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Configuration Items and Releases
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Configuration Management
CMMI Process Area

 SG 1: Establish Baselines

o SP 1.1: Identify Configuration Items

o SP 1.2: Establish a Configuration Management System

o SP 1.3  Create or Release Baselines

 SG 2: Track and Control Changes

o SP 2.1: Track Change Requests

o SP 2.2: Control Configuration Items

 SG 3: Establish Integrity

o SP 3.1: Establish Configuration Management Records

o SP 3.2: Perform Configuration Audits
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Identifying Configuration Items

 Requirements

 Product specifications

 Architecture documentation and design data

 Plans

 Hardware and equipment

 Code and libraries

 Test results
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Identifying Configuration Items

 Requirements

 Product specifications

 Architecture documentation and design data

 Plans

 Hardware and equipment

 Code and libraries

 Test results

 Development tools

 Test tools

 Compilers, even operating systems
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Establish a Configuration Management 
System

 Typical storing points in a Configuration management 
system

o Dynamic: Locally at the developer

o Controlled, centralized: A central server for configuration 
items

o Statically archived: Archives for the releases

 Determination of the configuration management 
lifecycle

 Setting user privileges and rights

o Read, Write and Create access rights

o User account and User groups management
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Example for a typical Configuration 
Lifecycle

1 3 6 8 10 12

2 5 7 11

4 9

Branch

Trunk

Tag

merge
Branch

Abandoned
branch
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Tools of Configuration management

 Mostly some kind of version control system is used



© BME-MIT 2017 9.

Version Control Systems
The need for such systems

 One typical day of a developer:

o At the start of the day we have a running software

o We add some lines to the software

o The software freezes

o We remove or uncomment the lines added

o The software still freezes

 The situation is even complicated if we work in a team:

o We add some lines to a working software

o Someone also add few lines to the same part of the software

o The software freezes
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Trivial Version Control

 We create a new folder for every changes with the date of the 
changes

 Every such folder should have a changelog file to describe the 
changes
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Triviális Version Control

 We create a new folder for every changes with the date of the 
changes

 Every such folder should have a changelog file to describe the 
changes

Problems

 Requires much disk space

 How often should we create a new version?

 Should we create copy only from a working version or from an 
intermediate one too?

 The changelog file should be used very consistently, or it cause 
more trouble then help.
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Version Control Systems
Basic Terms

 The version managements system are used to follow 
every changes made on a project

 The version control system logs

o Every changes to every file assigned to version control

o Every changes to the folder structure

 The user can

o Check any version of a file during its version control life 
cycle

o Check the reason and the committer of every changes

o Making comments to its own changes
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 Repository: Central Storage of the current and 
previous versions of the project (master copy).

 Client: user who want to work on the project

 Working copy: A local version of the project 
downloaded from the Repository by the Client

Centralised Version Control Systems
Basic Terms
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Repository

Client 1 Client 2 Client 3

Check out
Or

Update

Commit

Centralised Version Control Systems
Basic behavior
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Version Control Strategies: The main questions?

 How the version control systems support the 
parallel work of multiple developers?

 What is the strategy or method to avoid the 
inconsistency caused by the parallel work on the 
same file?
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The Lock–Modify–Unlock approach

 Before modifying a file it have to be locked

 After modification it should be unlocked

 There is no parallel modification of the file: only 
one developer can modify the file by locking it

 Locked files can be read by other developers
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Lock–Modify–Unlock approach

if(temp>1)
a = 1;

else
a = 2;

Repository

User 1
Local copy

if(temp>1)
a = 1;

else
a = 2;

Lock

User 2
Local copy

if(temp>1)
a = 1;

else
a = 2;
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Lock–Modify–Unlock approach

if(temp>1)
a = 1;

else
a = 2;

Repository

User 1
Local copy

if(temp>1)
a = 1;

else
a = 2;Read

User 2
Local copy

if(temp>1)
a = 1;

else
a = 2;
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if(temp>1)
a = 1;

else
a = 2;

Repository
User 1

Local copy
if(temp>1)

a = 1;
else

a = 3;

User 2
Local copy

if(temp>1)
a = 1;

else
a = 2;

Lock–Modify–Unlock approach
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if(temp>1)
a = 1;

else
a = 3;
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Local copy

if(temp>1)
a = 1;

else
a = 3;

User 2
Local copy

if(temp>1)
a = 1;

else
a = 2;

Write

Lock–Modify–Unlock approach
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if(temp>1)
a = 1;

else
a = 3;

Repository
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Local copy

if(temp>1)
a = 1;

else
a = 3;

User 2
Local copy

if(temp>1)
a = 1;

else
a = 2;

Unlock

Lock–Modify–Unlock approach
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if(temp>1)
a = 1;

else
a = 3;
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Local copy
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a = 1;

else
a = 3;

User 2
Local copy
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Lock–Modify–Unlock approach
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if(temp>1)
a = 1;

else
a = 3;

Repository

User 1
Local copy
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a = 1;

else
a = 3;

User 2
Local copy

if(temp>1)
a = 1;

else
a = 3;

Lock–Modify–Unlock approach
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Problems of Lock–Modify–Unlock approach

 Can lead to administrative problems:
o One of the developers forget to unlock a file and goes to 

holyday …
o System administrator is needed to unlock those files

 Cause unnecessary waiting:
o If more than one developers want to modify the same C file, 

but different parts of it, then there is no reason to exclude the 
others.  

 It can lead to the false illusion of safety:
o Developers with the lock and modify approach tends to 

forget the dependency of different software parts.
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Copy–Modify–Merge approach

 Multiple developers check out from the repository to 
their working copies.

 During the commit phase they solve the conflicts by 
merging their versions. 

 The Merging process is supported by the version control 
system, but it requires human interactions and decisions.
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if(temp>1)
a = 1;

else
a = 2;

Repository

User 1
Local working copy

if(temp>1)
a = 1;

else
a = 2;

Check out

User 2
Local working copy

if(temp>1)
a = 1;

else
a = 2;

The Copy–Modify–Merge approach in work
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if(temp>1)
a = 1;

else
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Local working copy
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else
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else
a = 20;

The Copy–Modify–Merge approach in work
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if(temp>1)
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Commit

The Copy–Modify–Merge approach in work



© BME-MIT 2017 29.
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The Copy–Modify–Merge approach in work
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if(temp>1)
a = 10;

else
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The Copy–Modify–Merge approach in work
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if(temp>1)
a = 10;

else
a = 20;
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The Copy–Modify–Merge approach in work
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if(temp>1)
a = 10;

else
a = 20;

Repository

User 1
Local working copy

if(temp>1)
a = 10;

else
a = 20;

User 2
Local working copy

Update

if(temp>1)
a = 10;

else
a = 20;

The Copy–Modify–Merge approach in work
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A Copy–Modify–Merge megközelítés
merits and flaws

 It enables the parallel work of multiple 
developers

 Commit signals the conflicts

 Human interaction is needed to solve 
conflicts

 Version Control Systems do not replace 
the communication among team 
members
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When do we need to use the lock-unlock 
approach?

 For binary files, where the text based 
merge is not possible. 

oWav files, other raw data files

oOutputs of some tools like PCB designers

 Therefore the lock function is available 
in most of the version control systems
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Centralized Version Control Systems 
SVN, server solution example
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 Free SVN Client

(there is a CVS version too)
o http://tortoisesvn.net/

 It can overlay the icons of 
Windows

Centralized Version Control Systems 
SVN, client, TortoiseSVN
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Distributed Revision Control
merits

 Everyone has its own sandbox
o Own repository, individual commit strategy

o Easy to access the logs of own repository

 It works of line too
o Centralized versions requires a server 

 Fast
o Don’t have to wait for the network communication

 Easy to manage
o There is no need for a server

 Easy to make branches
o Every developer has its own branch
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Distributed Revision Control
flaws

 There is still a need for back-up

o The other developers repository cannot be considered as 
a back-up, because those can be very different

 There is no such us current release

o Everybody has its own version

 There are no version numbers

o Every change has its GUID (Globally Unique ID), but 
there is no such continuously like: rev 1, rev 2, rev 3
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Distributed Revision Control
GIT “server side”

 According to terms there is not really one

 There are service providers like GitHub that can provide a 
centralized server for Git pushes (more then 26 million
repo)
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Distributed Revision Control
GIT “client side”

 According to the terms there is not really one …

 GitHub for windows

 TortoiseGIT
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Controlling Version Numbers
Semantic Versioning

 Major: major change that introduce incompatibility with 
previous verison. Like API (Application Programming 
Interface) change or functionality change.

 Minor: Change of functionality, but backwards-compatible
API and features.

 Bug: backwards-compatible bug fixes.

Major Minor Bug

2 10 3


