Adapted from AIMA slides

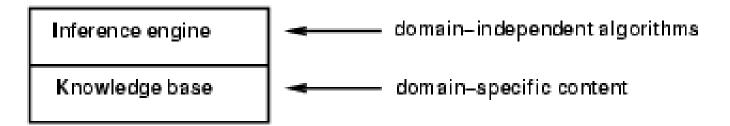
Logic: automated reasoning, provers

Peter Antal antal@mit.bme.hu

Outline

- Truth and proofs
- Inference rules and theorem proving
 - forward chaining
 - backward chaining
 - Resolution
 - Resolution as elementary inference step
 - Resolution as general inference method
 - Conversion to conjuctive normal form (CNF)
 - Resolution heuristics
- Exercises

Reminder: Knowledge bases



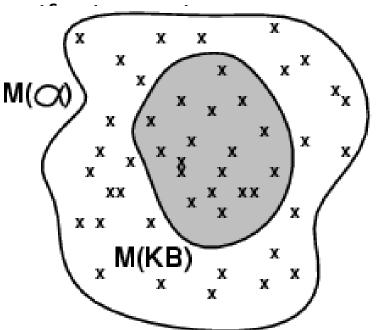
- Knowledge base = set of sentences in a formal language
- Declarative approach to building an agent (or other system):
 Tell it what it needs to know
- Then it can Ask itself what to do answers should follow from the KB
- Agents can be viewed at the knowledge level i.e., what they know, regardless of how implemented
- Or at the implementation level
 - i.e., data structures in KB and algorithms that manipulate them

Reminder: Models

- Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated
- We say *m* is a model of a sentence
- $M(\alpha)$ is the set of all models of α
- Then KB $\models \alpha$ iff $M(KB) \subseteq M(\alpha)$

0

• E.g. KB = Giants won and Reds won $\alpha = Giants$ won



Reminder: truth vs. proof

- Soundness: *i* is sound if whenever $KB \models \alpha$, it is also true that $KB \models \alpha$
- Completeness: *i* is complete if whenever $KB \models \alpha$, it is also true that $KB \models_i \alpha$
- Preview: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.
- That is, the procedure will answer any question whose answer follows from what is known by the *KB*.

Forward and backward chaining

- Horn Form (restricted)
 KB = conjunction of Horn clauses
 - Horn clause =
 - proposition symbol; or
 - (conjunction of symbols) \Rightarrow symbol

• E.g.,
$$\check{C} \land (B \Rightarrow A) \land (C \land D \Rightarrow B)$$

Modus Ponens (for Horn Form): complete for Horn KBs

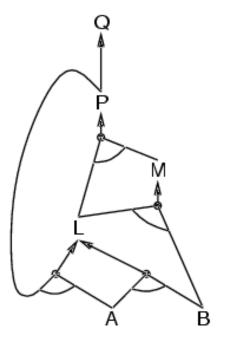
$$\begin{array}{ccc} \alpha_1, \dots, \alpha_n, & \alpha_1 \wedge \dots \wedge \alpha_n \Rightarrow \beta \\ \end{array}$$

- Can be used with forward chaining or backward chaining.
- These algorithms are very natural and run in linear time

Forward chaining

- Idea: fire any rule whose premises are satisfied in the KB,
 - add its conclusion to the KB, until query is found

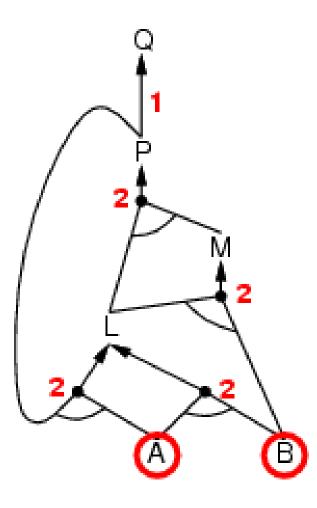
$$P \Rightarrow Q$$
$$L \land M \Rightarrow P$$
$$B \land L \Rightarrow M$$
$$A \land P \Rightarrow L$$
$$A \land B \Rightarrow L$$
$$A$$

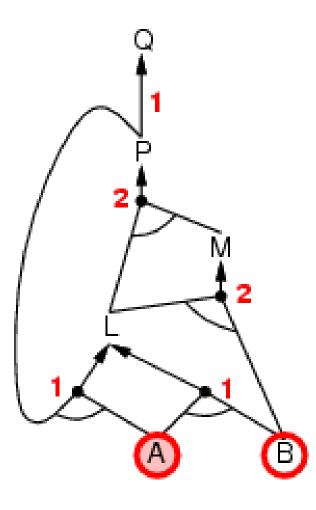


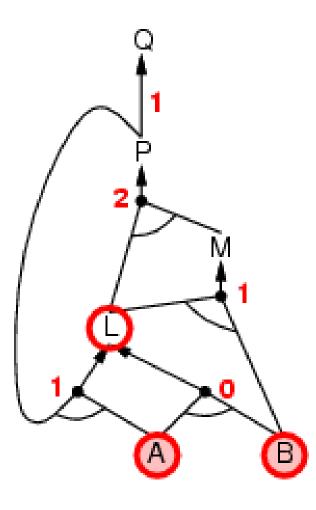
Forward chaining algorithm

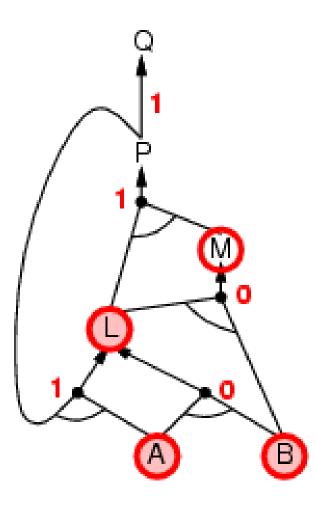
```
function PL-FC-ENTAILS?(KB, q) returns true or false
local variables: count, a table, indexed by clause, initially the number of premises
inferred, a table, indexed by symbol, each entry initially false
agenda, a list of symbols, initially the symbols known to be true
while agenda is not empty do
p \leftarrow POP(agenda)
unless inferred[p] do
inferred[p] \leftarrow true
for each Horn clause c in whose premise p appears do
decrement count[c]
if count[c] = 0 then do
if HEAD[c] = q then return true
PUSH(HEAD[c], agenda)
return false
```

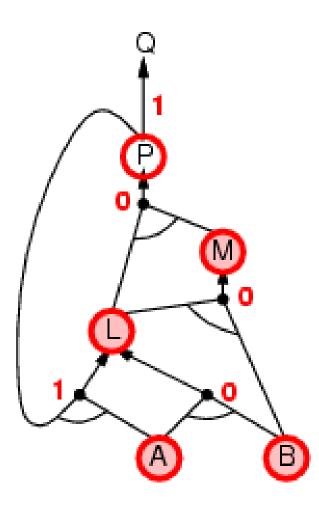
Forward chaining is sound and complete for Horn KB

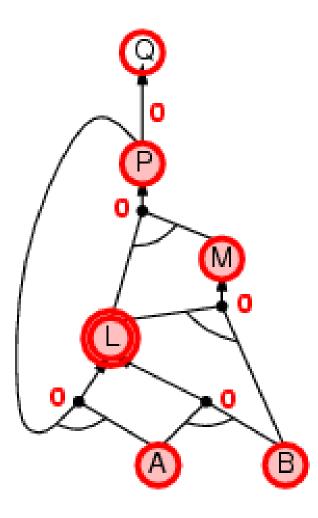


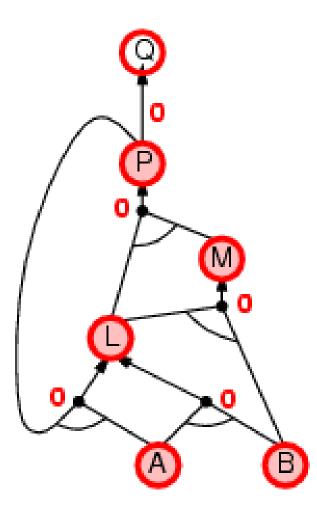


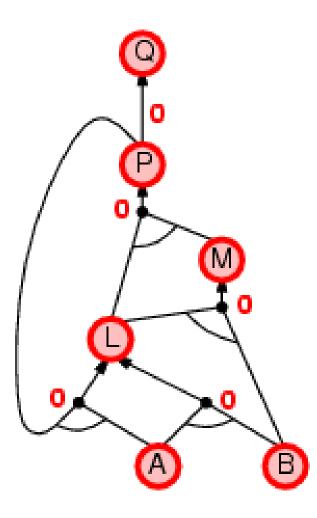












Backward chaining

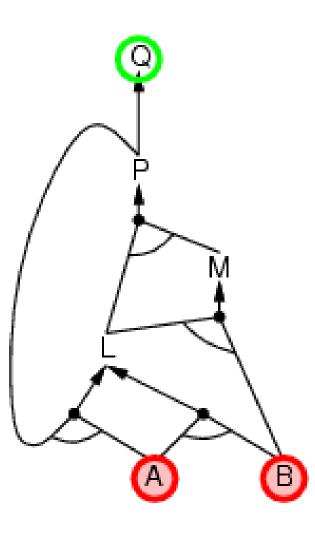
Idea: work backwards from the query q:

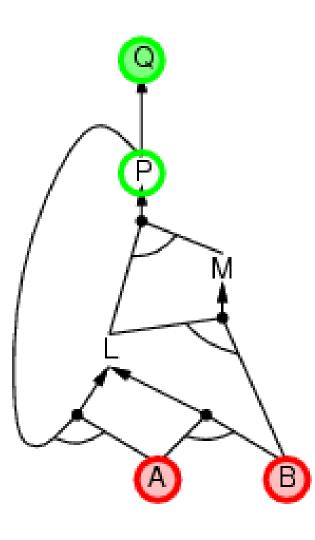
to prove *q* by BC, check if *q* is known already, or prove by BC all premises of some rule concluding *q*

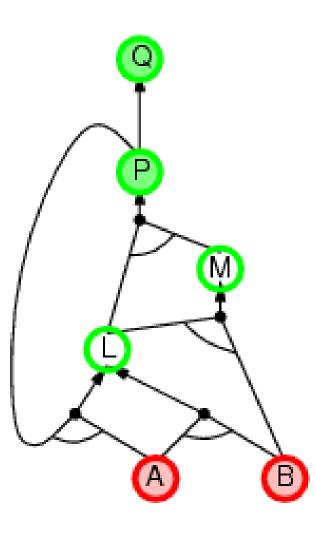
Avoid loops: check if new subgoal is already on the goal stack

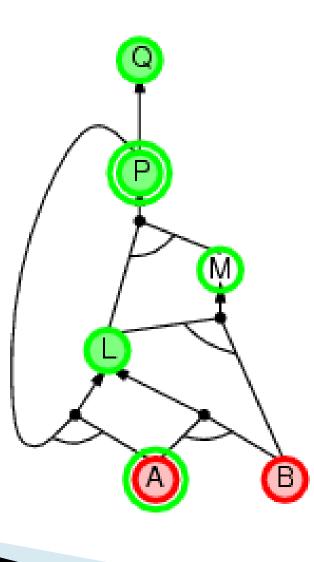
Avoid repeated work: check if new subgoal

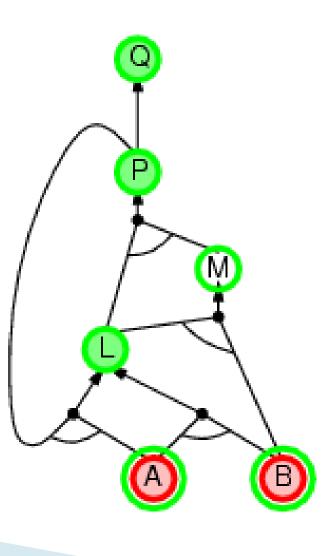
- 1. has already been proved true, or
- 2. has already failed

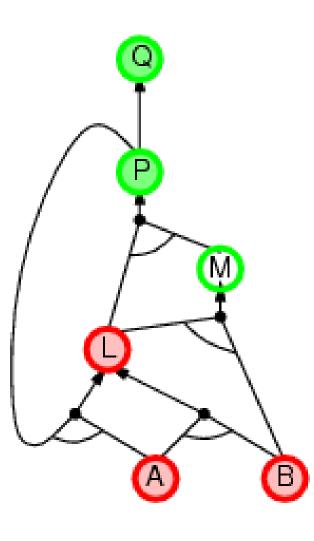


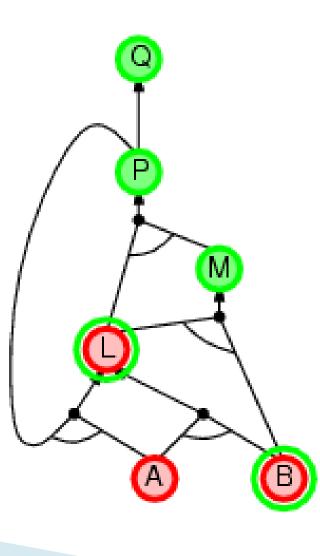


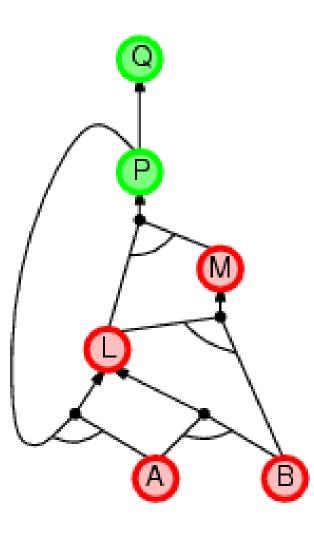


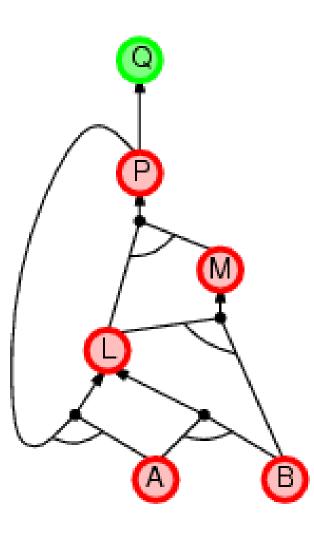


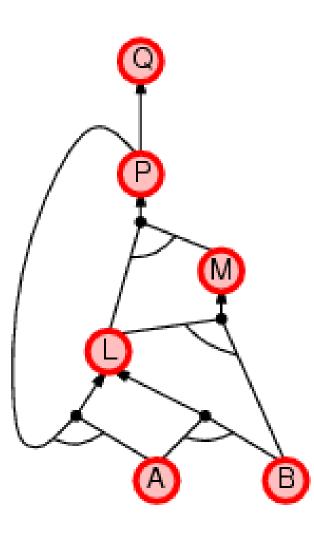












Forward vs. backward chaining

FC is data-driven, automatic, unconscious processing,

e.g., object recognition, routine decisions

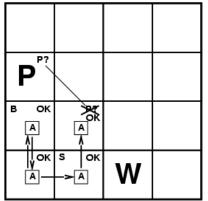
- May do lots of work that is irrelevant to the goal
- BC is goal-driven, appropriate for problem-solving,
 e.g., Where are my keys? How do I get into a PhD program?
- Complexity of BC can be much less than linear in size of KB

Resolution

 $\begin{array}{c} \mbox{Conjunctive Normal Form (CNF)}\\ \mbox{conjunction of disjunctions of literals}\\ \mbox{clauses}\\ \mbox{E.g., } (A \lor \neg B) \land (B \lor \neg C \lor \neg D) \end{array}$

Resolution inference rule (for CNF):

 Resolution is sound and complete for propositional logic



Resolution

Soundness of resolution inference rule:

$$\neg (l_{i} \vee \ldots \vee l_{i-1} \vee l_{i+1} \vee \ldots \vee l_{k}) \Rightarrow l_{i}$$

$$\neg m_{j} \Rightarrow (m_{1} \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_{n})$$

$$\neg (l_{i} \vee \ldots \vee l_{i-1} \vee l_{i+1} \vee \ldots \vee l_{k}) \Rightarrow (m_{1} \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_{n})$$

Conversion to CNF

 $B_{1,1} \iff (P_{1,2} \lor P_{2,1})\beta$

- 1. Eliminate \Leftrightarrow , replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$. 2. $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$
- 2. Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$. $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$
- 3. Move \neg inwards using de Morgan's rules and double-negation: $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$
- 4. Apply distributivity law (\land over \lor) and flatten:

 $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$

Resolution algorithm

• Proof by contradiction, i.e., show $KB_{\wedge}\neg\alpha$ unsatisfiable

```
function PL-RESOLUTION(KB, \alpha) returns true or false

clauses \leftarrow the set of clauses in the CNF representation of KB \land \neg \alpha

new \leftarrow \{\}

loop do

for each C_i, C_j in clauses do

resolvents \leftarrow PL-RESOLVE(C_i, C_j)

if resolvents contains the empty clause then return true

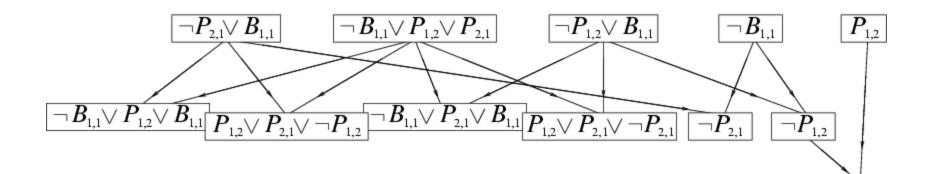
new \leftarrow new \cup resolvents

if new \subseteq clauses then return false

clauses \leftarrow clauses \cup new
```

Resolution example

$$\mathsf{KB} = (\mathsf{B}_{1,1} \Leftrightarrow (\mathsf{P}_{1,2} \lor \mathsf{P}_{2,1})) \land \neg \mathsf{B}_{1,1} \alpha = \neg \mathsf{P}_{1,2}$$



Resolution strategies (heuristics for clause selection)

1. Unit clause preference: $P, \neg P \lor [....] ==> [....]$ shorter!

2. 'Set of Support'

resolution (a clause from a 'Set of Support' and an external clause), rezolvent into 'Set of Support'-ba,

complete, if clauses not in 'Set of Support' are satisfiable

in practice: 'Set of Support' = the negated question (the rest is assumed to be true)

3. Input resolution

The resolvent in step i. is one of the clause in step i+1 (it starts with the question). Complete in Horn KBs.

4. Linear resolution

P and Q can be resolved, if P is in the KB or P is the ancestor of Q in the proof tree. **Complete.**

5. Pruning

Eliminate all rules more specific than in the knowledge base.

Summary

- Truth and proofs
- The "truth-table method" for validity&soundness
- Automated reasoning
 - Forward chaining, Backward chaining
 - linear-time, complete for Horn clauses
 - Resolution
 - Conjunctive normal form (CNF)
 - Inference step
 - Equivalence with if-then forms ("transitivity")
 - Complexity preserving (cf. Modus Ponens)
 - Covers Modus Ponens(!, unit clause)
 - Framework
 - proof by refutation, reductio ad absurdum
 - Heuristics: resolution strategy
 - Complete for propositional logic