Artificial Intelligence
Uninformed search

More about
Textbook, Chapter 3, Soving Problems by Searching

Qutline

» Problem-solving (goal-oriented) agents

» Solving
> Single state (fully observable)
> Multiple state (search with partial information)

Problem Types

» How to define a problem?
- Example problems

» What algorithm can solve it actually?
> Uninformed search algorithms

St S

Intelligent System - SE X SA

Al as “symbol manipulation”
- expressing the goal and its direction

» The Logic Theorist, 1955 =» see lectures on logic
» The Dartmouth conference ("birth of Al”, 1956)
» List processing (Information Processing Language, IPL)
» Means-ends analysis ("reasoning as search") =» see lecture on planning
» The General Problem Solver
» Heuristics to limit the search space = see lecture on informed search
» The Physical Symbol System Hypothesis
> intelligent behavior can be reduced to/emulated by symbol manipulation

(A. Newel, H. Simon: Computer science as empirical inquiry: symbols
and search, 1975)

» The unified theory of cognition (1990, cognitive architectures)

= expressing (human) problem solving symbolically

Al as “symbol manipulation”
- required? enough?

» The Box and Banana problem
- Human, monkey, pigeon, crow, ..

Problem-solving agent

» Four general steps in problem solving:

> (1) Goal formulation
- What are the demanded, successful world states
(state-space of the problem)

° (2) Problem formulation

- What actions and states are possible/legal to consider,
given the goal

> (3) Problem solving with search

- Determine the possible sequence of actions that lead to
the states of known values and then choose the best
sequence.

> (4) Executing the solution
- Given the solution, perform its prescribed actions.

212

&2

14

Spaces

fulil

~f 20

S%. Lolj 1]

it

Fan

EEEE
=HNER

Reduce robot to a point -2 Configuration State-Spaces

92

u |fu:'1\ﬂﬂ|l\llum...""""" \ | ll

_—""'1—.‘

Abstract State-

Spaces

Example: Romania

» On holidays in Romania; currently in town of Arad
> Flight leaves home tomorrow from Bucharest

Formulating the goal
- Be In (time at the airport in) Bucharest

v

v

Formulating the problem
o States: various cities (closer or further from the goal!)

- Actions: driving from a city to a city

v

Finding solution
- Sequence of cities; e.g. Arad, Sibiu, Fagaras, ..., Bucharest

(ending in the goal!)

v

Executing the solution

,.'| \\\\\\
\\\

Routing

Selecting a state space riLI\I

» Real world is complex. State space
must be abstracted for problem solving. 1}
» (Abstract) state = set of real states.

» (Abstract) action =
complex combination of real actions.
- e.g. Arad — Zerind action is a
complex set of possible routes,
detours, rest stops, etc.
- The abstraction is valid if the path
between two states is passable
In the real world.
» (Abstract) solution = set of real paths
that are real solutions in the real world.”

[act problem should be “easier” than the real problem.

Example: (an abstract) Romania

~] Oradea

Hirsova

Eforie

Problem formulation

» A problem is defined by:
> (1) An initial state, e.g. ‘at Arad’
o (2) Successor function (an operator to move in state-space)
S(X)= set of action-state pairs
- e.g. S(Arad)={<Arad — Zerind, Zerind>,...}
Intial state + successor function = state space as a graph
> (3) Goal test, here can be:
- X="at Bucharest’
> (4) Path cost (additive)
- e.g. sum of distances, number of actions executed, ...
- c(X,a,y) Is the step cost (petrol?!), assumed to be >=0

A solution is a sequence of actions from initial to goal state.
Optimal solution has the lowest path cost.

Examples: 8-puzzle

7 2 4 1 5
3 6 3 ||| 4[|l 5
8 ||| 3 ||| 1 6 ||| 7 ||| 8
2 States Start State Goal State
> The location of the eight tiles, and the blank.
» Initial state

- {(7.0),(2,1),(4,2), ..., (8,6),(3,7),(1,8)}

Actions (operators)

- 4 actions (blank moves Left, Right, Up, Down)

Goal test

> |s a given state a goal state = {(_,0),(1,1),...,(7,7),(8,8)}?
Path cost

- Each step costs 1

v

v

v

Examples: 8-queens problem

» States

- Complete-state: Any arrangement of all 8 queens

> Incr/1-state: Any arrangement of O to 8 queens

o Incr/2-state: n (0O< n< 8) queens on the board, one per

column in the n leftmost columns with no queen attacking another.

» Initial state

- Complete-state: Any arrangement of all 8 queens on the board

> Incr/1, Incr/2: no queens on board

» Actions

(¢]

Complete-state: move a queen to an empty square

Incr/1: Add a queen to an empty square

Incr/2: Add a queen in the leftmost empty column, not attacking others
From 3 x 10%* to 2057 possible sequences to investigate, depending on
problem formulation.

» Goal test

(e]

(¢]

o

Examples: Police precinct shift roster

Week 1
Staff Monday Tuesday Wednersday Thursday Friday Saturday Sunday
1 ! ! ! ! ! l |
2 — Week 2
3 —
4 L Staff Monday Tuesday Wednersday Thursday Friday Saturday Sunday
1
2
3
» States 4
Staff Monday Tuesday Wednersday Thursday Friday Saturday Sunday
1 [| [| []
> Weekl t
ee roster . Weeka
4 Staff Monday Tuesday Wednersday Thursday Friday Saturday Sunday

Initial state

v

S WN

o Last week roster

Action (operator)

- Moving shifts, moving weekdays, scheduled holidays,
participating in special events

Goal test

o Captain input

Path cost

- Complicated: paid overtime, burden of late shifts, personal
eRaRatibility, paid skipped holidays, ...

v

v

v

Examples Route Finding Problems

............... _ _ Military Operation
N B -
}t; % > Plannlng

,,,,,,,,,,, \4 \f}§\ M %% H

Car Navigatior; Air Travel Routing in

Planning Computer

» States Networks
> Locations

» Initial state

o Starting point
» Action (operator)

> Move from one location to another
» Goal test

> Arriving at a certain location

ite complex, money, time, travel comfort, scenery, ...

Examples: Robot Navigation

» States
> Locations, Position of actuators
» Initial state
o Starting poisition (task?) .
» Action (operator) e SR
- Movement, actions of actuators S R
» Goal test S .§
> Task-dependent sk .E:%"W'ﬁ
» Path cost 1 A p g

- May be quite complex distance,
energy consumption, ...

Examples: VLSI layout problem

» States =
o !395|t|ons of components, wires on chip —
» Initial state ===

il |

-

> Incremental: no components placed
- Complete-state: all components placed
(e.g. randomly, manually)

Action (operator)
> Incremental: place components, route wire
- Complete-state: move component, move wire

Goal test
> All coponents placed. Components connected as specified

Path cost

> May be quite complex, distance, capacity, number of connections
per components, ...

|

v

v

v

Basic search algorithms

How do we find the solutions of previous problems?
 Traversal of the search space (a tree or a graph)
« From the initial state to a goal state
+ Legal sequence of actions as defined by successor function

General procedure
» Check for goal state
Expand the current state
Determine the set of reachable states
Return ,failure” if the set is empty
Select one from the set of reachable states
Move to the selected state

A search tree is generated
odes are added as more states are visited
The ‘eemagecifies possible paths through the search space

State space vs. search tree O

Parenr-Nobpe

AcTion = right
DeptH=6
Pars-Cost =6

4
1
3

E

» A state Is a (representation of) a physical configuration
» Anode is a data structure belonging to a search tree
- Anode has a parent, children, ... and includes path cost,
depth, ...
- Here node= <state, parent-node, action, path-cost, depth>

- FRINGE= contains generated nodes which are not yet
expanded.

State space vs. search tree

Tree search algorithm (1)

function TREE-SEARCH(problem,fringe)
return a solution or failure
fringe <« INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
If EMPTY?(fringe) then return failure
node < REMOVE-FIRST(fringe)
If GOAL-TEST[problem] applied to STATE[node] succeeds
then return SOLUTION(node)
fringe <« INSERT-ALL(EXPAND(node, problem), fringe)

Tree search algorithm (2)

function EXPAND(node,problem) return a set of nodes
successors < the empty set
for each <action, result> in SUCCESSOR][problem](STATE[node])
do
s « a new NODE
STATE[S] « result
PARENT-NODE([s] < node
ACTION[s] « action
PATH-COST][s] « PATH-COST[node] + STEP-COST(node, action,s)
DEPTH[s] « DEPTH[node]+1
add s to successors
return successors

arch — handling repeated states and loops, later ...

Search strategies

» A strategy is defined by picking the order of node expansion.

» Problem-solving performance is measured in four ways:
- Completeness: does it always find a solution if one exists?
- Optimality: does it always find the least-cost solution?
o Space Complexity: number of nodes stored in memory

during search?
- Time Complexity: number of nodes generated/expanded?

» Time and space complexity measure problem difficulty and
are defined by:

> b - maximum branching factor of the search tree
> d - depth of the least-cost solution

> m - maximum depth of the state space (may be)

Uninformed search strategies

» (a.k.a. blind search) = use only information available in
problem definition.

- When strategies can determine whether one non-goal state
IS better than another — informed search.

We do not have this information here!

» Search methods defined by node expansion algorithm:

- Breadth-first (BF) search
Uniform-cost search
Depth-first (DF) search
Depth-limited search

Iterative deepening (ID) search
Bidirectional search

o (0] o (e] o

BF-search, an example

to be expanded yet
O on fringe

» Expand shallowest unexpanded node o expanded
» Implementation: fringe is a FIFO queue @ deleted from memory

DO a

BF-search, an example

to be expanded yet
O on fringe

» Expand shallowest unexpanded node o expanded
» Implementation: fringe is a FIFO queue @ deleted from memory

BF-search, an example

to be expanded yet
O on fringe

» Expand shallowest unexpanded node o expanded
» Implementation: fringe is a FIFO queue @ deleted from memory

BF-search, an example

to be expanded yet
O on fringe

» Expand shallowest unexpanded node o expanded
» Implementation: fringe is a FIFO queue @ deleted from memory

BF-search: evaluation

» Completeness:
> Does It always find a solution if one exists?
- YES
- If the shallowest goal node is at some finite depth d
- Condition: If b is finite
* (maximum num. of succ. nodes is finite)

BF-search: evaluation

» Completeness:
> YES (if b is finite)
» Time complexity:
- Assume a state space where every state has b
successors.

- the root has b successors, each node at the next
level has again b successors (total b?), ...

- Assume solution is at depth d
- Worst case; expand all but the last node at depth d
- Total number of nodes generated:

1+b+b*+b° +...+b* + (b*™* —b) = O(b**)

BF-search: evaluation

» Completeness:
> YES (if b is finite)
» Time complexity:
- Total number of nodes generated:
» Space complexity:
- |[dem, because each node is retained in the memory

1+b+b*+b° +...+b% + (b*" —b) =O(b*™)

BF-search: evaluation

v

Completeness:
> YES (if b is finite)

Time complexity:
- Total number of nodes generated:
1+b+b*+b° +...+b* + (0" —b) =O(b**)

Space complexity:
> ldem, because each node is retained in the memory

v

v

v

Optimality:
> Does it always find the least-cost solution?
> In general YES

- unless actions have different cost.

BF-search: evaluation

» Two lessons:
- Maintaining large memory is a bigger problem than the
execution time.

- Exponential complexity search problems cannot be
solved by uninformed search methods for any but the
smallest instances.

BF-search: evaluation
b =10 branching factor (Chess app. 35)

@ 1000 decision/sec = 1kflop

— 1 decision information: 100 byte 1 byte = 1 letter

Depth Decisions Time Demand Memory Demand
0 1 0.001 sec 100 byte

2 111 0.1 sec 11 kbyte

4 11111 11 sec 1 Mbyte

6 106 18 minutes 111 Mbyte

8 108 31 hours 11 Gbyte

10 1010 128 days 1 Thyte

12 1012 35 years 111 Thbyte

14 1014 1500 years 11111 Tbyte

k=103, M=106 G=10° T =102 P =10%
e 11111 Tbyte = 3 milliard human libraries

B o Y / _
5 7 Supercomputers

ime

-//-

memory complexity depth

2000-2005 years
Blue Gene/L
Earth Simulator
kb. 40 - 70 Tflop,
8 - 20 Thyte RAM
30 - 700 Tbyte disk
100 - 500 m$

Supercomputers 2007-2008 years
IBM Blue Gene/L, upgrade

Lawrence Livermore Nat Lab, 478 Tflop
IBM Roadrunner, Los Alamos Nat Lab
1.026 Pflop

10°” e '
0 5 10 15 20 22
memory complexity depth

e

Supercomputers 2018 year
IBM Summit
Oak Ridge Lab, 1223 Pflop
13 MW

10 | ' '
0 5 L 75 20 25
memory complexity / depth

e -11- /

e

Supercomputers 2018 year
IBM Summit
Oak Ridge Lab, 1223 Pflop
13 MW

1010

T

memory complexity / ’ depth
|me -//- V4

Uniform-cost search

» Extension of BF-search:
- Expand node with lowest path cost
» Implementation: fringe = queue ordered by path cost.

» UC-search is the same as BF-search when all step-costs
are equal.

Uniform-cost search

» Completeness:
> YES, If step-cost > ¢ (smal positive constant)
» Time complexity:
- Assume C* the cost of the optimal solution.
- Assume that every action costs at least ¢
- Worst-case: \
O(bC /8)

» Space complexity:
> |dem to time complexity

» Optimality:

- nodes expanded in order of increasing path cost.

> YES, If complete.

DF-search, an example

» Expand deepest unexpanded node
» Implementation: fringe is a LIFO queue (=stack)

to be expanded yet
O on fringe
h{:} expanded
O expande

@ deleted from memory

DF-search, an example

» Expand deepest unexpanded node
» Implementation: fringe is a LIFO queue (=stack)

to be expanded yet
O on fringe
O expanded
@ deleted from memory

DF-search, an example

» Expand deepest unexpanded node
» Implementation: fringe is a LIFO queue (=stack)

to be expanded yet
O on fringe
O expanded
@ deleted from memory

DF-search, an example

» Expand deepest unexpanded node
» Implementation: fringe is a LIFO queue (=stack)

to be expanded yet
O on fringe
O expanded
@ deleted from memory

DF-search, an example

» Expand deepest unexpanded node
» Implementation: fringe is a LIFO queue (=stack)

to be expanded yet
O on fringe
O expanded
@ deleted from memory

DF-search, an example

» Expand deepest unexpanded node
» Implementation: fringe is a LIFO gueue (=stack)

to be expanded yet
O on fringe
O expanded
@ deleted from memory

DF-search, an example

» Expand deepest unexpanded node
» Implementation: fringe is a LIFO gueue (=stack)

to be expanded yet
O on fringe
O expanded
@ deleted from memory

DF-search, an example

» Expand deepest unexpanded node
» Implementation: fringe is a LIFO gueue (=stack)

to be expanded yet
O on fringe
O expanded
@ deleted from memory

DF-search, an example

» Expand deepest unexpanded node
» Implementation: fringe is a LIFO gueue (=stack)

to be expanded yet
O on fringe
O expanded
@ deleted from memory

DF-search, an example

» Expand deepest unexpanded node
» Implementation: fringe is a LIFO gueue (=stack)

to be expanded yet
O on fringe
O expanded
@ deleted from memory

DF-search, an example

» Expand deepest unexpanded node
» Implementation: fringe is a LIFO gueue (=stack)

to be expanded yet
— O on fringe
O expanded
@ deleted from memory

DF-search, an example

» Expand deepest unexpanded node
» Implementation: fringe is a LIFO gueue (=stack)

to be expanded yet
O on fringe
O expanded
@ deleted from memory

DF-search: evaluation

» Completeness;
> Does it always find a solution if one exists?
> NO
* unless search space is finite and no loops are possible.

DF-search: evaluation

» Completeness;
> NO unless search space is finite. ob™)
» Time complexity;

- May be terrible if m is much larger than d (depth of
optimal solution)

- But If many solutions, then faster than BF-search

DF-search: evaluation

» Completeness;
> NO unless search space is finite.

» Time complexity; O(b™)

» Space complexity: Abm +1)
- Backtracking search uses even less memory
- One successor instead of all b.

DF-search: evaluation

» Completeness;
> NO unless search space is finite.

» Time complexity; O(b™)

» Space complexity:; A(bm+1)
» Optimality; No

o Same issues as completeness

Depth-limited search

DF-search with a depth limit |.
> 1.e. nodes at depth | are not expaneded for successors.
- Problem knowledge can be used
Solves the infinite-path problem, but
If | < d then incompleteness results.
If | > d then not optimal.
Time complexity: ob")
Space complexity: O(b)

v

v v Vv v Vv

Depth-limited algorithm

function DEPTH-LIMITED-SEARCH(problem, limit) return a solution or
failure/cutoff

return RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problemy)),
problem, limit)

function RECURSIVE-DLS(node, problem, limit) return a solution or
failure/cutoff

cutoff _occurred? « false
If GOAL-TEST[problem](STATE[node]) then return SOLUTION(node)
else if DEPTH[node] == limit then return cutoff
else for each successor in EXPAND(node, problem) do
result « RECURSIVE-DLS(successor, problem, limit)
If result == cutoff then cutoff occurred? « true
else if result =failure then return result
If cutoff _occurred? then return cutoff else return failure

Iterative deepening search

» What it 1s?
- A general strategy to find best depth limit I.

- Goal is found at depth d, the depth of the shallowest
goal-node.

> Then use Depth-limited search
» Combines benefits of DF- en BF-search

Iterative deepening search

function ITERATIVE_DEEPENING_SEARCH(problem)
return a solution or failure

Inputs: problem

for depth «— 0to ~ do
result < DEPTH-LIMITED SEARCH(problem, depth)
If result = cuttoff
then return result

ID-search, example o be expanded yet

O on fringe

» Limit=0 O expanded
@ deleted from memory

ID-search, example o be expanded yet

O on fringe

» Limit=1 O expanded
@ deleted from memory

N oo & o & e

ID-search, example o be expanded yet

O on fringe

» Limit=2 O expanded
@ deleted from memory

e A
S C ST S SN

ID-search, example o be expanded yet

O on fringe

» Limit=3 O expanded
@ deleted from memory

AR R
S

I

ID search, evaluation

» Completeness:
> YES (no infinite paths)

.

ID search, evaluation

» Completeness:
> YES (no infinite paths)
» Time complexity:
> Algorithm seems costly due to repeated generation of
certain states.
- Node generation: O(bd)
- level d: once
. level d-1° x 2 N(IDS) = (d)b+(d-1)b" + ...+ (1)b*

* level d-2: x 3 N(BFS)=b+b* + ...+ b* +(b"" - b)

- level 2: x (d-1) Compare for b=10 and d=5 (solution at far right)

- level 1: x d N (IDS) = 50 + 400 + 3000 + 20000 +100000 = 123450
N (BFS) =10-+100 +1000 +10000 +100000 -+ 999990
=1111100

ID search, evaluation

» Completeness:

> YES (no infinite paths)
» Time complexity: o(b%)
» Space complexity:

- Cfr. depth-first search O(bd)

ID search, evaluation

» Completeness:
> YES (no infinite paths)
» Time complexity: O(b*)
» Space complexity: O(bd)
» Optimality:
- YES if step cost is 1.
- Can be extended to iterative lengthening search
- Same idea as uniform-cost search

- Increases overhead.

Bidirectional search

» Completeness:
> YES, If at least one direction BF-like
» Time complexity: O(h"'?)

» Space complexity: O(h"'?)
» Optimality:
o |F ...
- Complexity of checking for a node in the other search
tree

- Doing search ,backwards” from the goal

o

Summary of algorithms

Criterion Breadth- Uniform- Depth-First Depth-
First cost limited

Bidirectional
search

Complete?

YES* YES* NO

Space

Optimal? YES* YES*

Summary

» The symbols & search paradigm in Al
» Uninformed search

o Space complexity: OK!

o Time complexity: exp. =» the knowledge paradigm in Al
» Suggested reading

- Newel & Simon: Computer science as empirical inquiry:
symbols and search, 1975

o Cognitive architectures: ACT-R

- Allen Newell describes cognitive architectures as the way
to answer one of the ultimate scientific questions:
"How can the human mind occur in the physical universe?

\\\\\\\\\\\\

http://act-r.psy.cmu.edu/
http://act-r.psy.cmu.edu/
http://act-r.psy.cmu.edu/
http://act-r.psy.cmu.edu/about/
http://act-r.psy.cmu.edu/about/
http://act-r.psy.cmu.edu/about/
http://act-r.psy.cmu.edu/misc/newellclip.mpg
http://act-r.psy.cmu.edu/misc/newellclip.mpg
http://act-r.psy.cmu.edu/misc/newellclip.mpg

