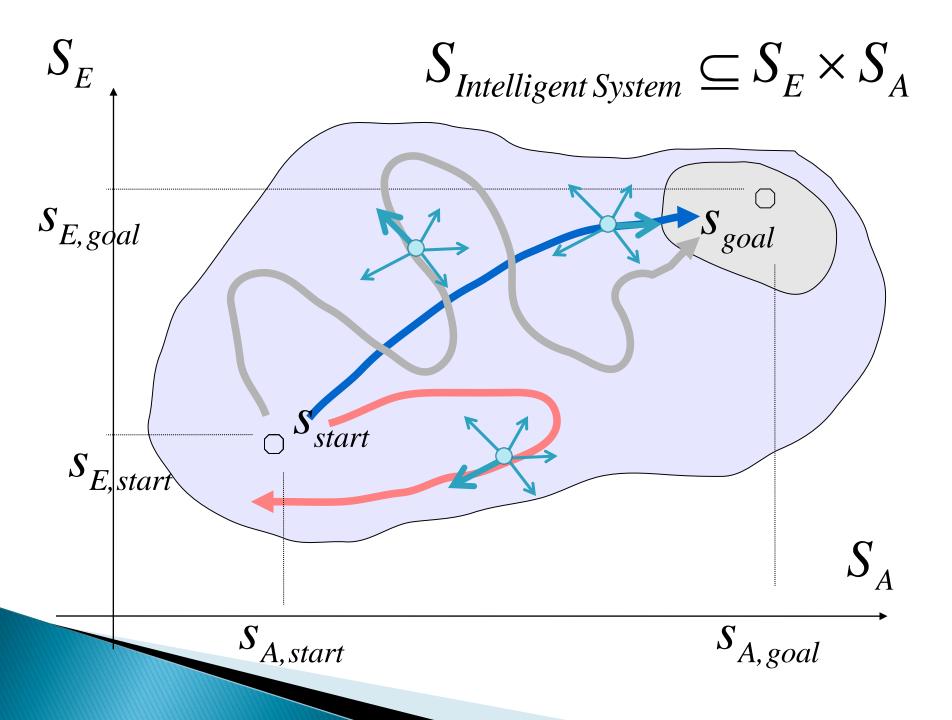
Artificial Intelligence Uninformed search

More about Textbook, Chapter 3, Soving Problems by Searching

Outline

- Problem-solving (goal-oriented) agents
- Solving
 - Single state (fully observable)
 - Multiple state (search with partial information)
 Problem Types
- How to define a problem?
 - Example problems
- What algorithm can solve it actually?
 Uninformed search algorithms



Al as "symbol manipulation" - expressing the goal and its direction

- The Logic Theorist, 1955 \rightarrow see lectures on logic
- The Dartmouth conference ("birth of AI", 1956)
- List processing (Information Processing Language, IPL)
- Means-ends analysis ("reasoning as search") → see lecture on planning
- The General Problem Solver
- Heuristics to limit the search space \rightarrow see lecture on informed search
- The Physical Symbol System Hypothesis
 - intelligent behavior can be reduced to/emulated by symbol manipulation (A. Newel, H. Simon: Computer science as empirical inquiry: symbols and search, 1975)
- The unified theory of cognition (1990, cognitive architectures)

➔ expressing (human) problem solving symbolically

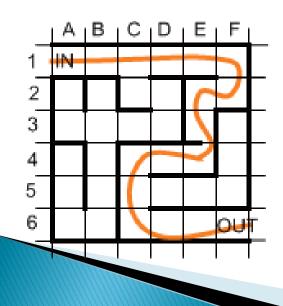
Al as "symbol manipulation" - required? enough?

The Box and Banana problem
Human, monkey, pigeon, crow, ...

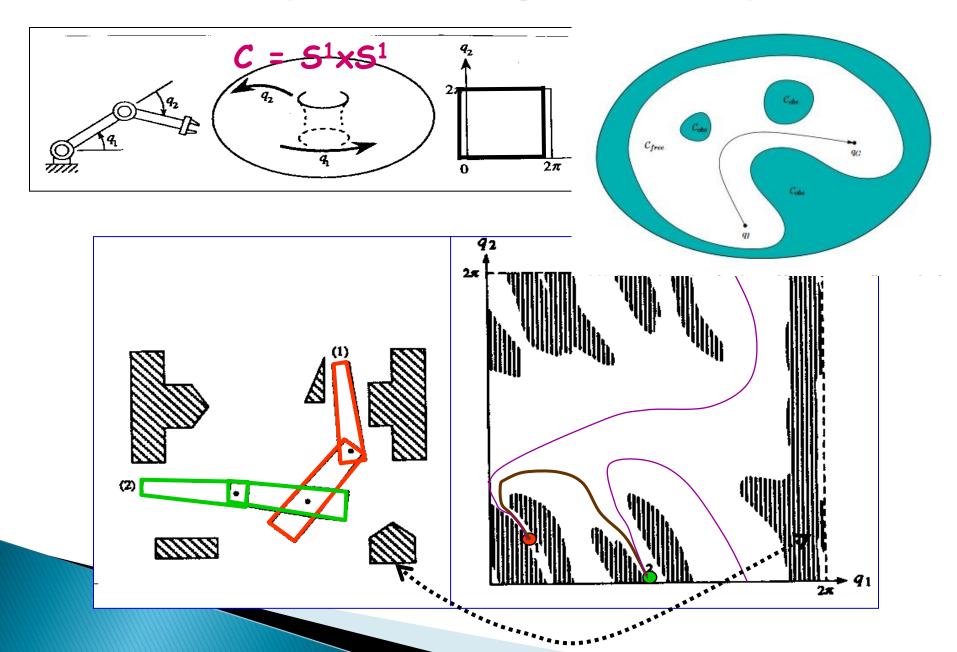
Problem-solving agent

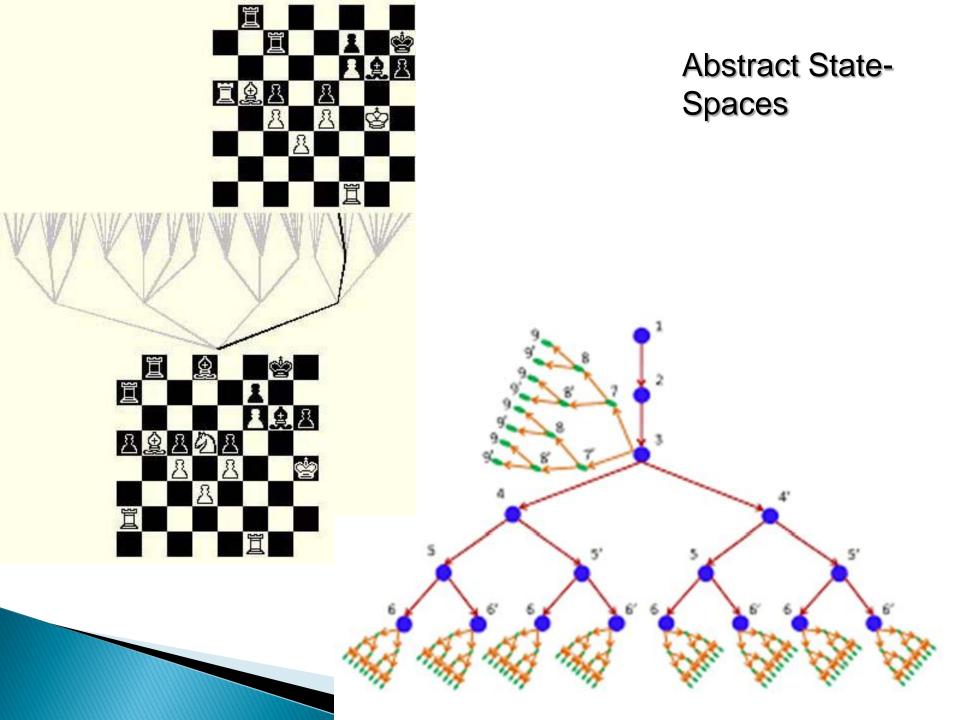
- Four general steps in problem solving:
 - (1) Goal formulation
 - What are the demanded, successful world states (state-space of the problem)
 - (2) Problem formulation
 - What actions and states are possible/legal to consider, given the goal
 - (3) Problem solving with search
 - Determine the possible sequence of actions that lead to the states of known values and then choose the best sequence.
 - (4) Executing the solution
 - Given the solution, perform its prescribed actions.

Physical State-Spaces



Reduce robot to a point \rightarrow Configuration State-Spaces



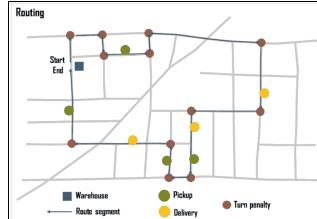


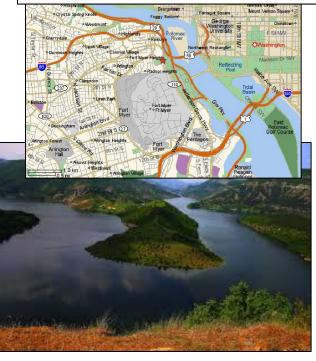
Example: Romania

- On holidays in Romania; currently in town of Arad
 Flight leaves home tomorrow from Bucharest
- Formulating the goal
 - Be in (time at the airport in) Bucharest
- Formulating the problem
 - States: various cities (closer or further from the goal!)
 - Actions: driving from a city to a city
- Finding <u>solution</u>
 - Sequence of cities; e.g. Arad, Sibiu, Fagaras, ..., Bucharest (ending in the goal!)
- Executing the solution

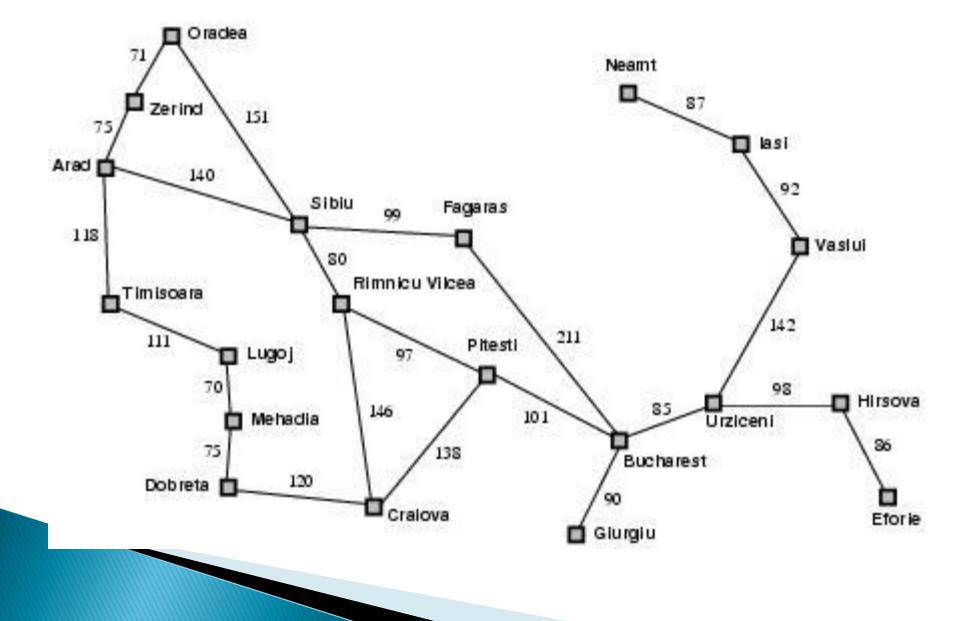
Selecting a state space

- Real world is complex. State space must be *abstracted* for problem solving.
- (Abstract) state = set of real states.
- (Abstract) action = complex combination of real actions.
 - e.g. Arad → Zerind action is a complex set of possible routes, detours, rest stops, etc.
 - The abstraction is valid if the path between two states is passable in the real world.
- (Abstract) solution = set of real paths that are real solutions in the real world.
 - Abstract problem should be "easier" than the real problem.





Example: (an abstract) Romania



Problem formulation

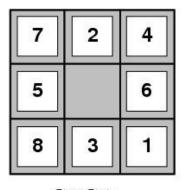
- A problem is defined by:
 - (1) An initial state, e.g. 'at Arad'
 - (2) Successor function (an operator to move in state-space)
 S(X)= set of action-state pairs
 - e.g. $S(Arad) = \{ < Arad \rightarrow Zerind, Zerind >, ... \}$

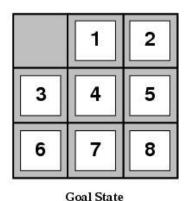
intial state + successor function = state space as a graph

- (3) Goal test, here can be:
 - x='at Bucharest'
- (4) Path cost (additive)
 - e.g. sum of distances, number of actions executed, ...
 - c(x,a,y) is the step cost (petrol?!), assumed to be >= 0

A solution is a sequence of actions from initial to goal state. Optimal solution has the lowest path cost.

Examples: 8-puzzle





- States
 - The location of the eight tiles, and the blank.
- Initial state
 - \circ {(7.0),(2,1),(4,2), ..., (8,6),(3,7),(1,8)}
- Actions (operators)
 - 4 actions (blank moves Left, Right, Up, Down)
- Goal test
 - Is a given state a goal state = $\{(_,0),(1,1),...,(7,7),(8,8)\}$?
- Path cost
 - Each step costs 1

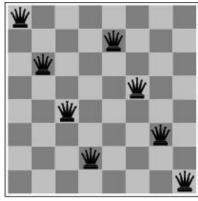
Examples: 8-queens problem

States

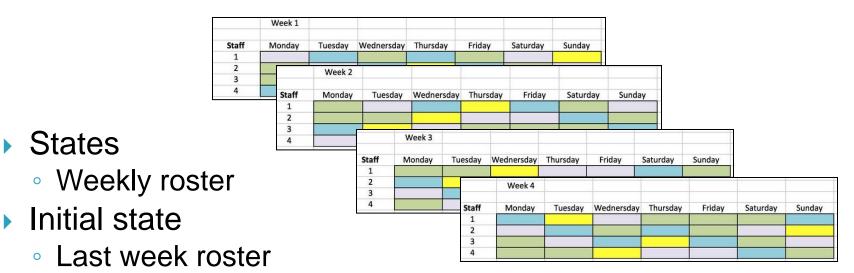
- Complete-state: Any arrangement of all 8 queens
- Incr/1-state: Any arrangement of 0 to 8 queens
- Incr/2-state: n (0≤ n≤ 8) queens on the board, one per column in the n leftmost columns with no queen attacking another.
- Initial state
 - Complete-state: Any arrangement of all 8 queens on the board
 - Incr/1, Incr/2: no queens on board
- Actions
 - Complete-state: move a queen to an empty square
 - Incr/1: Add a queen to an empty square
 - Incr/2: Add a queen in the leftmost empty column, not attacking others
 - From 3 x 10¹⁴ to 2057 possible sequences to investigate, depending on problem formulation.
- Goal test

ALL8 queens on board and none attacked

Path cost None



Examples: Police precinct shift roster



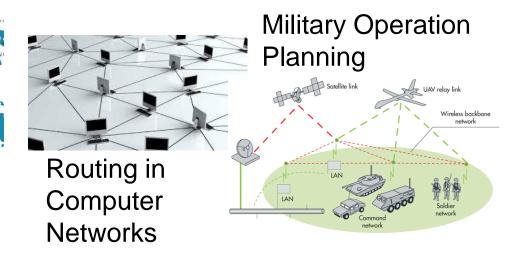
- Action (operator)
 - Moving shifts, moving weekdays, scheduled holidays, participating in special events
- Goal test
 - Captain input
- Path cost
 - Complicated: paid overtime, burden of late shifts, personal incompatibility, paid skipped holidays, ...

Examples: Route Finding Problems

Car Navigation

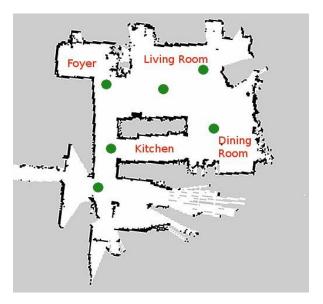
- States
 - Locations
- Initial state
 - Starting point
- Action (operator)
 - Move from one location to another
- Goal test
 - Arriving at a certain location
 - Path cost

May be quite complex, money, time, travel comfort, scenery, ...



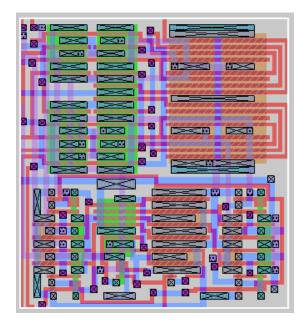
Examples: Robot Navigation

- States
 - Locations, Position of actuators
- Initial state
 - Starting poisition (task?)
- Action (operator)
 - Movement, actions of actuators
- Goal test
 - Task-dependent
- Path cost
 - May be quite complex distance, energy consumption, ...



Examples: VLSI layout problem

- States
 - Positions of components, wires on chip
- Initial state
 - Incremental: no components placed
 - Complete-state: all components placed (e.g. randomly, manually)
- Action (operator)
 - Incremental: place components, route wire
 - Complete-state: move component, move wire
- Goal test
 - All coponents placed. Components connected as specified
- Path cost
 - May be quite complex, distance, capacity, number of connections per components, ...



Basic search algorithms

How do we find the solutions of previous problems?

- Traversal of the search space (a tree or a graph)
- From the initial state to a goal state
- Legal sequence of actions as defined by successor function

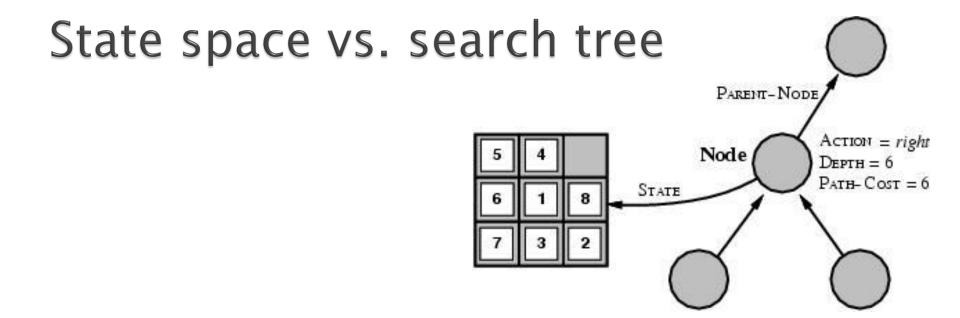
General procedure

- Check for goal state
- Expand the current state
- Determine the set of reachable states
- Return "failure" if the set is empty
- Select one from the set of reachable states
- Move to the selected state

A search tree is generated

Nodes are added as more states are visited

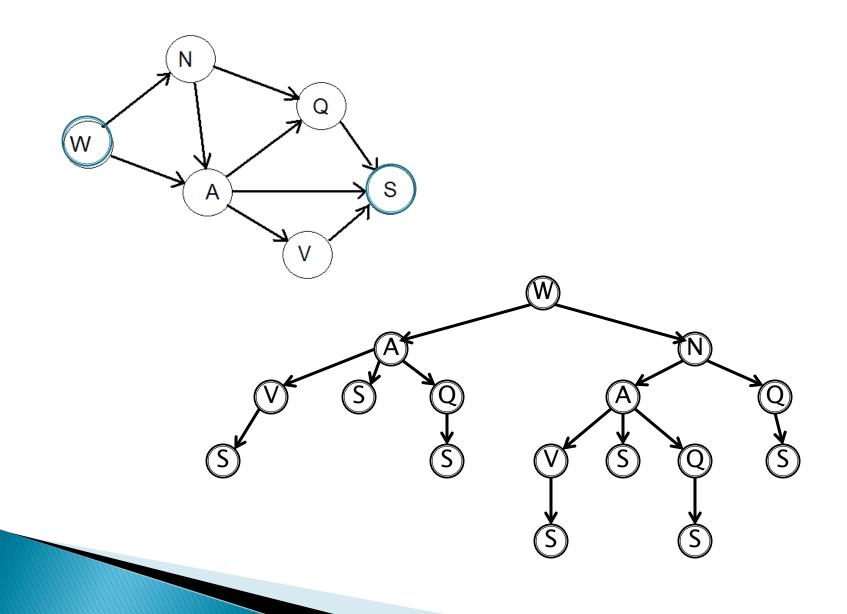
The tree specifies possible paths through the search space



A state is a (representation of) a physical configuration

- A node is a data structure belonging to a search tree
 - A node has a *parent*, *children*, ... and includes *path cost*, *depth*, ...
 - Here node= <state, parent-node, action, path-cost, depth>
 FRINGE= contains generated nodes which are not yet expanded.

State space vs. search tree



Tree search algorithm (1)

function TREE-SEARCH(problem,fringe)

return a solution or failure

fringe ← INSERT(MAKE-NODE(INITIAL-STATE[*problem*]), *fringe*) **loop do**

if EMPTY?(*fringe*) then return failure

node ← REMOVE-FIRST(*fringe*)

if GOAL-TEST[problem] applied to STATE[node] succeeds
 then return SOLUTION(node)

Tree search algorithm (2)

function EXPAND(*node,problem*) return a set of nodes

successors \leftarrow the empty set

for each <action, result> in SUCCESSOR[problem](STATE[node])
do

 $s \leftarrow a \text{ new NODE}$ $STATE[s] \leftarrow result$ $PARENT-NODE[s] \leftarrow node$ $ACTION[s] \leftarrow action$ $PATH-COST[s] \leftarrow PATH-COST[node] + STEP-COST(node, action, s)$ $DEPTH[s] \leftarrow DEPTH[node]+1$ add s to successors **return** successors

Graph-search – handling repeated states and loops, later ...

Search strategies

- A strategy is defined by picking the order of node expansion.
- Problem-solving performance is measured in four ways:
 - Completeness: does it always find a solution if one exists?
 - Optimality: does it always find the least-cost solution?
 - Space Complexity: number of nodes stored in memory during search?
 - Time Complexity: number of nodes generated/expanded?
- Time and space complexity measure problem difficulty and are defined by:
 - b maximum branching factor of the search tree
 - *d depth* of the least-cost solution
 - *m* maximum depth of the state space (may be ∞)

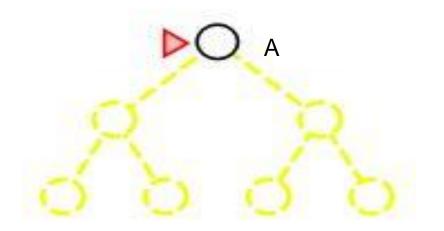
Uninformed search strategies

- (a.k.a. blind search) = use only information available in problem definition.
 - When strategies can determine whether one non-goal state is better than another \rightarrow informed search.

We do not have this information here!

- Search methods defined by node expansion algorithm:
 - Breadth-first (BF) search
 - Uniform-cost search
 - Depth-first (DF) search
 - Depth-limited search
 - Iterative deepening (ID) search
 - Bidirectional search

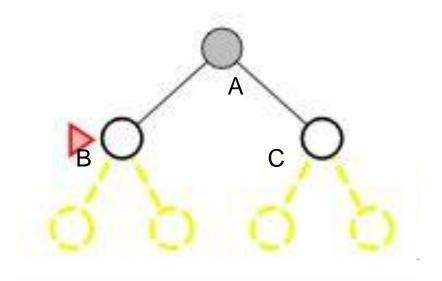
- Expand shallowest unexpanded node
- Implementation: *fringe* is a FIFO queue



o to be expanded yet

- \bigcirc on fringe
- \bigcirc expanded
- deleted from memory

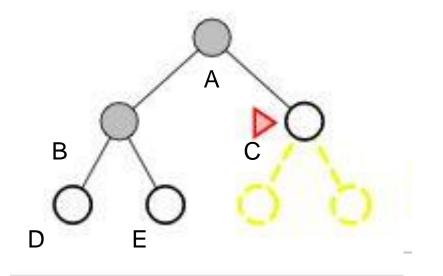
- Expand shallowest unexpanded node
- Implementation: *fringe* is a FIFO queue



O to be expanded yet

- \bigcirc on fringe
- \bigcirc expanded
- deleted from memory

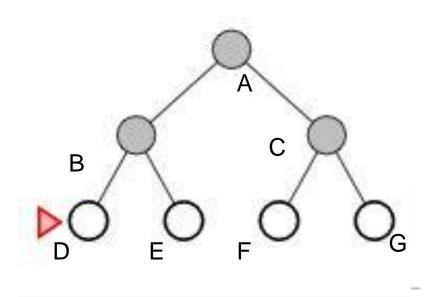
- Expand shallowest unexpanded node
- Implementation: *fringe* is a FIFO queue



o to be expanded yet

- \bigcirc on fringe
- \bigcirc expanded
- deleted from memory

- Expand shallowest unexpanded node
- Implementation: *fringe* is a FIFO queue



o to be expanded yet

- \bigcirc on fringe
- expanded
- deleted from memory

- Completeness:
 - Does it always find a solution if one exists?
 - YES
 - If the shallowest goal node is at some finite depth d
 - Condition: If b is finite
 - (maximum num. of succ. nodes is finite)

- Completeness:
 - YES (if *b* is finite)
- Time complexity:
 - Assume a state space where every state has b successors.
 - the root has b successors, each node at the next level has again b successors (total b²), ...
 - Assume solution is at depth *d*
 - Worst case; expand all but the last node at depth d
 - Total number of nodes generated:

$$1 + b + b^{2} + b^{3} + \dots + b^{d} + (b^{d+1} - b) = O(b^{d+1})$$

- Completeness:
 - YES (if *b* is finite)
- Time complexity:
 - Total number of nodes generated:
- Space complexity:
 - Idem, because each node is retained in the memory

$$1 + b + b^{2} + b^{3} + \dots + b^{d} + (b^{d+1} - b) = O(b^{d+1})$$

- Completeness:
 - YES (if *b* is finite)
- Time complexity:
 - Total number of nodes generated:

$$1 + b + b^{2} + b^{3} + \dots + b^{d} + (b^{d+1} - b) = O(b^{d+1})$$

- Space complexity:
 - Idem, because each node is retained in the memory
- Optimality:
 - Does it always find the least-cost solution?
 - In general YES
 - unless actions have different cost.

- Two lessons:
 - Maintaining large memory is a bigger problem than the execution time.
 - Exponential complexity search problems cannot be solved by uninformed search methods for any but the smallest instances.

b = 10 **branching factor** (Chess app. 35 !)

1000 decision / sec \simeq 1kflop

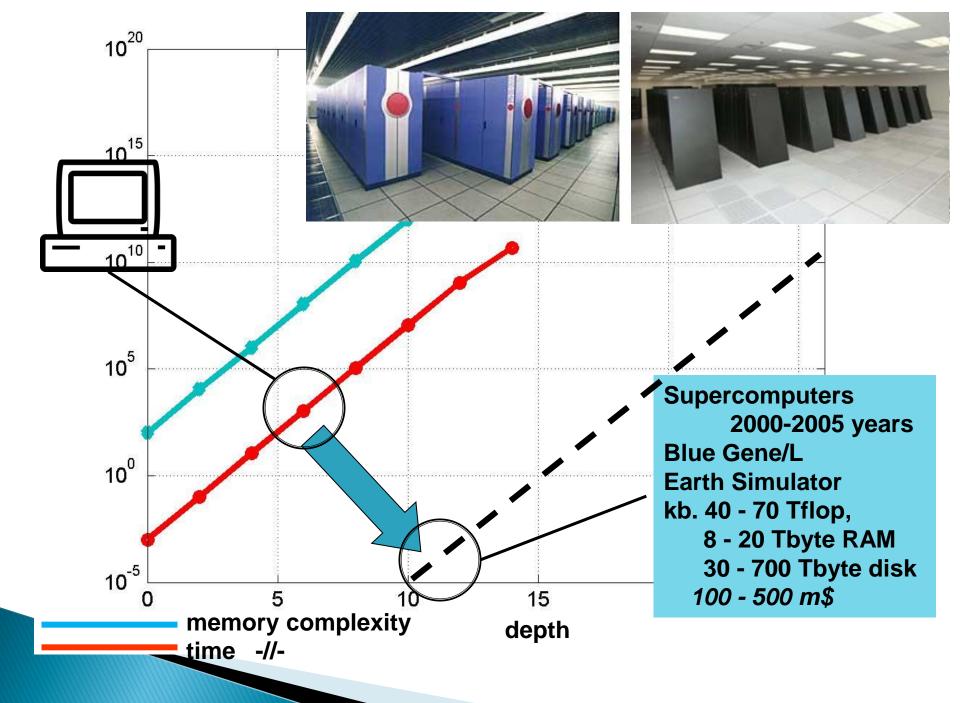
1 decision information: 100 byte

1 byte \cong 1 letter

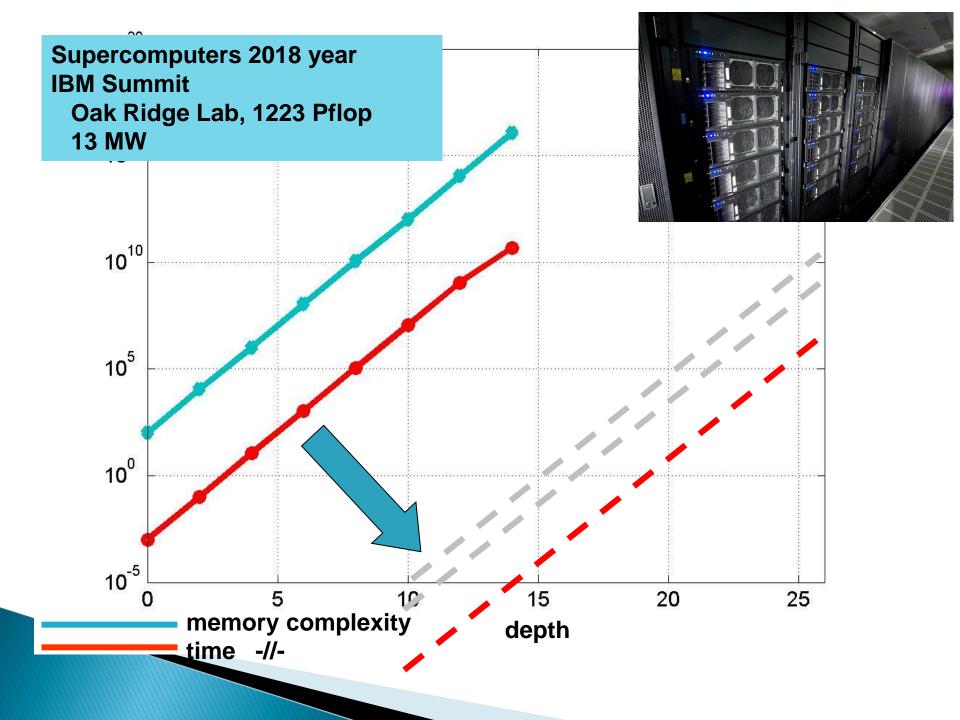
Depth	Decisions	Time Demand	Memory Demand
0	1	0.001 sec	100 byte
2	111	0.1 sec	11 kbyte
4	11111	11 sec	1 Mbyte
6	10 ⁶	18 minutes	111 Mbyte
8	10 ⁸	31 hours	11 Gbyte (PC)
10	10 ¹⁰	128 days	1 Tbyte
12	10 ¹²	35 years	111 Tbyte
14	10 ¹⁴	1500 years	11111 Tbyte

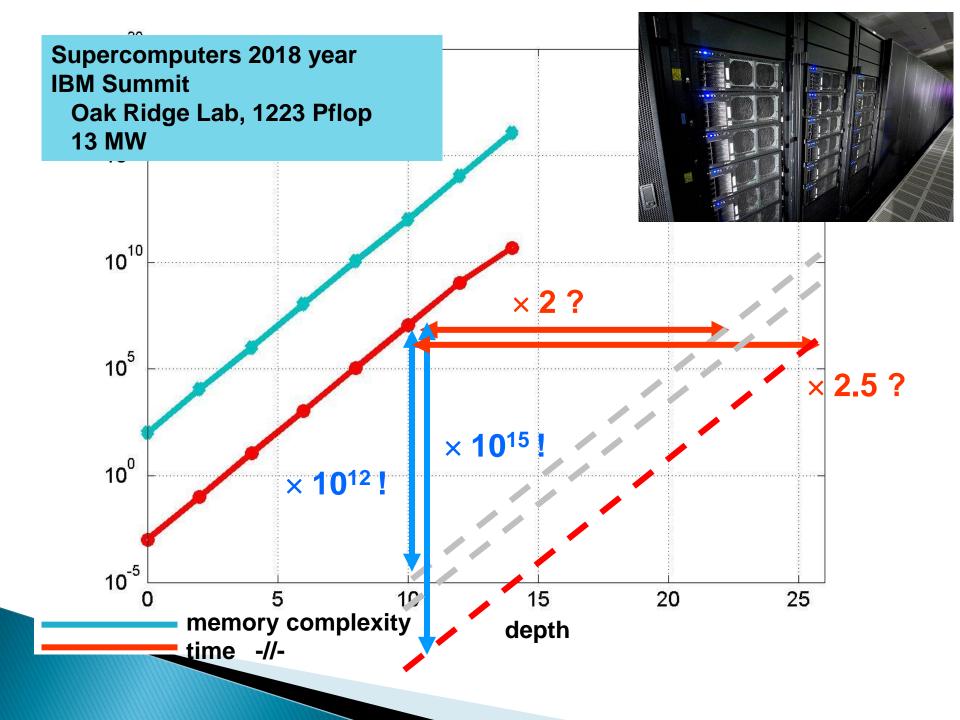
 $k = 10^3$, M = 10⁶, G = 10⁹, T = 10¹², P = 10¹⁵

11111 Tbyte \cong 3 milliard human libraries



Supercomputers 2007-2008 years **IBM Blue Gene/L, upgrade** Lawrence Livermore Nat Lab, 478 Tflop **IBM Roadrunner, Los Alamos Nat Lab** 1.026 Pflop 10¹⁰1 10⁵ 10⁰ 10⁻⁵ 5 10 15 20 25 memory complexity depth time -//-





Uniform-cost search

- Extension of BF-search:
 - Expand node with *lowest path cost*
- Implementation: *fringe* = queue ordered by path cost.
- UC-search is the same as BF-search when all step-costs are equal.

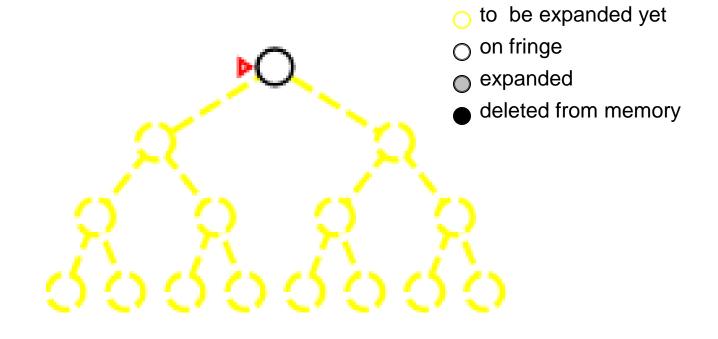
Uniform-cost search

- Completeness:
 - YES, if step-cost > ϵ (smal positive constant)
- Time complexity:
 - Assume C* the cost of the optimal solution.
 - \circ Assume that every action costs at least ϵ
 - Worst-case:

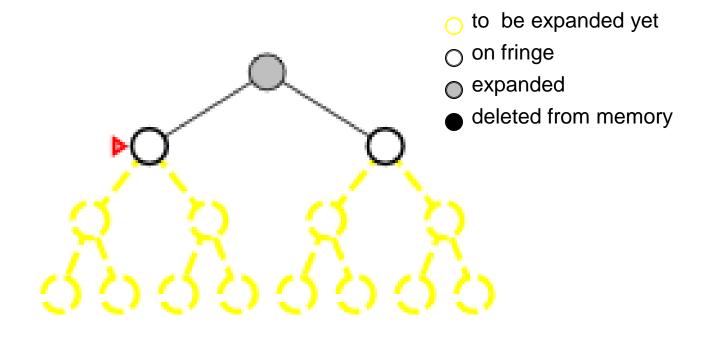
$$O(b^{C^{*/\varepsilon}})$$

- Space complexity:
 - Idem to time complexity
- Optimality:
 - nodes expanded in order of increasing path cost.
 - YES, if complete.

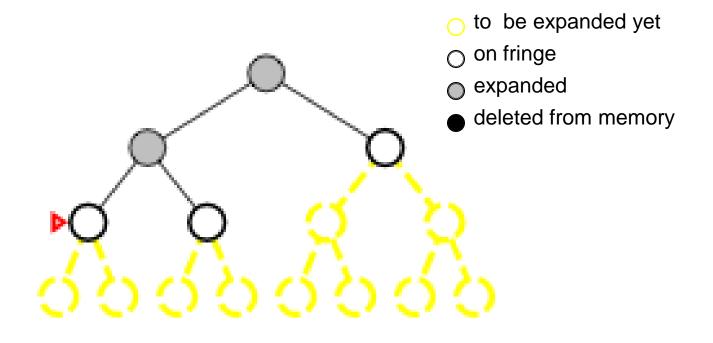
- Expand deepest unexpanded node
- Implementation: fringe is a LIFO queue (=stack)



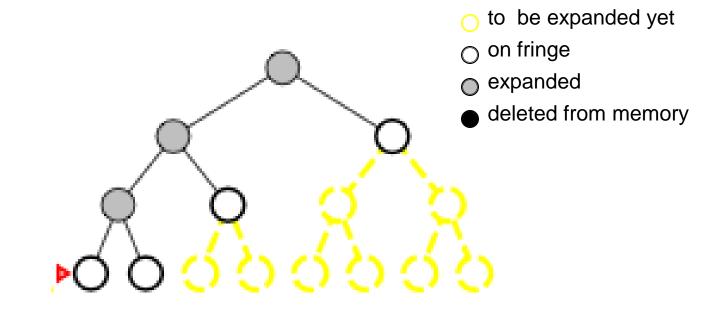
- Expand deepest unexpanded node
- Implementation: fringe is a LIFO queue (=stack)



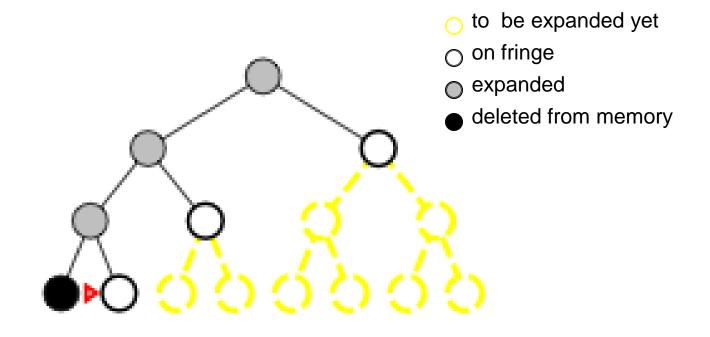
- Expand deepest unexpanded node
- Implementation: fringe is a LIFO queue (=stack)



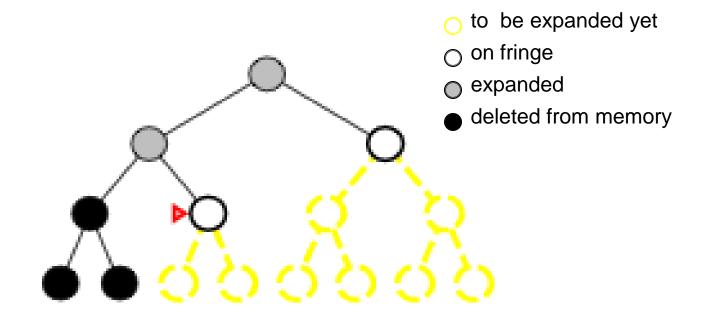
- Expand deepest unexpanded node
- Implementation: fringe is a LIFO queue (=stack)



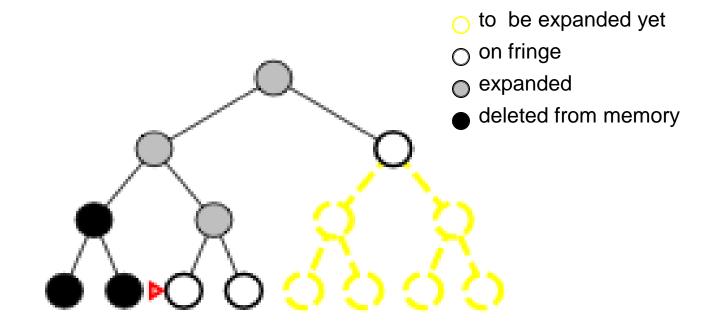
- Expand deepest unexpanded node
- Implementation: fringe is a LIFO queue (=stack)



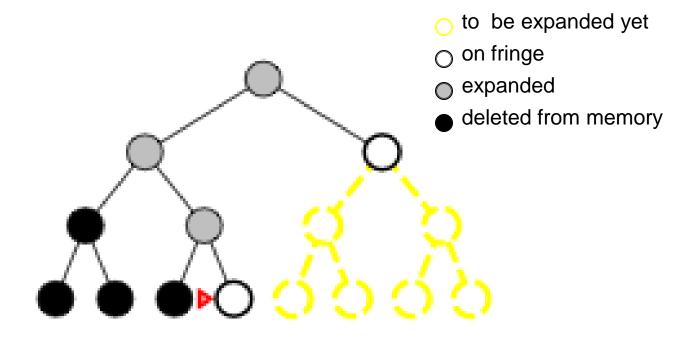
- Expand deepest unexpanded node
- Implementation: fringe is a LIFO queue (=stack)



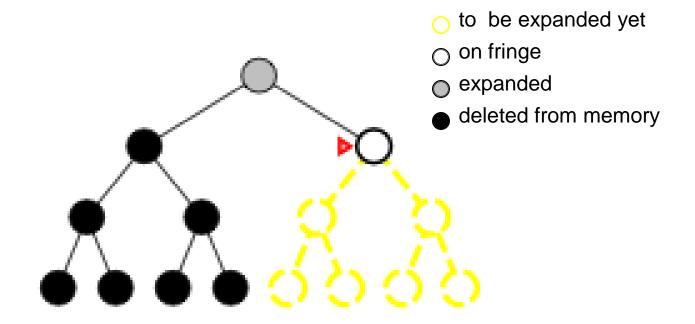
- Expand deepest unexpanded node
- Implementation: fringe is a LIFO queue (=stack)



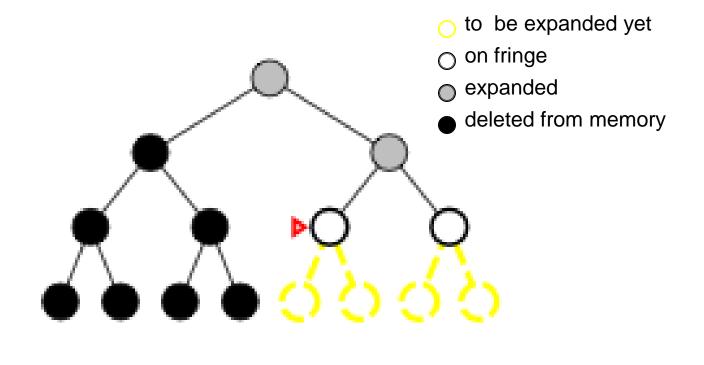
- Expand deepest unexpanded node
- Implementation: fringe is a LIFO queue (=stack)



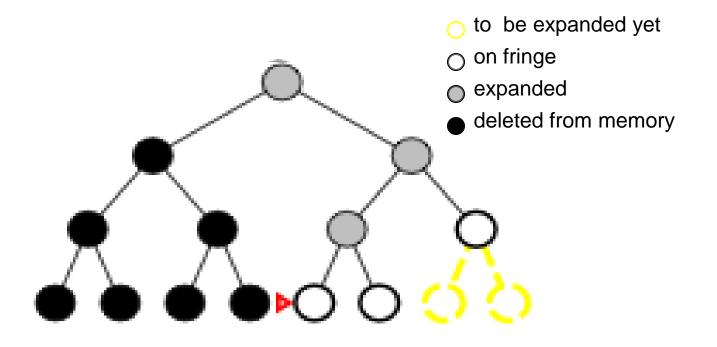
- Expand deepest unexpanded node
- Implementation: fringe is a LIFO queue (=stack)



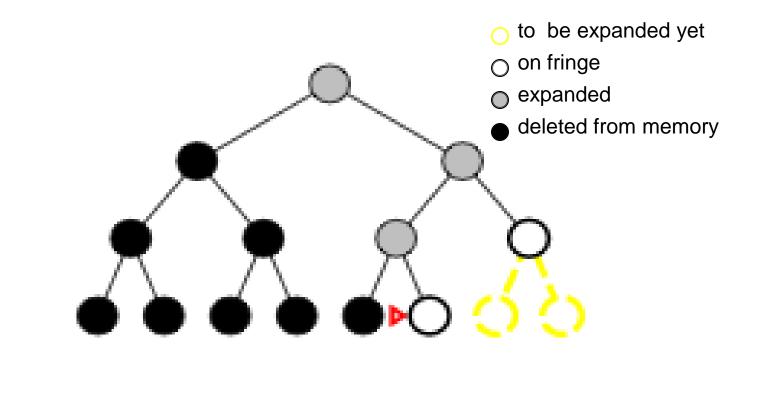
- Expand deepest unexpanded node
- Implementation: fringe is a LIFO queue (=stack)



- Expand deepest unexpanded node
- Implementation: fringe is a LIFO queue (=stack)



- Expand deepest unexpanded node
- Implementation: fringe is a LIFO queue (=stack)



- Completeness;
 - Does it always find a solution if one exists?
 - NO
 - unless search space is finite and no loops are possible.

- Completeness;
 - NO unless search space is finite.
- $O(b^m)$

- Time complexity;
 - May be terrible if *m* is much larger than *d* (depth of optimal solution)
 - But if many solutions, then faster than BF-search

- Completeness;
 - NO unless search space is finite.
- Time complexity; $O(b^m)$
- Space complexity;

O(bm+1)

- Backtracking search uses even less memory
 - One successor instead of all *b*.

- Completeness;
 - NO unless search space is finite.
- Time complexity; $O(b^m)$
- Space complexity;
- Optimality; No

$$O(bm+1)$$

Same issues as completeness

Depth-limited search

• DF-search with a depth limit *I*.

- i.e. nodes at depth / are not expaneded for successors.
- Problem knowledge can be used
- Solves the infinite-path problem, but
- If I < d then incompleteness results.
- If l > d then not optimal.
- Time complexity:

 $O(b^l)$

Space complexity:

O(bl)

Depth-limited algorithm

function DEPTH-LIMITED-SEARCH(problem, limit) return a solution or failure/cutoff return RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]), problem, limit)

function RECURSIVE-DLS(node, problem, limit) return a solution or failure/cutoff cutoff_occurred? ← false if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node) else if DEPTH[node] == limit then return cutoff else for each successor in EXPAND(node, problem) do result ← RECURSIVE-DLS(successor, problem, limit) if result == cutoff then cutoff_occurred? ← true else if result ≠ failure then return result if cutoff_occurred? then return cutoff else return failure

Iterative deepening search

- What it is?
 - A general strategy to find best depth limit *I*.
 - Goal is found at depth d, the depth of the shallowest goal-node.
 - Then use Depth-limited search
- Combines benefits of DF- en BF-search

Iterative deepening search

function ITERATIVE_DEEPENING_SEARCH(*problem*) **return** a solution or failure

inputs: problem

for depth ← 0 to ∞ do
 result ← DEPTH-LIMITED_SEARCH(problem, depth)
 if result ≠ cuttoff
 then return result

Limit=0

o to be expanded yet

 $\ensuremath{\bigcirc}$ on fringe

 \bigcirc expanded

deleted from memory

Limit=1

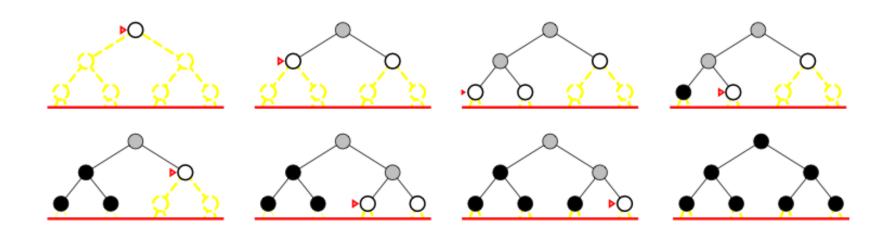
O to be expanded yet

- \bigcirc on fringe
- \bigcirc expanded
- deleted from memory

Limit=2

O to be expanded yet

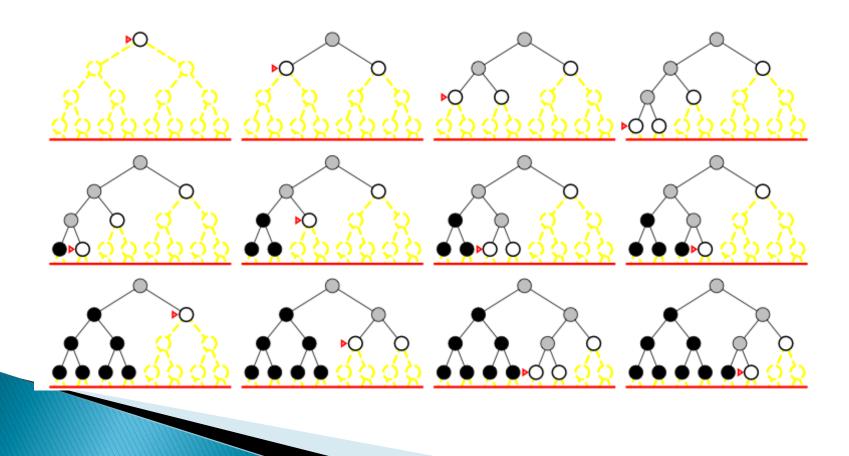
- $\ensuremath{\bigcirc}$ on fringe
- \bigcirc expanded
- deleted from memory



Limit=3

O to be expanded yet

- \bigcirc on fringe
- \bigcirc expanded
- deleted from memory



- Completeness:
 - YES (no infinite paths)

- Completeness:
 - YES (no infinite paths)
- Time complexity:
 - Algorithm seems costly due to repeated generation of certain states.
 - Node generation: $O(b^d)$
 - level d: once
 - level d-1: x 2
 - level d-2: x 3
- $N(IDS) = (d)b + (d-1)b^{2} + \dots + (1)b^{d}$ $N(BFS) = b + b^{2} + \dots + b^{d} + (b^{d+1} b)$
- level 2: x (d-1)
- level 1: x d
- N(IDS) = 50 + 400 + 3000 + 20000 + 100000 = 123450N(BFS) = 10 + 100 + 10000 + 100000 + 9999900= 1111100

Compare for b=10 and d=5 (solution at far right)

- Completeness:
 - YES (no infinite paths)
- Time complexity:
- Space complexity:
 - Cfr. depth-first search O(bd)

 $O(b^d)$

- Completeness:
 - YES (no infinite paths)
- Time complexity:
- Space complexity:
- Optimality:
 - YES if step cost is 1.
 - Can be extended to iterative lengthening search

 $O(b^d)$

- Same idea as uniform-cost search
- Increases overhead.

O(bd)

Bidirectional search

- Completeness:
 - YES, if at least one direction BF-like
- Time complexity: $O(b^{d/2})$
- Space complexity: $O(b^{d/2})$

- Optimality:
 - F ...
 - Complexity of checking for a node in the other search tree
 - Doing search "backwards" from the goal
 - 0 . . .

Summary of algorithms

Breadth- First	Uniform- cost	Depth-First	Depth- limited	Iterative deepening	Bidirectional search
YES*	YES*	NO	YES,	YES	YES*
			ifl≥d		
b^{d+1}	$b^{C^{*/e}}$	b^m	b^l	b^d	<i>b</i> ^{<i>d</i>/2}
b^{d+1}	$b^{C^{*/e}}$	bm	bl	bd	$b^{d/2}$
YES*	YES*	NO	NO	YES	YES
	First YES* b^{d+1}	FirstcostYES*YES* b^{d+1} $b^{C*/e}$ b^{d+1} $b^{C*/e}$	FirstcostYES*YES*NO b^{d+1} $b^{C*/e}$ b^m b^{d+1} $b^{C*/e}$ bm	FirstcostlimitedYES*YES*NOYES, $III \ge d$ III \ge d b^{d+1} $b^{C*/e}$ b^m b^l b^{d+1} $b^{C*/e}$ bm bl	FirstcostlimiteddeepeningYES*YES*NOYES,YES b^{d+1} $b^{C^*/e}$ b^m b^l b^d b^{d+1} $b^{C^*/e}$ bm bl bd b^{d+1} $b^{C^*/e}$ bm bl bd

Summary

- The symbols & search paradigm in AI
- Uninformed search
 - Space complexity: OK!
 - Time complexity: exp. \rightarrow the knowledge paradigm in AI
- Suggested reading
 - Newel & Simon: Computer science as empirical inquiry: symbols and search, 1975
 - Cognitive architectures: ACT-R
 - http://act-r.psy.cmu.edu/
 - <u>http://act-r.psy.cmu.edu/about/</u>
 - Allen Newell describes cognitive architectures as the way to answer one of the ultimate scientific questions:
 - "How can the human mind occur in the physical universe?

http://act-r.psy.cmu.edu/misc/newellclip.mpg

