0.75

0571

0.25¢/

0.04 (.04

0.02 0.02

~1 —1 0 1
Figure 6.1 lllustration of the construction of kernel functions starting from a corresponding set of basis func-
tions. In each column the lower plot shows the kernel function k(x. =') defined by (6.10) plotted as a function of

z for z' = 0, while the upper plot shows the corresponding basis functions given by polynomials (left column),
‘Gaussians’ (centre column), and logistic sigmoids (right column).
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Figure 6.3 lllustration of the Nadaraya-Watson kernel
regrassion model using isotropic Gaussian kernels, for the
sinusoidal data set. The original sine function is shown
by the green curve, the data points are shown in blue,
and each is the centre of an isotropic Gaussian kernel.
The resulting regression function, given by the condi-
tional mean, is shown by the red line, along with the two-
standard-deviation region for the conditional distribution
pltl=) shown by the red shading. The blue ellipse around
each data point shows one standard deviation contour for
the corresponding kernel. Thesa appear noncircular due
to the different scales on the horizontal and vertical axes.
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margin

Figure 7.1 The margin is defined as the perpendicular distance between the decision boundary and the closest
of the data points, as shown on the left figure. Maximizing the margin leads to a particular choice of decision
boundary, as shown on the right. The location of this boundary is determined by a subset of the data points,

known as support vectors, which are indicated by the circles.
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Figure 7.2 Example of synthetic data from
two classes in two dimensions
showing contours of constant
y(x) obtained from a support
vector machine having a Gaus-
sian kernel function. Also shown
are the decision boundary, the
margin boundaries, and the sup-
port vectors.




Figure 7.3 lllustration of the slack variables £, = (.
Data points with circles around them are
support vectors.




Figure 7.6 Plot of an e-insensitive error function (in
red) in which the error increases lin-
early with distance beyond the insen-
sitive region. Also shown for compar-

ison is the quadratic error function (in
green).

Figure 7.7 lllustration of SVM regression, showing (I}*
the regression curve together with the e yte
insensitive ‘tube’. Also shown are exam- £>0
ples of the slack variables £ and £. Points
above the e-tube have £ > O and £ = 0, Y — €
points below the e-tube have £ = 0 and

Ly »
(£ = 0, and points inside the e-tube have

=20, -




