
Artificial Intelligence
Uninformed search

More about

 Textbook, Chapter 3, Soving Problems by Searching

 Problem-solving (goal-oriented) agents

 Solving
◦ Single state (fully observable)
◦ Multiple state (search with partial information)
Problem Types

 How to define a problem?
◦ Example problems

 What algorithm can solve it actually?
◦ Uninformed search algorithms

Intelligent System E AS S S ES

E,goals

E,starts
starts

goals

A,starts A,goals
AS

 The Logic Theorist, 1955 see lectures on logic

 The Dartmouth conference ("birth of AI”, 1956)

 List processing (Information Processing Language, IPL)

 Means-ends analysis ("reasoning as search") see lecture on planning

 The General Problem Solver

 Heuristics to limit the search space see lecture on informed search

 The Physical Symbol System Hypothesis

◦ intelligent behavior can be reduced to/emulated by symbol manipulation

 (A. Newel, H. Simon: Computer science as empirical inquiry: symbols

and search, 1975)

 The unified theory of cognition (1990, cognitive architectures)

 expressing (human) problem solving symbolically

 The Box and Banana problem
◦ Human, monkey, pigeon, crow, ..

 Four general steps in problem solving:

◦ (1) Goal formulation
 What are the demanded, successful world states
 (state-space of the problem)

◦ (2) Problem formulation
 What actions and states are possible/legal to consider,

given the goal

◦ (3) Problem solving with search
 Determine the possible sequence of actions that lead to

the states of known values and then choose the best
sequence.

◦ (4) Executing the solution
 Given the solution, perform its prescribed actions.

Physical State-

Spaces

C = S1xS1

Reduce robot to a point Configuration State-Spaces

Abstract State-

Spaces

 On holidays in Romania; currently in town of Arad

◦ Flight leaves home tomorrow from Bucharest

 Formulating the goal

◦ Be in (time at the airport in) Bucharest

 Formulating the problem

◦ States: various cities (closer or further from the goal!)

◦ Actions: driving from a city to a city

 Finding solution

◦ Sequence of cities; e.g. Arad, Sibiu, Fagaras, …, Bucharest

 (ending in the goal!)

 Executing the solution

 Real world is complex. State space

 must be abstracted for problem solving.

 (Abstract) state = set of real states.

 (Abstract) action =

 complex combination of real actions.

◦ e.g. Arad Zerind action is a

 complex set of possible routes,

 detours, rest stops, etc.

◦ The abstraction is valid if the path

 between two states is passable

 in the real world.

 (Abstract) solution = set of real paths

 that are real solutions in the real world.

 Abstract problem should be “easier” than the real problem.

 A problem is defined by:

◦ (1) An initial state, e.g. ‘at Arad’

◦ (2) Successor function (an operator to move in state-space)

 S(X)= set of action-state pairs

 e.g. S(Arad)={<Arad Zerind, Zerind>,…}

 intial state + successor function = state space as a graph

◦ (3) Goal test, here can be:

 x=‘at Bucharest’

◦ (4) Path cost (additive)

 e.g. sum of distances, number of actions executed, …

 c(x,a,y) is the step cost (petrol?!), assumed to be >= 0

A solution is a sequence of actions from initial to goal state.

Optimal solution has the lowest path cost.

 States

◦ The location of the eight tiles, and the blank.

 Initial state

◦ {(7.0),(2,1),(4,2), …, (8,6),(3,7),(1,8)}

 Actions (operators)

◦ 4 actions (blank moves Left, Right, Up, Down)

 Goal test

◦ Is a given state a goal state = {(_,0),(1,1),…,(7,7),(8,8)}?

 Path cost

◦ Each step costs 1

 States
◦ Complete-state: Any arrangement of all 8 queens

◦ Incr/1-state: Any arrangement of 0 to 8 queens

◦ Incr/2-state: n (0≤ n≤ 8) queens on the board, one per

 column in the n leftmost columns with no queen attacking another.

 Initial state
◦ Complete-state: Any arrangement of all 8 queens on the board

◦ Incr/1, Incr/2: no queens on board

 Actions
◦ Complete-state: move a queen to an empty square

◦ Incr/1: Add a queen to an empty square

◦ Incr/2: Add a queen in the leftmost empty column, not attacking others

◦ From 3 x 1014 to 2057 possible sequences to investigate, depending on
problem formulation.

 Goal test
◦ All 8 queens on board and none attacked

 Path cost
◦ None

 States
◦ Weekly roster

 Initial state
◦ Last week roster

 Action (operator)
◦ Moving shifts, moving weekdays, scheduled holidays,

participating in special events

 Goal test
◦ Captain input

 Path cost
◦ Complicated: paid overtime, burden of late shifts, personal

incompatibility, paid skipped holidays, …

 States
◦ Locations

 Initial state
◦ Starting point

 Action (operator)
◦ Move from one location to another

 Goal test
◦ Arriving at a certain location

 Path cost
◦ May be quite complex, money, time, travel comfort, scenery, …

Car Navigation Air Travel

Planning

Routing in

Computer

Networks

Military Operation

Planning

 States
◦ Locations, Position of actuators

 Initial state
◦ Starting poisition (task?)

 Action (operator)
◦ Movement, actions of actuators

 Goal test
◦ Task-dependent

 Path cost
◦ May be quite complex distance,

 energy consumption, …

 States
◦ Positions of components, wires on chip

 Initial state
◦ Incremental: no components placed

◦ Complete-state: all components placed

 (e.g. randomly, manually)

 Action (operator)
◦ Incremental: place components, route wire

◦ Complete-state: move component, move wire

 Goal test
◦ All coponents placed. Components connected as specified

 Path cost
◦ May be quite complex, distance, capacity, number of connections

per components, …

How do we find the solutions of previous problems?

• Traversal of the search space (a tree or a graph)

• From the initial state to a goal state

• Legal sequence of actions as defined by successor function

General procedure

• Check for goal state

• Expand the current state

• Determine the set of reachable states

• Return „failure” if the set is empty

• Select one from the set of reachable states

• Move to the selected state

A search tree is generated

• Nodes are added as more states are visited

• The tree specifies possible paths through the search space

 A state is a (representation of) a physical configuration

 A node is a data structure belonging to a search tree

◦ A node has a parent, children, … and includes path cost,

 depth, …

◦ Here node= <state, parent-node, action, path-cost, depth>

◦ FRINGE= contains generated nodes which are not yet
expanded.

W

A N

V S Q A Q

S S V S Q S

S S

State space vs. search tree

function TREE-SEARCH(problem,fringe)

return a solution or failure

 fringe INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)

 loop do

 if EMPTY?(fringe) then return failure

 node REMOVE-FIRST(fringe)

 if GOAL-TEST[problem] applied to STATE[node] succeeds

 then return SOLUTION(node)

 fringe INSERT-ALL(EXPAND(node, problem), fringe)

function EXPAND(node,problem) return a set of nodes

 successors the empty set

 for each <action, result> in SUCCESSOR[problem](STATE[node])

 do

 s a new NODE

 STATE[s] result

 PARENT-NODE[s] node

 ACTION[s] action

 PATH-COST[s] PATH-COST[node] + STEP-COST(node, action,s)

 DEPTH[s] DEPTH[node]+1

 add s to successors

 return successors

 Graph-search – handling repeated states and loops, later …

 A strategy is defined by picking the order of node expansion.

 Problem-solving performance is measured in four ways:

◦ Completeness: does it always find a solution if one exists?

◦ Optimality: does it always find the least-cost solution?

◦ Space Complexity: number of nodes stored in memory

 during search?

◦ Time Complexity: number of nodes generated/expanded?

 Time and space complexity measure problem difficulty and
are defined by:

◦ b - maximum branching factor of the search tree

◦ d - depth of the least-cost solution

◦ m - maximum depth of the state space (may be)

 (a.k.a. blind search) = use only information available in
problem definition.
◦ When strategies can determine whether one non-goal state

is better than another informed search.

 We do not have this information here!

 Search methods defined by node expansion algorithm:

◦ Breadth-first (BF) search
◦ Uniform-cost search
◦ Depth-first (DF) search
◦ Depth-limited search
◦ Iterative deepening (ID) search
◦ Bidirectional search

 Expand shallowest unexpanded node

 Implementation: fringe is a FIFO queue

A

on fringe

to be expanded yet

expanded

deleted from memory

A

B C

 Expand shallowest unexpanded node

 Implementation: fringe is a FIFO queue

on fringe

to be expanded yet

expanded

deleted from memory

A

B C

D E

 Expand shallowest unexpanded node

 Implementation: fringe is a FIFO queue

on fringe

to be expanded yet

expanded

deleted from memory

A

B
C

D E F G

 Expand shallowest unexpanded node

 Implementation: fringe is a FIFO queue

on fringe

to be expanded yet

expanded

deleted from memory

 Completeness:

◦ Does it always find a solution if one exists?

◦ YES

 If the shallowest goal node is at some finite depth d

 Condition: If b is finite

 (maximum num. of succ. nodes is finite)

 Completeness:

◦ YES (if b is finite)

 Time complexity:

◦ Assume a state space where every state has b

successors.

 the root has b successors, each node at the next

level has again b successors (total b2), …

 Assume solution is at depth d

 Worst case; expand all but the last node at depth d

 Total number of nodes generated:

 2 3 1 11 ... () ()d d db b b b b b O b

 Completeness:

◦ YES (if b is finite)

 Time complexity:

◦ Total number of nodes generated:

 Space complexity:

◦ Idem, because each node is retained in the memory

2 3 1 11 ... () ()d d db b b b b b O b

 Completeness:
◦ YES (if b is finite)

 Time complexity:
◦ Total number of nodes generated:

 Space complexity:
◦ Idem, because each node is retained in the memory

 Optimality:
◦ Does it always find the least-cost solution?
◦ In general YES
 unless actions have different cost.

2 3 1 11 ... () ()d d db b b b b b O b

 Two lessons:

◦ Maintaining large memory is a bigger problem than the

execution time.

◦ Exponential complexity search problems cannot be

solved by uninformed search methods for any but the

smallest instances.

1000 decision / sec 1kflop

1 decision information: 100 byte 1 byte 1 letter

Depth Decisions Time Demand Memory Demand

0 1 0.001 sec 100 byte

2 111 0.1 sec 11 kbyte

4 11111 11 sec 1 Mbyte

6 106 18 minutes 111 Mbyte

8 108 31 hours 11 Gbyte (PC)

10 1010 128 days 1 Tbyte

12 1012 35 years 111 Tbyte

14 1014 1500 years 11111 Tbyte

k = 103, M = 106, G = 109, T = 1012, P = 1015

 11111 Tbyte 3 milliard human libraries

b = 10 branching factor (Chess app. 35 !)

BF-search; evaluation

Supercomputers

 2000-2005 years

Blue Gene/L

Earth Simulator

kb. 40 - 70 Tflop,

 8 - 20 Tbyte RAM

 30 - 700 Tbyte disk

 100 - 500 m$
 memory complexity

 time -//-
depth

Supercomputers 2007-2008 years

IBM Blue Gene/L, upgrade

 Lawrence Livermore Nat Lab, 478 Tflop

IBM Roadrunner, Los Alamos Nat Lab

 1.026 Pflop

depth memory complexity

 time -//-

depth memory complexity

 time -//-

Supercomputers 2018 year

IBM Summit

 Oak Ridge Lab, 1223 Pflop

 13 MW

 1012 !

 2 ?

depth memory complexity

 time -//-

 1015 !

 2.5 ?

Supercomputers 2018 year

IBM Summit

 Oak Ridge Lab, 1223 Pflop

 13 MW

 Extension of BF-search:

◦ Expand node with lowest path cost

 Implementation: fringe = queue ordered by path cost.

 UC-search is the same as BF-search when all step-costs

are equal.

 Completeness:

◦ YES, if step-cost > (smal positive constant)

 Time complexity:

◦ Assume C* the cost of the optimal solution.

◦ Assume that every action costs at least

◦ Worst-case:

 Space complexity:

◦ Idem to time complexity

 Optimality:

◦ nodes expanded in order of increasing path cost.

◦ YES, if complete.

O(bC*/)

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)

on fringe

to be expanded yet

expanded

deleted from memory

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)

on fringe

to be expanded yet

expanded

deleted from memory

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)

on fringe

to be expanded yet

expanded

deleted from memory

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)

on fringe

to be expanded yet

expanded

deleted from memory

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)

on fringe

to be expanded yet

expanded

deleted from memory

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)

on fringe

to be expanded yet

expanded

deleted from memory

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)

on fringe

to be expanded yet

expanded

deleted from memory

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)

on fringe

to be expanded yet

expanded

deleted from memory

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)

on fringe

to be expanded yet

expanded

deleted from memory

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)

on fringe

to be expanded yet

expanded

deleted from memory

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)

on fringe

to be expanded yet

expanded

deleted from memory

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)

on fringe

to be expanded yet

expanded

deleted from memory

 Completeness;

◦ Does it always find a solution if one exists?

◦ NO

 unless search space is finite and no loops are possible.

 Completeness;

◦ NO unless search space is finite.

 Time complexity;

◦ May be terrible if m is much larger than d (depth of

optimal solution)

◦ But if many solutions, then faster than BF-search

O(bm)

 Completeness;

◦ NO unless search space is finite.

 Time complexity;

 Space complexity;

◦ Backtracking search uses even less memory

 One successor instead of all b.

O(bm1)

O(bm)

 Completeness;

◦ NO unless search space is finite.

 Time complexity;

 Space complexity;

 Optimality; No

◦ Same issues as completeness

O(bm1)

O(bm)

 DF-search with a depth limit l.

◦ i.e. nodes at depth l are not expaneded for successors.

◦ Problem knowledge can be used

 Solves the infinite-path problem, but

 If l < d then incompleteness results.

 If l > d then not optimal.

 Time complexity:

 Space complexity:

O(bl)

O(bl)

function DEPTH-LIMITED-SEARCH(problem, limit) return a solution or
failure/cutoff

 return RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]),

 problem, limit)

function RECURSIVE-DLS(node, problem, limit) return a solution or
failure/cutoff

 cutoff_occurred? false

 if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node)

 else if DEPTH[node] == limit then return cutoff

 else for each successor in EXPAND(node, problem) do

 result RECURSIVE-DLS(successor, problem, limit)

 if result == cutoff then cutoff_occurred? true

 else if result failure then return result

 if cutoff_occurred? then return cutoff else return failure

 What it is?

◦ A general strategy to find best depth limit l.

 Goal is found at depth d, the depth of the shallowest

goal-node.

◦ Then use Depth-limited search

 Combines benefits of DF- en BF-search

function ITERATIVE_DEEPENING_SEARCH(problem)

return a solution or failure

 inputs: problem

 for depth 0 to ∞ do

 result DEPTH-LIMITED_SEARCH(problem, depth)

 if result cuttoff

 then return result

 Limit=0

on fringe

to be expanded yet

expanded

deleted from memory

 Limit=1

on fringe

to be expanded yet

expanded

deleted from memory

 Limit=2

on fringe

to be expanded yet

expanded

deleted from memory

 Limit=3

on fringe

to be expanded yet

expanded

deleted from memory

 Completeness:

◦ YES (no infinite paths)

 Completeness:

◦ YES (no infinite paths)

 Time complexity:

◦ Algorithm seems costly due to repeated generation of
certain states.

◦ Node generation:

 level d: once

 level d-1: x 2

 level d-2: x 3

 …

 level 2: x (d-1)

 level 1: x d

N(IDS) (d)b (d 1)b2 ... (1)bd

N(BFS) b b2 ... bd (bd 1 b)

O(bd)

() 50 400 3000 20000 100000 123450

() 10 100 1000 10000 100000 999990

1111100

N IDS

N BFS

Compare for b=10 and d=5 (solution at far right)

 Completeness:

◦ YES (no infinite paths)

 Time complexity:

 Space complexity:

◦ Cfr. depth-first search

O(bd)

O(bd)

 Completeness:

◦ YES (no infinite paths)

 Time complexity:

 Space complexity:

 Optimality:

◦ YES if step cost is 1.

◦ Can be extended to iterative lengthening search

 Same idea as uniform-cost search

 Increases overhead.

O(bd)

O(bd)

 Completeness:

◦ YES, if at least one direction BF-like

 Time complexity:

 Space complexity:

 Optimality:

◦ IF …

◦ Complexity of checking for a node in the other search
tree

◦ Doing search „backwards” from the goal

◦ …

/2()dO b
/2()dO b

Criterion Breadth-

First

Uniform-

cost

Depth-First Depth-

limited

Iterative

deepening

Bidirectional

search

Complete? YES* YES* NO YES,

if l d

YES YES*

Time bd+1 bC*/e bm bl bd bd/2

Space bd+1 bC*/e bm bl bd bd/2

Optimal? YES* YES* NO NO YES YES

 The symbols & search paradigm in AI

 Uninformed search

◦ Space complexity: OK!

◦ Time complexity: exp. the knowledge paradigm in AI

 Suggested reading

◦ Newel & Simon: Computer science as empirical inquiry:

 symbols and search, 1975

◦ Cognitive architectures: ACT-R
 http://act-r.psy.cmu.edu/

 http://act-r.psy.cmu.edu/about/

 Allen Newell describes cognitive architectures as the way

 to answer one of the ultimate scientific questions:

 "How can the human mind occur in the physical universe?

 http://act-r.psy.cmu.edu/misc/newellclip.mpg

http://act-r.psy.cmu.edu/
http://act-r.psy.cmu.edu/
http://act-r.psy.cmu.edu/
http://act-r.psy.cmu.edu/about/
http://act-r.psy.cmu.edu/about/
http://act-r.psy.cmu.edu/about/
http://act-r.psy.cmu.edu/misc/newellclip.mpg
http://act-r.psy.cmu.edu/misc/newellclip.mpg
http://act-r.psy.cmu.edu/misc/newellclip.mpg

