
Artificial Intelligence

Constraint Satisfaction Problems
CSP

More about

 Textbook, Chapter 5, Constraint Satisfaction Problems

 What is CSP?
 Toy CSP and real life CSP
 CSP as search
◦ Backtracking
◦ Heuristics
 Variable ordering and value selection
 Forward checking
 Constraint propagation

 Improved CSP representations
 Complexity of solving tree structured CSPs

Constraints

 Physical laws

 Resources

 Schedules

 User demands

 Economics

 Safety regulations, standards, codes, etc.

 …

 Logic constraints

 Arithmetic constraints

 Geometrical constraints

 …

Constraints

Constraints

Constraints

Constraints

Constraints

Constraints

Hardware/ software formal verification,

protocol design, etc.

Satisfability of logical expressions (SAT)

- what is the set of values of (binary) variables, which makes

all stated logical expressions true in the same time?

a = True/ False?

b = True/ False?

c = True/ False?

here: a = True, b = True, c don’t care, or

 a = True, c = False, b don’t care,

 etc.

 2 x 2 x 2 = 23 = 8

Constraints

Variables: 3

Clauses: 3

IBM Load-Store Unit (LSU)
Constraints

BMC –

Bounded Model Checking

Variables: 51654

Clauses: 368367

Temporal bound: 22

https://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/BMC/description.html

AND

AND

AND

AND

https://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/BMC/description.html

4

After ca. 15 thousand pages later

Solved in ca. 10 msec!

Hardware/ software formal verification, protocol design, etc.

Constraints

Allocation problem
Five developments are to be located

on the lots:

(1) a recreation area,

(2) an apartment complex,

(3) a cluster of 50 single-family houses,

(4) a large cemetery, and

(5) a dump site.

Constraints

Conditions:

-The recreation area must be near the lake.

- Steep slopes must be avoided for all but the recreation area.

- Poor soil must be avoided for developments with construction (apartments, houses).

- The highway must not be near the apartments, the houses, or the recreation area.

- The dump site must not be visible from the apartments, the houses, or the lake.

- Lots 3 and 4 have poor soil.

- Lots 3, 4, 7, and 8 are on steep slopes.

- Lots 2, 3, and 4 are near the lake.

- Lots 1 and 2 are near the highway.

- No two developments may occur on the same lot.

 What is a CSP?

◦ Finite set of variables V1, V2, …, Vn

◦ Finite set of constraints C1, C2, …, Cm

◦ Nonempty domain of possible values for each variable
 DV1, DV2, … DVn

◦ Each constraint Ci limits the values that variables can

 take, e.g., V1 ≠ V2

 A state is defined as an assignment of values to some

 or to all variables.

 Consistent assignment: does not violate the constraints.

 An assignment is complete when every variable is set.

 A solution to a CSP is a complete assignment that satisfies
all constraints.

 Some CSPs require a solution that maximizes an objective
function.

 Variables: WA, NT, Q,

 NSW, V, SA, T

 Domains: Di = {red, green, blue}

 Constraints: adjacent regions must have

 different colors.

 E.g. WA  NT , WA  SA , SA  NT , …

 E.g. (WA,NT)  (red, green), (red, blue), …}

 etc.

 Solutions are assignments satisfying

 all constraints, e.g.

 {WA = red, NT = green, Q = red, NSW = green, V = red,

 SA = blue, T = green}

 Benefits of CSP formulation
◦ Standard representation pattern

◦ Generic goal and successor functions

◦ Generic heuristics (no domain specific expertise).

 Constraint graph = nodes are variables,

 edges show constraints.

◦ Graph can be used to simplify search.

 e.g. Tasmania is an independent subproblem.

 Discrete variables

◦ Finite domains; size d O(dn) complete assignments.

 e.g. Boolean CSP, includes Boolean satisfiability (NP-
complete).

◦ Infinite domains (integers, strings, etc.)

 e.g. job scheduling, variables are start/end days for
each job

 Need a constraint language

 e.g StartJob1 + 5 ≤ StartJob3.

 Linear constraints solvable, nonlinear undecidable.

 Continuous variables

◦ e.g. start/end times for Hubble Telescope observations.

◦ Linear constraints solvable in poly time by LP methods.

 Unary constraints involve a single variable.

◦ e.g. SA  green

 Binary constraints involve pairs of variables.

◦ e.g. SA  WA

 Higher-order constraints involve 3 or more variables.

◦ e.g. cryptharithmetic column constraints.

 Preference (soft constraints) e.g. red is better than green
often representable by a cost for each variable
assignment  constrained optimization problems.

 Variables: F, T, U, W, R, O, X1, X2, X3

 Domains: Di = {0, 1, 2, 3, 4, 5, 6 , 7, 8, 9}

 Dj = {0, 1}

 Constraints:

 alldiff(F,T,U,W,R,O)

 O + O = R + 10 x X1, etc.

Constraint satisfaction problems

 A CSP can easily expressed as a standard search

problem.

 Incremental formulation

◦ Initial State: the empty assignment {}.

◦ Successor function: Assign value to an unassigned

variable provided that there is no conflict.

◦ Goal test: the current assignment is complete.

◦ Path cost: as constant cost for every step.

 This is the same for all CSP’s !

 Solution is found at depth n (if there are n variables).

◦ Hence depth first search can be used.

 Path is irrelevant.

 Branching factor b at the top level is nd.

 b=(n-l)d at depth l, hence n!dn leaves can be generated

 (but only max. dn complete assignments, O(nn), Stirling’s

approx., a very stupid way of searching, something

 better needed – heuristic functions?!).

 CSPs are commutative.

◦ The order of any given set of actions (value
assignements) has no effect on the outcome.

◦ Example: choose colors for Australian territories one at a
time

 [WA=red then NT=green] same as

 [NT=green then WA=red]

 All practical CSP search algorithms consider a single
variable assignment at a time, if D = d, Var = n

  there are dn leaves, at n depth.

 With a finite d number of variables the search tree is of finite
depth.

 Cfr. Depth-first search

 Chooses values for one variable at a time and

backtracks when a variable has no legal values left to

assign.

 Uninformed algorithm

◦ No good general performance (see table p. 143)

function BACKTRACKING-SEARCH(csp)

return a solution, or failure

 return RECURSIVE-BACKTRACKING({} , csp)

function RECURSIVE-BACKTRACKING(assignment, csp)

return a solution, or failure

 if assignment is complete then return assignment

 var  SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)

 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

 if value is consistent with assignment according to

 CONSTRAINTS[csp] then

 add {var=value} to assignment

 result  RECURSIVE-BACTRACKING(assignment, csp)

 if result  failure then return result

 remove {var=value} from assignment

 return failure

 Want improvements?  introduce heuristics

 Domain independent (general-purpose, ok!)

 Domain dependent (how?)

 General-purpose methods can give huge gain in speed:

◦ Which variable should be assigned next?

◦ In what order should its values be tried?

◦ Can we detect inevitable failure early?

◦ Can we take advantage of problem structure?

var  SELECT-UNASSIGNEDVARIABLE(VARIABLES[csp],assignment,csp)

 A.k.a. most constrained variable heuristic („fail fast”)

 Rule: choose variable with the fewest legal values

 Which variable shall we try first?

 Use degree heuristic

 Rule: select variable that is involved in the largest
number of constraints on other unassigned variables.

 Degree heuristic is very useful as a tie breaker.

 In what order should its values be tried?

 Least constraining value heuristic

 Rule: given a variable, choose the least constraining
value i.e. the one that leaves the maximum flexibility for
subsequent variable assignments.

 Can we detect inevitable failure early?

◦ And avoid it later?

 Forward checking idea: keep track of remaining legal
values for unassigned variables.

 Terminate search when any variable has no legal values.

 Forward checking does not see failures in advance.

 NT and SA cannot be blue at the same time.

X  Y is arc-consistent if and only if for every value of X

there exist some legal value of Y.

If X has lost a legal value, its neighbours must be check anew.

Arc-consistency checking can be used as a pre-processing

step, before starting the search, or during the search, at

every moment when a new value is assigned to a variable.

 A CSP is k-consistent if for any set of k-1 variables and
for any consistent assignment to those variables, a
consistent value can always be assigned to any kth
variable.

 A graph is strongly k-consistent if

◦ It is k-consistent and

◦ Is also (k-1) consistent, (k-2) consistent, … all the way
down to 1-consistent.

 YET no free lunch: any algorithm for establishing n-
consistency must take time exponential in n, in the worst
case.

 (1-consistency = node-consistency (unary constraints)

 2-consistency = arc-consistency (binary constraints)

 3-consistency = path-consistency) (…)

 Use complete-state representation

 For CSPs

◦ allow states with unsatisfied constraints

◦ operators reassign variable values

 Variable selection: randomly select any conflicted

variable

 Value selection: min-conflicts heuristic

◦ Select new value that results in a minimum number of

conflicts with the other variables

function MIN-CONFLICTS(csp, max_steps) return solution or failure

 inputs: csp, a constraint satisfaction problem

 max_steps, the number of steps allowed before giving up

 current  an initial complete assignment for csp

 for i = 1 to max_steps do

 if current is a solution for csp then return current

 var  a randomly chosen, conflicted variable from VARIABLES[csp]

 value  the value v for var that minimizes

 CONFLICTS(var,v,current,csp)

 set var = value in current

 return faiilure

 Use of min-conflicts heuristic in hill-climbing.

h=5 h=3 h=1

 A two-step solution for a given 8-queens problem using
min-conflicts heuristic.

 At each stage a queen is chosen for reassignment in its
column.

 The algorithm moves the queen to the min-conflict
square breaking ties randomly.

 How can the problem structure

 help to find a solution quickly?

 Subproblem identification is important:

◦ E.g. coloring Tasmania and mainland are independent
subproblems

◦ Identifiable as connected components of constrained
graph.

 Improves performance

 Suppose each problem has

 c variables out of a total of n.

 Worst case solution cost is O((n/c) x dc),

 i.e. linear in n

◦ Instead of O(d n), exponential in n!

 E.g. n= 80, c= 20, d=2

◦ 280 = 4 billion years at 1 million nodes/sec.

◦ 4 * 220= 0.4 second at 1 million nodes/sec

 Theorem: if the constraint graph has no loops then CSP
can be solved in O(nd2) time

 (linear in the number of variables!)

 Compare difference with general CSP, where worst case
is O(dn)

 In most cases subproblems of a CSP are connected as a tree

 Any tree-structured CSP can be solved in time linear in the
number of variables.

◦ Choose a variable as root, order variables from root to leaves
such that every node’s parent precedes it in the ordering.

◦ For j from n down to 2, apply REMOVE-INCONSISTENT-
VALUES(Parent(Xj),Xj)

◦ For j from 1 to n assign Xj consistently with Parent(Xj)

X1 X2 X3 X4 X5 X6

 Can a more general constraint graph be reduced to tree?

 Two approaches:

◦ Remove certain nodes

◦ Collapse certain nodes

 Idea: assign values to some variables so that the
remaining variables form a tree.

 Assume that we assign {SA=x}  cycle cutset

◦ And remove any values from the other variables that
are inconsistent.

◦ The selected value for SA could be wrong so we have
to try all of them.

 This approach is worthwhile if cycle cutset is small.

 Finding the smallest cycle cutset is NP-hard

◦ Approximation algorithms exist

 This approach is called cutset conditioning.

 Tree decomposition of the
constraint graph into a set of
connected subproblems.

 Each subproblem is solved
independently

 Resulting solutions are
combined.

 Necessary requirements:

◦ Every variable appears in at least one of the subproblems.

◦ If two variables are connected in the original problem,
they must appear together in at least one subproblem.

◦ If a variable appears in two subproblems, it must appear
in each node on the path.

 CSPs are a special kind of problem: states defined by values
of a fixed set of variables, goal test defined by constraints on
variable values

 Backtracking=depth-first search with one variable assigned
per node

 Variable ordering and value selection heuristics help
significantly

 Forward checking prevents assignments that lead to failure.

 Constraint propagation does additional work to constrain
values and detect inconsistencies.

 The CSP representation allows analysis of problem structure.

 Tree structured CSPs can be solved in linear time.

 Iterative min-conflicts is usually effective in practice.

Examples

LTa = 2h, LTb = 3h, LTc = 5h, LTd = 4h

Ta, Tb, Tc, Td, Tf = (0,1,2,3,4,5,6,7,8,9,10)

The earliest finishing time (start of Tfinish)?

(Solution: Ta = 0, Tb = 2, Tc = (2,4), Td = 5, Tfinish = 9)

a = 0

 b = 1

c = 0

 d = 1

e = 0

 f = 1, g = 1, i = 0, h = 1

X

e = 1

E
x
a
m

p
le

s

http://www.aispace.org/constraint/version4.6.1signed/constraint.jnlp

http://www.aispace.org/constraint/version4.6.1signed/constraint.jnlp
http://www.aispace.org/constraint/version4.6.1signed/constraint.jnlp

