
Artificial Intelligence
Adversarial search

More about

 Textbook, Chapter 6, Adversarial Search

Adversarial search – two-player games

Problem: - not only we act, the opposing agent also acts

 - we do not know its actions

 - we must be prepared for every contingency with

 a strategy

 - generally zero-sum games (win = -loss)

 - ability to make some decision even when

 calculating the optimal decision is infeasible

 - games penalize inefficiency severely.

Model: - Max, Min players (Max moves first)

 - initial state

 - successor function

 - terminal test (goal test)

 - utility (objective, pay-off) function

e.g. Chess:

search state of the game:

 ca. 1047 states

search (game) tree:

 ca. 10123 games

(average) branching factor:

 35

Search (game) tree (tic-tac-toe)

- find the optimal strategy for Max assuming an infallible Min

- assumption: Both players play optimally!

- the optimal strategy can be determined by using the

minimax value of each node (Zermelo 1912)

Optimal decision strategy - Minimax

Optimal decision strategy - Minimax

A

B

Optimal decision strategy - Minimax

Minimax Algorithm

Complete depth-first exploration of the game tree

Complexity: Time O(bd)

 Space O(bd)

Complete? Yes, if the tree is finite

Optimal? Yes, against an optimal adversary

Otherwise?

(Chess: b ≈ 35, d ≈ 80? O(10123) different games)

(really we need to search the whole tree?)

Minimax - example

II-Nim

Nim 1. Two players take turns removing objects from distinct heaps or piles.

2. On each turn, a player must remove at least one object, and

 may remove any number of objects provided they all come from

 the same heap/pile

3. The goal of the game is to avoid taking the last object.

Nim

+1

Nim

+1 +1

Nim

+1 +1

-1

Nim

+1 +1

-1 -1

Nim

+1 +1

+1 -1 -1

Nim

+1 +1

+1 +1 -1 -1

Nim

+1 +1

-1 +1 +1

-1 -1

-1

Nim

+1 +1

-1

-1 +1 +1

-1 -1

-1

Nim

+1 +1

-1

-1 +1 +1

-1

-1

-1

The solution of the game:

beginner loses, if adversary

plays optimally.

Nim

-1

Checkers solved, optimal game is a draw!

Search space of checkers ca. 5 x 1020 board position

History
1950 – self-learning program of Arthur Samuel

1963 – one win against a talented human

1989 - Chinook project, to win against the human world champion

1990 - Chinook aproved to take part in the World Championship

1992 - Marion Tinsley, world champion,

 has difficulties in the match for

 the title, but finally wins

1994 – return match, Tinsley stands

 down due to health conditions,

 dies shorty after

1996 - Chinook stronger, than every

 human player

-1

History of computing

1989 – 2007

1992 peak: more than 200 processors

2006-2007 50 processor, on average

The longest distributed, continuously run computation

until recently

Fault tolerance of the computations and

computer systems

Errors due to frequent moving of very large

datafiles to local disks, to other computers on the

network (duplication, control)

Periodic control of the already computed data

bases due to the data loss (“bit rot”),

(copy, safe, recomputing)

Disk manufacturer warranty – 10 -13 error rate

The computations were more complicated

http://webdocs.cs.ualberta.ca/~chinook/

http://webdocs.cs.ualberta.ca/~chinook/

Minimax

reconsidered

Assume, that the outcome of the game is only

-1 és 1.

Can we spare some computations? And if real?

Justifiable cut-offs

Minimax

reconsidered

Number of game states is exponential in

the number of moves.

Solution: Do not examine every node

 => pruning:

 remove branches that do not

 influence final decision

Alpha-beta prunning
Depth first search – only nodes along a single path at any time

α = highest-value choice that we can guarantee for MAX so far

 in the current subtree.

β = lowest-value choice that we can guarantee for MIN so far in

 the current subtree.

Update values of α and β during search and prune remaining

branches as soon as the value is known to be worse than the

current α or β value for MAX or MIN.

Minimax

reconsidered

Alpha-beta prunning

2 7 1

=2

>=2

<=1

?

MAX

MAX

MIN

Recall:

– : value of best move for us seen so far in current search path

– : best move for opponent (worst move for us) seen so far in

 current search path

 If   , prune Initial : −∞

 Initial : ∞

 If m is better for MAX, than n,

 then we never get to n in the game.

 Prunning does not influence the
 outcome. Good step ordering
 increases the prunning efficiency.

 With „ideal ordering” the time complexity
 is O(b d/2), O(b 3d/4) on the average (in
 Chess O(b m/2) = O((√b)m) , the effective
 b is 6 instead of 35: b = √ 35 ≈ 6)

Alpha-beta prunning

http://inst.eecs.berkeley.edu/

~cs61b/fa14/ta-materials/apps/

ab_tree_practice/

From http://www.cs.ucla.edu/~rosen/161/notes/alphabeta.html

Alpha-beta

prunning – example

http://www.cs.ucla.edu/~rosen/161/notes/alphabeta.html

Alpha-beta

prunning – example

Alpha-beta

prunning – example

Alpha-beta

prunning – example

Alpha-beta

prunning – example

Alpha-beta

prunning – example

Alpha-beta

prunning – example

Alpha-beta

prunning – example

Alpha-beta

prunning – example

Alpha-beta

prunning – example

Alpha-beta

prunning – example

Alpha-beta

prunning – example

Alpha-beta

prunning – example

Alpha-beta

prunning – example

Alpha-beta

prunning – example

Alpha-beta

prunning – example

Alpha-beta

prunning – example

Alpha-beta

prunning – example

Alpha-beta

prunning – example

Alpha-beta

prunning – example

Alpha-beta

prunning – example

Alpha-beta

prunning – example

Alpha-beta

prunning – example

Alpha-beta

prunning – example

Alpha-beta

prunning – example

Alpha-beta

prunning – example

Alpha-beta

prunning – example

Alpha-beta

prunning – example

Alpha-beta

prunning – example

Alpha-beta

prunning – example

Alpha-beta

prunning – example

Alpha-beta

prunning – example

Alpha-beta

prunning – example

Alpha-beta

prunning – example

Alpha-beta

prunning – example

Alpha-beta

prunning – example

Alpha-beta

prunning – example

Alpha-beta

prunning – example

Alpha-beta

prunning – example

Alpha-beta

prunning – example

Evaluation functions

State → number mapping. The larger the number, the more

valuable the position.

Qualifying a given state – checking the search tree up do a given

depth, where the leaves are not the final states of the game, but

some intermediate game states, qualified by the evaluating function.

At the beginning of the game (far from the final state) the

evaluating function is inaccurate, must be coupled with a search to

a certain depth.

At the end of the game (close to the final state) the evaluating

function can be fairly accurate, enough to qualify the state without

any search. alkalmazható.

1957: Herbert Simon

- “within 10 years a computer will beat the world chess champion”

- 1997: Deep Blue beats Kasparov

 Parallel machine with 30 processors for “software” and 480 VLSI

 processors for “hardware search”

 Searched 126 million nodes (chess positions) per second on average

 Generated up to 30 billion positions per move

 Reached depth 14 routinely

 Uses iterative-deepening alpha-beta search with transpositioning

 Can explore beyond depth-limit for interesting moves

Evaluation

functions

 Deep Blue I – Deep Blue II, 6400 – 8000 features (chess chip)

Deep Blue

Murray Campbell, A. Joseph Hoane Jr., Feng-hsiung Hsuc

IBM T.J. Watson Research Center

Sandbridge Technologies

Compaq Computer Corporation

Artificial Intelligence 134 (2002) 57–83

Appendix A. Evaluation tables and registers

http://www.sciencedirect.com/science/article/pii/S0004370201001291

Evaluation functions

http://www.sciencedirect.com/science/article/pii/S0004370201001291
http://www.sciencedirect.com/science/article/pii/S0004370201001291

Optimal decisions in multiplayer games

Aliances, collaboration?

Element of Chance - Expectiminimax

Decision states of the players + the random state of the „nature” =

chance nodes, with the probabilities characteristic to the problem.

Evaluation of a state = final expected value. ...

Element of Chance - Expectiminimax

A small

excercise

Rules of the game:

1. Red moves first.

2. Everyone is in zugzwang.

3. A player can move to a neighbouring place, if empty, or can jump

over the adversary, if the immediate place behid it is empty.

4. The winner is that who reaches the starting place of the adversary

first.

5. Let the red win cost +1, and the white win -1. Compute with the

minimax algorithm the value of the root (i.e. who is surely the

winner)! Take care of the loops.

Summary

- Game playing can be effectively modeled as a search

problem

- Game trees represent alternate computer/opponent moves

- Evaluation functions estimate the quality of a given board

configuration for the Max player.

- Minimax is a procedure which chooses moves by

assuming that the opponent will always choose the move

which is best for them

- Alpha-Beta is a procedure which can prune large parts of

the search tree and allow search to go deeper

- For many well-known games, computer algorithms based

on heuristic search match or out-perform human world

experts.

