
Artificial Intelligence
Learning in Agent Systems

More about

 Textbook, Chapters on Learning

 Increasing intelligence
◦ Learning new task performing capacity

◦ Recognizing affordances

◦ Recognizing resources

 Increasing usefull life-span by adaptivity
◦ Compensating for lack of knowledge in design

 Learning (exploring) the environment

 Learning the properties of other agents

◦ Compensating for changes in the environment

 Increasing robustness and fault-tolerant capability
◦ Learning self (percepts/actions) upon contingency

Learning agent

Abstract paradigm of function learning
- Inductive learning

Learn a function from examples in some representation

f is the target function

a pair (x, f(x)) is an example

Problem:

 find a hypothesis h(x), such that h(x) ≈ f(x)
 given a training set of examples
 and h(x) ≈ f(x), given a test set of examples

 (generalization, abstraction)

(h is consistent if it agrees with f on all examples)

a priori knowledge

feedback supervised learning
 reinforcement learning
 unsupervised learning

learning = search in hypothesis space
 learning bias
 learning noise

expressiveness vs. efficiency

dynamics of learning vs. dynamics of environment

Learning agent

Learning bias

Learning noise

How do we know that h(x) ≈ f (x)?

Learning curve =

 % correct on test set as

a function of training set size

?

Binary classification = binary decision

true positive rate (TPR)

TPR = TP/P = TP / (TP+FN)

false positive rate (FPR)

FPR = FP/N = FP / (FP+TN)

sick

healthy

decision:

inside – positive

outside - negatíve

Binary classification = binary decision

Which one

is better?

 Problem:
 decide whether to wait for a table at a restaurant,
 based on the following attributes:

1. Alternate: is there an alternative restaurant nearby?
2. Bar: is there a comfortable bar area to wait in?
3. Fri/Sat: is today Friday or Saturday?
4. Hungry: are we hungry?
5. Patrons: number of people in the restaurant (None, Some, Full)
6. Price: price range ($, $$, $$$)
7. Raining: is it raining outside?
8. Reservation: have we made a reservation?
9. Type: kind of restaurant (French, Italian, Thai, Burger)
10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)

 Examples described by attribute values (Boolean, discrete, continuous)

 E.g., situations where I will/won't wait for a table:

 Classification of examples is positive (T) or negative (F)

One possible representation for

hypotheses

decision tree = logic function

 Idea: a good attribute splits the examples into
subsets that are (ideally) "all positive" or "all
negative"

 Patrons? is a better choice

 Information Content (Entropy): I(P(v1), … , P(vn)) = Σi=1 -P(vi) log2 P(vi)

 For a training set containing p positive examples and n negative
examples:

 A chosen attribute A divides the training set E into subsets E1, … , Ev
according to their values for A, where A has v distinct values.

 Information Gain (IG) or reduction in entropy from the attribute test:

 Choose the attribute with the largest IG

np

n

np

n

np

p

np

p

np

n

np

p
I








22 loglog),(


 




v

i ii

i

ii

iii

np

n

np

p
I

np

np
Aremainder

1

),()(

)(),()(Aremainder
np

n

np

p
IAIG 




 Decision tree learned from the 12 examples:

 Substantially simpler than “trivial” tree - a more
complex hypothesis isn’t justified by small amount of
data

Perceptron
1

1

1 1

sgn() sgn() sgn()
n n

T

i i i i n

i i

y w x w x w b




 

      x w

0T b x w

0T b x w

Linearly separable problems
() (1) () ()k k k k  w w x

 - learning factor

Perceptron and logical functions

Artificial Neural Network

Artificial Neural Network

E
W W

W



 


Artificial Neural Network

, ,

,

j i j i

j i

E
W W

W



 



21
()

2
i i iE d y 

, ,

,

k j k j

k j

E
W W

W



 


Error backpropagation algorithm

Deep Learning with Convolutional Networks (CNN)

Artificial Neural Network

Kernel

trick

Kernel algorithms (SVM, support vector machines)

2 2

1 2 1 2 1 2

2 2 2 2

1 2 1 2 1 2 1 2

2 2 2 2 2

1 1 2 2 1 2 1 2 1 1 2 2

2

: (,) () (, , 2)

() () (, , 2) (, , 2)

2 ()

() (,)

T

T

x x x x x x

z z z z x x x x

x z x z x x z z x z x z

k

 

 

  

  

    

  

x x

z x

z x z x

Sequential decision problem

- 0.04

Up, up, right, right, right?

(optimal) Policy: π(s) = a

Markov decision process
 Starting state: S0

 State-transition model: T(s, a, s′)

 Reward: R(s), vagy R(s, a, s′)

Optimal policy =

folyamatosan choosing

optimal movement,

decision, action π(s) = a

 π*(s) = a

Sequential decision problem

R(s) ≤ –1,6284 R(s) > 0 – 0,4278 ≤ R(s) ≤ – 0,0850

– 0,0221 < R(s) < 0

Reward discount

2

0 1 2 0 1 2([, , ,...]) () () () ...hU s s s R s R s R s    

Sequential decision problem

Utility of state (Bellman)

Bellman-updating

Policy iteration

Reinforcement learning
 Init state: known

 State-transition model: not known, experience at most

 Rewardfunction: not known, at most as experienced

 Optimal policy to be learned, again the odds?!

Starting from sequential decision problem

Agent knowledge:
Environment known upon start, or it must be also learned.

Reinforcement:
Only in the goal state, or also in other states under way.

Agent:
Pasive learner: observers the environment and learns.

Active learner: must act upon learned information.

 exploring …

Learning U(s) utility function, deciding actions on this basis, that the

expected utility gain be maximized (environment/agent model needed)

Learning Q(a, s) action value function (state-action pairs), relating some

utility to an action in a given situation (environment/agent model not

needed, learned meantime) – Q learning (model-free)

Expected utility of a state = a reward-to-go – discounted additive utility

 of the coming states

'() () (, (), ') (')sU s R s T s s s U s    
0() [()]t

t tU s E R s s s    | ,

observed observed

1()     U R TU U I T R

Adaptive Dynamic Programing

Idea: let us use the estimated utilities together with observed transitions:

- learning factor, γ – discount factor

Difference in utility of the following-up states: temporal difference, TD.

TD – Time Difference learning

() (1) () () () (() (') ())U s U s s U s R s U s U s         

() (')

() () (') ()

R s U s

s R s U s U s



 



  

TD(0)-difference (utility estimate)

TD(0) -error:

The TD is using the information how the states are related,

but only that which is coming from

the actually observed sequence.

TD can be used in

an unknown environment also.

Active learning in unknown environment

Decision: which action? What are the effects of this action?

How they do influence the reward?

What about the influence of the action on the learning process?.

Decision has two effects:

1. Yields reward in the actual sequence.

2. Affects the observations and thus the agent learning capability

 – so it affects rewards in future sequences.

'() () max (, , ') (')s
a

U s R s T s a s U s  

Exploring the state space

Trade-off: actual reward and long term advantages.

„Explorer„: acts randomly exploring the whole environment. (exploration)

„Greedy„: maximizes gains based on actual utility estimate. (exploitation)

Let the agent be explorer when the knowledge about the environment

is minute, and let it be greedy, when it has already a good model.

Exploring functions

ε-greedy: agent acts randomly with probability ε, and greedy action with

probability 1-ε

Boltzmann-exploring model

The probability of chosing an action in s state:

 T „temperature” controls both extremes.

If T → ∞ , then the choice is purely (uniformly) random,

if T → 0 , then the choice is greedy.

(,)/

(',)/

'

(,)
utility a s T

utility a s T

a

e
P a s

e



Q-learning

Utility of an action chosen in a given state: Q-value

Importance of Q-value:

decision possible without using the model,

can be learned directly from the reward feedback.

() max (,)
a

U s Q a s

Equilibrium equation, valid for the correct Q-values:

'
'

(,) () (, , ')max (', ')s
a

Q a s R s T s a s Q a s  

Direct usage: iteration computing true Q values (model!)

Time Difference method requires no model:

SARSA Q-learning (State-Action-Reward-State-Action)

(,) (,) [() (', ') (,)]Q a s Q a s R s Q a s Q a s    

'
(,) (,) (() max (', ') (,))

a
Q a s Q a s R s Q a s Q a s    

(a' chosen e.g. from the Boltzmann exploring model)

Q-learning

Generalization capability of reinforcement learning

The learned utility: storage as a table = explicit reprezentáció

Well designed approximated ADP: 10000, or more.

Real-life state spaces – vastly larger. (chess state space ca. 1050-10120)

The only possibility is the implicit reprezentation of the function:

E.g. in a game a set of the properties of the game state (board state) f1,…fn.

The estimated utility of the board (state):

1 1 2 2
ˆ () () () ... ()n nU s f s f s f s     

The utility function can be chracterized by n values, instead of e.g. 10120 values.

An average chess utility (evaluation) function has app. 10 weights, enormous

compression and reduction.

Implicit reprezentation makes it possible that due to the reduction the learning

agent can generalize from the visited state to the as yet not visited states.

The most important aspect of the implicit reprezentation is the so called inductive

generalization of the input states.

Using TD for inductive implicit learning.

U or Q table → implicit reprezentation

(e.g. neural net).

'

ˆ ()ˆ ˆ() (') ()

ˆ (,)ˆ ˆ() max (', ') (,)

i i

i

i i
a

i

U s
R s U s U s

Q a s
R s Q a s Q a s


 


 

   


   



    
  

    
  

U/Q learning gradients

MAS learning - facts/challenges

Hypothesis space

Emergency

Game theory perspective

Critics

Reinforcement

Stationarity

Dynamics

Merit assignment

Nash-equilibrium

Convergence

Communication

Learniing task

Learning cooperation

Learning from each other

Learning about each other

Learning despite others

Learning with the help of others

Learning from organization

Learning when interacting with changing entities

Forgetting group partners

Learning form negotiation

Learning during negotiation

Learning after concluding negotiation

MAS learning - facts/challenges

An organization in an adverse natural environment, or against

other organizations

Dynamic, „adverse” (non-cooperative),

real-time environment, with limited

communication

PTS – Periodic

Team Synchronization

Formations   1 2, , , ..., kF R U U U

RoboCup-Rescue

Kooperáció és

intelligencia, BME-MIT

USAR (Urban Search And Rescue) Arenas

Test Arenas for

Autonomous

Mobile Robots

http://www.nist.gov/el/isd/testarenas.cfm

Specific robotic capabilities:

 Negotiate compromised and collapsed structures

 Locate victims and ascertain their conditions

 Establish communications with victims

 Deliver fluids, nourishment, medicines

 Emplace sensors to identify/monitor hazards

 Mark or identify best paths to victims

RoboCup@Home arena

Follow me, Clean up, …

„Move to the LOCATION,

find a person, and guide it to

the exit. …” stb.

EGPSR

Endurance General Purpose

Service Robot Test

Reinforcement:

- fully cooperative agent system

- fully competetive agent system ρ
1

+ ρ
2

+ … ρ
n

= 0

- mixed

Multi Agent Reinforcement Learning
.

(,)iR s a

  , , , , , : [0,1], :k k k
k N

N S A A T R T S A S R S A


      

1 ... n  

1 2  

1 2 ... 0n     

Aim of learning?

(1) Stability – convergence to some equilibrium (e.g. NE)

(2) Adaptivíty – successfully learn the adversary strategy.

(3) A particular gain in utility.

       1 1 1, , max , ,k k k k k k k k a k k k k kQ s a Q s a r Q s a Q s a    
     

From one agent to multi agents

       1 1 1, , max , ,k k k k k k k k k k k k kQ s Q s r Q s Q s    
     a

a a a a

       1 1, , ,k k k k k k k k k k kQ s Q s r XYZ Q s       a a a

Actions of others

1 agent 2 agent N agent

Something different to account for the

friendly or the adverse character of the

others to compute the future.

Multi Agent Deep Learning

         

      

 

2

1

, , max , , , , |

min , | max , | , |

a

i a i i

i i i

Q s Q s r Q s Q s Q s

L s r Q s Q s

L

 









      

  

  θ

a a a a a θ

a θ a θ a θ

θ θ θ

Environment 2 dim, 2 agent type.

Convolution NN channels: background (obstackles), enemy, aliens, agent own:

 4 x H x H.

Multi Agent Deep Learning

Simulation

 http://busoniu.net/repository.php

 http://busoniu.net/files/repository/2010-08-04_marl-1.3.zip

 startuprl.m

 alg_gui.m

 rrgwdemo.m

Multi Agent Reinforcement Learning

