Artificial Intelligence Constraint Satisfaction Problems CSP

More about

Textbook, Chapter 5, Constraint Satisfaction Problems

Outline

- What is CSP?
- Toy CSP and real life CSP
- CSP as search
 - Backtracking
 - Heuristics
 - Variable ordering and value selection
 - Forward checking
 - Constraint propagation
- Improved CSP representations
- Complexity of solving tree structured CSPs

- Physical laws
- Resources
- Schedules
- User demands
- Economics
- Safety regulations, standards, codes, etc.
- ...
- Logic constraints
- Arithmetic constraints
- Geometrical constraints

© 2012 Encyclopædia Britannica, Inc.

Production Requirements:

	Model A	Model B	Model C	Model D	
Options (\checkmark = required, \times = not):					
Sunroof	×	1	1	×	
Radio cassette	1	×	 	1	
Air-conditioning Anti-rust treatment	×	л	× ./	↓ ./	
Power brakes	$\hat{\checkmark}$	×	<i>✓</i>	×	
					Total:
Number of cars required:	30	30	20	40	120
	B				
│	<u></u> ÅÅ	_ 発発 ::	Work area	for	-
Work area for sunroof Capacity Constraint: 3/5			radio cassette		
			Capacity Constraint: 2/3		
L					

Hardware/ software formal verification, protocol design, etc.

Satisfability of logical expressions (SAT)

- what is the set of values of (binary) variables, which makes all stated logical expressions true in the same time?

$$(\mathbf{a} \lor \neg \mathbf{b} \lor \neg \mathbf{c})$$
 AND $(\mathbf{b} \lor \neg \mathbf{c})$ AND $(\mathbf{a} \lor \mathbf{c})$

a = True/ False?b = True/ False?c = True/ False?

here: a = True, b = True, c don't care, or a = True, c = False, b don't care, etc.

Variables: 3

Clauses: 3

IBM Load-Store Unit (LSU)

Hardware/ software formal verification, protocol design, etc.

The instance b	10236 -1005 10236 -1005	5 - 10050 0 After ca. 15 thousand pages later $5 - 10051 0$		
p cnf 51639 3683	1023			
-170	1000			
-160	100	-7 260 0		
-150	100	7 -260 0		
-1 -4 0	100	1072 1070 0		
-130	100	-15 -14 -13 -12 -11 -10 0		
-120	100	-15 -14 -13 -12 -11 10 0		
-1 -8 0	100	-15 -14 -13 -12 11 -10 0		
-9 15 0	101	-15 -14 -13 -12 11 10 0		
-9 14 0	100	-7 -6 -5 -4 -3 -2 0		
-9 13 0	1023	-7 -6 -5 -4 -3 2 0		
-9 -12 0	1023	-7 -6 -5 -4 3 -2 0		
-9 11 0	1023	-7 -6 -5 -4 3 2 0		
-9 10 0		185 0		
-9 -16 0				
-17 23 0	Search	h space of truth assignments: $2^{50000} \approx 3.160699437 \cdot 10^{15051}$		
-17 22 0				

Solved in ca. 10 msec!

Allocation problem

Five developments are to be located on the lots:

- (1) a recreation area,
- (2) an apartment complex,
- (3) a cluster of 50 single-family houses,
- (4) a large cemetery, and
- (5) a dump site.

Conditions:

- -The recreation area must be near the lake.
- Steep slopes must be avoided for all but the recreation area.
- Poor soil must be avoided for developments with construction (apartments, houses).
- The highway must not be near the apartments, the houses, or the recreation area.
- The dump site must not be visible from the apartments, the houses, or the lake.
- Lots 3 and 4 have poor soil.
- Lots 3, 4, 7, and 8 are on steep slopes.
- Lots 2, 3, and 4 are near the lake.
- Lots 1 and 2 are near the highway.
- No two developments may occur on the same lot.

Constraint satisfaction problem

- What is a CSP?
 - Finite set of variables V_1 , V_2 , ..., V_n
 - Finite set of constraints C_1, C_2, \ldots, C_m
 - Nonempty domain of possible values for each variable $D_{V1}, D_{V2}, \dots D_{Vn}$
 - Each constraint C_i limits the values that variables can take, e.g., $V_1 \neq V_2$
- A state is defined as an assignment of values to some or to all variables.
- Consistent assignment: does not violate the constraints.
- An assignment is *complete* when every variable is set.
- A solution to a CSP is a complete assignment that satisfies all constraints.
- Some CSPs require a solution that maximizes an objective function.

CSP example: map coloring

- Constraints: adjacent regions must have different colors.
 - E.g. $WA \neq NT$, $WA \neq SA$, $SA \neq NT$, ...
 - E.g. (*WA*,*NT*) ≠ (*red*, *green*), (*red*, *blue*), ...}

CSP example: map coloring

Constraint graph

- Benefits of CSP formulation
 - Standard representation pattern
 - Generic goal and successor functions
 - Generic heuristics (no domain specific expertise).
- Constraint graph = nodes are variables,

edges show constraints.

NT

SA

Q

NSW

- Graph can be used to simplify search.
 - e.g. Tasmania is an independent subproblem.

Varieties of CSPs

- Discrete variables
 - Finite domains; size $d \Rightarrow O(d^n)$ complete assignments.
 - e.g. Boolean CSP, includes Boolean satisfiability (NPcomplete).
 - Infinite domains (integers, strings, etc.)
 - e.g. job scheduling, variables are start/end days for each job
 - Need a constraint language

e.g $StartJob_1 + 5 \leq StartJob_3$.

- Linear constraints solvable, nonlinear undecidable.
- Continuous variables
 - e.g. start/end times for Hubble Telescope observations.
 - Linear constraints solvable in poly time by LP methods.

Varieties of constraints

- Unary constraints involve a single variable.
 e.g. SA ≠ green
- Binary constraints involve pairs of variables.
 ∘ e.g. SA ≠ WA
- Higher-order constraints involve 3 or more variables.
 e.g. cryptharithmetic column constraints.
- Preference (soft constraints) e.g. red is better than green often representable by a cost for each variable assignment → constrained optimization problems.

Example; cryptharithmetic

T W O + T W O F O U R

- Variables: F, T, U, W, R, O, X₁, X₂, X₃
- Domains: D_i = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
 D_j = {0, 1}
- Constraints: alldiff(F,T,U,W,R,O) $O + O = R + 10 \times X_1$, etc.

Constraint satisfaction problems

CSP as a standard search problem

- A CSP can easily expressed as a standard search problem.
- Incremental formulation
 - Initial State: the empty assignment {}.
 - Successor function: Assign value to an unassigned variable provided that there is no conflict.
 - Goal test: the current assignment is complete.
 - *Path cost*: as constant cost for every step.

CSP as a standard search problem

- This is the same for all CSP's !
- Solution is found at depth *n* (if there are *n* variables).
 - Hence depth first search can be used.
- Path is irrelevant.
- Branching factor *b* at the top level is *nd*.
- b=(n-l)d at depth l, hence n!dⁿ leaves can be generated (but only max. dⁿ complete assignments, O(nⁿ), Stirling's approx., a very stupid way of searching, something better needed – heuristic functions?!).

Commutativity and finite depth

CSPs are commutative.

- The order of any given set of actions (value assignements) has no effect on the outcome.
- Example: choose colors for Australian territories one at a time
 - [WA=red then NT=green] same as [NT=green then WA=red]
 - All practical CSP search algorithms consider a single variable assignment at a time, if #D = d, #Var = n

 \Rightarrow there are d^n leaves, at n depth.

With a finite d number of variables the search tree is of finite depth.

- Cfr. Depth-first search
- Chooses values for one variable at a time and backtracks when a variable has no legal values left to assign.
- Uninformed algorithm
 - No good general performance (see table p. 143)

- function BACKTRACKING-SEARCH(csp)
 return a solution, or failure
 return RECURSIVE-BACKTRACKING({}, csp)
- function RECURSIVE-BACKTRACKING(assignment, csp) return a solution, or failure if assignment is complete then return assignment $var \leftarrow SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)$ for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do if value is consistent with assignment according to CONSTRAINTS[csp] then add {var=value} to assignment result \leftarrow RECURSIVE-BACTRACKING(assignment, csp) if result ≠ failure then return result remove {var=value} from assignment return failure

Improving backtracking efficiency

• Want improvements? \rightarrow introduce heuristics

- Domain independent (general-purpose, ok!)
- Domain dependent (how?)
- General-purpose methods can give huge gain in speed:
 - Which variable should be assigned next?
 - In what order should its values be tried?
 - Can we detect inevitable failure early?
 - Can we take advantage of problem structure?

Most constraining variable (MCV) (Minimum remaining values)

- A.k.a. most constrained variable heuristic ("fail fast")
- Rule: choose variable with the fewest legal values
- Which variable shall we try first?

- Use degree heuristic
- Rule: select variable that is involved in the largest number of constraints on other unassigned variables.
- Degree heuristic is very useful as a tie breaker.
 - In what order should its values be tried?

Least constraining value (LCV)

- Least constraining value heuristic
- Rule: given a variable, choose the least constraining value i.e. the one that leaves the maximum flexibility for subsequent variable assignments.

Forward checking

- Can we detect inevitable failure early?
 - And avoid it later?
- Forward checking idea: keep track of remaining legal values for unassigned variables.
- Terminate search when any variable has no legal values.

Constraint propagation

Forward checking does not see failures in advance.
NT and SA cannot be blue at the same time.

Arc-consistency

- $X \rightarrow Y$ is **arc-consistent** if and only if for every value of X there exist some legal value of Y.
- If X has lost a legal value, its neighbours must be check anew.
- Arc-consistency checking can be used as a pre-processing step, before starting the search, or during the search, at every moment when a new value is assigned to a variable.

K-consistency

- A CSP is k-consistent if for any set of k-1 variables and for any consistent assignment to those variables, a consistent value can always be assigned to any kth variable.
- A graph is strongly *k*-consistent if
 - It is *k*-consistent and
 - Is also (k-1) consistent, (k-2) consistent, ... all the way down to 1-consistent.
- YET no free lunch: any algorithm for establishing nconsistency must take time exponential in n, in the worst case.
- (1-consistency = node-consistency (unary constraints)
 - 2-consistency = arc-consistency (binary constraints)

3-consistency = path-consistency) (...)

Local search (optimization) for CSP

- Use complete-state representation
- For CSPs
 - allow states with unsatisfied constraints
 - operators **reassign** variable values
- Variable selection: randomly select any conflicted variable
- Value selection: *min-conflicts heuristic*
 - Select new value that results in a minimum number of conflicts with the other variables

Local search for CSP

function MIN-CONFLICTS(csp, max_steps) return solution or failure inputs: csp, a constraint satisfaction problem max_steps, the number of steps allowed before giving up

current ← an initial complete assignment for *csp*

for *i* = 1 to *max_steps* **do**

if *current* is a solution for *csp* then return *current*

 $var \leftarrow a$ randomly chosen, conflicted variable from VARIABLES[csp]

value \leftarrow the value v for var that minimizes

CONFLICTS(var,v,current,csp)

set *var* = *value* in *current* **return** *faiilure*

Min-conflicts example 1

Use of min-conflicts heuristic in hill-climbing.

Min-conflicts example 2

- A two-step solution for a given 8-queens problem using min-conflicts heuristic.
- At each stage a queen is chosen for reassignment in its column.
- The algorithm moves the queen to the min-conflict square breaking ties randomly.

Problem structure

- How can the problem structure help to find a solution quickly?
- Subproblem identification is important:
 - E.g. coloring Tasmania and mainland are independent subproblems
 - Identifiable as connected components of constrained graph.
- Improves performance

Problem structure

- WA SA V T
- Suppose each problem has
 c variables out of a total of n.
- Worst case solution cost is O((n/c) x d^c),
 - i.e. linear in n
 - Instead of O(dⁿ), exponential in n!
- ▶ E.g. *n*= 80, *c*= 20, *d*=2
 - $2^{80} = 4$ billion years at 1 million nodes/sec.
 - 4 * 2^{20} = 0.4 second at 1 million nodes/sec

Tree-structured CSP

- Theorem: if the constraint graph has no loops then CSP can be solved in O(nd²) time (linear in the number of variables!)
- Compare difference with general CSP, where worst case is O(dⁿ)

Tree-structured CSPs

- In most cases subproblems of a CSP are connected as a tree
- Any tree-structured CSP can be solved in time linear in the number of variables.
 - Choose a variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering.
 - For *j* from *n* down to 2, apply REMOVE-INCONSISTENT-VALUES(Parent(X_j),X_j)
 - For from 1 to n assign X_i consistently with Parent(X_i)

- Can a more general constraint graph be reduced to tree?
- Two approaches:
 - Remove certain nodes
 - Collapse certain nodes

- Idea: assign values to some variables so that the remaining variables form a tree.
- Assume that we assign $\{SA=x\} \leftarrow cycle \ cutset$
 - And remove any values from the other variables that are inconsistent.
 - The selected value for SA could be wrong so we have to try all of them.

- This approach is worthwhile if cycle cutset is small.
- Finding the smallest cycle cutset is NP-hard
 Approximation algorithms exist
- This approach is called cutset conditioning.

- Tree decomposition of the constraint graph into a set of connected subproblems.
- Each subproblem is solved independently
- Resulting solutions are combined.

- Necessary requirements:
 - Every variable appears in at least one of the subproblems.
 - If two variables are connected in the original problem, they must appear together in at least one subproblem.
 - If a variable appears in two subproblems, it must appear in each node on the path.

Summary

- CSPs are a special kind of problem: states defined by values of a fixed set of variables, goal test defined by constraints on variable values
- Backtracking=depth-first search with one variable assigned per node
- Variable ordering and value selection heuristics help significantly
- Forward checking prevents assignments that lead to failure.
- Constraint propagation does additional work to constrain values and detect inconsistencies.
- The CSP representation allows analysis of problem structure.
- Tree structured CSPs can be solved in linear time.
- Iterative min-conflicts is usually effective in practice.

The earliest finishing time (start of Tfinish)? (Solution: Ta = 0, Tb = 2, Tc = (2,4), Td = 5, Tfinish = 9)

$C_{1}: a \lor b$ $C_{2}: c \lor d$ $C_{3}: a \lor e \lor f$ $C_{4}: \neg b \lor \neg f \lor g$ $C_{5}: \neg f \lor h$ $C_{6}: \neg b \lor \neg h \lor i$ $C_{7}: \neg g \lor \neg i$	$C_{1}: a \lor b$ $C_{2}: c \lor d$ $C_{3}: a \lor e \lor f$ $C_{4}: \neg b \lor \neg f \lor g$ $C_{5}: \neg f \lor h$ $C_{6}: \neg b \lor \neg h \lor i$ $C_{7}: \neg g \lor \neg i$	$C_{1}: a \lor b$ $C_{2}: c \lor d$ $C_{3}: a \lor e \lor f$ $C_{4}: \neg b \lor \neg f \lor g$ $C_{5}: \neg f \lor h$ $C_{6}: \neg b \lor \neg h \lor i$ $C_{7}: \neg g \lor \neg i$	$C_{1}: a \lor b$ $C_{2}: c \lor d$ $C_{3}: a \lor e \lor f$ $C_{4}: \neg b \lor \neg f \lor g$ $C_{5}: \neg f \lor h$ $C_{6}: \neg b \lor \neg h \lor i$ $C_{7}: \neg g \lor \neg i$	Example
$C_{1}: a \lor b$ $C_{2}: c \lor d$ $C_{3}: a \lor e \lor f$ $C_{4}: \neg b \lor \neg f \lor g$ $C_{5}: \neg f \lor h$ $C_{6}: \neg b \lor \neg h \lor i$ $C_{7}: \neg g \lor \neg i$	$C_{1}: a \lor b$ $C_{2}: c \lor d$ $C_{3}: a \lor e \lor f$ $C_{4}: \neg b \lor \neg f \lor g$ $C_{5}: \neg f \lor h$ $C_{6}: \neg b \lor \neg h \lor i$ $C_{7}: \neg g \lor \neg i$	$C_{1}: a \lor b$ $C_{2}: c \lor d$ $C_{3}: a \lor e \lor f$ $C_{4}: \neg b \lor \neg f \lor g$ $C_{5}: \neg f \lor h$ $C_{6}: \neg b \lor \neg h \lor i$ $C_{7}: \neg g \lor \neg i$	$C_{1}: a \lor b$ $C_{2}: c \lor d$ $C_{3}: a \lor e \lor f$ $C_{4}: \neg b \lor \neg f \lor g$ $C_{5}: \neg f \lor h$ $C_{6}: \neg b \lor \neg h \lor i$ $C_{7}: \neg g \lor \neg i$	S
$C_{1}: a \lor b$ $C_{2}: c \lor d$ $C_{3}: a \lor e \lor f$ $C_{4}: \neg b \lor \neg f \lor g$ $C_{5}: \neg f \lor h$ $C_{6}: \neg b \lor \neg h \lor i$ $C_{7}: \neg g \lor \neg i$	$C_{1} : a \lor b$ $C_{2} : c \lor d$ $C_{3} : a \lor e \lor f$ $C_{4} : \neg b \lor \neg f \lor g$ $C_{5} : \neg f \lor h$ $C_{6} : \neg b \lor \neg h \lor$ $C_{7} : \neg g \lor \neg i$	$C_{1} : a \lor b$ $C_{2} : c \lor d$ $C_{3} : a \lor e \lor d$ $C_{4} : \neg b \lor \neg f \lor$ $C_{5} : \neg f \lor h$ $C_{6} : \neg b \lor \neg h \lor$ $C_{7} : \neg g \lor \neg h$	a = 0 b = 1 c = 0 d = 1 e = 0 f = 1, g = 1 X e = 1	1, i = 0, h = 1

