
Artificial Intelligence 
Adversarial search 

More about 

   Textbook, Chapter 6, Adversarial Search 



Adversarial search – two-player games 

Problem:  - not only we act, the opposing agent also acts 

   - we do not know its actions 

   - we must be prepared for every contingency with 

   a strategy 

   - generally zero-sum games (win = -loss) 

   - ability to make some decision even when  

   calculating the optimal decision is infeasible 

   - games penalize inefficiency severely. 
 

Model: - Max, Min players (Max moves first) 

   - initial state 

   - successor function  

   - terminal test (goal test) 

   - utility (objective, pay-off) function 



e.g. Chess: 

search state of the game:  

  ca. 1047 states 

search (game) tree: 

  ca. 10123 games 

(average) branching factor: 

  35 

Search (game) tree       (tic-tac-toe) 



- find the optimal strategy for Max assuming an infallible Min 

- assumption: Both players play optimally! 

- the optimal strategy can be determined by using the 

minimax value of each node (Zermelo 1912) 

Optimal decision strategy - Minimax 
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Optimal decision strategy - Minimax 

Minimax Algorithm 

Complete depth-first exploration of the game tree 

 

Complexity:    Time O(bd) 

   Space O(bd) 

Complete?   Yes, if the tree is finite  

Optimal?  Yes, against an optimal adversary 

 

Otherwise? 

 

(Chess: b ≈ 35, d ≈  80?  O(10123) different games) 

(really we need to search the whole tree?) 

 



Minimax - example 



II-Nim  

Nim 1. Two players take turns removing objects from distinct heaps or piles.  

2. On each turn, a player must remove at least one object, and  

    may remove any number of objects provided they all come from  

    the same heap/pile 

3. The goal of the game is to avoid taking the last object. 
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The solution of the game:  

beginner loses, if adversary  

plays optimally. 

Nim 
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Checkers solved, optimal game is a draw! 

Search space of checkers ca. 5 x 1020 board position 

History 
1950 – self-learning program of Arthur Samuel 

1963 – one win against a talented human  

1989 - Chinook project, to win against the human world champion 

1990 - Chinook aproved to take part in the World Championship 

1992 - Marion Tinsley, world champion,  

 has difficulties in the match for 

 the title, but finally wins 

1994 – return match, Tinsley stands  

 down due to health conditions,  

 dies shorty after 

1996 - Chinook stronger, than every  

 human player 



-1 

History of computing 
 

1989 – 2007 

1992 peak: more than 200 processors 

2006-2007 50 processor, on average 
 

The longest distributed, continuously run computation 

until recently 

Fault tolerance of the computations and  

computer systems 
 

Errors due to frequent moving of very large  

datafiles to local disks, to other computers on the  

network (duplication, control) 
 

Periodic control of the already computed data 

bases due to the data loss (“bit rot”),  

(copy, safe, recomputing) 
 

Disk manufacturer warranty – 10 -13 error rate 

The computations were more complicated 

http://webdocs.cs.ualberta.ca/~chinook/  

http://webdocs.cs.ualberta.ca/~chinook/


Minimax  

reconsidered 

Assume, that the outcome of the game is only 

-1 és 1.  

Can we spare some computations? And if real? 

Justifiable cut-offs 



Minimax  

reconsidered 



Number of game states is exponential in  

the number of moves. 

Solution: Do not examine every node  

   => pruning: 
 

     remove branches that do not  

 influence final decision 

Alpha-beta prunning 
Depth first search – only nodes along a single path at any time 

α = highest-value choice that we can guarantee for MAX so far   

      in the current subtree. 

β = lowest-value choice that we can guarantee for MIN so far in  

      the current subtree. 

Update values of α and β during search and prune remaining 

branches as soon as the value is known to be worse than the 

current α or β value for MAX or MIN. 

Minimax  

reconsidered 



Alpha-beta prunning 
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Recall: 

– : value of best move for us seen so far in current search path 

– : best move for opponent (worst move for us) seen so far in   

   current search path 

    If   , prune   Initial : −∞ 

       Initial :  ∞ 
      

           If m is better for MAX, than n,  

           then we never get to n in the game. 
 

                Prunning does not influence the 
           outcome. Good step ordering 
           increases the prunning efficiency. 

        With „ideal ordering” the time complexity 
        is O(b d/2), O(b 3d/4) on the average (in 
        Chess  O(b m/2) = O((√b)m) , the effective 
        b is 6 instead of 35:  b = √ 35 ≈ 6) 

 

 

 

Alpha-beta prunning 





http://inst.eecs.berkeley.edu/ 

~cs61b/fa14/ta-materials/apps/ 

ab_tree_practice/ 



From http://www.cs.ucla.edu/~rosen/161/notes/alphabeta.html   

Alpha-beta  

prunning – example 

http://www.cs.ucla.edu/~rosen/161/notes/alphabeta.html
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Evaluation functions 
 

 

State → number mapping. The larger the number, the more 

valuable the position. 

Qualifying a given state – checking the search tree up do a given 

depth, where the leaves are not the final states of the game, but 

some intermediate game states, qualified by the evaluating function. 
 

At the beginning of the game (far from the final state ) the 

evaluating function is inaccurate, must be coupled with a search to 

a certain depth. 

At the end of the game (close to the final state) the evaluating 

function can be fairly accurate, enough to qualify the state without 

any search. alkalmazható. 



1957: Herbert Simon 

- “within 10 years a computer will beat the world chess champion” 

- 1997: Deep Blue beats Kasparov 

  Parallel machine with 30 processors for “software” and 480 VLSI  

  processors for “hardware search” 

  Searched 126 million nodes (chess positions) per second on average 

  Generated up to 30 billion positions per move 

  Reached depth 14 routinely 

  Uses iterative-deepening alpha-beta search with transpositioning 

  Can explore beyond depth-limit for interesting moves 

Evaluation  

functions 



 Deep Blue I – Deep Blue II, 6400 – 8000 features (chess chip) 

 

 

Deep Blue 

Murray Campbell, A. Joseph Hoane Jr., Feng-hsiung Hsuc 

IBM T.J. Watson Research Center 

Sandbridge Technologies 

Compaq Computer Corporation 

Artificial Intelligence 134 (2002) 57–83 

 

Appendix A. Evaluation tables and registers 

 
http://www.sciencedirect.com/science/article/pii/S0004370201001291  

Evaluation functions 

http://www.sciencedirect.com/science/article/pii/S0004370201001291
http://www.sciencedirect.com/science/article/pii/S0004370201001291


Optimal decisions in multiplayer games 

Aliances, collaboration? 



Element of Chance - Expectiminimax 
 

 

Decision states of the players + the random state of the „nature” = 

chance nodes, with the probabilities characteristic to the problem. 
 

Evaluation of a state = final expected value. ... 



Element of Chance - Expectiminimax 
 



A small 

excercise 

Rules of the game: 

1. Red moves first. 

2. Everyone is in zugzwang. 

3. A player can move to a neighbouring place, if empty, or can jump 

over the adversary, if the immediate place behid it is empty. 

4. The winner is that who reaches the starting place of the adversary 

first.  

5. Let the red win cost +1, and the white win -1. Compute with the 

minimax algorithm the value of the root (i.e. who is surely the 

winner)! Take care of the loops. 

 



Summary 
 

- Game playing can be effectively modeled as a search 

problem 

- Game trees represent alternate computer/opponent moves 

- Evaluation functions estimate the quality of a given board 

configuration for the Max player. 

- Minimax is a procedure which chooses moves by 

assuming that the opponent will always choose the move 

which is best for them 

- Alpha-Beta is a procedure which can prune large parts of 

the search tree and allow search to go deeper 

- For many well-known games, computer algorithms based 

on heuristic search match or out-perform human world 

experts. 


