
Simulation and Animation of Reinforcement

Learning Algorithm

Vivek Mehta

Robotics Institute

Carnegie Mellon University

Pittsburgh, PA-15216

Email: vivekmehta@cmu.edu

Rohit Kelkar

Robotics Institute

Carnegie Mellon University

Pittsburgh, PA-15216

Advisor:

Andrew Moore

Robotics Institute

Carnegie Mellon University

Pittsburgh, PA-15216

Abstract— Simulation and Animation of an algorithm is useful
tool to visualize its behavior. It enables analysis and hence
improvements to existing algorithms. With this driving force, four
classical reinforcement learning (RL) algorithms, namely value
iteration, policy iteration, Q-learning and prioritized sweeping,
were simulated and animated to observe their behavior and
to analyze their performance in different experimental setting
than one which uses discount factor. Based on the analysis,
two enhancements are proposed, one each for Q-learning and
prioritized sweeping algorithms.

I. INTRODUCTION

Machine learning is study of algorithms which improve

performance with experience [1]. Such an algorithm is known

as learner and procedure of improving performance with

experience is known as training experience. Based on nature

of training experience we get three types of machine learning

algorithms:

1) Supervised Learning: In Supervised Learning, teacher

provides a desired response (output) for a given situation

(input) and learner is suppose to learn mapping of best

response given a situation.

2) Reinforcement Learning (RL): In RL, given a situation

(state) and associated action a reward is know to learner.

Based on these rewards, learner is supposed to learn the

best action given a situation.

3) Unsupervised Learning: In unsupervised learning,

learner tries to learn the pattern in data representing

different situations (input).

This report will focus on RL and related algorithms. Rest of

the report is organized as follows: In Section II, RL problem

is formalized. The experimental setup (model), used for simu-

lation and animation of RL algorithms, is described in Section

III. Section IV and V describe algorithms adapted to the model

given in III, when model is known and unknown respectively.

In Section V, two enhancements to existing algorithms are

presented. Section VI talks about future work and conclusion.

The two authors collaborated on the experimental portion of this work but
this report was written solely by first author.

II. FORMALIZING RL PROBLEM

A. Example

Consider an autonomous room cleaning robot, which is

required to clean the entire room, without hitting any obstacle

and without getting its battery discharged completely. In case,

the robot is low on battery it should return to battery charging

station before battery gets discharged completely.

One way to solve this problem is to manually code rules for

exploring and cleaning room, avoiding obstacle and checking

battery level against distance to recharging station and decid-

ing, when robot should return for recharging. But this approach

is complex to implement and not easy to scale.

Alternatively, we can formulate problem in different manner

to solve it. The Robot get positive reinforcement for cleaning

house, negative reinforcement for hitting obstacle and negative

reinforcement if battery gets discharged completely before

robot reaches recharging station. Then, robot can learn the

best strategy, to clean room by moving around in the room

and trying to maximize the reinforcement it receives. This

strategy is easy to implement and scalable also. This way of

solving problem is know as RL.

B. Formal RL Model

Fig. 1. RL model: Agent-Environment Interface

As explained in above example, RL is learning from in-

teraction with environment. The learner and decision-maker

is called the agent. The thing it interacts with, comprising



everything outside the agent, is called the environment. These

interact continually, the agent selecting actions and the en-

vironment responding to those actions and presenting new

situations (known as states) and reward associated with them

to the agent, as shown in Figure 1.

There are two flavors of RL problem based on the fact,

that the agent is aware of the environmental model or not.

Algorithms in both these scenarios are discussed in this report.

C. Policy

Policy (π(s)) is mapping of states to actions. An optimal

policy (π∗(s)), is one which have mapping of states to best

action. Finding optimal policy is heart of all RL problems.

III. RULES OF THE GAME

For this experiment, a maze-world is used with every cell

representing a state. There are one or more goal cells. There

can be a wall present on the boundary between any two adja-

cent cells. Agent occupies cell completely at any given instant.

Agent can take four actions: UP, DOWN, LEFT, RIGHT,

which tries to take it to the adjacent state in corresponding

direction. It is not possible for agent to cross the walls and it

gets penalty if it hits a wall. Also every step taken in maze

costs and agent gets penalty equivalent to path cost. Agent get

zero reinforcement on reaching any goal state.

Noise in environment is modelled using concept of PJOG.

Environment is associated with PJOG which can take value

between 0 and 1. PJOG affects agents action as follows: If

agent wants to take action UP, then agent take that action with

probability (1-PJOG) and it takes one of remaining action with

probability PJOG/3.

Given starting state, agent is supposed to reach goal with as

low penalty as possible i.e. agent is supposed to find optimal

policy for given maze.

This model is different from models which are generally

used in RL problems [2] [3], as in this model, agent does

not get any reward. It gets either zero or positive penalty as

reinforcement.

IV. LEARNING AN OPTIMAL POLICY: MODEL KNOWN

If model is known, Markov Decision Processes(MDPs) can

be used to represent the problem. Then, problem of finding op-

timal policy can be solved using matrix inversion method [4],

but its time complexity is O(N 3). Better algorithms exist

[2] [3] which use concepts of Dynamic Programming (DP).

A. Markov Decision Processes

MDP is used to model reinforcement learning problems. It

consists of:

• a set of states, S

• a set of actions, A

• a reward function, R : S × A → <, and

• a transition probability function, P (s′|s, a), where, s′, s ∈
S and a ∈ A

It can be observed that, the model described in Section III

can be directly mapped to an MDP.

B. Dynamic Programming

Dynamic programming can be used to obtain efficient

algorithm for solving RL problem. The basic idea is to divide

big dynamic problem into small static problems, which repeat

multiple times. Solution to such small problems is independent

of outer problem. Complete solution for the problem can be

obtained by combining solution to smaller problems.

This is the concept on which the value iteration and policy

iteration algorithms are based. We will, now define one more

concept of value function, which is used for applying dynamic

programming to RL problem.

C. Value Function

Value function is function of states (or state-action pair) that

estimates how good it is for the agent to be in a given state

(or how good it is to perform a given action in a given state).

The goodness of state depends of future rewards that can be

expected.

D. Value Iteration

In value iteration [2] [3], first optimal value function is

computed and then based on that optimal policy is derived. To

find optimal value function we define Vk(Si) as ”Maximum

possible future sum of rewards that can be obtained, starting

at state Si in k time steps”. Then V1(Si) will be immediate

reward and V2(Si) will be function of immediate reward and

V1(Si). On extending this concept further we can express,

Vt+1(Si) for the given experimental setup as follows:

Vt+1(s) = min
a∈A

(

PCost +
∑

s′=S

(P (s′|s, a) · xss′ )

)

where,

PCost = PathCost

P (s′|s, a) = Prob. of transition from s to s′ after action a.

xss′ = Vt(s
′), if transition from s to s′ is safe

= Penalty+Vt(s), if transition from s to s′ is not safe

Above step is repeated until value function gets converged

and there is not any significant change in values. Since the goal

is to minimize reinforcement, optimal policy in any given state

is that action, which takes to the state with least value of value

function.Thus, policy can be determined as follows:

π∗(s) = arg min
a∈A

(

∑

s′∈S

(P (s′|s, a) · xss′)

)

Complete value iteration algorithm adapted to given exper-

imental setup is given in Algorithm 1:

E. Policy Iteration

The policy iteration algorithm [2], manipulates policy di-

rectly instead of finding it via the optimal value function. The

basic steps of algorithm are as follows:

1) Choose policy arbitrarily

2) Evaluate policy

3) Update policy



Algorithm 1 Value Iteration

1: initialize V (s) arbitrarily

2: repeat

3: for all s ∈ S do

4: Vt+1(s) = mina∈A

(

PCost +
∑

s′∈S
P (s′|s, a) · xss′

)

5: end for

6: until V (s) has converged

7: for all s ∈ S do

8: π∗(s) = argmina∈A

(
∑

s′∈S
(P (s′|s, a) · xss′ )

)

9: end for

4) If not optimal policy, goto 2

Modified value iteration step can be used for evaluating a

policy and finding value function V (s) for given policy π(s)
as follows:

repeat

for all s ∈ S do

Vt+1(s) = PCost +
∑

s′∈S

(P (s′|s, π(s)) · xss′ )

end for

until V (s) has converged

where,

P (s′|s, a) = Prob. of transition from s to s′ after action a.

xss′ = Vt(s
′), if transition from s to s′ is safe

= Penalty+Vt(s), if transition from s to s′ is not safe

Value function computed in above step to evaluate a policy

can be used for updating policy. New policy can be determined

in similar way as it was done in value iteration algorithm.

Thus complete policy iteration algorithm, adapted to given

experimental setup, is given in algorithm 2.

Algorithm 2 Policy Iteration

1: initialise π(s) arbitrarily

2: repeat

3: repeat

4: for all s ∈ S do

5: Vt+1(s) = PCost +
∑

s′∈S
(P (s′|s, π(s)) · xss′ )

6: end for

7: until V (s) has converged

8: for all s ∈ S do

9: πt+1(s) = arg mina∈A (
∑

s′=S
(P (s′|s, a) · xss′ ))

10: end for

11: until policy good enough

F. Analysis

Policy iteration takes less number of iteration to converge

than value iteration for a given maze, but time taken by

policy iteration need not be less than that by value iteration.

Performance of these algorithms depends on ratio of number

of actions to number of states. Higher the ratio better will be

performance of policy iteration.

G. Modified Policy Iteration

Policy iteration converges with very few number of iter-

ations, but every iteration takes much longer time than an

iteration of value iteration. The main reason for this is the

evaluate policy step of policy iteration. Solving to find exact

value of V (S) for given policy is very expensive, as the

change in Vt+1(s) becomes very small as t increases. Instead

of finding exact value of V (s) for given policy π, a few steps

of value-iteration can be performed such that change in value

function in not significant (less than a small threshold). Thus,

the evaluate policy step of policy iteration gets modified as

follows to give rise to modified policy iteration:

repeat

for all s ∈ S do

Vt+1(s) = PCost +
∑

s′∈S

(P (s′|s, π(s)) · xss′)

end for

until change in V (s) is not significant

V. LEARNING AN OPTIMAL POLICY: MODEL UNKNOWN

Algorithms discussed in previous section were based on

assumption that the model is known and can be represented as

a MDP. Model is known essentially means that state transition

probability P (s′|s, a) and reinforcement function R(s, a) is

known. There are lot of practical problems in which model is

not known. In such situations, the agent must interact with its

environment to obtain information which can be processed

to determine the optimal policy. Such algorithms will be

discussed in this section.

When model is not known, there are two types of algorithms

which are possible:

1) Model-free: Learn policy without learning model.

2) Model-based: Learn a model, and use it to derive a

policy.

Both types of algorithms are being used in practice. In this

report, one algorithm of each type, Q-learning (Model-free)

and prioritized sweeping (model-based), is discussed.

A. Q-learning

Watkins’ Q-learning [2] is a model-free method which is

very easy to implement. Q-learning works by estimating the

value of state-action pair, Q(s, a). The value Q(s, a), known

as Q-value, is defined to be the expected sum of future

reinforcement(penalty) obtained by taking action a from state

s and following an optimal policy thereafter. Once these values

have been learned, the optimal action from any state is the one

with the lowest Q-value. So, if Q∗(s, a) is optimal Q-values,

optimal policy can be obtained as follows:

π∗(s) = arg min
a∈A

(Q∗(s, a))

The estimation of Q-values can be done on the basis of

experience using following learning rule:

Q(s, a) = Q(s, a) + α

(

X + min
a′∈A

(Q(s′, a′) − Q(s, a))

)



where,

s′ is new state after taking action a on state s and X is

reinforcement observed.

X = PathCost , if transition is safe

X = R , if transition is unsafe

α is known as learning rate.

As shown in learning rule, for every observation we update

Q-value based on observation. Learning rate determines how

much current Q-value is changed on the basis of new observa-

tion. Learning rate can take value between 0 and 1. In noisy

environment, high learning rate would not allow the system

to stabilize and low learning rate makes learning very slow.

Thus decaying learning rate is used in such case.

For Q-values to converge to optimal values, it is required

that every state and action pair is explored sufficient number

of times, ideally infinite number of times. Thus an exploration

policy must be used for choosing an action given a state.

Some of exploration policies used for this experiment are:

• ε-greedy: Select best action with probability 1 − ε and

choose random action with probability ε.

• Changing start state: Once goal is reached, reset to

random state for next iteration.

• Time-worn virtual reward: Artificially give high virtual

rewards for state and action which have not been explored

for a long time.

The complete Q-learning algorithm using ε-greedy explo-

ration policy and adapted to given experimental setups is given

in algorithm 3.

Algorithm 3 Q-learning

1: initialise Q(s, a) arbitrarily

2: loop

3: initialize s

4: repeat

5: select action a from s based on Q(s, a) using ε-

greedy policy

6: take action a, Observe reward r, next state s′

7: Q(s, a) = (1 − α)Q(s, a) + α[X + mina′Q(s′, a′)]
8: until s is goal

9: end loop

Note: Step 4 to 8 is know as episode.

In following subsections, effect of learning rate on Q-

learning is analysed and adaptive learning rate is proposed

for non-stationary environment.

1) Decaying learning rate: According to this scheme the

agent interacts with the environment with a very high learning

rate initially so that it can quickly settle down to a near

optimal policy. As the agents interactions with the environment

increase the learning rate decays and the agent now makes only

minor modifications to its near optimal policy to obtain the

optimal policy. This scheme is guaranteed to asymptotically

converge to the optimal policy. The learning rate under the

decaying learning rate scheme is shown in Figure 2. The

results of using the decaying learning rate are shown in Figure

Fig. 2. Decaying learning rate

Fig. 3. Score of policy for decaying learning rate

3. It can be seen that the score 1of the policy decays faster

due to high learning rate in the initial stages and then as the

number of episodes increase the learning rate decays further

and the score of the policy drops to zero.

2) Decaying learning rate applied to non stationary envi-

ronment: When the environment is non stationary the use of

decaying learning rate causes degradation in the performance

of the algorithm. As number of episodes increase the learning

rate becomes very small and the changes in the environment

does not make significant changes in the Q-values that the

agent maintains. Because of this the agent keeps executing a

sub-optimal policy. This phenomenon can be seen in the Figure

4. Here the environment is changed after every 2000 episodes.

It can be observed at one such instance after 6000 episodes the

environment changes and the score of the policy that the agent

is executing takes a long time to settle to zero. This means

that the agent takes longer time to discover the optimal policy.

It has also been observed that as the agents interactions with

1The score of the policy is computed as follows:

Score(π) = σ||V π(s) − V
∗(s)||

where,
π = Learned policy whose value is to be evaluated
π∗ = True optimal policy
V π(s) = True value for using policy π starting at state s
V ∗(s) = V π(s)



Fig. 4. The score of policy for changing environment with decaying learning
rate

the environment increase the learning rate further decreases

and each time the environment changes the time taken by the

agent to discover the optimal policy increases.

It is clear from the above discussion that the problem of

increased time taken by the agent to find the optimal policy

can be attributed to extremely low learning rate as a result of

using the decaying learning rate scheme. At the same time the

decaying learning rate scheme cannot be discarded because

it undoubtedly performs better then the fixed learning rate

scheme.

3) Adaptive learning rate in non stationary environments:

To remedy above problem with the decaying learning rate

scheme as applied to non stationary environments the concept

of adaptive learning rate is introduced. This involves resetting

the learning rate whenever the environment changes. But this

requires the agent to infer intelligently that the environment

has changed based on the stimuli that it receives from the

environment. One such indication that the environment has

changed is the sudden rise in the values that the agent uses to

update its Q-values. Consider the Q-learning learning rule:

Q(s, a) = Q(s, a) + α(X + mina′Q(s′, a′) − Q(s, a))

Q(s, a) = Q(s, a) + α(Bracket − V alue)

where,

Bracket-Value = (X + mina′Q(s′, a′) − Q(s, a))

Bracket-Value was observed for 8000 episodes with envi-

ronment changing at every 2000 episodes. From Figure 5, it is

clear that whenever the environment changes there is a sudden

increase in the Bracket-Value.

Thus Bracket-Values are good indicators of the changes in

the environment. If the learning rate in the decaying learning

rate scheme is reset each time the environment changes then

such a scheme would perform with the same advantages as the

decaying learning rate scheme in non stationary environments

as well. So the problem now is to detect the changes in the

Bracket-Values. This can be done by maintaining a window

of past n Bracket Values and detecting a change in the

Fig. 5. The bracket values as the number of episodes increase for decaying
learning rate scheme

Fig. 6. Adaptive learning rate

means of two successive windows. If the environment changes

the change in means between two successive windows is

significant. To detect the change in means the t-test is used

as follows:

t =
Xi − Xi−1

√

vari

n
− vari−1

n

t > 3 ×
√

n ⇒ Environment changed

where,

n : Window size

Xi : Mean of window after ith episode

vari: Variance of window after ith episode

The results of using the adaptive learning rate with Q-

learning in non stationary environments are shown in Figure

6 and 7. It can be clearly seen that by resetting the learning

rate when the environment changes the agent is able to find

the optimal policy in a shorter period of time as compared to

the decaying learning rate.

B. Prioritized Sweeping

Prioritized sweeping [5] [3] is a smart model-based algo-

rithm, which explore interesting part of state-space by using

information obtained from experience. It uses and updates



Fig. 7. Adaptive learning rate

values associated with state instead of state-action pairs (as

in Q-learning).

The basic idea of this algorithm is that when agent encoun-

ters a transition which is surprising (i.e. transition changes

value function of current state by significant amount), this

information is propogated to relevant predecessor states (also

know as backups). When the transition is boring (i.e. new

value of value function is same as expected value) computation

continues in more deserving part. In order to build model and

make appropriated choices, following information are stored:

• Statistics for the transition from s to s′ on action a.

This information is used to estimate transition probability,

P (s′|s, a).
• Statistics for reinforcemnt recieved for taking action a in

state s.

• Every states predecessor: the state that have non-zero

transition probability to it under some action.

Using the model build from experience, algorithm estimates

state’s value V̂ (s) using value iteration like update rule.

V̂ (s) = min
a∈A

(

r̂a

i +
∑

s′∈S

q̂a

ss′ V̂ (s′)

)

where,

V̂ (s): Estimate of optimal reward starting from state s

r̂a
i : Estimate of immediate reinforcement

q̂a
ss′ : Estimate of transition probability from state s to s′

with action a

prioritized sweeping algorithm, based on above equation, is

given in algorithm 4.

1) Optimal Backups: Prioritized sweeping uses careful

bookkeeping to concentrate all computational effort on most

interesting parts of the system. But there is one question

unanswered “How many backups will give the optimal perfor-

mance?” Intuitively, a very small number of backups or very

high number of backups will not give optimal performance.

In order to find the precise answer to this question, experi-

ments were performed on Prioritized Sweeping algorithm with

varying number of backups and fixing other parameters. This

experiment was carried out for both the cases of noisy as well

as noiseless environment.

Algorithm 4 Prioritized Sweeping

1: loop

2: repeat

3: Take action a from current state, observe new state

and reward.

4: Update model with observed information.

5: Promote recent state to top of priority queue

6: while Number of backups processed is less than

allowed and priority queue not empty do

7: Remove the top state from priority queue. Call it

s.

8: Vold = V̂ (s)

9: V̂ (s) = mina∈A

(

r̂a
i

+
∑

s′∈S
q̂a
ss′ V̂ (s′)

)

10: ∆ = |Vold − V̂ (S)|
11: for each (s′, a′) ∈ preds(s)i do

12: P = q̂a
′

s′s
∆

13: if (P > ε (a tiny threshold)) and (S ′ not on

queue or P exceeds the current priority of s′ )

then

14: Promote s′ to new priority P

15: end if

16: end for

17: end while

18: until s is goal

19: end loop

Noiseless Environment: Following parameters were used

first for experiment with noiseless environment:

Maze: 45x45 (state-space size: 2045),

PJOG: 0 (No noise),

Exploration policy: ε-greedy with ε = 0.1

Number of backups used: 1, 5, 25, 125, 625, 2045

Corresponding error curve, where error is nothing but score

of policy, with respect to time is shown in fig. 8. It can

be observed that for small value of backup (1, 5 and 25)

performance was not as good as compared to that for higher

values of backups (125, 625 and 2045).

Next experiments was performed with equi-spaced backups

0, 405, 810, 1215, 1620. Corresponding error curve with

respect to time is shown in fig. 9. It can be be observed

that except for 0 backups all other backups give similar

performance. Thus, it can be concluded that for noiseless

environment initially performance increases as the number

of backups increase but after certain number of backups,

increase in number of backups does not improve performance

of algorithm.

The reason for this is initially increase in number of

backups, helps algorithm explore interesting areas, but after

a certain number more backups give same effect. This is

because, as there is no limit on size of priority queue, all states

which are above tiny threshold are pushed Now if number

of backups is high, all the states in queue are processed

and queue becomes empty at interesting step. If next step



0.5 1 1.5 2 2.5 3

x 104

50

100

150

200

250

300

350

400

450

Time in ms

E
rr

or
Prioritized Sweeping: Maze: [45x45], PJOG:0, Epsilon: 0.1

1
5
25
125
625
2045

Fig. 8. Error curve I for noiseless environment

0 0.5 1 1.5 2 2.5

x 104

50

100

150

200

250

300

350

400

450

Time in ms

E
rr

or

Prioritized Sweeping: Maze: [45x45], PJOG:0, Epsilon: 0.1

0
405
810
1215
1620

Fig. 9. Error curve II for noiseless environment

is not interesting there is no processing to do. In case of

fewer backups, only small number of states are processed at

interesting step but remaining states are processed when some

uninteresting state is encountered. So at the end of episode

there is not much difference between time taken by Prioritized

Sweeping with high enough backups or very high backups for

noiseless environment.

Noisy Environment: Following parameters were used for

experiment with noisy environment:

Mazes: 10x10 (state-space: 100), 45x45 (state-space: 2045)

PJOG: 0.3 (Noise)

Exploration policy: Changing start state, ε-greedy (ε = 0.1)

Figure 10, 11, 12 and 13, shows error curves for different

mazes with various number of backups.

It can be observed that performance of algorithm is not very

good for very small number of backups (0, 2 for 10x10 maze

and 1, 5 for 45x45 maze). At the same time, performance

0 1000 2000 3000 4000 5000 6000
0

100

200

300

400

500

600

Time in ms

E
rr

or

0
2
8
26
80
242

Fig. 10. Error curve I for 10x10 Maze

0 2000 4000 6000 8000 10000 12000
0

100

200

300

400

500

600

700

Time in ms

E
rr

or

20
40
60
80
100
120

Fig. 11. Error curve II for 10x10 Maze

0 0.5 1 1.5 2 2.5 3 3.5 4

x 105

40

60

80

100

120

140

160

180

200

Time in ms

E
rr

or

1
5
25
125
625
3125

Fig. 12. Error curve I for 45x45 Maze



0 1 2 3 4 5 6 7

x 105

20

40

60

80

100

120

140

160

180

200

220

Time in ms

E
rr

or

50
200
350
500
650
800

Fig. 13. Error curve II for 45x45 Maze

is not very good for very high number of backups (242 for

10x10 and 3125 for 45x45 maze). But there exists a band of

intermediate values for the number of backups allowed which

give optimal performance.

VI. CONCLUSION

Simulation and animation of an algorithm indeed helps

analysing an algorithm and doing enhancement to it. The

simulation was used to analyze effect of learning rate on Q-

learning algorithm and investigate optimal number of backups

for prioritized sweeping. Adaptive learning rate scheme was

proposed for Q-learning in non stationary environments and

preliminary results are reported for optimal number of backups

for prioritized sweeping. Also, animation was used to teach RL

algorithms.

This work can be extended to enhance animation for more

deeper understating of algorithms and more algorithms can

be added to system. Work on prioritized sweeping can be

extended by using actual process time computation and by

using bigger and complicated mazes.

ACKNOWLEDGMENT

The authors would like to thank Prof. Andrew Moore and

Prof. Mel Siegel for their advice and constant motivation. We

would also like to thank all MSIT-RT students and for their

inputs and suggestions. Thanks to Jean-Francoius Lalonde

for giving useful suggestions and help on report writing. In

the end, thanks to Rachel Burcin and Kristen Schrauder for

helping us with administrative work.

REFERENCES

[1] T. M. Mitchell, Machine Learning. McGraw Hill, 1997.
[2] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.

London, England: The MIT Press, 1998.
[3] L. P. Kaelbling, M. Littman, and A. Moore, “Reinforcement learning: A

survey,” Journal of Artificial Intelligence Research, vol. 4, pp. 237–285,
1996.

[4] A. Moore, “Reinforcement learning: Tutorial slides.” [Online]. Available:
http://www-2.cs.cmu.edu/ awm/tutorials/rl06.pdf

[5] A. Moore and C. Atkeson, “Prioritized sweeping: Reinforcement learning
with less data and less real time,” Machine Learning, vol. 13, pp. 103–
130, 1993.


