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Constraint Satisfaction Problems 
CSP 

More about 

   Textbook, Chapter 5, Constraint Satisfaction Problems 



 What is CSP? 
 Toy CSP and real life CSP 
 CSP as search 
◦ Backtracking 
◦ Heuristics 
 Variable ordering and value selection 
 Forward checking 
 Constraint propagation 

 Improved CSP representations 
 Complexity of solving tree structured CSPs 



Constraints 

 Physical laws 

 Resources 

 Schedules 

 User demands 

 Economics 

 Safety regulations, standards, codes, etc. 

 … 

 Logic constraints 

 Arithmetic constraints 

 Geometrical constraints 

 … 
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Hardware/ software formal verification,  

protocol design, etc. 

Satisfability of logical expressions (SAT) 

- what is the set of values of (binary) variables,  which makes  

all stated logical expressions true in the same time? 

a = True/ False? 

b = True/ False? 

c = True/ False? 

 

here: a = True, b = True,  c don’t care, or 

         a = True, c = False, b don’t care,  

         etc. 

 

      2 x 2 x 2 = 23 = 8  

Constraints 

Variables: 3 
 

Clauses: 3 



IBM Load-Store Unit (LSU) 
Constraints 

BMC –  

Bounded Model Checking 
 

Variables: 51654 
 

Clauses: 368367 
 

Temporal bound: 22 

https://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/BMC/description.html  
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https://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/BMC/description.html
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After ca. 15 thousand pages later 

Solved in ca. 10 msec! 

Hardware/ software formal verification, protocol design, etc. 

Constraints 



Allocation problem  
Five developments are to be located  

on the lots:  

(1) a recreation area,  

(2) an apartment complex,  

(3) a cluster of 50 single-family houses,  

(4) a large cemetery, and  

(5) a dump site.  

Constraints 

Conditions: 

-The recreation area must be near the lake. 

- Steep slopes must be avoided for all but the recreation area. 

- Poor soil must be avoided for developments with construction (apartments, houses). 

- The highway must not be near the apartments, the houses, or the recreation area. 

- The dump site must not be visible from the apartments, the houses, or the lake. 

- Lots 3 and 4 have poor soil. 

- Lots 3, 4, 7, and 8 are on steep slopes. 

- Lots 2, 3, and 4 are near the lake. 

- Lots 1 and 2 are near the highway. 

- No two developments may occur on the same lot. 



 What is a CSP? 

◦ Finite set of variables V1, V2, …, Vn 

◦ Finite set of constraints C1, C2, …, Cm 

◦ Nonempty domain of possible values for each variable  
                                                         DV1, DV2, … DVn 

◦ Each constraint Ci limits the values that variables can  

   take, e.g., V1 ≠ V2 

 A state is defined as an assignment of values to some  

   or to all variables. 

 Consistent assignment: does not violate the constraints.  

 An assignment is complete when every variable is set.  

 A solution to a CSP is a complete assignment that satisfies 
all constraints. 

 Some CSPs require a solution that maximizes an objective 
function.  

 



 Variables: WA, NT, Q,  

    NSW, V, SA, T 

 Domains: Di = {red, green, blue} 

 Constraints: adjacent regions must have  

   different colors. 

 E.g. WA  NT , WA  SA , SA  NT , …  

 E.g. (WA,NT)   (red, green), (red, blue), …} 

 etc. 



 Solutions are assignments satisfying  

   all constraints, e.g. 

 {WA = red, NT = green, Q = red, NSW = green, V = red, 

    SA = blue, T = green} 



 Benefits of CSP formulation 
◦ Standard representation pattern 

◦ Generic goal and successor functions 

◦ Generic heuristics (no domain specific expertise). 
 

 Constraint graph = nodes are variables,  

                                       edges show constraints. 

◦ Graph can be used to simplify search. 

 e.g. Tasmania is an independent  subproblem. 

 



 Discrete variables 

◦ Finite domains; size d O(dn) complete assignments. 

 e.g. Boolean CSP, includes Boolean satisfiability (NP-
complete). 

◦ Infinite domains (integers, strings, etc.) 

 e.g. job scheduling, variables are start/end days for 
each job 

 Need a constraint language  

     e.g   StartJob1 + 5 ≤  StartJob3. 

 Linear constraints solvable, nonlinear undecidable.  

 Continuous variables 

◦ e.g. start/end times for Hubble Telescope observations. 

◦ Linear constraints solvable in poly time by LP methods. 



 Unary constraints involve a single variable. 

◦ e.g. SA  green 
 

 Binary constraints involve pairs of variables. 

◦ e.g. SA  WA 
 

 Higher-order constraints involve 3 or more variables. 

◦ e.g. cryptharithmetic column constraints. 
 

 Preference (soft constraints) e.g. red is better than green 
often representable by a cost for each variable 
assignment  constrained optimization problems. 



 Variables: F, T, U, W, R, O, X1, X2, X3 

 Domains: Di = {0, 1, 2, 3, 4, 5, 6 , 7, 8, 9} 

 Dj = {0, 1} 

 Constraints:  

   alldiff(F,T,U,W,R,O) 

   O + O = R + 10 x X1, etc. 



Constraint satisfaction problems 



 A CSP can easily expressed as a standard search 

problem. 

 Incremental formulation 

◦ Initial State: the empty assignment {}. 

◦ Successor function: Assign value to an unassigned 

variable provided that there is no conflict. 

◦ Goal test: the current assignment is complete. 

◦ Path cost: as constant cost for every step. 



 This is the same for all CSP’s ! 

 Solution is found at depth n (if there are n variables). 

◦ Hence depth first search can be used. 

 Path is irrelevant. 

 Branching factor b at the top level is nd.  

 b=(n-l)d at depth l, hence n!dn leaves can be generated 

   (but only max. dn complete assignments, O(nn), Stirling’s 

approx., a very stupid way of searching, something 

   better needed – heuristic functions?!).  



 CSPs are commutative. 

◦ The order of any given set of actions (value 
assignements) has no effect on the outcome. 

◦ Example: choose colors for Australian territories one at a 
time 

 [WA=red then NT=green] same as  

   [NT=green then WA=red] 

 All practical CSP search algorithms consider a single 
variable assignment at a time, if D = d, Var = n 

    there are dn leaves, at n depth. 

 With a finite d number of variables the search tree is of finite 
depth. 

 



 Cfr. Depth-first search 

 Chooses values for one variable at a time and 

backtracks when a variable has no legal values left to 

assign. 

 Uninformed algorithm 

◦ No good general performance (see table p. 143) 



function BACKTRACKING-SEARCH(csp)  

return a solution, or failure 

 return RECURSIVE-BACKTRACKING({} , csp) 
 

function RECURSIVE-BACKTRACKING(assignment, csp)  

return a solution, or failure 

  if assignment is complete then return assignment 

  var  SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp) 

  for each value in ORDER-DOMAIN-VALUES(var, assignment, csp)  do 

  if value is consistent with assignment according to    

    CONSTRAINTS[csp] then 

     add {var=value} to assignment  

     result  RECURSIVE-BACTRACKING(assignment, csp) 

     if result  failure  then return result 

     remove {var=value} from assignment 

  return failure 











 Want improvements?  introduce heuristics 

 Domain independent (general-purpose, ok!) 

 Domain dependent (how?) 
 

 General-purpose methods can give huge gain in speed: 

◦ Which variable should be assigned next? 

◦ In what order should its values be tried? 

◦ Can we detect inevitable failure early? 

◦ Can we take advantage of problem structure? 



var  SELECT-UNASSIGNEDVARIABLE(VARIABLES[csp],assignment,csp) 

 

 A.k.a. most constrained variable heuristic („fail fast”) 

 Rule: choose variable with the fewest legal values 

 Which variable shall we try first? 



 Use degree heuristic 

 Rule: select variable that is involved in the largest 
number of constraints on other unassigned variables. 

 Degree heuristic is very useful as a tie breaker. 

 In what order should its values be tried? 



 Least constraining value heuristic 

 Rule: given a variable, choose the least constraining 
value i.e. the one that leaves the maximum flexibility for 
subsequent variable assignments. 



 Can we detect inevitable failure early? 

◦ And avoid it later? 

 Forward checking idea: keep track of remaining legal 
values for unassigned variables. 

 Terminate search when any variable has no legal values. 



 Forward checking does not see failures in advance. 

 NT and SA cannot be blue at the same time. 



X   Y  is arc-consistent if and only if for every value of X 

there exist some legal value of  Y. 
 

If X has lost a legal value, its neighbours must be check anew. 
 

Arc-consistency checking can be used as a pre-processing 

step, before starting the search, or during the search, at 

every moment when a new value is assigned to a variable. 



 A CSP is k-consistent if for any set of k-1 variables and 
for any consistent assignment to those variables, a 
consistent value can always be assigned to any kth 
variable. 

 A graph is strongly k-consistent if 

◦ It is k-consistent and 

◦ Is also (k-1) consistent, (k-2) consistent, … all the way 
down to 1-consistent. 
 

 YET no free lunch: any algorithm for establishing n-
consistency must take time exponential in n, in the worst 
case. 

 (1-consistency = node-consistency (unary constraints) 

  2-consistency = arc-consistency (binary constraints) 

  3-consistency = path-consistency) ( … ) 





 Use complete-state representation 

 For CSPs 

◦ allow states with unsatisfied constraints 

◦ operators reassign variable values 

 Variable selection: randomly select any conflicted 

variable 

 Value selection: min-conflicts heuristic 

◦ Select new value that results in a minimum number of 

conflicts with the other variables 



function MIN-CONFLICTS(csp, max_steps) return solution or failure 

 inputs: csp, a constraint satisfaction problem 

  max_steps, the number of steps allowed before giving up  
 

 current    an initial complete assignment for csp 

 for i = 1 to max_steps do 

    if current is a solution for csp then return current 

    var   a randomly chosen, conflicted variable from VARIABLES[csp] 

    value    the value v for var that minimizes                        

                                                       CONFLICTS(var,v,current,csp) 

       set var = value in current 

 return faiilure 

 



 Use of min-conflicts heuristic in hill-climbing. 

h=5 h=3 h=1 



 A two-step solution for a given 8-queens problem using 
min-conflicts heuristic. 

 At each stage a queen is chosen for reassignment in its 
column. 

 The algorithm moves the queen to the min-conflict 
square breaking ties randomly. 



 How can the problem structure  

   help to find a solution quickly? 

 Subproblem identification is important: 

◦ E.g. coloring Tasmania and mainland are independent 
subproblems 

◦ Identifiable as connected components of constrained 
graph. 

 Improves performance  



 Suppose each problem has  

   c variables out of a total of n. 

 Worst case solution cost is O((n/c) x dc),  

    i.e. linear in n 

◦ Instead of O(d n), exponential in n! 

 E.g. n= 80, c= 20, d=2 

◦ 280     = 4 billion years at 1 million nodes/sec. 

◦ 4 * 220= 0.4 second at 1 million nodes/sec 



 Theorem: if the constraint graph has no loops then CSP 
can be solved in O(nd2) time  

   (linear in the number of variables!) 

 Compare difference with general CSP, where worst case 
is O(dn) 



 In most cases subproblems of a CSP are connected as a tree 

 Any tree-structured CSP can be solved in time linear in the 
number of variables. 

◦ Choose a variable as root, order variables from root to leaves 
such that every node’s parent precedes it in the ordering. 

◦ For j from n down to 2, apply REMOVE-INCONSISTENT-
VALUES(Parent(Xj),Xj) 

◦ For j from 1 to n assign Xj consistently with Parent(Xj ) 

X1       X2        X3       X4       X5       X6  



 Can a more general constraint graph be reduced to tree? 

 Two approaches: 

◦ Remove certain nodes 

◦ Collapse certain nodes 



 Idea: assign values to some variables so that the 
remaining variables form a tree. 

 Assume that we assign {SA=x}  cycle cutset 

◦ And remove any values from the other variables that 
are inconsistent. 

◦ The selected value for SA could be wrong so we have 
to try all of them. 



 This approach is worthwhile if cycle cutset is small. 

 Finding the smallest cycle cutset is NP-hard 

◦ Approximation algorithms exist 

 This approach is called cutset conditioning. 



 Tree decomposition of the 
constraint graph into a set of 
connected subproblems. 

 Each subproblem is solved 
independently 

 Resulting solutions are 
combined. 

 Necessary requirements: 

◦ Every variable appears in at least one of the subproblems. 

◦ If two variables are connected in the original problem, 
they must appear together in at least one subproblem. 

◦ If a variable appears in two subproblems, it must appear 
in each node on the path. 



 CSPs are a special kind of problem: states defined by values 
of a fixed set of variables, goal test defined by constraints on 
variable values 

 Backtracking=depth-first search with one variable assigned 
per node 

 Variable ordering and value selection heuristics help 
significantly 

 Forward checking prevents assignments that lead to failure. 

 Constraint propagation does additional work to constrain 
values and detect inconsistencies. 

 The CSP representation allows analysis of problem structure. 

 Tree structured CSPs can be solved in linear time. 

 Iterative min-conflicts is usually effective in practice. 



Examples 

LTa = 2h, LTb = 3h, LTc = 5h, LTd = 4h 

Ta, Tb, Tc, Td, Tf = (0,1,2,3,4,5,6,7,8,9,10) 

 

The earliest finishing time (start of Tfinish)? 

(Solution:  Ta = 0, Tb = 2, Tc = (2,4), Td = 5, Tfinish = 9) 

 



a = 0 

  b = 1  

c = 0 

  d  = 1  

e = 0 

  f = 1, g = 1, i = 0, h = 1 
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http://www.aispace.org/constraint/version4.6.1signed/constraint.jnlp  

http://www.aispace.org/constraint/version4.6.1signed/constraint.jnlp
http://www.aispace.org/constraint/version4.6.1signed/constraint.jnlp

