
Artificial Intelligence

Constraint Satisfaction Problems
CSP

More about

 Textbook, Chapter 5, Constraint Satisfaction Problems

 What is CSP?
 Toy CSP and real life CSP
 CSP as search
◦ Backtracking
◦ Heuristics
 Variable ordering and value selection
 Forward checking
 Constraint propagation

 Improved CSP representations
 Complexity of solving tree structured CSPs

Constraints

 Physical laws

 Resources

 Schedules

 User demands

 Economics

 Safety regulations, standards, codes, etc.

 …

 Logic constraints

 Arithmetic constraints

 Geometrical constraints

 …

Constraints

Constraints

Constraints

Constraints

Constraints

Constraints

Hardware/ software formal verification,

protocol design, etc.

Satisfability of logical expressions (SAT)

- what is the set of values of (binary) variables, which makes

all stated logical expressions true in the same time?

a = True/ False?

b = True/ False?

c = True/ False?

here: a = True, b = True, c don’t care, or

 a = True, c = False, b don’t care,

 etc.

 2 x 2 x 2 = 23 = 8

Constraints

Variables: 3

Clauses: 3

IBM Load-Store Unit (LSU)
Constraints

BMC –

Bounded Model Checking

Variables: 51654

Clauses: 368367

Temporal bound: 22

https://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/BMC/description.html

AND

AND

AND

AND

https://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/BMC/description.html

4

After ca. 15 thousand pages later

Solved in ca. 10 msec!

Hardware/ software formal verification, protocol design, etc.

Constraints

Allocation problem
Five developments are to be located

on the lots:

(1) a recreation area,

(2) an apartment complex,

(3) a cluster of 50 single-family houses,

(4) a large cemetery, and

(5) a dump site.

Constraints

Conditions:

-The recreation area must be near the lake.

- Steep slopes must be avoided for all but the recreation area.

- Poor soil must be avoided for developments with construction (apartments, houses).

- The highway must not be near the apartments, the houses, or the recreation area.

- The dump site must not be visible from the apartments, the houses, or the lake.

- Lots 3 and 4 have poor soil.

- Lots 3, 4, 7, and 8 are on steep slopes.

- Lots 2, 3, and 4 are near the lake.

- Lots 1 and 2 are near the highway.

- No two developments may occur on the same lot.

 What is a CSP?

◦ Finite set of variables V1, V2, …, Vn

◦ Finite set of constraints C1, C2, …, Cm

◦ Nonempty domain of possible values for each variable
 DV1, DV2, … DVn

◦ Each constraint Ci limits the values that variables can

 take, e.g., V1 ≠ V2

 A state is defined as an assignment of values to some

 or to all variables.

 Consistent assignment: does not violate the constraints.

 An assignment is complete when every variable is set.

 A solution to a CSP is a complete assignment that satisfies
all constraints.

 Some CSPs require a solution that maximizes an objective
function.

 Variables: WA, NT, Q,

 NSW, V, SA, T

 Domains: Di = {red, green, blue}

 Constraints: adjacent regions must have

 different colors.

 E.g. WA NT , WA SA , SA NT , …

 E.g. (WA,NT) (red, green), (red, blue), …}

 etc.

 Solutions are assignments satisfying

 all constraints, e.g.

 {WA = red, NT = green, Q = red, NSW = green, V = red,

 SA = blue, T = green}

 Benefits of CSP formulation
◦ Standard representation pattern

◦ Generic goal and successor functions

◦ Generic heuristics (no domain specific expertise).

 Constraint graph = nodes are variables,

 edges show constraints.

◦ Graph can be used to simplify search.

 e.g. Tasmania is an independent subproblem.

 Discrete variables

◦ Finite domains; size d O(dn) complete assignments.

 e.g. Boolean CSP, includes Boolean satisfiability (NP-
complete).

◦ Infinite domains (integers, strings, etc.)

 e.g. job scheduling, variables are start/end days for
each job

 Need a constraint language

 e.g StartJob1 + 5 ≤ StartJob3.

 Linear constraints solvable, nonlinear undecidable.

 Continuous variables

◦ e.g. start/end times for Hubble Telescope observations.

◦ Linear constraints solvable in poly time by LP methods.

 Unary constraints involve a single variable.

◦ e.g. SA green

 Binary constraints involve pairs of variables.

◦ e.g. SA WA

 Higher-order constraints involve 3 or more variables.

◦ e.g. cryptharithmetic column constraints.

 Preference (soft constraints) e.g. red is better than green
often representable by a cost for each variable
assignment constrained optimization problems.

 Variables: F, T, U, W, R, O, X1, X2, X3

 Domains: Di = {0, 1, 2, 3, 4, 5, 6 , 7, 8, 9}

 Dj = {0, 1}

 Constraints:

 alldiff(F,T,U,W,R,O)

 O + O = R + 10 x X1, etc.

Constraint satisfaction problems

 A CSP can easily expressed as a standard search

problem.

 Incremental formulation

◦ Initial State: the empty assignment {}.

◦ Successor function: Assign value to an unassigned

variable provided that there is no conflict.

◦ Goal test: the current assignment is complete.

◦ Path cost: as constant cost for every step.

 This is the same for all CSP’s !

 Solution is found at depth n (if there are n variables).

◦ Hence depth first search can be used.

 Path is irrelevant.

 Branching factor b at the top level is nd.

 b=(n-l)d at depth l, hence n!dn leaves can be generated

 (but only max. dn complete assignments, O(nn), Stirling’s

approx., a very stupid way of searching, something

 better needed – heuristic functions?!).

 CSPs are commutative.

◦ The order of any given set of actions (value
assignements) has no effect on the outcome.

◦ Example: choose colors for Australian territories one at a
time

 [WA=red then NT=green] same as

 [NT=green then WA=red]

 All practical CSP search algorithms consider a single
variable assignment at a time, if D = d, Var = n

 there are dn leaves, at n depth.

 With a finite d number of variables the search tree is of finite
depth.

 Cfr. Depth-first search

 Chooses values for one variable at a time and

backtracks when a variable has no legal values left to

assign.

 Uninformed algorithm

◦ No good general performance (see table p. 143)

function BACKTRACKING-SEARCH(csp)

return a solution, or failure

 return RECURSIVE-BACKTRACKING({} , csp)

function RECURSIVE-BACKTRACKING(assignment, csp)

return a solution, or failure

 if assignment is complete then return assignment

 var SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)

 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

 if value is consistent with assignment according to

 CONSTRAINTS[csp] then

 add {var=value} to assignment

 result RECURSIVE-BACTRACKING(assignment, csp)

 if result failure then return result

 remove {var=value} from assignment

 return failure

 Want improvements? introduce heuristics

 Domain independent (general-purpose, ok!)

 Domain dependent (how?)

 General-purpose methods can give huge gain in speed:

◦ Which variable should be assigned next?

◦ In what order should its values be tried?

◦ Can we detect inevitable failure early?

◦ Can we take advantage of problem structure?

var SELECT-UNASSIGNEDVARIABLE(VARIABLES[csp],assignment,csp)

 A.k.a. most constrained variable heuristic („fail fast”)

 Rule: choose variable with the fewest legal values

 Which variable shall we try first?

 Use degree heuristic

 Rule: select variable that is involved in the largest
number of constraints on other unassigned variables.

 Degree heuristic is very useful as a tie breaker.

 In what order should its values be tried?

 Least constraining value heuristic

 Rule: given a variable, choose the least constraining
value i.e. the one that leaves the maximum flexibility for
subsequent variable assignments.

 Can we detect inevitable failure early?

◦ And avoid it later?

 Forward checking idea: keep track of remaining legal
values for unassigned variables.

 Terminate search when any variable has no legal values.

 Forward checking does not see failures in advance.

 NT and SA cannot be blue at the same time.

X Y is arc-consistent if and only if for every value of X

there exist some legal value of Y.

If X has lost a legal value, its neighbours must be check anew.

Arc-consistency checking can be used as a pre-processing

step, before starting the search, or during the search, at

every moment when a new value is assigned to a variable.

 A CSP is k-consistent if for any set of k-1 variables and
for any consistent assignment to those variables, a
consistent value can always be assigned to any kth
variable.

 A graph is strongly k-consistent if

◦ It is k-consistent and

◦ Is also (k-1) consistent, (k-2) consistent, … all the way
down to 1-consistent.

 YET no free lunch: any algorithm for establishing n-
consistency must take time exponential in n, in the worst
case.

 (1-consistency = node-consistency (unary constraints)

 2-consistency = arc-consistency (binary constraints)

 3-consistency = path-consistency) (…)

 Use complete-state representation

 For CSPs

◦ allow states with unsatisfied constraints

◦ operators reassign variable values

 Variable selection: randomly select any conflicted

variable

 Value selection: min-conflicts heuristic

◦ Select new value that results in a minimum number of

conflicts with the other variables

function MIN-CONFLICTS(csp, max_steps) return solution or failure

 inputs: csp, a constraint satisfaction problem

 max_steps, the number of steps allowed before giving up

 current an initial complete assignment for csp

 for i = 1 to max_steps do

 if current is a solution for csp then return current

 var a randomly chosen, conflicted variable from VARIABLES[csp]

 value the value v for var that minimizes

 CONFLICTS(var,v,current,csp)

 set var = value in current

 return faiilure

 Use of min-conflicts heuristic in hill-climbing.

h=5 h=3 h=1

 A two-step solution for a given 8-queens problem using
min-conflicts heuristic.

 At each stage a queen is chosen for reassignment in its
column.

 The algorithm moves the queen to the min-conflict
square breaking ties randomly.

 How can the problem structure

 help to find a solution quickly?

 Subproblem identification is important:

◦ E.g. coloring Tasmania and mainland are independent
subproblems

◦ Identifiable as connected components of constrained
graph.

 Improves performance

 Suppose each problem has

 c variables out of a total of n.

 Worst case solution cost is O((n/c) x dc),

 i.e. linear in n

◦ Instead of O(d n), exponential in n!

 E.g. n= 80, c= 20, d=2

◦ 280 = 4 billion years at 1 million nodes/sec.

◦ 4 * 220= 0.4 second at 1 million nodes/sec

 Theorem: if the constraint graph has no loops then CSP
can be solved in O(nd2) time

 (linear in the number of variables!)

 Compare difference with general CSP, where worst case
is O(dn)

 In most cases subproblems of a CSP are connected as a tree

 Any tree-structured CSP can be solved in time linear in the
number of variables.

◦ Choose a variable as root, order variables from root to leaves
such that every node’s parent precedes it in the ordering.

◦ For j from n down to 2, apply REMOVE-INCONSISTENT-
VALUES(Parent(Xj),Xj)

◦ For j from 1 to n assign Xj consistently with Parent(Xj)

X1 X2 X3 X4 X5 X6

 Can a more general constraint graph be reduced to tree?

 Two approaches:

◦ Remove certain nodes

◦ Collapse certain nodes

 Idea: assign values to some variables so that the
remaining variables form a tree.

 Assume that we assign {SA=x} cycle cutset

◦ And remove any values from the other variables that
are inconsistent.

◦ The selected value for SA could be wrong so we have
to try all of them.

 This approach is worthwhile if cycle cutset is small.

 Finding the smallest cycle cutset is NP-hard

◦ Approximation algorithms exist

 This approach is called cutset conditioning.

 Tree decomposition of the
constraint graph into a set of
connected subproblems.

 Each subproblem is solved
independently

 Resulting solutions are
combined.

 Necessary requirements:

◦ Every variable appears in at least one of the subproblems.

◦ If two variables are connected in the original problem,
they must appear together in at least one subproblem.

◦ If a variable appears in two subproblems, it must appear
in each node on the path.

 CSPs are a special kind of problem: states defined by values
of a fixed set of variables, goal test defined by constraints on
variable values

 Backtracking=depth-first search with one variable assigned
per node

 Variable ordering and value selection heuristics help
significantly

 Forward checking prevents assignments that lead to failure.

 Constraint propagation does additional work to constrain
values and detect inconsistencies.

 The CSP representation allows analysis of problem structure.

 Tree structured CSPs can be solved in linear time.

 Iterative min-conflicts is usually effective in practice.

Examples

LTa = 2h, LTb = 3h, LTc = 5h, LTd = 4h

Ta, Tb, Tc, Td, Tf = (0,1,2,3,4,5,6,7,8,9,10)

The earliest finishing time (start of Tfinish)?

(Solution: Ta = 0, Tb = 2, Tc = (2,4), Td = 5, Tfinish = 9)

a = 0

 b = 1

c = 0

 d = 1

e = 0

 f = 1, g = 1, i = 0, h = 1

X

e = 1

E
x
a
m

p
le

s

http://www.aispace.org/constraint/version4.6.1signed/constraint.jnlp

http://www.aispace.org/constraint/version4.6.1signed/constraint.jnlp
http://www.aispace.org/constraint/version4.6.1signed/constraint.jnlp

