Artificial Intelligence

Constraint Satisfaction Problems
CSP

More about
Textbook, Chapter 5, Constraint Satisfaction Problems

Qutline

What is CSP?
Toy CSP and real life CSP
CSP as search
- Backtracking
> Heuristics
- Variable ordering and value selection
- Forward checking
- Constraint propagation
Improved CSP representations
Complexity of solving tree structured CSPs

v v Vv

v

»

Constraints

Physical laws

Resources

Schedules

User demands

Economics

Safety regulations, standards, codes, etc.

Logic constraints
Arithmetic constraints
Geometrical constraints

4
>
4
4
>
4
4
>
4
4
> .

Constraints

Boyle’s law

AN

_6 —i
pressure pressure
o) o s
g g \Hy
=2 = Sl
S S B4 SIRER,
B §o.w’;
temperature temperature A 2.5
%)
\\\\\\\”///// 5B
2200 3007 s
=100 4 400=} b
= 5 10
= 0 €500 S

© 2012 Encyclopeedia Britannica, Inc.

Ol M © o vl ol
Ol N OIN MO |~ ©|©0
Moo |~ NI~ ®™
ol OlANI S | M|~
wiN|t|IN MO |0 |~
Tloml o~ N O |
oM~ —lo Ol S0
N[O ©O B T N DN~ O
It ol O~~~ 0| ©
< 0 O O ww ¢ T -—
» " (o 0] ()]
s0]

~lw© < | o o ™
© 0wl ola || m
w | N ~
<+ M| — M~ O A
o | ™ | c© ol 0
od

..."mg N~ o

Ju)

Constraints

Constraints

Production Requirements:
Model A Model B Model C Model D

o e b9

Options (v = required, X = not):

Sunroof X v v X
Radio cassette v X v v
Air-conditioning v v X v/
Anti-rust treatment X v v v
Power brakes v X v X
Total:
Number of cars required: 30 30 20 40 120
- el

Y VY-V YuwYey W
7 MR R R

Work area for
Work area for sunroof radio cassette

Capacity Constraint: 3/5 Capacity Constraint: 2/3

Constraints

10X10 Job Shop Scheduling Problem

Unconstrained Schedule

JOB 0 =14 120 180 240 300 3a0 420 480 240 &00
1 1 1 1 1 1 1 1 1 1 1

oW e = @MW Bkl s —

—_

Machine Required

0 I 1 M2 M3 M4
5 I V6 — 7 I 8 19

Constraints

A.\'lill'l

Vst:m

Constraints

Hardware/ software formal verification,
protocol design, etc.

Satisfablility of logical expressions (SAT)
- what is the set of values of (binary) variables, which makes
all stated logical expressions true in the same time?

(av =bv —¢c)AND (bv —c)AND (avec)

a = True/ False?
b = True/ False? 2x2x2=23=8

c = True/ False?

here: a = True, b = True, ¢ don’t care, or
a = True, ¢ = False, b don’t care, Variables: 3
etc.

Clauses: 3

Constraints
IBM Load-Store Unit (LSU)

The instance banc-ibn-6.cnf, IBM LSU 1997:

p cnf 51639 368352 BMC —
-170 Le., ((notXxq) orxz) .\ p Bounded Model Checking

not x4) or x .
150 etc. . L orx) AND Variables: 51654

—: ;; 0 Clauses: 368367
120 Temporal bound: 22
-1-80

-9150

:g :‘3‘ g Should x; be set to False??
-9 120

-9110

-9100

-9 -160

-17230
-17220

000S/SATLIB/Benchmarks/SAT/BMC/description.html

https://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/BMC/description.html

Constraints
Hardware/ software formal verification, protocol design, etc.

The instance ® 10236 —10050 0 After ca. 15 thousand pages later
10236 —10051 D
p cnf 51639 3683 1043
-170 10
100 ~7 2600
-150 100 72600
1-40 100} 1072 1070 0
-130 100 ~15 -14 -13 -12 -11 -100
-120 100 ~15-14 -13 -12-1110 0
-1-80 100 ~15 -14 <13 -1211 -10 0
9150 101 ~15 ~-14 -13 -1211 100
9140 100 —7-6-5-4-3-20
9130 1023 ~7-6-5-4-320
-9 120 1023 ~7-6-5-43-20
-9110 1023 -1 =06-5-4320
—9100 1850
~9-160
-1723 0 Search space of truth assignments: 2°°°° ~ 3.160699437 - 10**%*!

Solved in ca. 10 msec!

Constraints

Allocation problem

Five developments are to be located
on the lots:

(1) a recreation area,

(2) an apartment complex,

(3) a cluster of 50 single-family houses,
(4) a large cemetery, and

(5) a dump site.

Conditions:
-The recreation area must be near the lake.
- Steep slopes must be avoided for all but the recreation area.
- Poor soil must be avoided for developments with construction (apartments, houses).
- The highway must not be near the apartments, the houses, or the recreation area.
- The dump site must not be visible from the apartments, the houses, or the lake.
- Lots 3 and 4 have poor soil.
- Lots 3, 4, 7, and 8 are on steep slopes.
- | ots 2, 3, and 4 are near the lake.
$a0d 2 are near the highway.

\

 devel™magats may occur on the same lot.

Constraint satisfaction problem

What is a CSP?

> Finite set of variables V,, V,, ..., V,

> Finite set of constraints C,, C,, ..., C

- Nonempty domain of possible values for each variable

Dy, Dyy, ... Dyp

- Each constraint C, limits the values that variables can
take, e.g., V, # V,

» A state Is defined as an assignment of values to some
or to all variables.

» Consistent assignment: does not violate the constraints.

» An assignment is complete when every variable is set.

» Asolution to a CSP is a complete assignment that satisfies
all constraints.

» Some CSPs require a solution that maximizes an objective

v

CSP example: map coloring

Northern
Territory
Western Queensland
Australia
South TSN
Australia
New South Wales

» Variables: WA, NT, Q,
NSW, V, SA, T
» Domains: D, = {red, green, blue}
» Constraints: adjacent regions must have
different colors.
- E.g. WA =NT , WA =#SA, SA=NT, ...

- E.g. (WA,NT) = (red, green), (red, blue), ...

Tasmania

CSP example: map coloring

-
TN

TESH'I’_H.

» Solutions are assignments satisfying
all constraints, e.qg.
{WA =red, NT = green, Q =red, NSW = green, V =red,
SA = blue, T = green}

Constraint graph

» Benefits of CSP formulation ‘0
- Standard representation pattern
> Generic goal and successor functions @
- GGeneric heuristics (no domain specific expertise).

» Constraint graph = nodes are variables,

edges show constraints.
> Graph can be used to simplify search.
- e.g. Tasmania is an independent subproblem.

Varieties of CSPs

» Discrete variables
> Finite domains; size d =0(d") complete assignments.

- e.g. Boolean CSP, includes Boolean satisfiability (NP-
complete).

> Infinite domains (integers, strings, etc.)

- e.g. Job scheduling, variables are start/end days for
each job

- Need a constraint language
e.g StartJob, + 5 = StartJob..
- Linear constraints solvable, nonlinear undecidable.
» Continuous variables
> e.g. start/end times for Hubble Telescope observations.
o Linear constraints solvable in poly time by LP methods.

Varieties of constraints

v

Unary constraints involve a single variable.
> e.g. SA #green

Binary constraints involve pairs of variables.
> e.g. SA WA

Higher-order constraints involve 3 or more variables.
> e.g. cryptharithmetic column constraints.

v

v

Preference (soft constraints) e.g. red is better than green
often representable by a cost for each variable
assignment — constrained optimization problems.

v

Example; cryptharithmetic

T W
T W
O U

A0 O

+
F

» Variables: K T, U, W, R, O, X, X,, X,

» Domains: D,;={0, 1, 2,3,4,5,6, 7,8, 9}
» D;=1{0, 1}

» Constraints:

alldiff(F,T,U,W,R,0)

O+0=R+10x X, etc.

Constraint satisfaction problems

X: red
=g e = i
Z: green
Coloring | gr
Problem Constraint Graph
- ™\
Variables
Problem CSP
Val :
Statement i Algorithm Solution
Constraints

b —

CSP as a standard search problem

» A CSP can easily expressed as a standard search
problem.

» Incremental formulation
o |nitial State: the empty assignment {}.

> Successor function: Assign value to an unassigned
variable provided that there is no conflict.

- Goal test: the current assignment is complete.
- Path cost: as constant cost for every step.

CSP as a standard search problem

This is the same for all CSP’s |

Solution is found at depth n (if there are n variables).

- Hence depth first search can be used.

Path is irrelevant.

Branching factor b at the top level is nd.

b=(n-1)d at depth |, hence n!d" leaves can be generated

(but only max. d" complete assignments, O(n"), Stirling’s
approx., a very stupid way of searching, something

better needed — heuristic functions?!).

v Vv

v Vv Vv

Commutativity and finite depth

» CSPs are commutative.

- The order of any given set of actions (value
assignements) has no effect on the outcome.

- Example: choose colors for Australian territories one at a
time

- [WA=red then NT=green] same as
[INT=green then WA=red]

- All practical CSP search algorithms consider a single
variable assignment at atime, if #D = d, #Var = n

= there are d" leaves, at n depth.

» With a finite d number of variables the search tree is of finite
depth.

Backtracking search

» Cfr. Depth-first search

» Chooses values for one variable at a time and

backtracks when a variable has no legal values left to
assign.

» Uninformed algorithm
- No good general performance (see table p. 143)

Backtracking search

function BACKTRACKING-SEARCH(csp)
return a solution, or failure

return RECURSIVE-BACKTRACKING({} , csp)

function RECURSIVE-BACKTRACKING(assignment, csp)
return a solution, or failure
If assignment is complete then return assignment
var « SELECT-UNASSIGNED-VARIABLE(VARIABLES|csp],assignment,csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
If value is consistent with assignment according to
CONSTRAINTS][csp] then
add {var=value} to assignment
result «— RECURSIVE-BACTRACKING(assignment, csp)
If result =failure then return result

remove {var=value} from assignment
eturn failure

.........
\\\\\\\\

Backtracking search

Backtracking search

B
SR et

-

p—

Backtracking search

Backtracking search

Improving backtracking efficiency

» Want improvements? — introduce heuristics
- Domain independent (general-purpose, ok!)
- Domain dependent (how?)

» General-purpose methods can give huge gain in speed:
> Which variable should be assigned next?
> In what order should its values be tried?
- Can we detect inevitable failure early?
- Can we take advantage of problem structure?

Most constraining variable (MCV)
(Minimum remaining values)

o\

:"‘"‘P

r:_"‘%

|

At

var <« SELECT-UNASSIGNEDVARIABLE(VARIABLES][csp],assighment,csp)

» A.k.a. most constrained variable heuristic (,fail fast”)
» Rule: choose variable with the fewest legal values
» Which variable shall we try first?

Degree heuristic (DH)
15y -
S et S =

» Use degree heuristic

» Rule: select variable that is involved in the largest
number of constraints on other unassigned variables.

» Degree heuristic is very useful as a tie breaker.
what order should its values be tried?

\' T
-
A\
A\
\\ RA
A\ A\
\\
A X4

Least constraining value (LCV)

‘. Allows 1 value for SA

‘i

o<

Allows 0 values for SA

» Least constraining value heuristic

» Rule: given a variable, choose the least constraining
value i.e. the one that leaves the maximum flexibility for

subseguent variable assignments.

Forward checking

g

/

WA NT Q NSW V' SA T
I I i ire e ir e
s "EErEmrE[ErE] "E[EEE
| m[aem mEiE] E[EEE

» Can we detect inevitable failure early?
- And avoid it later?

» Forward checking idea: keep track of remaining legal
values for unassigned variables.

» Terminate search when any variable has no legal values.

Constraint propagation

e B e § . s A
~ < I\ af < /\ af T A
" 4 v 3 / - 3 . - a
4 N y/ '\
i e — ,
\ A\ = - \ \
3\ — J \ e | \ d - '
o \ J - W _\./) e it W
O o .

R

WA NT Q NSW \ SA T

s "EErEmrE[ErE] "E[mEE

| m[aem mEiE] E[EEE

» Forward checking does not see failures in advance.
» NT and SA cannot be blue at the same time.

Arc-consistency

X =Y Is arc-consistent if and only if for every value of X
there exist some legal value of Y.

If X has lost a legal value, its neighbours must be check anew.

Arc-consistency checking can be used as a pre-processing
step, before starting the search, or during the search, at
every moment when a new value is assigned to a variable.

1 < V9
. . U1

\\\\\

v < U9

)

K-consistency

» A CSP is k-consistent if for any set of k-1 variables and
for any consistent assignment to those variables, a
consistent value can always be assigned to any kth
variable.

» A graph is strongly k-consistent if
> It Is k-consistent and

> |s also (k-1) consistent, (k-2) consistent, ... all the way
down to 1-consistent.

» YET no free lunch: any algorithm for establishing n-
consistency must take time exponential in n, in the worst
case.

» (1-consistency = node-consistency (unary constraints)
» 2-consistency = arc-consistency (binary constraints)
3=s@QSistency = path-consistency) (...)

Arc-consistency (p—€L—¢>

WA NT

WA NT Q NSW v SA T

| I T HETH

Local search (optimization) for CSP

» Use complete-state representation

» For CSPs
- allow states with unsatisfied constraints
o operators reassign variable values

» Variable selection: randomly select any conflicted
variable

» Value selection: min-conflicts heuristic

o Select new value that results in a minimum number of
conflicts with the other variables

Local search for CSP

function MIN-CONFLICTS(csp, max_steps) return solution or failure
Inputs: csp, a constraint satisfaction problem
max_steps, the number of steps allowed before giving up

current < an initial complete assignment for csp
for i =1 to max_steps do
If current is a solution for csp then return current
var <~ a randomly chosen, conflicted variable from VARIABLES[csp]
value <« the value v for var that minimizes
CONFLICTS(var,v,current,csp)

set var = value in current
return faiilure

Min-conflicts example 1

7.

B B
h=5

B B
h=3

=

S
h=1

» Use of min-conflicts heuristic in hill-climbing.

.

Min-conflicts example 2

» A two-step solution for a given 8-queens problem using
min-conflicts heuristic.

» At each stage a queen is chosen for reassignment in its
column.

» The algorithm moves the queen to the min-conflict
uare breaking ties randomly.

Problem structure

» How can the problem structure

help to find a solution quickly? @
» Subproblem identification is important:

- E.g. coloring Tasmania and mainland are independent
subproblems

- |dentifiable as connected components of constrained
graph.
» Improves performance

Problem structure

» Suppose each problem has °
c variables out of a total of n. @
» Worst case solution cost is O((n/c) x d°),
l.e. linear in n
> Instead of O(d "), exponential in n!
» E.g. n=80, c= 20, d=2
- 280 =4 billion years at 1 million nodes/sec.
o 4 * 220= 0.4 second at 1 million nodes/sec

Tree-structured CSP

e (a) e

» Theorem: if the constraint graph has no loops then CSP
can be solved in O(nd?) time

(linear in the number of variables!)

» Compare difference with general CSP, where worst case
Is O(d")

Tree-structured CSPs

0 e X, X, Xy X, Xe X
S - &

» In most cases subproblems of a CSP are connected as a tree

» Any tree-structured CSP can be solved in time linear in the
number of variables.

- Choose a variable as root, order variables from root to leaves
such that every node’s parent precedes it in the ordering.
> For j from n down to 2, apply REMOVE-INCONSISTENT-
VALUES(Parent(X), X))
kfom 1 to n assign X consistently with Parent(X;)

SRR
““

Nearly tree-structured CSP

©

» Can a more general constraint graph be reduced to tree?
» Two approaches:

- Remove certain nodes

- Collapse certain nodes

Nearly tree-structured CSP

=)
(W

O,

» ldea: assign values to some variables so that the
remaining variables form a tree.

» Assume that we assign {SA=x} « cycle cutset

- And remove any values from the other variables that
are inconsistent.

> The selected value for SA could be wrong so we have
to try all of them.

Nearly tree-structured CSP

©

» This approach is worthwhile if cycle cutset is small.

» Finding the smallest cycle cutset is NP-hard
> Approximation algorithms exist

» This approach is called cutset conditioning.

Nearly tree-structured CSP

» Tree decomposition of the
constraint graph into a set of
connected subproblems.

» Each subproblem is solved
Independently

» Resulting solutions are
combined.

» Necessary reqguirements:

- Every variable appears in at least one of the subproblems.

> |f two variables are connected in the original problem,
they must appear together in at least one subproblem.

a variable appears in two subproblems, it must appear
‘ea®sgode on the path.

Summary

4

CSPs are a special kind of problem: states defined by values
of a fixed set of variables, goal test defined by constraints on
variable values

Backtracking=depth-first search with one variable assigned
per node

Variable ordering and value selection heuristics help
significantly
Forward checking prevents assignments that lead to failure.

Constraint propagation does additional work to constrain
values and detect inconsistencies.

The CSP representation allows analysis of problem structure.
Tree structured CSPs can be solved in linear time.
Iterative min-conflicts is usually effective in practice.

Examples theimcti

Tb Td
Ta<2 =<Tb +4 =<Tfmish
X ; Td +4 =<Tfinis/
Tfinish
) \ /
9 =<Te Te =5 =< Tfmish
C
1. Ta+2<Th
2. Ta+2<Tc
LTa = 2h, LTb = 3h, LTc = 5h, LTd = 4h L Tt < T
Ta, Tb, Tc, Td, Tf= (0,1,2,34,56,7,89,10) 1 °72° /"

The earliest finishing time (start of Ttinish)?
(Solution: Ta=0, Tb =2, Tc =(2,4), Td =5, Tfinish = 9)

Ci:avhb Cq b (1 Cq
G:cvd G:cvd G:cvd Co d [Tl
(3:aveVvf C3 eV f C3: eV f C3 eV f X
Ca:-bVv—fVg Ca:—-bVv~—-fVg Ca : —-fVvg Ca: —-f Vg m
Cs:—f V h Cs:—~f V h Cs:—f V h Cs:—~f V h 3
Ce: bV —h Vi Ce:—-bv—-hvi|GC: —h Vi Ce : —h Vi
Cz:—g V =i Cz:—gV —i Cz:—gV i Cz:—gV —i -G
(D
Cl . Cl . Cl . Cl . N
C2 . C2 . C2 . C2 .
C3 eV f C3 f C3 C3
Cy —-fvg | Gg: —-fvg | Gg: g | G
Cs:—f VvV h Cs:—f VvV h Cs : h Cs : h
Ce : —h Vi Ce : —h Vi Ce : —h Vi Ce : —h Vi
C7: —g VvV —i (7 —g VvV —i C7: —g VvV —i C7: =
Cl . Cl . Cl . a=0
C2 : C2 : C2 : b=1
C3: C3: C3: eV f c=0
Ca : Ca : Ca : —-fVvg d =1
Cs : h Cs : Cs:—~f V h e=0
ij.: —h ij.: —h ij.: —h V i f:l,g:1,|:0’h:1
Gy Gy Cz:—g V=i X
e=1

2| CSP Applet Version 4.6.1 --- schedulinglaml

- ——

File Edit View CSP Options Help

-

:*: | Create Variable | Create Constraint

c

ps X

Add Variable to Constraint | Select

X

Delete

Set Properties

Create | Solve |

Click the canvas to create avariable.

http://www.aispace.org/constraint/version4.6.1signed/constraint.jnlp

A=D

D:
1,23, 4

not(B=0)

r

[4]

http://www.aispace.org/constraint/version4.6.1signed/constraint.jnlp
http://www.aispace.org/constraint/version4.6.1signed/constraint.jnlp

