
Artificial Intelligence 
 

Constraint Satisfaction Problems 
CSP 

More about 

   Textbook, Chapter 5, Constraint Satisfaction Problems 



 What is CSP? 
 Toy CSP and real life CSP 
 CSP as search 
◦ Backtracking 
◦ Heuristics 
 Variable ordering and value selection 
 Forward checking 
 Constraint propagation 

 Improved CSP representations 
 Complexity of solving tree structured CSPs 



Constraints 

 Physical laws 

 Resources 

 Schedules 

 User demands 

 Economics 

 Safety regulations, standards, codes, etc. 

 … 

 Logic constraints 

 Arithmetic constraints 

 Geometrical constraints 

 … 
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Hardware/ software formal verification,  

protocol design, etc. 

Satisfability of logical expressions (SAT) 

- what is the set of values of (binary) variables,  which makes  

all stated logical expressions true in the same time? 

a = True/ False? 

b = True/ False? 

c = True/ False? 

 

here: a = True, b = True,  c don’t care, or 

         a = True, c = False, b don’t care,  

         etc. 

 

      2 x 2 x 2 = 23 = 8  

Constraints 

Variables: 3 
 

Clauses: 3 



IBM Load-Store Unit (LSU) 
Constraints 

BMC –  

Bounded Model Checking 
 

Variables: 51654 
 

Clauses: 368367 
 

Temporal bound: 22 

https://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/BMC/description.html  
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AND 

AND 
 

AND 

https://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/BMC/description.html
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After ca. 15 thousand pages later 

Solved in ca. 10 msec! 

Hardware/ software formal verification, protocol design, etc. 

Constraints 



Allocation problem  
Five developments are to be located  

on the lots:  

(1) a recreation area,  

(2) an apartment complex,  

(3) a cluster of 50 single-family houses,  

(4) a large cemetery, and  

(5) a dump site.  

Constraints 

Conditions: 

-The recreation area must be near the lake. 

- Steep slopes must be avoided for all but the recreation area. 

- Poor soil must be avoided for developments with construction (apartments, houses). 

- The highway must not be near the apartments, the houses, or the recreation area. 

- The dump site must not be visible from the apartments, the houses, or the lake. 

- Lots 3 and 4 have poor soil. 

- Lots 3, 4, 7, and 8 are on steep slopes. 

- Lots 2, 3, and 4 are near the lake. 

- Lots 1 and 2 are near the highway. 

- No two developments may occur on the same lot. 



 What is a CSP? 

◦ Finite set of variables V1, V2, …, Vn 

◦ Finite set of constraints C1, C2, …, Cm 

◦ Nonempty domain of possible values for each variable  
                                                         DV1, DV2, … DVn 

◦ Each constraint Ci limits the values that variables can  

   take, e.g., V1 ≠ V2 

 A state is defined as an assignment of values to some  

   or to all variables. 

 Consistent assignment: does not violate the constraints.  

 An assignment is complete when every variable is set.  

 A solution to a CSP is a complete assignment that satisfies 
all constraints. 

 Some CSPs require a solution that maximizes an objective 
function.  

 



 Variables: WA, NT, Q,  

    NSW, V, SA, T 

 Domains: Di = {red, green, blue} 

 Constraints: adjacent regions must have  

   different colors. 

 E.g. WA  NT , WA  SA , SA  NT , …  

 E.g. (WA,NT)   (red, green), (red, blue), …} 

 etc. 



 Solutions are assignments satisfying  

   all constraints, e.g. 

 {WA = red, NT = green, Q = red, NSW = green, V = red, 

    SA = blue, T = green} 



 Benefits of CSP formulation 
◦ Standard representation pattern 

◦ Generic goal and successor functions 

◦ Generic heuristics (no domain specific expertise). 
 

 Constraint graph = nodes are variables,  

                                       edges show constraints. 

◦ Graph can be used to simplify search. 

 e.g. Tasmania is an independent  subproblem. 

 



 Discrete variables 

◦ Finite domains; size d O(dn) complete assignments. 

 e.g. Boolean CSP, includes Boolean satisfiability (NP-
complete). 

◦ Infinite domains (integers, strings, etc.) 

 e.g. job scheduling, variables are start/end days for 
each job 

 Need a constraint language  

     e.g   StartJob1 + 5 ≤  StartJob3. 

 Linear constraints solvable, nonlinear undecidable.  

 Continuous variables 

◦ e.g. start/end times for Hubble Telescope observations. 

◦ Linear constraints solvable in poly time by LP methods. 



 Unary constraints involve a single variable. 

◦ e.g. SA  green 
 

 Binary constraints involve pairs of variables. 

◦ e.g. SA  WA 
 

 Higher-order constraints involve 3 or more variables. 

◦ e.g. cryptharithmetic column constraints. 
 

 Preference (soft constraints) e.g. red is better than green 
often representable by a cost for each variable 
assignment  constrained optimization problems. 



 Variables: F, T, U, W, R, O, X1, X2, X3 

 Domains: Di = {0, 1, 2, 3, 4, 5, 6 , 7, 8, 9} 

 Dj = {0, 1} 

 Constraints:  

   alldiff(F,T,U,W,R,O) 

   O + O = R + 10 x X1, etc. 



Constraint satisfaction problems 



 A CSP can easily expressed as a standard search 

problem. 

 Incremental formulation 

◦ Initial State: the empty assignment {}. 

◦ Successor function: Assign value to an unassigned 

variable provided that there is no conflict. 

◦ Goal test: the current assignment is complete. 

◦ Path cost: as constant cost for every step. 



 This is the same for all CSP’s ! 

 Solution is found at depth n (if there are n variables). 

◦ Hence depth first search can be used. 

 Path is irrelevant. 

 Branching factor b at the top level is nd.  

 b=(n-l)d at depth l, hence n!dn leaves can be generated 

   (but only max. dn complete assignments, O(nn), Stirling’s 

approx., a very stupid way of searching, something 

   better needed – heuristic functions?!).  



 CSPs are commutative. 

◦ The order of any given set of actions (value 
assignements) has no effect on the outcome. 

◦ Example: choose colors for Australian territories one at a 
time 

 [WA=red then NT=green] same as  

   [NT=green then WA=red] 

 All practical CSP search algorithms consider a single 
variable assignment at a time, if D = d, Var = n 

    there are dn leaves, at n depth. 

 With a finite d number of variables the search tree is of finite 
depth. 

 



 Cfr. Depth-first search 

 Chooses values for one variable at a time and 

backtracks when a variable has no legal values left to 

assign. 

 Uninformed algorithm 

◦ No good general performance (see table p. 143) 



function BACKTRACKING-SEARCH(csp)  

return a solution, or failure 

 return RECURSIVE-BACKTRACKING({} , csp) 
 

function RECURSIVE-BACKTRACKING(assignment, csp)  

return a solution, or failure 

  if assignment is complete then return assignment 

  var  SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp) 

  for each value in ORDER-DOMAIN-VALUES(var, assignment, csp)  do 

  if value is consistent with assignment according to    

    CONSTRAINTS[csp] then 

     add {var=value} to assignment  

     result  RECURSIVE-BACTRACKING(assignment, csp) 

     if result  failure  then return result 

     remove {var=value} from assignment 

  return failure 











 Want improvements?  introduce heuristics 

 Domain independent (general-purpose, ok!) 

 Domain dependent (how?) 
 

 General-purpose methods can give huge gain in speed: 

◦ Which variable should be assigned next? 

◦ In what order should its values be tried? 

◦ Can we detect inevitable failure early? 

◦ Can we take advantage of problem structure? 



var  SELECT-UNASSIGNEDVARIABLE(VARIABLES[csp],assignment,csp) 

 

 A.k.a. most constrained variable heuristic („fail fast”) 

 Rule: choose variable with the fewest legal values 

 Which variable shall we try first? 



 Use degree heuristic 

 Rule: select variable that is involved in the largest 
number of constraints on other unassigned variables. 

 Degree heuristic is very useful as a tie breaker. 

 In what order should its values be tried? 



 Least constraining value heuristic 

 Rule: given a variable, choose the least constraining 
value i.e. the one that leaves the maximum flexibility for 
subsequent variable assignments. 



 Can we detect inevitable failure early? 

◦ And avoid it later? 

 Forward checking idea: keep track of remaining legal 
values for unassigned variables. 

 Terminate search when any variable has no legal values. 



 Forward checking does not see failures in advance. 

 NT and SA cannot be blue at the same time. 



X   Y  is arc-consistent if and only if for every value of X 

there exist some legal value of  Y. 
 

If X has lost a legal value, its neighbours must be check anew. 
 

Arc-consistency checking can be used as a pre-processing 

step, before starting the search, or during the search, at 

every moment when a new value is assigned to a variable. 



 A CSP is k-consistent if for any set of k-1 variables and 
for any consistent assignment to those variables, a 
consistent value can always be assigned to any kth 
variable. 

 A graph is strongly k-consistent if 

◦ It is k-consistent and 

◦ Is also (k-1) consistent, (k-2) consistent, … all the way 
down to 1-consistent. 
 

 YET no free lunch: any algorithm for establishing n-
consistency must take time exponential in n, in the worst 
case. 

 (1-consistency = node-consistency (unary constraints) 

  2-consistency = arc-consistency (binary constraints) 

  3-consistency = path-consistency) ( … ) 





 Use complete-state representation 

 For CSPs 

◦ allow states with unsatisfied constraints 

◦ operators reassign variable values 

 Variable selection: randomly select any conflicted 

variable 

 Value selection: min-conflicts heuristic 

◦ Select new value that results in a minimum number of 

conflicts with the other variables 



function MIN-CONFLICTS(csp, max_steps) return solution or failure 

 inputs: csp, a constraint satisfaction problem 

  max_steps, the number of steps allowed before giving up  
 

 current    an initial complete assignment for csp 

 for i = 1 to max_steps do 

    if current is a solution for csp then return current 

    var   a randomly chosen, conflicted variable from VARIABLES[csp] 

    value    the value v for var that minimizes                        

                                                       CONFLICTS(var,v,current,csp) 

       set var = value in current 

 return faiilure 

 



 Use of min-conflicts heuristic in hill-climbing. 

h=5 h=3 h=1 



 A two-step solution for a given 8-queens problem using 
min-conflicts heuristic. 

 At each stage a queen is chosen for reassignment in its 
column. 

 The algorithm moves the queen to the min-conflict 
square breaking ties randomly. 



 How can the problem structure  

   help to find a solution quickly? 

 Subproblem identification is important: 

◦ E.g. coloring Tasmania and mainland are independent 
subproblems 

◦ Identifiable as connected components of constrained 
graph. 

 Improves performance  



 Suppose each problem has  

   c variables out of a total of n. 

 Worst case solution cost is O((n/c) x dc),  

    i.e. linear in n 

◦ Instead of O(d n), exponential in n! 

 E.g. n= 80, c= 20, d=2 

◦ 280     = 4 billion years at 1 million nodes/sec. 

◦ 4 * 220= 0.4 second at 1 million nodes/sec 



 Theorem: if the constraint graph has no loops then CSP 
can be solved in O(nd2) time  

   (linear in the number of variables!) 

 Compare difference with general CSP, where worst case 
is O(dn) 



 In most cases subproblems of a CSP are connected as a tree 

 Any tree-structured CSP can be solved in time linear in the 
number of variables. 

◦ Choose a variable as root, order variables from root to leaves 
such that every node’s parent precedes it in the ordering. 

◦ For j from n down to 2, apply REMOVE-INCONSISTENT-
VALUES(Parent(Xj),Xj) 

◦ For j from 1 to n assign Xj consistently with Parent(Xj ) 

X1       X2        X3       X4       X5       X6  



 Can a more general constraint graph be reduced to tree? 

 Two approaches: 

◦ Remove certain nodes 

◦ Collapse certain nodes 



 Idea: assign values to some variables so that the 
remaining variables form a tree. 

 Assume that we assign {SA=x}  cycle cutset 

◦ And remove any values from the other variables that 
are inconsistent. 

◦ The selected value for SA could be wrong so we have 
to try all of them. 



 This approach is worthwhile if cycle cutset is small. 

 Finding the smallest cycle cutset is NP-hard 

◦ Approximation algorithms exist 

 This approach is called cutset conditioning. 



 Tree decomposition of the 
constraint graph into a set of 
connected subproblems. 

 Each subproblem is solved 
independently 

 Resulting solutions are 
combined. 

 Necessary requirements: 

◦ Every variable appears in at least one of the subproblems. 

◦ If two variables are connected in the original problem, 
they must appear together in at least one subproblem. 

◦ If a variable appears in two subproblems, it must appear 
in each node on the path. 



 CSPs are a special kind of problem: states defined by values 
of a fixed set of variables, goal test defined by constraints on 
variable values 

 Backtracking=depth-first search with one variable assigned 
per node 

 Variable ordering and value selection heuristics help 
significantly 

 Forward checking prevents assignments that lead to failure. 

 Constraint propagation does additional work to constrain 
values and detect inconsistencies. 

 The CSP representation allows analysis of problem structure. 

 Tree structured CSPs can be solved in linear time. 

 Iterative min-conflicts is usually effective in practice. 



Examples 

LTa = 2h, LTb = 3h, LTc = 5h, LTd = 4h 

Ta, Tb, Tc, Td, Tf = (0,1,2,3,4,5,6,7,8,9,10) 

 

The earliest finishing time (start of Tfinish)? 

(Solution:  Ta = 0, Tb = 2, Tc = (2,4), Td = 5, Tfinish = 9) 

 



a = 0 

  b = 1  

c = 0 

  d  = 1  

e = 0 

  f = 1, g = 1, i = 0, h = 1 
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http://www.aispace.org/constraint/version4.6.1signed/constraint.jnlp  

http://www.aispace.org/constraint/version4.6.1signed/constraint.jnlp
http://www.aispace.org/constraint/version4.6.1signed/constraint.jnlp

