
Artificial Intelligence 
Uninformed search 

More about 

   Textbook, Chapter 3, Soving Problems by Searching 



 Problem-solving (goal-oriented) agents 
 

 Solving 
◦ Single state (fully observable) 
◦ Multiple state (search with partial information) 
Problem Types 

 

 How to define a problem? 
◦ Example problems 

 

 What algorithm can solve it actually? 
◦ Uninformed search algorithms 
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 The Logic Theorist, 1955    see lectures on logic 

 The Dartmouth conference ("birth of AI”, 1956) 

 List processing (Information Processing Language, IPL) 

 Means-ends analysis ("reasoning as search")    see lecture on planning 

 The General Problem Solver 

 Heuristics to limit the search space   see lecture on informed search 

 The Physical Symbol System Hypothesis 

◦ intelligent behavior can be reduced to/emulated by symbol manipulation  

   (A. Newel, H. Simon: Computer science as empirical inquiry: symbols 

and search, 1975) 

 The unified theory of cognition (1990, cognitive architectures) 
 

      expressing (human) problem solving symbolically 



 The Box and Banana problem 
◦ Human, monkey, pigeon, crow, .. 



 Four general steps in problem solving: 
 

◦ (1) Goal formulation 
 What are the demanded, successful world states  
    (state-space of the problem) 
 

◦ (2) Problem formulation 
 What actions and states are possible/legal to consider, 

given the goal 
 

◦ (3) Problem solving with search 
 Determine the possible sequence of actions that lead to 

the states of known values and then choose the best 
sequence. 
 

◦ (4) Executing the solution 
 Given the solution, perform its prescribed actions. 
 



Physical State-

Spaces 



C = S1xS1 

Reduce robot to a point      Configuration State-Spaces 



Abstract State-

Spaces 



 On holidays in Romania; currently in town of Arad 

◦ Flight leaves home tomorrow from Bucharest 
 

 Formulating the goal 

◦ Be in (time at the airport in) Bucharest 
 

 Formulating the problem 

◦ States: various cities (closer or further from the goal!) 

◦ Actions: driving from a city to a city 
 

 Finding solution 

◦ Sequence of cities; e.g. Arad, Sibiu, Fagaras, …, Bucharest 

  (ending in the goal!) 
 

 Executing the solution 



 Real world is complex. State space 

   must be abstracted for problem solving. 

 (Abstract) state = set of real states. 

 (Abstract) action =  

    complex combination of real actions. 

◦ e.g. Arad  Zerind action is a  

   complex set of possible routes,  

   detours, rest stops, etc. 

◦ The abstraction is valid if the path  

    between two states is passable  

    in the real world. 

 (Abstract) solution = set of real paths 

    that are real solutions in the real world. 

 Abstract problem should be “easier” than the real problem. 





 A problem is defined by: 

◦ (1) An initial state, e.g. ‘at Arad’ 

◦ (2) Successor function (an operator to move in state-space)  

     S(X)= set of action-state pairs 

 e.g. S(Arad)={<Arad  Zerind, Zerind>,…} 

        intial state + successor function = state space as a graph 

◦ (3) Goal test, here can be: 

 x=‘at Bucharest’ 

◦ (4) Path cost (additive) 

 e.g. sum of distances, number of actions executed, … 

 c(x,a,y) is the step cost (petrol?!), assumed to be >= 0 
 

A solution is a sequence of actions from initial to goal state. 

Optimal solution has the lowest path cost. 



 States 

◦ The location of the eight tiles, and the blank. 

 Initial state 

◦ {(7.0),(2,1),(4,2), …, (8,6),(3,7),(1,8)} 

 Actions (operators) 

◦ 4 actions (blank moves Left, Right, Up, Down) 

 Goal test 

◦ Is a given state a goal state = {(_,0),(1,1),…,(7,7),(8,8)}? 

 Path cost 

◦ Each step costs 1 



 States 
◦ Complete-state: Any arrangement of all 8 queens 

◦ Incr/1-state: Any arrangement of 0 to 8 queens 

◦ Incr/2-state: n (0≤ n≤ 8) queens on the board, one per  

   column in the n leftmost columns with no queen attacking another. 

 Initial state 
◦ Complete-state: Any arrangement of all 8 queens on the board 

◦ Incr/1,  Incr/2: no queens on board 

 Actions 
◦ Complete-state: move a queen to an empty square 

◦ Incr/1: Add a queen to an empty square 

◦ Incr/2: Add a queen in the leftmost empty column, not attacking others      

◦ From 3 x 1014 to 2057 possible sequences to investigate, depending on 
problem formulation. 

 Goal test 
◦ All 8 queens on board and none attacked 

 Path cost 
◦ None 

  



 States 
◦ Weekly roster 

 Initial state 
◦ Last week roster 

 Action (operator) 
◦ Moving shifts, moving weekdays, scheduled holidays, 

participating in special events 

 Goal test 
◦ Captain input 

 Path cost 
◦ Complicated: paid overtime, burden of late shifts, personal 

incompatibility, paid skipped holidays, … 



 States 
◦ Locations 

 Initial state 
◦ Starting point 

 Action (operator) 
◦ Move from one location to another 

 Goal test 
◦ Arriving at a certain location 

 Path cost 
◦ May be quite complex, money, time, travel comfort, scenery, … 

Car Navigation Air Travel  

Planning 

Routing in  

Computer  

Networks 

Military Operation  

Planning 



 States 
◦ Locations, Position of actuators 

 Initial state 
◦ Starting poisition (task?) 

 Action (operator) 
◦ Movement, actions of actuators 

 Goal test 
◦ Task-dependent 

 Path cost 
◦ May be quite complex distance,  

   energy consumption, … 



 States 
◦ Positions of components, wires on chip 

 Initial state 
◦ Incremental: no components placed 

◦ Complete-state: all components placed  

   (e.g. randomly, manually) 

 Action (operator) 
◦ Incremental: place components, route wire 

◦ Complete-state: move component, move wire 

 Goal test 
◦ All coponents placed. Components connected as specified 

 Path cost 
◦ May be quite complex, distance, capacity, number of connections 

per components, … 



How do we find the solutions of previous problems? 

• Traversal of the search space (a tree or a graph) 

• From the initial state to a goal state 

• Legal sequence of actions as defined by successor function 
 

General procedure 

• Check for goal state 

• Expand the current state 

•  Determine the set of reachable states 

•  Return „failure” if the set is empty 

• Select one from the set of reachable states 

• Move to the selected state 
 

A search tree is generated 

• Nodes are added as more states are visited 

• The tree specifies possible paths through the search space 



 A state is a (representation of) a physical configuration 

 A node is a data structure belonging to a search tree 

◦ A node has a parent, children, … and includes path cost,    

        depth, … 

◦ Here node= <state, parent-node, action, path-cost, depth> 

◦ FRINGE= contains generated nodes which are not yet 
expanded. 
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State space vs. search tree 



function TREE-SEARCH(problem,fringe)  

return a solution or failure 

 fringe  INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe) 

 loop do 

  if EMPTY?(fringe) then return failure 

  node  REMOVE-FIRST(fringe) 

  if GOAL-TEST[problem] applied to STATE[node] succeeds 

   then return SOLUTION(node) 

  fringe  INSERT-ALL(EXPAND(node, problem), fringe) 

 



function EXPAND(node,problem) return a set of nodes 

 successors  the empty set 

 for each <action, result> in SUCCESSOR[problem](STATE[node])  

   do 

   s  a new NODE 

   STATE[s]  result 

   PARENT-NODE[s]  node 

   ACTION[s]  action 

   PATH-COST[s]  PATH-COST[node] + STEP-COST(node, action,s) 

   DEPTH[s]  DEPTH[node]+1 

   add s to successors 

 return successors 
 

  Graph-search – handling repeated states and loops, later … 



 A strategy is defined by picking the order of node expansion. 
 

 Problem-solving performance is measured in four ways: 

◦ Completeness: does it always find a solution if one exists? 

◦ Optimality: does it always find the least-cost solution? 

◦ Space Complexity: number of nodes stored in memory  

        during search? 

◦ Time Complexity: number of nodes generated/expanded? 
 

 Time and space complexity measure problem difficulty and 
are defined by: 

◦ b - maximum branching factor of the search tree 

◦ d - depth of the least-cost solution 

◦ m - maximum depth of the state space (may be ) 



 (a.k.a. blind search) = use only information available in 
problem definition. 
◦ When strategies can determine whether one non-goal state 

is better than another  informed search. 
 

   We do not have this information here! 
 

 Search methods defined by node expansion algorithm: 
 

◦ Breadth-first  (BF) search 
◦ Uniform-cost search 
◦ Depth-first (DF) search 
◦ Depth-limited search 
◦ Iterative deepening (ID) search 
◦ Bidirectional search 



 Expand shallowest unexpanded node 

 Implementation: fringe is a FIFO queue 
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 Expand shallowest unexpanded node 
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 Completeness: 

◦ Does it always find a solution if one exists? 

◦ YES 

 If the shallowest goal node is at some finite depth d 

 Condition: If b is finite  

 (maximum num. of succ. nodes is finite) 



 Completeness: 

◦ YES (if b is finite) 

 Time complexity: 

◦ Assume a state space where every state has b 

successors. 

 the root has b successors, each node at the next 

level has again b successors (total b2), … 

 Assume solution is at depth d 

 Worst case; expand all but the last node at depth d 

 Total number of nodes generated: 

 2 3 1 11 ... ( ) ( )d d db b b b b b O b        



 Completeness: 

◦ YES (if b is finite) 

 Time complexity: 

◦ Total number of nodes generated: 

 Space complexity: 

◦ Idem, because each node is retained in the memory 

 
2 3 1 11 ... ( ) ( )d d db b b b b b O b        



 Completeness: 
◦ YES (if b is finite) 

 

 Time complexity: 
◦ Total number of nodes generated: 

 
 
 

 Space complexity: 
◦ Idem, because each node is retained in the memory 
 

 Optimality: 
◦ Does it always find the least-cost solution? 
◦ In general YES 
 unless actions have different cost. 
 
 

2 3 1 11 ... ( ) ( )d d db b b b b b O b        



 Two lessons: 

◦ Maintaining large memory is a bigger problem than the 

execution time. 

◦ Exponential complexity search problems cannot be 

solved by uninformed search methods for any but the 

smallest instances. 



1000 decision / sec       1kflop 

1 decision information: 100 byte  1 byte  1 letter 

Depth Decisions Time Demand Memory Demand 

0 1 0.001 sec 100 byte 

2 111 0.1 sec 11 kbyte 

4 11111 11 sec 1 Mbyte 

6 106 18 minutes 111 Mbyte 

8 108 31 hours 11 Gbyte   (PC) 

10 1010 128 days 1 Tbyte 

12 1012 35 years 111 Tbyte 

14 1014 1500 years 11111 Tbyte 

k = 103, M = 106, G = 109, T = 1012, P = 1015 

   11111 Tbyte  3 milliard human libraries 

b = 10 branching factor (Chess app. 35 !) 

BF-search; evaluation 



Supercomputers 

          2000-2005 years 

Blue Gene/L 

Earth Simulator 

kb. 40 - 70 Tflop,  

      8 - 20 Tbyte RAM 

      30 - 700 Tbyte disk 

    100 - 500 m$ 
 memory complexity 

 time   -//- 
depth 



Supercomputers 2007-2008 years 

IBM Blue Gene/L, upgrade 

   Lawrence Livermore Nat Lab, 478 Tflop 

IBM Roadrunner, Los Alamos Nat Lab 

    1.026 Pflop 

depth  memory complexity 

 time   -//- 



depth  memory complexity 

 time   -//- 

Supercomputers 2018 year 

IBM Summit 

   Oak Ridge Lab, 1223 Pflop 

   13 MW 



 1012 ! 

 2 ? 

depth  memory complexity 

 time   -//- 

 1015 ! 

 2.5 ? 

Supercomputers 2018 year 

IBM Summit 

   Oak Ridge Lab, 1223 Pflop 

   13 MW 



 Extension of BF-search: 

◦ Expand node with lowest path cost 

 Implementation: fringe = queue ordered by path cost. 

 

 UC-search is the same as BF-search when all step-costs 

are equal. 



 Completeness:  

◦ YES, if step-cost >  (smal positive constant) 

 Time complexity: 

◦ Assume C* the cost of the optimal solution. 

◦ Assume that every action costs at least  

◦ Worst-case:   

 

 Space complexity: 

◦ Idem to time complexity 

 Optimality:  

◦ nodes expanded in order of increasing path cost. 

◦ YES, if complete. 



O(bC*/ )
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on fringe 

to  be expanded yet 

expanded 

deleted from memory 



 Completeness; 

◦ Does it always find a solution if one exists? 

◦ NO 

 unless search space is finite and no loops are possible. 

 

 



 Completeness; 

◦ NO unless search space is finite. 

 Time complexity; 

◦ May be terrible if m is much larger than d (depth of 

optimal  solution) 

◦ But if many solutions, then faster than BF-search 

O(bm)



 Completeness; 

◦ NO unless search space is finite. 
 

 Time complexity; 
 

 Space complexity; 

◦ Backtracking search uses even less memory 

 One successor instead of all b. 



O(bm1)



O(bm)



 Completeness; 

◦ NO unless search space is finite. 
 

 Time complexity; 
 

 Space complexity; 

 Optimality; No 
 

◦ Same issues as completeness  



O(bm1)



O(bm)



 DF-search with a depth limit l. 

◦ i.e. nodes at depth l are not expaneded for successors. 

◦ Problem knowledge can be used 

 Solves the infinite-path problem, but 

     If l < d then incompleteness results. 

     If l > d then not optimal. 

 Time complexity: 

 Space complexity: 



O(bl )



O(bl)



function DEPTH-LIMITED-SEARCH(problem, limit) return a solution or 
failure/cutoff 

 return RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]),  

            problem, limit) 
 

function RECURSIVE-DLS(node, problem, limit) return a solution or 
failure/cutoff 

 cutoff_occurred?  false 

 if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node) 

 else if DEPTH[node] == limit   then return cutoff 

 else for each successor in EXPAND(node, problem) do 

  result  RECURSIVE-DLS(successor, problem, limit) 

  if result == cutoff  then cutoff_occurred?   true 

  else if result  failure then return result 

 if cutoff_occurred? then return cutoff else return failure 

 



 What it is? 

◦ A general strategy to find best depth limit l. 

 Goal is found at depth d, the depth of the shallowest 

goal-node. 

◦ Then use Depth-limited search 

 Combines benefits of DF- en BF-search 



function ITERATIVE_DEEPENING_SEARCH(problem)  

return a solution or failure 

  

 inputs: problem 
 

 for depth  0 to ∞ do 

  result  DEPTH-LIMITED_SEARCH(problem, depth) 

  if result  cuttoff   

  then return result 



 Limit=0 

on fringe 

to  be expanded yet 

expanded 

deleted from memory 



 Limit=1 

on fringe 

to  be expanded yet 

expanded 

deleted from memory 



 Limit=2 

on fringe 

to  be expanded yet 

expanded 

deleted from memory 



 Limit=3 

on fringe 

to  be expanded yet 

expanded 

deleted from memory 



 Completeness: 

◦ YES (no infinite paths) 



 Completeness: 

◦ YES (no infinite paths) 

 Time complexity: 

◦ Algorithm seems costly due to repeated generation of 
certain states. 

◦ Node generation: 

 level d: once 

 level d-1: x 2 

 level d-2: x 3 

 … 

 level 2: x (d-1) 

 level 1: x d 

 

N(IDS)  (d)b (d 1)b2  ... (1)bd

N(BFS)  b b2  ... bd  (bd 1 b)



O(bd )

( ) 50 400 3000 20000 100000 123450

( ) 10 100 1000 10000 100000 999990

1111100

N IDS

N BFS

     

     



Compare for b=10 and d=5 (solution at far right) 



 Completeness: 

◦ YES (no infinite paths) 

 Time complexity: 

 Space complexity: 

◦ Cfr. depth-first search  

 



O(bd )



O(bd)



 Completeness: 

◦ YES (no infinite paths) 

 Time complexity: 

 Space complexity: 

 Optimality:  

◦ YES if step cost is 1. 

◦ Can be extended to iterative lengthening search 

 Same idea as uniform-cost search 

 Increases overhead. 



O(bd )



O(bd)



 Completeness: 

◦ YES, if at least one direction BF-like 

 Time complexity: 

 Space complexity: 

 Optimality:  

◦ IF … 

◦ Complexity of checking for a node in the other search 
tree 

◦ Doing search „backwards” from the goal 

◦ … 

/2( )dO b
/2( )dO b



Criterion Breadth-

First 

Uniform-

cost 

Depth-First Depth-

limited 

Iterative 

deepening 

Bidirectional 

search 

Complete? YES* YES* NO YES,  

if l  d 

YES YES* 

Time bd+1 bC*/e bm bl bd bd/2 

Space bd+1 bC*/e bm bl bd bd/2 

Optimal? YES* YES* NO NO YES YES 



 The symbols & search paradigm in AI 

 Uninformed search 

◦ Space complexity: OK! 

◦ Time complexity: exp.  the knowledge paradigm in AI 

 Suggested reading 

◦ Newel & Simon: Computer science as empirical inquiry:  

   symbols and search, 1975 

◦ Cognitive architectures: ACT-R 
 http://act-r.psy.cmu.edu/ 

 http://act-r.psy.cmu.edu/about/ 

 Allen Newell describes cognitive architectures as the way  

   to answer one of the ultimate scientific questions:  

   "How can the human mind occur in the physical universe?  

 http://act-r.psy.cmu.edu/misc/newellclip.mpg 

http://act-r.psy.cmu.edu/
http://act-r.psy.cmu.edu/
http://act-r.psy.cmu.edu/
http://act-r.psy.cmu.edu/about/
http://act-r.psy.cmu.edu/about/
http://act-r.psy.cmu.edu/about/
http://act-r.psy.cmu.edu/misc/newellclip.mpg
http://act-r.psy.cmu.edu/misc/newellclip.mpg
http://act-r.psy.cmu.edu/misc/newellclip.mpg



