= 𝐼𝑜𝑛𝜆 + 𝐼𝑠𝑡𝑎𝑛𝑑𝑏𝑦(1 − 𝜆),  𝐼𝑎𝑣𝑔 𝑚𝑎𝑥 =

3000𝑚𝐴ℎ

8760ℎ
= 342𝜇𝐴 

 

𝜆 =
𝐼𝑎𝑣𝑔 𝑚𝑎𝑥−𝐼𝑠𝑡𝑎𝑛𝑑𝑏𝑦

𝐼𝑜𝑛−𝐼𝑠𝑡𝑎𝑛𝑑𝑏𝑦
= 0.0058 ≈ 0.6%  ≈ 8

𝑚𝑖𝑛𝑢𝑡𝑒𝑠

𝑑𝑎𝑦
. 

 

If we take measurements in every hour, then they can take 20 seconds.  

Power Consumption of a CMOS Gate:  

 

 

 

 

 

 

 

The two FETs are alternately open and closed. Main sources of power consumption: (1) charging and 

discharging capacitors, (2) short circuit path between supply rails during switching, (3) leaking diodes and 

transistors (becomes one of the major factors due to shrinking feature sizes in semiconductor technology). 

Power consumption of CMOS circuits (ignoring leakage): 

𝑃~𝛼𝐶𝐿𝑉𝐷𝐷
2 𝑓, 

where 𝑉𝐷𝐷: stands for power supply, α: switching activity (for a clock it is 1), 𝐶𝐿: a load capacity, f: clock 

frequency. Delay for CMOS circuits: 

𝜏~𝐶𝐿
𝑉𝐷𝐷

(𝑉𝐷𝐷−𝑉𝑇)2
,  where 𝑉𝑇: threshold voltage, 𝑉𝑇 ≪ 𝑉𝐷𝐷. 

It can be stated: 

- Decreasing 𝑉𝐷𝐷 reduces 𝑃 quadratically (𝑓constant); 

- The gate delay increases only reciprocally;  

- Maximal frequency 𝑓𝑚𝑎𝑥 decreases linearly.  

Potential for Energy Optimization (Dynamic Voltage Scaling: DVS): 

𝑃~𝛼𝐶𝐿𝑉𝐷𝐷
2 𝑓 ,     𝐸~𝛼𝐶𝐿𝑉𝐷𝐷

2 𝑓𝑡 = 𝛼𝐶𝐿𝑡𝑉𝐷𝐷
2 (#𝑐𝑦𝑐𝑙𝑒𝑠). 

Saving energy for a given task: 

- reduce the supply voltage 𝑉𝐷𝐷; 

- reduce switching activity; 

current consumption 

time 

Tstandby Ton 

Istandby 

Iavg 

Ion 

Out In 

Cload 

VDD 
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- reduce the load capacitance; 

- reduce the number of cycles (#cycles). 

Power Supply Gating: 

It is one of the most effective ways of minimizing static power consumption (leakage). Power Supply Gating 

cuts-off power supply to inactive units/components: a header switch provides virtual power, while a footer 

switch provides virtual ground and thus reduces leakage.   

Use of Parallelism: Duplicated hardware with half of the supply voltage, and half of the clock frequency.  

 

 

 

 

 

 

 

 

𝐸1~𝑉𝐷𝐷
2 (#𝑐𝑦𝑐𝑙𝑒𝑠),       𝐸2 =

𝐸1

4
. 

 

The number of the operations and the delays is the same, the energy consumption is lowered to its fourth.  

The application of Very Long Instruction Word (VLIW) architectures is an alternative: parallel instruction 

sets are applied. 

Use of Pipelining: Duplicated hardware with half of the supply voltage, and half of the clock frequency. 

 

 

 

 

 

 

 

 

 

The number of the operations is the same, the energy consumption is lowered to its fourth. 

Not all components require same performance. Required performance may change over time 

 

 

 

 

 

 

 

 

 

Optimal strategy (Dynamic Voltage Scaling): 

 

 

 

 

 

E2 E1 VDD/2,  fmax/2 VDD/2,  fmax/2 VDD, fmax 

E1 

E2 

UT, fmax 
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Slow module 
1.3 V 50MHz 

 
Standard 
modules 

1.8 V 
100 MHz Busy module 

3.3 V 200 MHz 
Busy mode 

3.3 V 200 MHz 

Normal mode 
1.3 V 50 MHz 

Case A: execute at voltage x for Ta time units, and at voltage y for (1-a)T 
time units.  

The energy consumption: 𝑇(𝑎𝑃(𝑥) + (1 − 𝑎)𝑃(𝑦)). 

Case B: execute at voltage 𝑧 = 𝑎𝑥 + (1 − 𝑎)𝑦 for T time units.  

The energy consumption: 𝑇𝑃(𝑧). 
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Since the power is a convex (quadratic) function of 𝑉𝐷𝐷, therefore 𝑃(𝑧) < 𝑎𝑃(𝑥) + (1 − 𝑎)𝑃(𝑦), i.e. it 

worth executing at constant voltage. (The linear combination gives a string above the parabola.)  

Example:  

 

 

 

Task execution needs 109 cycles within 25 seconds. 

a. Complete task ASAP: 109 cycles @ 50 MHz.  

Energy consumption: 𝐸𝑎 = 10
9 ∗ 40 ∗ 10−9 = 𝟒𝟎 [J], time requirement: 109 ∗ 20 ∗ 10−9 = 𝟐𝟎𝑠. 

b. Execution at two voltages: 0.75*109 cycles @ 50 MHz + 0.25*109 cycles @ 25 MHz. 

Energy consumption: 𝐸𝑎 = 0.75 ∗ 10
9 ∗ 40 ∗ 10−9+ 0.25 ∗ 109 ∗ 10 ∗ 10−9 = 𝟑𝟐. 𝟓 [J], 

time requirement: 0.75 ∗ 109 ∗ 20 ∗ 10−9 + 0.25 ∗ 109 ∗ 40 ∗ 10−9 = 𝟐𝟓𝑠. 
c. Execution at optimal voltage: 109 cycles @ 40 MHz. 

Energy consumption: 𝐸𝑎 = 10
9 ∗ 25 ∗ 10−9 = 𝟐𝟓 [J], time requirement:109 ∗ 25 ∗ 10−9 = 𝟐𝟓𝑠. 

Comment: Obviously some spare-time is always required at task executions.  

Dynamic Power Management (DPM): tries to assign optimal power saving states 

 

 

 

 

 

Example: reduce power according to workload: 

 

 

 

 

 

Comment: Shutdown only if long idle times occur. There is a trade-off between savings and overhead 

“costs”. 

Example: Dynamic power management: 

Suppose that the power consumption 𝑃(𝑓) of a given CMOS processor at frequency 𝑓 is: 

𝑃(𝑓) = [10 (
𝑓

100𝑀𝐻𝑧
)
3

+ 20]𝑚𝑊𝑎𝑡𝑡 

To reduce the power consumption, one can adjust the execution frequency. The maximum/minimum 

available frequency: 

𝑓𝑚𝑎𝑥 = 1000𝑀𝐻𝑧/𝑓𝑚𝑖𝑛  = 50𝑀𝐻𝑧 

Frequency switching has negligible overhead and the processor can operate at any frequency between 

50𝑀𝐻𝑧 and 1000𝑀𝐻𝑧. One can also apply dynamic power management to turn the processor to the sleep 
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mode (or turn the processor off) to reduce the power consumption. When the processor is in the sleep mode, 

it consumes no power. However, turning the processor on to the run mode requires additional energy 

consumption, i.e. 3 × 10−5𝐽𝑜𝑢𝑙𝑒. (Switching from run mode to sleep mode consumes no energy.) Turning 

on/off the processor can be done instantly. 

The system has three jobs to execute:  

 arrival time deadline execution cycles 

𝜏1 0 2ms 100000 

𝜏2 2ms 6ms 100000 

𝜏3 6ms 7ms 80000 

 

The processor is in the run mode at time 0 and is required to be in the run mode at time 7 ms. 

Problem#1: 

The energy consumption to execute C cycles is 
𝐶𝑃(𝑓)

𝑓
. There is a critical frequency 𝑓𝑐𝑟𝑖𝑡between 50𝑀𝐻𝑧 and 

1000𝑀𝐻𝑧 at which the energy consumption to execute any C cycles is minimized. What is the critical 

frequency of the processor? 

Solution#1: 

As we lower the frequency the power consumed falls. But beyond a critical frequency, the rate of fall in 

power is overweighed by the fall in frequency and thus the power consumed per cycle increases. To 

compute this critical frequency, we have to minimize 
𝑃(𝑓)

𝑓
. Let f be normalized to 100𝑀𝐻𝑧. The first 

derivative of  
𝑃(𝑓)

𝑓
 is 20𝑓 −

20

𝑓2
, which equals 0 if 𝑓 = 1. Thus 𝑓𝑐𝑟𝑖𝑡 = 100𝑀𝐻𝑧. 

Problem#2: 

When the processor is idle at frequency 𝑓𝑚𝑖𝑛for t seconds, then the energy consumption is 𝑃(𝑓𝑚𝑖𝑛) × 𝑡. The 

break-even time is defined as the minimum idle interval for which it worth turning the processor off. What is 

the break-even time of the processor? 

Solution#2: 

Going into the sleep mode must provide sufficient energy saving to compensate for the additional energy 

consumption (overhead) of  3 × 10−5 + 0 𝐽𝑜𝑢𝑙𝑒. 

Energy(idle state, 𝑓𝑚𝑖𝑛) – Energy(sleep state) ≥ Energy(turning from sleep to run state) 

𝑃(𝑓𝑚𝑖𝑛) × 𝑡𝑏𝑒𝑣 − 0 ≥ 3 × 10
−5𝐽𝑜𝑢𝑙𝑒 

𝑡𝑏𝑒𝑣 ≥
3×10−5𝐽𝑜𝑢𝑙𝑒

10−3×(10×0.53+20)𝑊𝑎𝑡𝑡
= 1.412𝑚𝑠. 

Problem#3: 

A workload-conserving schedule is defined as a schedule which always executes some jobs when the ready 

queue is empty. Provide the workload conserving schedule for the 3 tasks which minimizes the energy 

consumption without violating the timing constraints. For this apply the critical frequency 𝑓𝑐𝑟𝑖𝑡 as the 

frequency for active task execution. What is the energy consumption of the schedule? 

Solution#3: 

 

 

 

 
time (ms) 0           1           2           3           4           5           6           7 

idle idle 
sleep 

1 

frequency (100MHz) 

𝜏2 𝜏3 𝜏1 
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Since 𝑃(𝑓𝑐𝑟𝑖𝑡) = 30𝑚𝑊𝑎𝑡𝑡, and 𝑃(𝑓𝑚𝑖𝑛) = 21.25𝑚𝑊𝑎𝑡𝑡, thus the energy consumption of the schedule is 

(30 × 1 + 21.25 × 1 + 30 × 1 + 3 × 101 + 30 × 0.8 + 21.25 × 0.2)𝜇𝐽𝑜𝑢𝑙𝑒 = 0.1395 𝑚𝐽𝑜𝑢𝑙𝑒. Note that 

the interval [1,2] is shorter than the break/even time, therefore there is no reason to switch to sleep mode. 

Problem#4: 

Would it be possible to provide another workload-conserving schedule without violating the timing 

constraints for the 3 tasks, and with less energy consumption? 

Solution#4: 

Yes, the solution is to use the convex nature of the power consumption: to slow down execution of tasks 𝜏1 
and 𝜏3 to such extent as to avoid idle times after their executions. Thus, even though we work below the 

critical frequency, we can save on energy consumption. The energy consumption of the schedule is (see 

figure): 

 

 

 

 

 

(21.25 × 2 + 30 × 1 + 3 × 101 + (10 × 0.83 + 20) × 1)𝜇𝐽𝑜𝑢𝑙𝑒 = 0.12762𝑚𝐽𝑜𝑢𝑙𝑒. 

Problem#5: 

Would it be possible another schedule without violating the timing constraints for the 3 tasks that is not 

workload-conserving but the energy consumption is even lower than the optimal work/load conserving 

schedule? 

Solution#5: 

Yes, the idea here is to batch the sleep mode into one block, and execute 𝜏1 with critical frequency. This 

illustrates that to conserve energy; workload-conserving strategies are not necessarily the best. The energy 

consumption of the schedule is (see figure): 

 

 

 

 

 

(30 × 1 + 3 × 101 + 30 × 1 + (10 × 0.83 + 20) × 1)𝜇𝐽𝑜𝑢𝑙𝑒 = 0.115120𝑚𝐽𝑜𝑢𝑙𝑒. 

time (ms) 0           1           2           3           4           5           6           7 

sleep 

1 

frequency (100MHz) 

𝜏2 𝜏3 𝜏1 

time (ms) 0           1           2           3           4           5           6           7 

sleep 

1 

frequency (100MHz) 

𝜏2 𝜏3 𝜏1 
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9. Sensor networks 

The availability of cheap sensors to measure almost all possible quantities resulted in systems consisting 

(sometimes of large amount) of nodes capable to measure, pre-process and communicate data coming from 

the environment. A typical example of such a node is the Berkeley Mica2 mote (see picture). It size can be 

estimated by the size of two AA type batteries located underneath the printed circuit board. Concerning this 

type of devices, very many information is available on the internet. The sensor network applications can be 

characterized by relatively large spatial scope, large number of nodes, and limited availability of local 

power.  

Examples of applications:  

1. Detection of acoustic shockwaves. Shooter localization → Counter-sniper system 

2. Detection of shooting at elephants → help authorities to catch poachers 

3. Intelligent rock bolt monitoring 

4. Active noise control 

 

 

The TinyOS operating system 

(A detailed slide-set is available on the webpage of the subject. Plenty of similar presentations including 

many references can be found on the internet.) 

Why it is needed? 

Traditional operating systems have difficulties in case of sensor networks, because multi-threaded 

architecture cannot be used with sufficient efficiency, they need large memory, and do not support the 

minimization of power consumption. In case of sensor networks the followings are important: (1) concurrent 

execution, (2) efficiency of energy utilization, (3) small memory footprint, and (4) the support of various 

utilization.  

Major properties of TinyOS: 

The TinyOS is an open-source operating system, which was designed for sensor network applications. It is 

component-based, written in NesC (Networked embedded system C) language within a cooperation of 

University of California, Berkeley and Intel Research. 

The components-based architecture allows frequent changes while keeping the size of the code minimum. 

Program execution is event-based, hence support high concurrency. Power efficient, because the processor is 

sent into sleep mode as soon as possible. It has small footprint, because it applies a FIFO-based non-

preemptable scheduling.  

TinyOS uses static memory allocation, memory requirements are determined at compile time. This increases 

runtime efficiency. Local variables are saved on the stack.  
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Power-aware, two-level scheduling is applied: (1) Long running tasks and interrupt events, (2) Sleep unless 

tasks in queue, wakeup on event. Tasks are time-flexible, background jobs, atomic with respect to other 

tasks, can be pre-empted by events. Events are time-critical, shorter duration program sections, with LIFO 

(Last-in First-Out) semantic (no priority), can post tasks for deferred execution.  

Programs are built out of components, each component specifies an interface, interfaces are “hooks” for 

wiring components to result in a configuration.  

Components should use and provide bidirectional interfaces. Components should call and implement 

commands and signal and handle events. Components must handle events of used interfaces and also 

provide interfaces that must implement commands.   

Component hierarchy: Command flow “downwards”, they are non-blocking requests, and the control returns 

to the caller. Events flow upwards, post tasks (function queue scheduling), signal higher level events, and 

call lower level commands. The control returns to signaller.  

 

 

 

 

 

 

To avoid cycles: events can call commands, commands can NOT signal events.  

Communication in sensor networks  

Standardized solutions: typically, using ISM (Industrial, Scientific, Medical) 2.4 GHz, spread spectrum: 

ZigBee/IEEE 802.15.4, IEEE 802.11b (Wi-Fi) WLAN (Wireless Local Area Network), Bluetooth WPAN 

(Wireless Personal Area Network).  

Media Access Control: Dynamic (on demand): e.g. CSMA (Carrier Sense Multiple Access). Collision 

avoidance: Before sending checks the channel. If information flow is detected: waits. 

CSMA problems: 

Problem of hidden terminal: 

 

 

 

 

 

 

Problem of visible terminal: 

 

 

 

 

 

A B C 

• A sends message to  B 

• C does not hear A! 

• C also sends message to B 

• B is unable to receive messages 
tudja venni 

Task-Queue (FIFO) 
run 

post Task4 ( ); 

  
Task3 

 
Task2 

 
Task1 

 
Task4 

D A B C 

• B send message to  A 

• C would like to send message to D 

• C hears B 

• C does not send message, even if 
it would be possible  
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CSMA modifications 

CSMA together with availability indication: two channels are used, one for data transmission, and another 

for indicating availability. The receiver continuously signalizes availability. The sender before transmission 

checks both channels. The node simultaneously sends and receives that is expensive. Two simultaneous 

channels require wider bandwidth.  

Request To Send/Clear To Send (RTS/CTS): Operates in two phases: (1) Handshake, (2) Data transmission. 

The basic idea is: collision occurs at the receiver. Avoids the hidden terminal problem. It is advantageous in 

case of longer messages, otherwise the overhead is too large.  

Its operation: 

 

 

 

 

 

 

 

 

 

Routing in sensor networks 

Sensor networks are ad-hoc. Node distribution is random, connections come into being randomly, they are 

not reliable (fading), they can be mobile, and systems can consist of large number of nodes. 

Typical configurations:  

- Single source → multiple (possibly all) destinations. E.g. a central node propagates commands within the 

network. 

- Multiple source → single destination. E.g. data collection and transmission into a central node.  

- Single source → single destination. E.g. data exchange between nodes.  

Data transmission strategies: 

- Time-triggered: Sensor activity and data transmission is time-triggered. E.g. data collection. It is 

advantageous to conserve energy: sleep mode together with synchronized wakeup.  

- Event triggered: It is used in time-critical applications. Sensor activity is due to some event in the 

environment. The reduction of energy consumption is more difficult.  

- Polling: Sensors are activated by a command of a central node. 

Typical network structures: 

- Flat: The nodes have equal rights; Scaling of the network is hard 

- Hierarchical: Clusters are formed: The communication is solved within the clusters and among the 

clusters separately. Among the clusters the so-called control nodes communicate. They have extra 

capabilities. The role of controlling a cluster can be dynamically changed.  

Flat: Flood routing: 

- Message distribution by broadcasting.  

- The receiver after the first arrival of a message stores the message or only its identifier (if the destination 

of the message is another node), and broadcasts the message.   

ACK 

DATA 

RTS RTS 

CTS CTS 

C 

D B 
A 

• Sender „A” sends RTS message to “B” 

• Receiver „B” replies with CTS message  

• Receiving CTS the sender “A” transmits 
data 

The other nodes are not allowed to transmit 
after receiving RTS or CTS! 

(NAV = Network Allocation Vector) 

RTS 

CTS 

DATA 

ACK 

RTS NAV 

CTS NAV 
 

A 

B 

C 

D 
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- Typical application: single source → multiple destination (command is distributed quasi simultaneously). 

- Its advantage: simple, fault tolerant due to the high level of redundancy.  

- Its disadvantage: very many superfluous message and energy consumption. In addition, collisions due to 

hidden terminals.  

- Modifications: 

- the receiver broadcasts the message only with a probability p. The value p is topology dependent.  

- to reduce collisions: after receiving the message random waiting time before transmission. 

Flat: Gradient Based Routing (GBR): 

- Three phases: (1) Request, (2) Computing the gradient, (3) Data transmission. 

- Typical application: multiple sources → single destination (data collection). 

(1)  Request: the central node sends a request into the network by flooding. 

(2) Computing the gradient: during the distribution of the request: “measurement” of the gradient → The 

gradient is the “shortest distance” from the central node: What is the lowest number of hops to reach 

the central node.   

(3) Data transmission: selecting the shortest route, and sending the data. Data aggregation on the route is 

possible 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GBR variants: In case of multiple equivalent route which one to select? 

- stochastic: random selection 

- energy-based extension: nodes having low energy can increase their “gradient”, thus flow is oriented 

to another route.  

Hierarchical: mentioning only two, descriptions can be found on the internet: 

Low Energy Adaptive Clustering Hierarchy (LEACH): Hierarchical, based on dynamically formed clusters.  

Geographic and Energy Aware Routing (GEAR): The nodes are familiar with their geographic location, and 

thus the messages are travelling only towards the targeted region.  

 

1 2 3 4 

Request: 

Computation of the gradient 

1 2 3 4 
Data transmission 

? ? 
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10. Hybrid systems, nonconventional modelling and control, efficient implementation 

10.1. Hybrid systems 

Hybrid systems combine continuous and discrete dynamics. Sometimes they are called modal systems, 

because controlled by a Finite State Machine (FSM), they are switched into different modes of operation 

where they behave as continuous systems. Concerning the mode changes, hybrid systems behave like 

discrete systems, but between these mode changes time dependency is present.  

Discrete systems:  

Example: Number of cars in a parking house (max. M, which is the capacity of the house) 

 

 

 

 

 

 

Condition1/action1:     Condition2/action2: 

Example: Thermostat with hysteresis: 

Condition1/action1:  

Condition2/action2:  

System input: Temperture of the environment 

System output: heating on/heatinf off commands: 

the corresponding time functions: h(t)=1, h(t)=0. 

Timed automaton: 

Example:  Thermostat with timing instead of hysteresis: this is solved by the so-called timed automaton, 

which is the simplest nontrivial hybrid system. These automata, behind their states measure the evolvement 

of time for a given value of duration: ∀𝑡 ∈ 𝑑𝑚, and the derivative of the clock function is 𝑐̇(𝑡) = 𝑎, i.e. its 

value changes with the evolvement of time. 

 

 

 

 

 

 

 

 

 

Condition1/action1: 𝑇(𝑡) ≤ 20 ∧ 𝑐(𝑡) ≥ 𝑑𝑐𝑜𝑜𝑙𝑖𝑛𝑔/𝑐(𝑡) =0. 

Condition2/action2: 𝑇(𝑡) ≥ 20 ∧ 𝑐(𝑡) ≥ 𝑑ℎ𝑒𝑎𝑡𝑖𝑛𝑔/𝑐(𝑡) =0. 

Arrival detector 

Exit detector  

Counter 
Σ 

i 
Display 

up 

down
n 

Temperature ≤ 18 Co/heating on 

heating off heating on 

Conditionl1/action1 

Condition2/action2 

h(t)=0 h(t)=1 

Counter 

c:=0 

Conditonl1/action1 

Condition2/action2 

c:=c+1 

c:=c-1 

1/ + cMcdownup 1/0 − ccupdown

Temperature ≥ 22 Co/heating off 

𝑇(𝑡) 

ℎ(𝑡) 

𝑐(𝑡) 

𝑑ℎ𝑒𝑎𝑡𝑖𝑛𝑔  𝑑𝑐𝑜𝑜𝑙𝑖𝑛𝑔  

𝑑𝑐𝑜𝑜𝑙𝑖𝑛𝑔  

20∘ 

0 

1 

cooling heating 

Condition1/action1 

Condition2/action2 

𝑐(𝑡) ≔ 𝑑𝑐𝑜𝑜𝑙𝑖𝑛𝑔 

ℎ(𝑡) = 0, 𝑐̇ (𝑡) = 1 ℎ(𝑡) = 1, 𝑐̇ (𝑡) = 1 
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Comments: (1) h(t) and c(t) can be considered as tools of state refinement. They define some details of the 

operation (Modal systems). (2) On the time diagram T>20 Co. If it would be lower, then immediately the 

heating mode would start. This is served by the initial condition of the clock.  

Example: Automated Guided Vehicle, AGV 

It is a vehicle with two degrees of freedom. It can follow a painted stripe.  It is moving in every time instant 

with a velocity of v(t), where 0 ≤ 𝑣(𝑡) ≤ 10𝑘𝑚/ℎ. It can rotate around its centre with an angular speed 

𝜔(𝑡), where −𝜋 ≤ 𝜔(𝑡) ≤ 𝜋 𝑟𝑎𝑑/𝑠𝑒𝑐.  

 

 

 

 

 

 

straight:   left:    right:    stop:  

 

The sensor of the AGV: a set of 

photodiodes perpendicular to the 

direction of the movement. Its 

output signal: 

  𝑒(𝑡) = 𝑓(𝑥(𝑡), 𝑦(𝑡)).  

Ha 𝑒(𝑡) > 0, then it deviates to the 

left, if 𝑒(𝑡) < 0, then to the right. 

(𝑒1 > 0, 𝑒2 > 0) 

The control law of the AGV: if |𝑒(𝑡)| < 𝑒1, then go straight; if 0 < 𝑒2 < 𝑒(𝑡), then go to right, if 0 >
−𝑒2 > 𝑒(𝑡), then go to left.  

 

The set of the input events: 𝑢(𝑡) ∈ {𝑠𝑡𝑜𝑝, 𝑠𝑡𝑎𝑟𝑡, 𝑎𝑏𝑠𝑒𝑛𝑡}. Since stop and start are instantaneous events, 

absent gives the interpretation for other time instants.  

State-transition generating conditions:  

start = {(𝑣(𝑡), 𝑥(𝑡), 𝑦(𝑡), 𝜑(𝑡))|𝑢(𝑡) = 𝑠𝑡𝑎𝑟𝑡} 
       go straight   = {(𝑣(𝑡), 𝑥(𝑡), 𝑦(𝑡), 𝜑(𝑡))|𝑢(𝑡) ≠ 𝑠𝑡𝑜𝑝, |𝑒(𝑡)| < 𝑒1 } 

           go right = {(𝑣(𝑡), 𝑥(𝑡), 𝑦(𝑡), 𝜑(𝑡))|𝑢(𝑡) ≠ 𝑠𝑡𝑜𝑝, 𝑒2 < 𝑒(𝑡) } 
                go left  = {(𝑣(𝑡), 𝑥(𝑡), 𝑦(𝑡), 𝜑(𝑡))|𝑢(𝑡) ≠ 𝑠𝑡𝑜𝑝,−𝑒2 > 𝑒(𝑡) } 

stop = {(𝑣(𝑡), 𝑥(𝑡), 𝑦(𝑡), 𝜑(𝑡))|𝑢(𝑡) = 𝑠𝑡𝑜𝑝 } 
 

 

 

 

 

 

y(t) 
              

x(t) 

AGV 

φ(t) 

𝑥̇(𝑡) = 𝑣(𝑡)cos (𝜑(𝑡)) 
𝑦̇(𝑡) = 𝑣(𝑡) sin(𝜑(𝑡)) 

𝜑̇(𝑡) = 𝜔(𝑡) 

Two-level control: The AGV runs 

with a constant speed of 10 km/h. 

It has four operational mode: left, 

right, straight, stop. 

To every mode of operation, a separate differential equation is 

assigned.  

O O O O O O O O O O O O O O O O O O O O 

𝑒2 

𝑒1 
𝑒(𝑡) 

photo diode painted stripe 

𝑥̇(𝑡) = 10cos (𝜑(𝑡)) 

𝑦̇(𝑡) = 10 sin(𝜑(𝑡)) 

𝜑̇(𝑡) = 𝜋 

𝑥̇(𝑡) = 10cos (𝜑(𝑡)) 

𝑦̇(𝑡) = 10 sin(𝜑(𝑡)) 

𝜑̇(𝑡) = −𝜋 

𝑥̇(𝑡) = 0 
𝑦̇(𝑡) = 0 
𝜑̇(𝑡) = 0 

𝑥̇(𝑡) = 10cos (𝜑(𝑡)) 

𝑦̇(𝑡) = 10 sin(𝜑(𝑡)) 

𝜑̇(𝑡) = 0 
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10.2. nonconventional modelling and control, efficient implementation 

Example #1: Qualitative modelling and control I.  

Task: The design of such a controller which keeps the level of the liquid in the second tank at a prescribed 

level.  
 

 

 
 

 

Qualitative Reasoning: Only the orientation of the quantities is considered. Possible “values”:                 

The basic physical constraints are kept! 

 

If at branching of a node the liquid flows out in two directions, then through the third tube 

the liquid should flow in.  

The qualitative value of a quantity “Q” with respect to “a”:  

The qualitative value of the change of a quantity “Q” is the qualitative derivative: [𝛿𝑄]𝑎, 

[𝛿2𝑄]𝑎, … 
 

Operation:                                Changes the sign. 

      Gives back the value in majority. 

Qualitative control of the level of tank2: L2 denotes the level relative to the desired value:  

[L2] = + :  higher than required.  [δU] = +:  increase pumping rate. 

[L2] = 0 :  equals.    [δU] = 0:  pumping rate is appropriate. 

[L2] = -  :  lower than required.  [δU] = -:   decrease pumping rate. 

[δU] = +:  a fixed amount of increase of the pumping rate: ΔU. 

  

  

{−,0,+}.  

+ 

- 

- 
[𝑄]𝑎 

𝑥̇(𝑡) = 10cos (𝜑(𝑡)) 

𝑦̇(𝑡) = 10 sin(𝜑(𝑡)) 

𝜑̇(𝑡) = 0 

𝑥̇(𝑡) = 10cos (𝜑(𝑡)) 

𝑦̇(𝑡) = 10 sin(𝜑(𝑡)) 

𝜑̇(𝑡) = 𝜋 

𝑥̇(𝑡) = 10cos (𝜑(𝑡)) 

𝑦̇(𝑡) = 10 sin(𝜑(𝑡)) 

𝜑̇(𝑡) = −𝜋 

𝑥̇(𝑡) = 0 
𝑦̇(𝑡) = 0 
𝜑̇(𝑡) = 0 

right 

stop left 

straight 

𝑢(𝑡) ∈ 

ቄ
𝑠𝑡𝑜𝑝,  𝑠𝑡𝑎𝑟𝑡,  
𝑎𝑏𝑠𝑒𝑛𝑡

ቅ 

This is possible by setting 
u(t) at pump1 properly. 

Problems of the quantitative model:  
a) The physical limits are not modelled; 
b) The equations are linearized; 
c) Numerical values are inaccurate and 
change with time. 

(𝑖𝑛𝑣𝑒𝑟𝑡 𝐴): 
(𝑣𝑜𝑡𝑒 𝐴1,  𝐴2,  … ,  𝐴𝑛): 
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The qualitative values exist only at the sampling instants. Between sampling instants there is no level 

detection.  

 

 

 

A very simple control law: 

 

 

Comment: If ΔU is larger, then larger overshoot and oscillation can be expected, but the reaction is faster. If 

ΔU is smaller, then the overshoot and the oscillation will be smaller, but also the reaction is slower.  

Improved controllers:   

Quantities considered:  Level error of tank2:    +,0,- 

     Speed of the level change of tank2:  +,0,-       3*3*3=27 cases. 

     Speed of the level change of tank1:  +,0,- 

 

 

 

 

 

 

 

 

Determination of [δL1]:          based on measurements.  

 

For the 27 combinations of the possible qualitative values the outputs of the three controllers can be 

summarized in the table below:  

 

 [𝑳𝟐] [𝜹𝑳𝟐] [𝜹𝑳𝟏] 𝑸𝟏 𝑸𝟐 𝑸𝟑 

1 + + + - - - 

2 + + 0 - - - 

3 + + - - 0 - 

4 + 0 + - - - 

5 + 0 0 - - - 

⋯       

20 - + 0 + 0 0 

⋯       

27 - - - + + + 

 

Comments:  

(1) A rule-based system was also elaborated for this problem. It could not handle the case: Tank2 shows a 

constant value above the required level, and the level of Tank1 lowers.  

(2) Setting sampling rate and the value of ΔU is a critical issue, and a crucial decision of the designer. 

 

 

[𝐿2](𝑘) = [𝑎𝑐𝑡𝑢𝑎𝑙 𝑙𝑒𝑣𝑒𝑙(𝑘) − 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑙𝑒𝑣𝑒𝑙(𝑘)] 

𝑄1 =⏞
𝑑𝑒𝑓

[𝛿𝑈](𝑘) = (𝑖𝑛𝑣𝑒𝑟𝑡[𝐿2])(𝑘) 

𝑄2 =⏞
𝑑𝑒𝑓

[𝛿𝑈](𝑘) = (𝑖𝑛𝑣𝑒𝑟𝑡 (𝑣𝑜𝑡𝑒(𝑣𝑜𝑡𝑒([𝐿2](𝑘), [𝛿𝐿2](𝑘)),  [𝛿𝐿1](𝑘))))
(𝑘)

 

𝑄3 =⏞
𝑑𝑒𝑓

[𝛿𝑈](𝑘) = (𝑖𝑛𝑣𝑒𝑟𝑡 (𝑣𝑜𝑡𝑒([𝐿2](𝑘),  [𝛿𝐿2](𝑘),  [𝛿𝐿1](𝑘))))
(𝑘)

 

𝛿𝐿1 =  (𝐿2(𝑘) − 𝐿2(𝑘−1)) − (𝐿2(𝑘−1) − 𝐿2(𝑘−2))

= 𝛿2𝐿2 
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Example#2: Qualitative modelling and control II. 

Task: Modelling an inverted pendulum with nondeterministic automaton.  

This approach might be required for systems where the about the state vector x(k) only quantized [x(k)] 

values are available due to limited precision measurements of angles and angular velocity.  

 

After linearisation of the equations around θ = 0: 
  
 
 
 
 
 
 
 
 

Measurement insensitivity: 0.0175 rad for θ, and 0.0175/20ms for 𝜃̇. 

The pole can no longer be stabilised if  |𝑥3| > 0.21 𝑟𝑎𝑑 (12°), és |𝑥4| > 0.87. 

 

For the angle (index 3) and for the angular speed (index 4) the bounds corresponding to the 

figure: 

 

𝑔3,−1 = −0.210, 𝑔3,0 = −0.0175, 𝑔3,1 = 0.0175, 𝑔3,2 = 0.210   
𝑔4,−1 = −0.870, 𝑔4,0 = −0.0175, 𝑔4,1 = 0,0175, 𝑔4,2 = 0.870 

 

If we denote staying in one of the two central regions by 0, by  - 1 staying in the left-hand-

side region, and by +1 staying in the right-hnd-side one, we can define the following qualitative states: 

 

𝑧1 = [
−1
−1
] , 𝑧2 = [

−1
0
] , 𝑧3 = [

−1
1
] , 𝑧4 = [

0
−1
] , 𝑧5 = [

0
0
], 

𝑧6 = [
0
1
] ,   𝑧7 = [

1
−1
] ,   𝑧8 = [

1
0
],   𝑧9 = [

1
1
],   𝑧10 = 𝑜𝑢𝑡𝑠𝑖𝑑𝑒, 

 

The qualitative values of the force on the vehicle (input signal):  

 

𝑢(𝑘) = 10 ⟺ 𝑣(𝑘) = 1, 𝑢(𝑘) = 0 ⟺ 𝑣(𝑘) = 0, 𝑢(𝑘) = −10 ⟺ 𝑣(𝑘) = −1 

 

By assigning proper input to the qualitative states, the pole can be stabilized:  

 

𝒛(𝒌) 𝒛𝟏 𝒛𝟐 𝒛𝟑 𝒛𝟒 𝒛𝟓 𝒛𝟔 𝒛𝟕 𝒛𝟖 𝒛𝟖 

𝑢(𝑘) -1 0 0 -1 0 1 0 0 1 

 

The qualitative controller:  

 

Comments:  Setting sampling rate and the value of ΔU is a critical 

 issue, and a crucial decision of the designer. 

  The figure shows the idealized trajectories of the motion.  

  The real trajectories due to noise/disturbance do  

return to themselves.  

𝑥̇(𝑡) =

[
 
 
 
 
 0 1
0 0

0 0

−
𝑚𝑔

𝑀
0

0 0
0 0

0 1
(𝑚 +𝑀)𝑔

𝑀𝑙
0]
 
 
 
 
 

𝑥(𝑡) +

[
 
 
 
 
 
0
1

𝑚
0

−
1

𝑀𝑙]
 
 
 
 
 

𝑢(𝑡) 

𝑥(𝑡) = [

𝑥
𝑥̇
𝜃
𝜃̇

] 

𝑢(𝑡) = 𝐹 

-1     0    1    2 

𝑀 = 1𝑘𝑔,  𝑚 = 0.1𝑘𝑔,  𝑙 = 0.5𝑚,  𝑔 = 9.81
𝑚

𝑠2
 

[𝑢(𝑘)] = 𝑓([𝑧(𝑘)]) 

0 

0 
𝜃 

𝜃̇ 
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Example #3: Adaptive target tracking with fuzzy modelling and control 

The target tracking system consists of two channels: it maps azimuth-elevation inputs to motor control 

outputs. The nominal target moves through azimuth-elevation space. Two motors adjust the platform to 

continuously point towards the target [azimuth (0 … 180 degrees) elevation (0 … 90 degrees].  

Sensor: The platform can be any directional device that accurately points towards the target. The device 

may be a laser, radar, video camera or high-gain antenna.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notation: tk target position; nk observation noise; ρk tracking position 

  ek tracking error;  𝑒̇𝑘 tracking error change; vk estimated angular velocity 

  𝑇 sampling time. 

 

 

 

Fuzzy controller: We restrict the output angular velocity of the fuzzy controller to the interval: [-6,6]. (This 

is a decision of the designer, a scaling factor).) Since  |𝑣𝑘| ≤
9.0

𝑇
𝑑𝑒𝑔𝑟𝑒𝑒𝑠/𝑠𝑒𝑐 azimuth, and |𝑣𝑘| ≤

4.5

𝑇
𝑑𝑒𝑔𝑟𝑒𝑒𝑠/𝑠𝑒𝑐 elevation, thus the output gains of the channels are: 1.5/T and 0.75/T. 

The fuzzy controller uses heuristic control set-level “rules” or fuzzy-associative-memory (FAM) 

associations, based on quantised values of ek,, 𝑒̇𝑘  and vk-1. We define seven fuzzy levels by the following 

library of fuzzy-set values of the fuzzy variables ek,, 𝑒̇𝑘  and vk-1:  

 
  
 
 
 
 
 
 
 

We assign each system input to a fit vector of length 7: 

 

We formulate control FAM rules by associating output fuzzy sets with 

input fuzzy sets: For example the i-th rule:  

𝐼𝐹 𝑒𝑘 = 𝑀𝑃⋀𝑒̇𝑘 = 𝑆𝑁⋀𝑣𝑘−1 = 𝑍𝐸 𝑇𝐻𝐸𝑁 𝑣𝑘 = 𝑆𝑃 

We abbreviate this to: (MP,SN,ZE;SP). The scalar value of the i-th FAM 

rule : 𝑤𝑖 = min(𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 𝑣𝑎𝑙𝑢𝑒𝑠). 

-8        -6        -4        -2          0         2         4         6          8 

LN    MN    SN     ZE     SP    MP     LP 
membership 

1 

LN=Large Negative 

MN=Medium Negative 

SN=Small Negative 

ZE=Zero 

SP=Small Positive 

MP=Medium Positive 

LP=Large Positive 

 1  → (0   0   0  0.7  0.7  0   0) 
 -4 → (0   1   0    0    0    0   0) 
3.8→ (0   0   0    0   0.1  1   0) 

target  
position 

𝑡𝑘  + 
𝑣𝑘  

𝑣𝑘−1 

+ 

- 
𝑒̇𝑘  

𝑒𝑘  

𝜌𝑘  𝑛𝑘  

noise 

- 

motor transducer 

T 

Controller 

T 

𝜌𝑘 = 𝜌𝑘−1 + 𝑇𝑣𝑘−1 + 𝑒𝑟𝑟𝑜𝑟 
 

error = positioning uncertainty 
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Example: 𝑒𝑘 = 2.6, 𝑒̇𝑘 = −2.0, 𝑣𝑘−1 = 1.8. The fit vectors of length 7: 

 

The membership values associated to the rule: 

𝑚𝑀𝑃(𝑒𝑘) = 0.4 

𝑚𝑆𝑁(𝑒̇𝑘) = 1 

𝑚𝑍𝐸(𝑣𝑘−1) = 0.1 

 

The scalar value of the i-th rule: 

𝑤𝑖 = min(0.4, 1, 0.1) = 0.1 

 

 

The controller:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Two possible encoding strategies of the output fuzzy sets: 

 

 

 

 

 

 

The defuzzifier assigns numerical value to the sum of the output fuzzy sets associated with the FAM rules. 

This summed set is the sum of weighted trapezoids. It is like the probability density function of probability 

theory, except the integral of the summed function differs from one.  The defuzzifier computes the vk value 

as a centroid, therefore it is called: fuzzy centroid. 

The implementation of the fuzzy controller: A FAMi rule: (MP,SN,ZE;SP). At the k-th time instant:  𝑒𝑘 =
2.6, 𝑒̇𝑘 = −2.0, 𝑣𝑘−1 = 1.8. 
 

 

 

Since in this solution the shape of every fuzzy set is the same, we can write: e.g. 𝑚𝑆𝑃(𝑥) = 𝑚𝑍𝐸(𝑥 − 2). In 

general 𝑚𝐿𝑖(𝑥) = 𝑚𝑍𝐸(𝑥 − 𝑐𝐿𝑖), where 𝑐𝐿𝑖 is the centroid of the given membership function.  

 

 

LN MN SN ZE SP MP LP 

0 0 0 0 1 0.4 0 

0 0 1 0 0 0 0 

0 0 0 0.1 1 0 0 

The form of the 

output fuzzy set 

depends on the 

encoding of the FM 

rule: 

 

Correlation-product 

encoding: 

𝑚𝑂𝑖(𝑥) = 𝑤𝑖𝑚𝐿𝑖(𝑥) 
 

Correlation-

minimum encoding: 

𝑚𝑂𝑖(𝑥) =

= min (𝑤𝑖,𝑚𝐿𝑖(𝑥)). 

 

Here 𝑚𝐿𝑖(𝑥) stands 

for the membership 

function of the 

output associated to 

the i-th FAM rule. 

kimenetéhez 

kapcsolódó tagsági 

függvény. 
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
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𝑀

𝑖=1

(𝑥) 

𝑂 =෍𝑂𝑖

𝑁

𝑖=1

 

FAM1 

FAM2 

FAM N 

T 
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•
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

O
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In case of correlation-product encoding: 𝑚𝑂𝑖(𝑥) = 𝑤𝑖𝑚𝑍𝐸(𝑥 − 𝑐𝑖), thus the implementation of the i-th FAM 

rule can have the following form: 

 

 

 

 

 

 

 

 

 

 









−−−= −

•

)(),(),(min 1 ZEkZESNkZEMPkZEi cvmcemcemw

( ) 1.0)1,0,1,4.0min()8.1(),0(),4.1(min ==−= ZEZEZEi mmmw

iOiw

ke

1−kv
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•
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11. Safety-critical systems 

Concepts and requirements of safety-critical systems  

- Risk analysis: Tolerable Hazard Rate (THR) 

- In case of continuous operation: the rate of hazardous error phenomena per hour;  

- In case of discontinuous operation: the probability of the hazardous error phenomena at the time of 

calling the function 

- Categorization: Safety Integrity Level (SIL)  

 

SIL Error of safety-critical function/hour 

1 10-6<THR<10-5 

2 10-7<THR<10-6 

3 10-8<THR<10-7 

4 10-9<THR<10-8 

 

1 year = 8760 hours. Assuming SIL4: 108/8760 ≅ 11415 years without error. If the lifetime is 15 years, then 

during this time out of  ~750 equipment the failure of one can be expected, since 15*750=11250. 

Dependability requirements (Aspects of dependability): 

- Reliability: Probability of continuous correct service (until the first failure). E.g., “After departure the 

onboard control system shall function correctly for 12 hours”; 

- Availability: Probability of correct service (considering repairs and maintenance) E.g., “Availability of 

the service shall be 95%”; 

-  Safety: Freedom from unacceptable risk of harm; 

- Integrity: Avoidance of erroneous changes or alterations; 

- Maintainability: Possibility of repairs and improvements; 

 

Dependability metrics: 

Basis: Partitioning the states of the system s(t). Correct (U, up) and incorrect (D, down) state partitions. 

 

 

 

 

  

Mean values: 

- MTFF=E{u1}   Mean Time to First Failure 

- MUT=E{ui}   Mean Up Time 

- MTTF    Mean Time To Failure (Same as previous) 

- MDT=E{di}   Mean Down Time 

- MTTR    Mean Time To Repair (Same as previous) 

- MTBF=MUT+MDT  Mean Time Between Failures 

Probability functions: 

- Availability:   a(t)=P{s(t)∈ 𝑈}  decreases with time, system may fail 

- Asymptotic availability:  A=𝑙𝑖𝑚𝑡→∞a(t)   A=MTTF/(MTTF+MTTR) 

- Reliability:   r(t)=P{s(t’) ∈ 𝑈}  ∀𝑡′ < 𝑡, system does not fail, →0. 

 

 

 

Component attribute:  

- Fault rate: λ(t) Probability that the component will fail in the interval t at time point t given 

that it has been correct until t is given by (t)t: 

d5 … d4 d3 d2 d1 u5 u4 u3 u2 u1 

s(t) 
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𝜆(𝑡)Δ𝑡 = 𝑃{𝑠(𝑡 + Δ𝑡) ∈ 𝐷|𝑠(𝑡) ∈ 𝑈}, ∆𝑡 → 0. 
- Reliability of a component based on this definition: 

𝜆(𝑡) = −
1

𝑟(𝑡)

𝑑𝑟(𝑡)

𝑑𝑡
, thus 𝑟(𝑡) = 𝑒−׬ 𝜆(𝑡)𝑑𝑡

𝑡
0 . 

For electronic components: 

 

 

 

 

 

 

Comment: Initial errors are filtered by testing at the end of the production lines.  

Threats to dependability: 

- Fault: Adjudged or hypothesized cause of an error.  

- Error: State leading to the failure.  

- Failure: The delivered service deviates from correct service. 

 Example of fault → error → failure chain:  

Fault Error Failure 

Bit flip in the memory due to a 

cosmic particle 

Reading the faulty memory cell 

will result in incorrect value 

The robot arm collides with the 

wall 

The programmer increases a 

variable instead of decreasing 

The faulty statement is executed, 

and the value of the variable will 

be incorrect 

The result of the computation 

will be incorrect 

Means to improve dependability:  

- Fault prevention:  

o Physical faults: Good components, shielding, ...  

o Design faults: Good design methodology  

- Fault removal:  

o Design phase: Verification and corrections  

o Prototype phase: Testing, diagnostics, repair  

- Fault tolerance: Avoiding service failures 

o Operational phase: Fault handling, reconfiguration  

- Fault forecasting: Estimating faults and their effects  

o Measurements and prediction 

The development process: e.g. V-model, verification, validation, testing, … 

Organisation and independence of roles:  

The roles:  

Designer (analyst, architect, coder, unit tester) (DES); Verifier (VER); validator (VAL), Assessor (ASS), 

project manager (MAN), Quality assurance personnel (QUA). 

In case of SIL0: DES, VER, VAL can be the same person, ASS should be different person; 

In case of SIL1 and SIL2:  DES, VER-VAL, and ASS should be different persons;  

In case of SIL3 and SIL4:  MAN, DES, VER-VAL, and ASS should be different persons, or even VER and 

VAL. 

Architecture design to avoid hazard 

Fail-safe operation: (1) fail-stop behaviour (Stopping (switch-off) is a safe state), (2) fail-operational 

behaviour (Stopping (switch-off) is not a safe state, service is needed). Fault tolerance is required. 

In the operating period 𝜆(𝑡) = 𝜆. 
Assuming exponential distribution: 

𝑟(𝑡) = 𝑒−𝜆𝑡 

𝑀𝑇𝐹𝐹 = 𝐸{𝑢1} = ∫ 𝑟(𝑡)𝑑𝑡 =
1

𝜆

∞

0

 

𝜆(𝑡) 

Aging period Operating period 
Initial faults 
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Typical architectures for fail-stop operation 

-  Single channel architecture with built-in self-test; 

- Two channels: (a) the same program with comparison, (b) not the same program with independent 

checker; 

 

Fault tolerance: Providing (safe) service in case of faults (Fail-operational behaviour) 

Extra resources: Redundancy: (1) Hardware, (2) Software, (3) Information, (4) Time. 

Types of redundancy: cold (inactive in fault-free case), warm (operates with reduced load), hot (active in 

fault-free case 

 

How to use redundancy? 

- Hardware design faults (<1%): hardware redundancy with design diversity. 

- Hardware permanent operational faults (~20%): hardware redundancy, e.g. redundant processor. 

- Hardware transient operational faults: (~70-80%): time-redundancy (e.g. instruction retry); 

information redundancy (e.g. error correcting codes); software redundancy (e.g. recovery from saved 

state). 

- Software design faults (~10): software redundancy with design diversity 

Fault tolerance for hardware permanent faults: 

Duplication with diagnostics: 

 

 

 

 

 

 

 

 

 

TMR: Triple-modular redundancy: Masking the failure by majority voting. Voter is critical (but simple).  

 

 

 

 

 

 

 

 

NMR: N-modular redundancy: Masking the failure by majority voting. In mission critical systems surviving 

the mission time is of primary importance. Following the mission repair is possible.  Avionic on-board 

devices:  4MR, 5MR, sometimes 7MR. 

Fault tolerance for software faults: 

Repeated execution is not effective for design faults. Redundancy with design diversity is required. 

Application of variants: redundant software modules with diverse algorithms and data structures, different 

programming language and development tools, separated development teams.  

N-version programming: active redundancy, parallel execution, majority voting. If output acceptance range 

is specified, the voter will check it. The voter is a critical component (but simple). 

 

 

Output Input 
Primary 

Secondary 

 
Switch-over 

Diagnostic unit 

Input 
Output 

Module 1 

Module 2 
 

Module 3 
 

Majority 
voting 
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Recovery blocks: passive redundancy, activated only in case of faults. (1) The primary variant is executed 

first; (2) Acceptance check is performed at the output of the variants; (If no acceptance test can be 

performed, then the method cannot be used.) (3) In case of detected error another variant is executed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Comparison: 

Property/Type N-version programming Recovery blocks 

Error detection Majority voting, relative Acceptance checking 

Execution Parallel Serial 

Execution time Slowest variant or time-out Depends on # of faults 

Activation of redundancy Always (active) Only in case of fault (p) 

# of tolerated faults [(N-1)/2] N-1 

Error handling Masking Restoration 

 

Reliability Block Diagram 

1. Serial system: the components follow each other: 

The system is faultless, if all the components are faultless.  

The reliability of the system is the product of the reliability of the components:  

𝑟𝑆(𝑡) = ∏ 𝑟𝑖
𝑁
𝑖=1 (𝑡). If the fault rate of the components is 𝜆𝑖, then for the system 𝑀𝑇𝐹𝐹 =

1

∑ 𝜆𝑖
𝑁
𝑖=1

. 

2. Parallel system: the components are parallelly connected: 

The system is faulty, if all the components are faulty.  

The probability of faulty behaviour is: (1 – reliability). 

1 − 𝑟𝑆(𝑡) = ∏ (1 − 𝑟𝑖
𝑁
𝑖=1 (𝑡)). If the reliability of the components is 

the same:  𝑟𝐶(𝑡), then 𝑟𝑆(𝑡) = 1 − (1 − 𝑟𝐶(𝑡))
𝑁. If the fault rate 

of the components is 𝜆, then for the system 𝑀𝑇𝐹𝐹 =
1

𝜆
∑

1

𝑖

𝑁
𝑖=1 . 

 

 

Error signal 

Input 
Output 

Variant 1 

Variant 2 
 

Variant 3 
 

 
Voter 

Output Error signal 

y y 
n 

Input 

n 

Variant execution 

State saving 

State restoring 

Further 
variant? 

Acceptance 
check 

C1 C2 CN 

C1 

C2 

CN 
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3. Composite system: can be calculated component by component: 

 

 

 

 

The availability of the system can be computed from the availability of the components:  

𝐴𝑆 = 0.95 ∙ 0.99 ∙ [1 − (1 − 0.7)
3] ∙ [1 − (1 − 0.75)2] ∙ 0.9 = 0.95 ∙ 0.99 ∙ 0.973 ∙ 0.9375 ∙ 0.9 = 0.77 

 

0.95 0.99 

0.7 

0.7 

0.7 
0.75 

0.75 

0.9 


