
© BME-MIT 2017
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Configuration Management

VIMIMA11 Design and integration of embedded
systems

© BME-MIT 2017 2.

Configuration Items and Releases

time

time

time

time

C
o

n
fi
g

u
ra

tio
n
 it

e
m

s
C

o
n
fi
g

u
ra

tio
n
 R

e
le

a
s
e

s

Component 1

Component 2

Component 3

v1.0 v1.1 v1.2 V2.0

v1.0 v1.3 V2.1

v1.0 v1.1 v1.3 V1.6 V2.0

Configuration Release 1 Configuration Release 2

v1.0

v1.0

v1.0 v1.2V1.6

V2.1

© BME-MIT 2017 3.

Configuration Management
CMMI Process Area

 SG 1: Establish Baselines

o SP 1.1: Identify Configuration Items

o SP 1.2: Establish a Configuration Management System

o SP 1.3 Create or Release Baselines

 SG 2: Track and Control Changes

o SP 2.1: Track Change Requests

o SP 2.2: Control Configuration Items

 SG 3: Establish Integrity

o SP 3.1: Establish Configuration Management Records

o SP 3.2: Perform Configuration Audits

© BME-MIT 2017 4.

Identifying Configuration Items

 Requirements

 Product specifications

 Architecture documentation and design data

 Plans

 Hardware and equipment

 Code and libraries

 Test results

© BME-MIT 2017 5.

Identifying Configuration Items

 Requirements

 Product specifications

 Architecture documentation and design data

 Plans

 Hardware and equipment

 Code and libraries

 Test results

 Development tools

 Test tools

 Compilers, even operating systems

© BME-MIT 2017 6.

Establish a Configuration Management
System

 Typical storing points in a Configuration management
system

o Dynamic: Locally at the developer

o Controlled, centralized: A central server for configuration
items

o Statically archived: Archives for the releases

 Determination of the configuration management
lifecycle

 Setting user privileges and rights

o Read, Write and Create access rights

o User account and User groups management

© BME-MIT 2017 7.

Example for a typical Configuration
Lifecycle

1 3 6 8 10 12

2 5 7 11

4 9

Branch

Trunk

Tag

merge
Branch

Abandoned
branch

© BME-MIT 2017 8.

Tools of Configuration management

 Mostly some kind of version control system is used

© BME-MIT 2017 9.

Version Control Systems
The need for such systems

 One typical day of a developer:

o At the start of the day we have a running software

o We add some lines to the software

o The software freezes

o We remove or uncomment the lines added

o The software still freezes

 The situation is even complicated if we work in a team:

o We add some lines to a working software

o Someone also add few lines to the same part of the software

o The software freezes

© BME-MIT 2017 10.

Trivial Version Control

 We create a new folder for every changes with the date of the
changes

 Every such folder should have a changelog file to describe the
changes

© BME-MIT 2017 11.

Triviális Version Control

 We create a new folder for every changes with the date of the
changes

 Every such folder should have a changelog file to describe the
changes

Problems

 Requires much disk space

 How often should we create a new version?

 Should we create copy only from a working version or from an
intermediate one too?

 The changelog file should be used very consistently, or it cause
more trouble then help.

© BME-MIT 2017 12.

Version Control Systems
Basic Terms

 The version managements system are used to follow
every changes made on a project

 The version control system logs

o Every changes to every file assigned to version control

o Every changes to the folder structure

 The user can

o Check any version of a file during its version control life
cycle

o Check the reason and the committer of every changes

o Making comments to its own changes

© BME-MIT 2017 13.

 Repository: Central Storage of the current and
previous versions of the project (master copy).

 Client: user who want to work on the project

 Working copy: A local version of the project
downloaded from the Repository by the Client

Centralised Version Control Systems
Basic Terms

© BME-MIT 2017 14.

Repository

Client 1 Client 2 Client 3

Check out
Or

Update

Commit

Centralised Version Control Systems
Basic behavior

© BME-MIT 2017 15.

Version Control Strategies: The main questions?

 How the version control systems support the
parallel work of multiple developers?

 What is the strategy or method to avoid the
inconsistency caused by the parallel work on the
same file?

© BME-MIT 2017 16.

The Lock–Modify–Unlock approach

 Before modifying a file it have to be locked

 After modification it should be unlocked

 There is no parallel modification of the file: only
one developer can modify the file by locking it

 Locked files can be read by other developers

© BME-MIT 2017 17.

Lock–Modify–Unlock approach

if(temp>1)
a = 1;

else
a = 2;

Repository

User 1
Local copy

if(temp>1)
a = 1;

else
a = 2;

Lock

User 2
Local copy

if(temp>1)
a = 1;

else
a = 2;

© BME-MIT 2017 18.

Lock–Modify–Unlock approach

if(temp>1)
a = 1;

else
a = 2;

Repository

User 1
Local copy

if(temp>1)
a = 1;

else
a = 2;Read

User 2
Local copy

if(temp>1)
a = 1;

else
a = 2;

© BME-MIT 2017 19.

if(temp>1)
a = 1;

else
a = 2;

Repository
User 1

Local copy
if(temp>1)

a = 1;
else

a = 3;

User 2
Local copy

if(temp>1)
a = 1;

else
a = 2;

Lock–Modify–Unlock approach

© BME-MIT 2017 20.

if(temp>1)
a = 1;

else
a = 3;

Repository

User 1
Local copy

if(temp>1)
a = 1;

else
a = 3;

User 2
Local copy

if(temp>1)
a = 1;

else
a = 2;

Write

Lock–Modify–Unlock approach

© BME-MIT 2017 21.

if(temp>1)
a = 1;

else
a = 3;

Repository

User 1
Local copy

if(temp>1)
a = 1;

else
a = 3;

User 2
Local copy

if(temp>1)
a = 1;

else
a = 2;

Unlock

Lock–Modify–Unlock approach

© BME-MIT 2017 22.

if(temp>1)
a = 1;

else
a = 3;

Repository

User 1
Local copy

if(temp>1)
a = 1;

else
a = 3;

User 2
Local copy

if(temp>1)
a = 1;

else
a = 2;

Lock–Modify–Unlock approach

© BME-MIT 2017 23.

if(temp>1)
a = 1;

else
a = 3;

Repository

User 1
Local copy

if(temp>1)
a = 1;

else
a = 3;

User 2
Local copy

if(temp>1)
a = 1;

else
a = 3;

Lock–Modify–Unlock approach

© BME-MIT 2017 24.

Problems of Lock–Modify–Unlock approach

 Can lead to administrative problems:
o One of the developers forget to unlock a file and goes to

holyday …
o System administrator is needed to unlock those files

 Cause unnecessary waiting:
o If more than one developers want to modify the same C file,

but different parts of it, then there is no reason to exclude the
others.

 It can lead to the false illusion of safety:
o Developers with the lock and modify approach tends to

forget the dependency of different software parts.

© BME-MIT 2017 25.

Copy–Modify–Merge approach

 Multiple developers check out from the repository to
their working copies.

 During the commit phase they solve the conflicts by
merging their versions.

 The Merging process is supported by the version control
system, but it requires human interactions and decisions.

© BME-MIT 2017 26.

if(temp>1)
a = 1;

else
a = 2;

Repository

User 1
Local working copy

if(temp>1)
a = 1;

else
a = 2;

Check out

User 2
Local working copy

if(temp>1)
a = 1;

else
a = 2;

The Copy–Modify–Merge approach in work

© BME-MIT 2017 27.

if(temp>1)
a = 1;

else
a = 2;

Repository

User 1
Local working copy

if(temp>1)
a = 10;

else
a = 2;

User 2
Local working copy

if(temp>1)
a = 1;

else
a = 20;

The Copy–Modify–Merge approach in work

© BME-MIT 2017 28.

if(temp>1)
a = 10;

else
a = 2;

Repository

User 1
Local working copy

if(temp>1)
a = 10;

else
a = 2;

User 2
Local working copy

if(temp>1)
a = 1;

else
a = 20;

Commit

The Copy–Modify–Merge approach in work

© BME-MIT 2017 29.

if(temp>1)
a = 10;

else
a = 2;

Repository

User 1
Local working copy

if(temp>1)
a = 10;

else
a = 2;

User 2
Local working copy

if(temp>1)
a = 1;

else
a = 20;

The Copy–Modify–Merge approach in work

© BME-MIT 2017 30.

if(temp>1)
a = 10;

else
a = 2;

Repository

User 1
Local working copy

if(temp>1)
a = 10;

else
a = 2;

User 2
Local working copy

if(temp>1)
a = 1;

else
a = 20;

if(temp>1)
a = 10;

else
a = 2;

Update and
Edit conflicts

The Copy–Modify–Merge approach in work

© BME-MIT 2017 31.

if(temp>1)
a = 10;

else
a = 2;

Repository

User 1
Local working copy

if(temp>1)
a = 10;

else
a = 2;

User 2
Local working copy

if(temp>1)
a = 10;

else
a = 20;

The Copy–Modify–Merge approach in work

© BME-MIT 2017 32.

if(temp>1)
a = 10;

else
a = 20;

Repository

User 1
Local working copy

if(temp>1)
a = 10;

else
a = 2;

User 2
Local working copy

if(temp>1)
a = 10;

else
a = 20;

The Copy–Modify–Merge approach in work

© BME-MIT 2017 33.

if(temp>1)
a = 10;

else
a = 20;

Repository

User 1
Local working copy

if(temp>1)
a = 10;

else
a = 20;

User 2
Local working copy

Update

if(temp>1)
a = 10;

else
a = 20;

The Copy–Modify–Merge approach in work

© BME-MIT 2017 34.

A Copy–Modify–Merge megközelítés
merits and flaws

 It enables the parallel work of multiple
developers

 Commit signals the conflicts

 Human interaction is needed to solve
conflicts

 Version Control Systems do not replace
the communication among team
members

© BME-MIT 2017 35.

When do we need to use the lock-unlock
approach?

 For binary files, where the text based
merge is not possible.

oWav files, other raw data files

oOutputs of some tools like PCB designers

 Therefore the lock function is available
in most of the version control systems

© BME-MIT 2017 36.

Centralized Version Control Systems
SVN, server solution example

© BME-MIT 2017 37.

 Free SVN Client

(there is a CVS version too)
o http://tortoisesvn.net/

 It can overlay the icons of
Windows

Centralized Version Control Systems
SVN, client, TortoiseSVN

© BME-MIT 2017 38.

Repository

Working copy

u
p

d
at

e

co
m

m
it

Distributed Revision Control

Developer 1

Repository

Working copy

u
p

d
at

e

co
m

m
it

Developer 2

Repository

Working copy

u
p

d
at

e

co
m

m
it

Developer 3

Push / Pull

© BME-MIT 2017 39.

Distributed Revision Control
merits

 Everyone has its own sandbox
o Own repository, individual commit strategy

o Easy to access the logs of own repository

 It works of line too
o Centralized versions requires a server

 Fast
o Don’t have to wait for the network communication

 Easy to manage
o There is no need for a server

 Easy to make branches
o Every developer has its own branch

© BME-MIT 2017 40.

Distributed Revision Control
flaws

 There is still a need for back-up

o The other developers repository cannot be considered as
a back-up, because those can be very different

 There is no such us current release

o Everybody has its own version

 There are no version numbers

o Every change has its GUID (Globally Unique ID), but
there is no such continuously like: rev 1, rev 2, rev 3

© BME-MIT 2017 41.

Repository

Working copy

u
p

d
at

e

co
m

m
it

Distributed Revision Control
Usual approach

D
ev

el
o

p
er

1

Repository

Working copy

u
p

d
at

e

co
m

m
it

D
ev

el
o

p
er

2

Repository

Szerver

© BME-MIT 2017 42.

Distributed Revision Control
GIT “server side”

 According to terms there is not really one

 There are service providers like GitHub that can provide a
centralized server for Git pushes (more then 26 million
repo)

© BME-MIT 2017 43.

Distributed Revision Control
GIT “client side”

 According to the terms there is not really one …

 GitHub for windows

 TortoiseGIT

© BME-MIT 2017 44.

Controlling Version Numbers
Semantic Versioning

 Major: major change that introduce incompatibility with
previous verison. Like API (Application Programming
Interface) change or functionality change.

 Minor: Change of functionality, but backwards-compatible
API and features.

 Bug: backwards-compatible bug fixes.

Major Minor Bug

2 10 3

