Artificial Intelligence
Learning in Agent Systems
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What is learning needed for?

» Increasing intelligence
- Learning new task performing capacity
- Recognizing affordances
- Recognizing resources

» Increasing usefull life-span by adaptivity
- Compensating for lack of knowledge in design
- Learning (exploring) the environment
- Learning the properties of other agents
- Compensating for changes in the environment

» Increasing robustness and fault-tolerant capability
- Learning self (percepts/actions) upon contingency
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Abstract paradigm of function learning
- Inductive learning

Learn a function from examples in some representation

f is the target function
a pair (x, f(x)) is an example
Problem:

find a hypothesis A(x), such that A(x) ~ f(x)
given a training set of examples

and A(x) =~ f(x), given a test set of examples
(generalization, abstraction)

(his consistent if it agrees with fon all examples)




Learning agent

a priori knowledge

feedback supervised learning
reinforcement learning
unsupervised learning

learning = search in hypothesis space
learning bias
learning noise

expressiveness vs. efficiency

dynamics of learning vs. dynamics of environment




Inductive learning
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Estimation of future performance

How do we know that A(x) =~ f (x)?

Learning curve =
% correct on test set as
a function of training set size

9% correct on test set
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Binary classification = binary decision




Binary classification = binary decision
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Learning decision trees

Problem:

decide whether to wait for a table at a restaurant,
based on the following attributes:

1. Alternate: is there an alternative restaurant nearby?

2. Bar: is there a comfortable bar area to wait in?

3. Fri/Sat: is today Friday or Saturday?

4. Hungry: are we hungry?

5. Patrons: number of people in the restaurant (None, Some, Full)

6. Price: price range ($, $5$, $$9%)

7. Raining: is it raining outside?

8. Reservation: have we made a reservation?

9. Type: kind of restaurant (French, Italian, Thai, Burger)

10. WaitEstimate: estimated waiting time (O 10, 10-30, 30-60, >60)




Attribute-based representations

» Examples described by attribute values (Boolean, discrete, continuous)
» E.g., situations where | will/won't wait for a table:
» Classification of examples is positive (T) or negative (F)

Example Attributes Target

Alt | Bar | Fri| Hun | Pat | Price | Rain | Res| Type | Est | Wail
X T | F F T |Some| $$% F T | French| 0-10 T
X5 T | F F T Full $ F F | Thai |30-60 F
X3 F | T F F | Some| §$ F F | Burger| 0-10 T
X4 T | F T T Full $ F F | Thai [10-30 T
X5 T | F T F Full | $$% F T |French| =60 F
X F| T | F T |Some| $% T T | Italian | 0-10 T
X7 F | T F F | None $ T F | Burger| 0-10 F
X F | F F T |Some| $% T T | Thai | 0-10 T
Xy F | T T F Full $ T F | Burger| =60 F
X1 T | T T T Full | $%% F T | Italian | 10-30 F
X1 F F F F | None $ F F | Thai | 0-10 F
X9 T | T T T Full $ F F | Burger | 30-60 T




One possible representation for
hypotheses
decision tree = logic function

Mone m Full
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Choosing an attribute

» ldea: a good attribute splits the examples into
subsets that are (ideally) "all positive" or "all
negative"

000000 000000
000000 0900000
Fatrons? Type?
MNone Some Full French ltalian Thai Burger
000 00 o e 00 o0
o0 0000 @ ® 00 o0

» Patrons? is a better choice




Using information theory

» Information Content (Entropy): I(P(v,), ..., P(v,)) = £_, -P(v;) log, P(v;)
» For a training set containing p positive examples and n negative

examples: n n n
() =——Pjog, P _T_og,
p+Nn p+n p+n p+n  p+n p+n
» A chosen attribute A divides the training set £into subsets £, ..., £,

according to their values for A, where A has v distinct values.

» Information Gain (IG) or reduction in entropy from the attribute test:

» Choose the attribute with the largest IG

remainder (A) =)’ Pit T | ( N
- P+N PN PN

IG(A) = I (—2—, — "y _ remainder (A)
P+N p+n



Example cont.

» Decision tree learned from the 12 examples:

» Substantially simpler than “trivial” tree - a more
complex hypothesis isn’t justified by small amount of
data

Patrons?

m




Perceptron
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Linearly separable problems

w(k) =w(k —1) + & £(k) x(k)

o - learning factor



Perceptron and logical functions
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Artificial Neural Network




Artificial Neural Network

single layer two layer three layer
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Artificial Neural Network




Artificial Neural Network

Deep Learning with Convolutional Networks (CNN)
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Kernel algorithms (SVM, support vector machines)

2 3
Kernel "} .. xi 3~ 2y
trick ' = M W
‘e . 3 4 W62 Caes
0,5 1 ® e o ' ]
o’ 3 - . °
0 E .. e ° .°
0 "= - "ot
= . 7 3 f5.
1 1 "1 X
: . ¢ 4 Y’ > - .“‘i
1.5 v v v v -
5 -1 -05 0 05 ! 1.5 _-_,:12 + _;,:% <]

01X = (X, %) = p(X) = (X, X, V2%,%,)
P(2)" () = (27,25,N22,2,)- (X, X5, /2%,
— X1 Zl + Xz Z2 "'2X1X22122 = (X121 + Xzzz)
= (2" -X)* =k(z,X)




Sequential decision problem

3
2
1 START \
1 2 3 4
(a)
-0.04

Up, up, right, right, right?

(optimal) Policy: m7(s) = a

0,1

0,8

0,1

+1




Sequential decision problem

Markov decision process

Starting state: SO

State-transition model: T(s, a, s')

Reward: R(s), vagy R(s, a,s")  —0.0221<R(s)<0
Optimal policy = 3 - - - | [#
folyamatosan choosing
optimal movement, z | | -— | 3
decision, action 1r(s) =a

m*(s) = a L I el Bl
R(s) <-1,6284 —0,4278 < R(s) < - 0,0850 R(s) >0
3 - - + ' 3 " - " l 3 -




Sequential decision problem

Reward discount  YUn([Sy, S, S,,---1) =R(S,) + ¥R(S,) + 7°R(S,) +...

Utility of state (Bellman)  U(s) = R(s) + }/maxz T(s,a,s"YU(s")

Bellman-updating U,.(s)=R(s)+y mflxz, I'(s,a,s")U,(s")
Policy iteration U(s)=R(s)+y 2, T(s.7,(5).H U, (s)

U, (s) < R(s)+ }/L I'(s,7,(s),s)U, (")

for each s allapotra in S do
if max, Y T(s,a,s")U[s"] >) T(s,n{s],s")U[s"]then
S, s'

7[s] < argmax, ZT(s, a,s"U[s']




Starting from sequential decision problem

Reinforcement learning

Init state: known
State-transition model: not known, experience at most
Rewardfunction: not known, at most as experienced

Optimal policy to be learned, again the odds?!
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Agent knowledge:
Environment known upon start, or it must be also learned.

Reinforcement:
Only in the goal state, or also in other states under way.

Agent:
Pasive learner: observers the environment and learns.
Active learner: must act upon learned information.
exploring ...

Learning U(s) utility function, deciding actions on this basis, that the
expected utility gain be maximized (environment/agent model needed)

Learning Q(a, s) action value function (state-action pairs), relating some
utility to an action in a given situation (environment/agent model not
needed, learned meantime) — Q learning (model-free)




Expected utility of a state = a reward-to-go — discounted additive utility
of the coming states

U”(s) = E[Z, 7'R(s,) | 7., =]

U(1)
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Adaptive Dynamic Programing




TD — Time Difference learning
ldea: let us use the estimated utilities together with observed transitions:
TD(0)-difference (utility estimate) R(S)+yU (S
TD(O0) - ; |
o) -erer 5(s) = R(s)+ U () -U (s)

U(s) < (L—a)U(s)+ad(s) =U(s) +ar (R(s) + U (s) ~U(9))

o- learning factor, y — discount factor
Difference in utility of the following-up states: temporal difference, TD.

The TD is using the information how the states are related, T U(7)
but only that which is coming from U(s),
the actually observed sequence.

U(2)

— — 2
TD can be used in ’O O

an unknown environment also.

TSS U(s)

_,O




Active learning in unknown environment

Decision: which action? What are the effects of this action?
How they do influence the reward?

U(s) = R(s)+y max 2..T(s,a,8)U(s)

What about the influence of the action on the learning process?.
Decision has two effects:

1. Yields reward in the actual sequence.

2. Affects the observations and thus the agent learning capability
— so It affects rewards in future sequences.

Exploring the state space

Trade-off: actual reward and long term advantages.
,2Explorer,: acts randomly exploring the whole environment. (exploration)
,Greedy,: maximizes gains based on actual utility estimate. (exploitation)

Let the agent be explorer when the knowledge about the environment
Inute, and let it be greedy, when it has already a good model.




Exploring functions

g-greedy: agent acts randomly with probability €, and greedy action with
probability 1-¢

Boltzmann-exploring model
The probability of chosing an action in s state:

T ,temperature” controls both extremes.

If T — o, then the choice is purely (uniformly) random,
if T — 0, then the choice is greedy.

eutiIity(a,s)/T

P(a,s)=

utility (a',s)/T
2...€




Q-learning

Utility of an action chosen in a given state: Q-value

U(s)= max Q(a,s)

Importance of Q-value:
decision possible without using the model,
can be learned directly from the reward feedback.

Equilibrium equation, valid for the correct Q-values:

Q(a,s)=R(s)+7 2. T(s,a,s") maxQ(a’,s)




Q-learning

Direct usage: iteration computing true Q values (model!)
Time Difference method requires no model:
Q(a,s) <-Q(a,s)+a (R(s)+ymaxQ(a’,s)-Q(a,s))
SARSA Q-learning (State-Action-Reward-State-Action)

Q(a,s) «—Q(a,s)+a[R(s)+rQ(a’,s)-Q(a,s)]

(a' chosen e.g. from the Boltzmann exploring model)




Generalization capability of reinforcement learning
The learned utility: storage as a table = explicit reprezentacié

Well designed approximated ADP: 10000, or more.
Real-life state spaces — vastly larger. (chess state space ca. 10°0-10120)

The only possibility is the implicit reprezentation of the function:

E.g. in a game a set of the properties of the game state (board state) f,,...f..
The estimated utility of the board (state):

U,(5) =6,1,(5)+6,1,(5)+... 6, f.(5)

The utility function can be chracterized by n values, instead of e.g. 1012° values.
An average chess utility (evaluation) function has app. 10 weights, enormous
compression and reduction.

Implicit reprezentation makes it possible that due to the reduction the learning
agent can generalize from the visited state to the as yet not visited states.

he most important aspect of the implicit reprezentation is the so called inductive
pzation of the input states.




Using TD for inductive implicit learning.
U or Q table — implicit reprezentation
(e.g. neural net).

U/Q learning gradients

oU,,(s)
o6

6, 6, +a| R(s)+7U,(s)-U,(s)

0Q,(a,s)

6, 6+a| R(s)+7maxQ,(a'\s) -Q,(a,s) | =22




MAS learning - facts/challenges

Hypothesis space
Emergency

Game theory perspective
Critics

Reinforcement
Stationarity

Dynamics

Merit assignment
Nash-equilibrium
Convergence
Communication

organisational relationship
interaction

agent

Environment

sphere of influence

Learning cooperatior

Learniing task



MAS learning - facts/challenges

Learning from each other
Learning about each other
Learning despite others
Learning with the help of others

Learning from organization
Learning when interacting with changing entities

Forgetting group partners

Learning form negotiation
Learning during negotiation
Learning after concluding negotiation




An organization in an adverse natural environment, or against
other organizations

Dynamic, ,adverse” (non-cooperative),
real-time environment, with limited
communication

_______________________________
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Formations F ={R,{U1’U2""’Uk}}

....... Locker-Room Agreement
\  Roles r1 Formations g
: r4® : = {r2r4.1r5.1r6.{rd.r>
e Mo =—= [® ®].... : F‘l {r2.r.1.r-),16.{1-l.r)}}
U 0 — @ v F2 = {r1.r3.r5,16,{r5,r6}}
c 9 Unis_ /[ .

©O O ® @ Team Formation = F2

A R = {(al.rb).(a2,r6),(a3.rl),(a4,r3)}

i Team Formation = F2
i A R = {(al.rb).(a2,r3).(a3.r6).(ad.r1)}
Y

Team Formation = F1
A R = {(al,r).(a2,rd),(a3,r6),(ad,r2)}
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Specific robotic capabilities:
Negotiate compromised and collapsed structures
Locate victims and ascertain their conditions
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Multi Agent Reinforcement Learning

(NS, A= x AT {R}), T:SxAxS—>[01],R SxA—>%R

keN
R (s,a)

Reinforcement:

- fully cooperative agent system 0, =...= p,

- fully competetive agent system P =—p p,tp,+...0,=0

- mixed o+ o +..+p,>0

Aim of learning?

(1) Stability — convergence to some equilibrium (e.g. NE)
(2) Adaptivity — successfully learn the adversary strategy.
(3) A particular gain in utility.




From one agent to multi agents

Qk+1(sk y Ay ) =Q, (Sk , ak)+ak |:rk+1 +ymax, Q, (Sk+1’ a,)_Qk (Sk y Ay )]

@ @ Actions of others

Qk+1(sk’ak ) — Qk (Sk’ak)_l_ak |:rk+1 + y max,, Qk (Sk+1’a’)_Qk (Sk’ak )]

Something different to account for the
friendly or the adverse character of the
others to compute the future.

N
Qk+1(sk’ak):Qk (Sk’ak)+ak |:rk+1+7/[XYZ]_Qk (Sk’ak):l

1agent > 2agent [C—> N agent




Multi Agent Deep Learning
Q(s,a)=Q(s,a)+a|r+ymax,Q(s'a)-Q(s,a)], Q(s.al0)
min L(s,a|9i):(r+7/maxaQ(s’,a|9i)—Q(s,alﬂi))2
0,,=0-aV,L(0,)

Environment 2 dim, 2 agent type.
Convolution NN channels: background (obstackles), enemy, aliens, agent own:
4 x HxH.

.
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Multi Agent Deep Learning

Improved Agent Policies
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Multi Agent Reinforcement Learning

Simulation

http://busoniu.net/repository.php

http://busoniu.net/files/repository/2010-08-04 _marl-1.3.zip

startuprl.m
alg_gui.m
rrgwdemo.m

I y— —

Multi-Agent Reinforcement Learning Demo

Choose atask: Choose an algorithm:

Search & Rescue Plain Q-learning
igati Full-state Q-learning

Adaptive State Focus Q-learning
% WolF-PHC

Team Q-leaming

Set cooperation level: [Optimal ]

Fully cooperative *

Self-interested

[ Run ] lReplay] lAutoRunl

— Configuration

Replay speed 4] N ﬂ 7
[] Show only after #rials il—_l—ﬂ 20
[ Slow down after #rials A | ﬂ 50

Pause befare run




