
Artificial Intelligence 
Learning in Agent Systems 

More about 

   Textbook, Chapters on Learning 



 Increasing intelligence 
◦ Learning new task performing capacity 

◦ Recognizing affordances 

◦ Recognizing resources 

 Increasing usefull life-span by adaptivity 
◦ Compensating for lack of knowledge in design 

 Learning (exploring) the environment 

 Learning the properties of other agents 

◦ Compensating for changes in the environment 

 Increasing robustness and fault-tolerant capability 
◦ Learning self (percepts/actions) upon contingency 



Learning agent 



Abstract paradigm of function learning 
- Inductive learning 

 
 
 

   

Learn a function from examples in some representation 
 

f     is the target function 

a pair (x, f(x) )  is an example 
 

Problem:  

  find a hypothesis h(x), such that h(x) ≈ f(x) 
      given a training set of examples 
      and h(x) ≈ f(x), given a test set of examples   

   (generalization, abstraction) 
 

(h is consistent if it agrees with f on all examples) 
 
 



 

a priori knowledge 
 

feedback  supervised learning 
    reinforcement learning 
    unsupervised learning 
 
 

learning = search in hypothesis space 
      learning bias 
      learning noise 
 

expressiveness vs. efficiency 
 
dynamics of learning vs. dynamics of environment 

Learning agent 



Learning bias 

Learning noise 



How do we know that h(x) ≈ f (x)? 
 

Learning curve = 

 % correct on test set as  

a function of training set size 

 



? 

Binary classification =  binary decision 



true positive rate (TPR) 

TPR = TP/P = TP / (TP+FN) 
 

false positive rate (FPR) 

FPR = FP/N = FP / (FP+TN) 
 

sick 

healthy 

decision: 

inside – positive 

outside - negatíve 

Binary classification =  binary decision 

Which one  

is better? 



    Problem:  
  decide whether to wait for a table at a restaurant,  
  based on the following attributes: 
 

1. Alternate: is there an alternative restaurant nearby? 
2. Bar: is there a comfortable bar area to wait in? 
3. Fri/Sat: is today Friday or Saturday? 
4. Hungry: are we hungry? 
5. Patrons: number of people in the restaurant (None, Some, Full) 
6. Price: price range ($, $$, $$$) 
7. Raining: is it raining outside? 
8. Reservation: have we made a reservation? 
9. Type: kind of restaurant (French, Italian, Thai, Burger) 
10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60) 



 Examples described by attribute values (Boolean, discrete, continuous) 

 E.g., situations where I will/won't wait for a table: 

 Classification of examples is positive (T) or negative (F) 



One possible representation for  

hypotheses 

decision tree = logic function 



 Idea: a good attribute splits the examples into 
subsets that are (ideally) "all positive" or "all 
negative" 

 

 

 

 

 

 

 

 Patrons?  is a better choice 



 Information Content (Entropy):  I(P(v1), … , P(vn)) = Σi=1 -P(vi) log2 P(vi) 

 For a training set containing p positive examples and n negative 
examples: 

 

 

 A chosen attribute A divides the training set E into subsets E1, … , Ev 
according to their values for A, where A has v  distinct values. 
 

 Information Gain (IG) or reduction in entropy from the attribute test: 
 

 Choose the attribute with the largest IG 
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 Decision tree learned from the 12 examples: 

 Substantially simpler than “trivial” tree - a more 
complex hypothesis isn’t justified by small amount of 
data 
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Perceptron and logical functions 



Artificial Neural Network  



Artificial Neural Network  
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Deep Learning with Convolutional Networks (CNN) 

Artificial Neural Network  



Kernel  

trick 

Kernel algorithms (SVM, support vector machines) 
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Sequential decision problem 

- 0.04 

Up, up, right, right, right? 
 

(optimal) Policy: π(s) = a 



Markov decision process 
  Starting state:    S0 

  State-transition model:  T(s, a, s′) 

  Reward:      R(s), vagy R(s, a, s′) 
 

Optimal policy =  

folyamatosan choosing  

optimal movement,  

decision, action π(s) = a 

     π*(s) = a 

 

Sequential decision problem 

R(s) ≤ –1,6284 R(s) > 0 – 0,4278 ≤ R(s) ≤ – 0,0850 

– 0,0221 < R(s) < 0 



Reward discount 
 

2
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Sequential decision problem 

Utility of state (Bellman) 

Bellman-updating 

Policy iteration 



Reinforcement learning 
 Init state:      known 

 State-transition model:   not known, experience at most 

 Rewardfunction:    not known, at most as experienced 

 Optimal policy      to be learned, again the odds?! 

Starting from sequential decision problem 





Agent knowledge:  
Environment known upon start, or it must be also learned. 

 

Reinforcement: 
Only in the goal state, or also in other states under way. 

 

Agent: 
Pasive learner: observers the environment and learns.  

Active learner: must act upon learned information. 

                                        exploring … 
 
 

 

Learning U(s) utility function, deciding actions on this basis, that the  

expected utility gain be maximized (environment/agent model needed) 
 

Learning Q(a, s) action value function (state-action pairs), relating some 

utility to an action in a given situation (environment/agent model not 

needed, learned meantime)  – Q learning (model-free) 



 

 

Expected utility of a state = a reward-to-go – discounted additive utility 

                                                                                      of the coming states 
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Adaptive Dynamic Programing 



Idea: let us use the estimated utilities together with observed transitions:  

- learning factor, γ – discount factor 

Difference in utility of the following-up states: temporal difference, TD. 

TD – Time Difference learning 
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TD(0)-difference (utility estimate) 

TD(0) -error: 

The TD is using the information how the states are related,  

but only that which is coming from  

the actually observed sequence. 
 

TD can be used in  

an unknown environment also. 



Active learning in unknown environment 
 

Decision: which action? What are the effects of this action?  

How they do influence the reward? 

What about the influence of the action on the learning process?.  

Decision has two effects: 

1. Yields reward in the actual sequence. 

2. Affects the observations and thus the agent learning capability  

    – so it affects rewards in future sequences. 
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Exploring the state space 
 

Trade-off: actual reward and long term advantages.  

„Explorer„: acts randomly exploring the whole environment. (exploration) 

„Greedy„: maximizes gains based on actual utility estimate. (exploitation)  
 

Let the agent be explorer when the knowledge about the environment 

is minute, and let it be greedy, when it has already a good model.  



Exploring functions 

ε-greedy: agent acts randomly with probability ε, and greedy action with  

probability 1-ε  
 
 

Boltzmann-exploring model 

The probability of chosing an action in s state: 

 

 T „temperature” controls both extremes. 

If T → ∞ , then the choice is purely (uniformly) random,  

if T → 0 , then the choice is greedy. 
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Q-learning 
 

Utility of an action chosen in a given state:  Q-value 

Importance of Q-value:  

decision possible without using the model,  

can be learned directly from the reward feedback. 
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Equilibrium equation, valid for the correct Q-values: 
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Direct usage: iteration computing true Q values (model!)  
 

 

Time Difference method requires no model: 

SARSA Q-learning (State-Action-Reward-State-Action) 
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(a' chosen e.g. from the Boltzmann exploring model) 

Q-learning 



Generalization capability of reinforcement learning 
 

The learned utility: storage as a table = explicit reprezentáció 
 

 

Well designed approximated ADP: 10000, or more.  

Real-life state spaces – vastly larger. (chess state space ca. 1050-10120) 

The only possibility is the implicit reprezentation of the function:  
 

E.g. in a game a set of the properties of the game state (board state) f1,…fn.  

The estimated utility of the board (state): 

1 1 2 2
ˆ ( ) ( ) ( ) ... ( )n nU s f s f s f s     

The utility function can be chracterized by n values, instead of e.g. 10120 values.  

An average chess utility (evaluation) function has app. 10 weights, enormous  

compression and reduction.  
 

Implicit reprezentation makes it possible that due to the reduction the learning 

agent can generalize from the visited state to the as yet not visited states.  
 

The most important aspect of the implicit reprezentation is the so called inductive 

generalization of the input states. 



Using TD for inductive implicit learning.  

U or Q table → implicit reprezentation  

(e.g. neural net). 
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U/Q learning gradients 



MAS learning - facts/challenges 
 

Hypothesis space 

Emergency 

Game theory perspective 

Critics 

Reinforcement 

Stationarity 

Dynamics 

Merit assignment 

Nash-equilibrium 

Convergence 

Communication 

Learniing task 

Learning cooperation 



 

Learning from each other 

Learning about each other 

Learning despite others 

Learning with the help of others 
 

Learning from organization 
 

Learning when interacting with changing entities 
 

Forgetting group partners 

 

Learning form negotiation 

Learning during negotiation 

Learning after concluding negotiation 

MAS learning - facts/challenges 
 



An organization in an adverse natural environment, or against  

other organizations 

Dynamic, „adverse” (non-cooperative),  

real-time environment, with limited 

communication 

PTS – Periodic  

Team Synchronization 



Formations      1 2, , , ..., kF R U U U



RoboCup-Rescue 



Kooperáció és 

intelligencia, BME-MIT 

USAR (Urban Search And Rescue) Arenas  

Test Arenas for  

Autonomous  

Mobile Robots  

http://www.nist.gov/el/isd/testarenas.cfm 

Specific robotic capabilities:   

    Negotiate compromised and collapsed structures 

    Locate victims and ascertain their conditions 

    Establish communications with victims 

    Deliver fluids, nourishment, medicines 

    Emplace sensors to identify/monitor hazards 

    Mark or identify best paths to victims 



RoboCup@Home arena 

 

Follow me, Clean up, … 

 

„Move to the LOCATION,  

find a person, and guide it to  

the exit. …” stb. 

EGPSR 

Endurance General Purpose  

Service Robot Test 



Reinforcement: 
 

- fully cooperative agent system 
 

- fully competetive agent system                                              ρ
1 

+ ρ
2 

+ … ρ
n  

= 0 
 

- mixed 

Multi Agent Reinforcement Learning 
. 
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Aim of learning? 
 

(1) Stability – convergence to some equilibrium (e.g. NE) 

(2) Adaptivíty – successfully learn the adversary strategy. 

(3) A particular gain in utility. 
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From one agent to multi agents 
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Actions of others 

1 agent               2 agent               N agent 

Something different to account for the  

friendly or the adverse character of the 

others to compute the future. 



Multi Agent Deep Learning 
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Environment 2 dim, 2 agent type. 

Convolution NN channels: background (obstackles), enemy, aliens, agent own: 

   4 x H x H. 



Multi Agent Deep Learning 



Simulation 

 http://busoniu.net/repository.php  

 http://busoniu.net/files/repository/2010-08-04_marl-1.3.zip 
 

 startuprl.m 

 alg_gui.m 

 rrgwdemo.m 

  

 

 

 

 

 

Multi Agent Reinforcement Learning 

 


