Adapted from AIMA slides

From Propositional Logic to First-Order Logic

Peter Antal antal@mit.bme.hu

Outline

- Why FOL?
- Syntax and semantics of FOL
- Knowledge engineering in FOL
- Inference in FOL
 - Reducing first-order inference to propositional inference
 - Unification
 - Generalized Modus Ponens
 - Forward chaining
 - Backward chaining
 - Resolution

Pros and cons for propositional logic

- © Propositional logic is declarative.
- © Propositional logic is **compositional**:

meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$

- Propositional logic allows partial/disjunctive/negated information (unlike most data structures and databases)
- ② Meaning in propositional logic is contextindependent.

(unlike natural language, where meaning depends on context)

Propositional logic has very limited expressive power

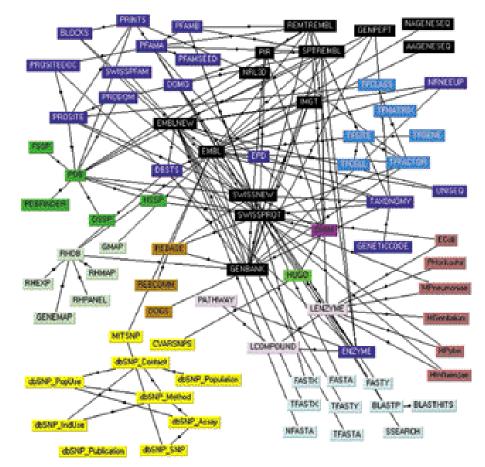
- E.g., cannot say "pits cause breezes in adjacent squares"
 - except by writing one sentence for each square

A classification of animals

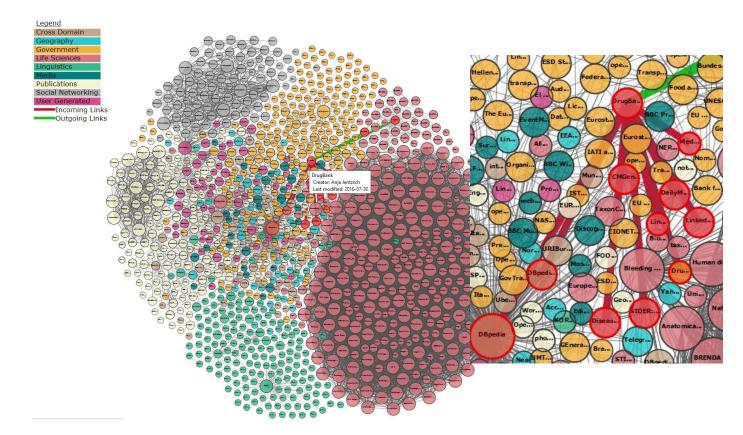
- Those that belong to the emperor
- Embalmed ones
- Those that are trained
- Suckling pigs
- Mermaids (or <u>Sirens</u>)
- Fabulous ones
- Stray dogs
- Those that are included in this classification
- > Those that tremble as if they were mad
- Innumerable ones
- Those drawn with a very fine <u>camel hair brush</u>
- <u>Et cetera</u>
- Those that have just broken the flower vase
- Those that, at a distance, resemble flies

"Celestial Emporium of Benevolent Knowledge" from Borges,

J.L., 1981. The analytical language of John Wilkins. *Borges: A*

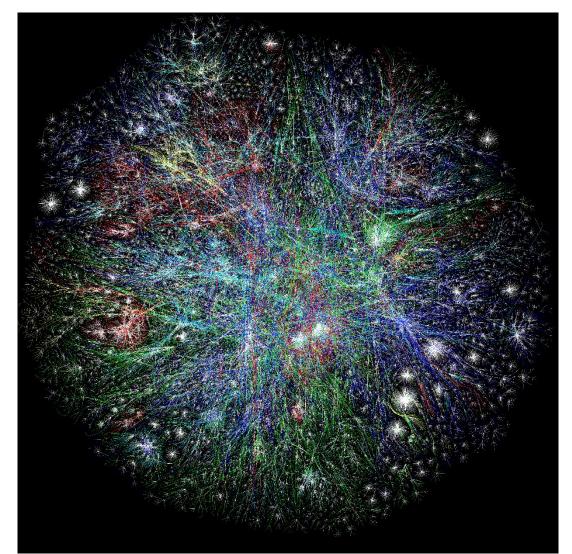

What is knowledge representation?

- 1. Surrogate
- 2. Set of ontological commitments
- 3. Theory of intelligent reasoning
- 4. Medium for efficient computation
- 5. Medium of human expression


Davis, R., Shrobe, H. and Szolovits, P., 1993. What is a knowledge representation?. *AI magazine*, *14*(1), p.17.

Network of databases: 2000

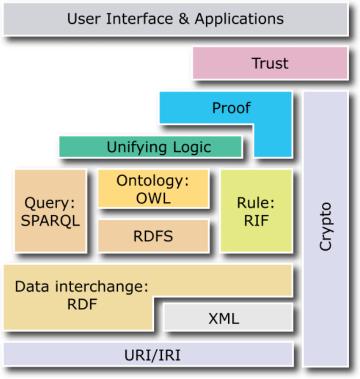
- 10k< relevant biological databases and knowledge-bases
- Petabytes of sequence and high-throughput gene/protein data
- ~10.000.000 concepts and relations explicitly in knowledge bases


Linked Open Data: ~2020

Linking Open Data cloud diagram 2017, by Andrejs Abele, John P. McCrae, Paul Buitelaar, Anja Jentzsch and Richard Cyganiak. http://lod-cloud.net/

Semantic Web

- Tim Berners-Lee, 1999, "I have a dream…", W3C
- Web of data, Web 3.0
- Share, reuse, querying, integration of data, automatic processing, reasoning
- Publishing data in human readable HTML documents to machine readable documents
- Linked Data



The Interest network: nodes are computers or post-pc devices and links are wired or wirele between them. https://www.computers.com/org/setween/franceschet/netart/talk/netart.html

Semantic Web Architecture

- URI/IRI
- RDF
- Formats eg. RDF/XML, Turt
- RDF Schema, OWL
- SPARQL
- ► RIF

...

A Resource Description Framework (RDF) háttér

- The data model of the Semantic Web
- RDF statement
 - subject: resource identified by an IRI
 - predicate (property): resource identified by an IRI
 - object: resource or literal (constant value)
- Graph databases of RDF triples

Relational databases vs. Triplestores (graph databases)

Relational databases

- Relations are **separated** from data (cases)
- Tables&keys define the formal model (syntax) for the data (cases)
- → Model-based (~predefined)
- Meaning (semantics) is informal (out of scope of the DB)
- Singular databases (~they are separated)

Triplestores

- Unified representation of relations and data
- Triples ("graph database") stores the dynamic model for the data, together with the factual data
- → Model-free (~relations as data)
- Meaning is defined by the (explicit) relations (~ontology)
- Linked open data space (using universal identifiers & ontologies)

Model	Example Format	Data	Metadata	Identifier	Query Syntax	Semantics (Meaning)
2 Relational	MS SQL, Oracle, MySQL	Table Cell Values	Table Column Definitions	Primary Key (Data Column) Value	SQL	N/A
S Hierarchical	XML	Tag/Attribute Values	XSD/DTD	e.g. Unique Attribute Key Value	XPath	N/A
🛢 Graph	RDF/XML, Turtle	RDF	RDFS/OWL	URI	SPARQL	Yes, using RDFS and OWL

Cf. Neumann's principle: instructions is data

SPARQL

a query language specification for querying over RDF triples

```
# prefix declarations
PREFIX foo: <http://example.com/resources/>
...
# dataset definition
FROM ...
# result clause
SELECT ...
# query pattern
WHERE {
    ...
}
# query modifiers
ORDER BY ...
```

Semantic technologies for drug discovery

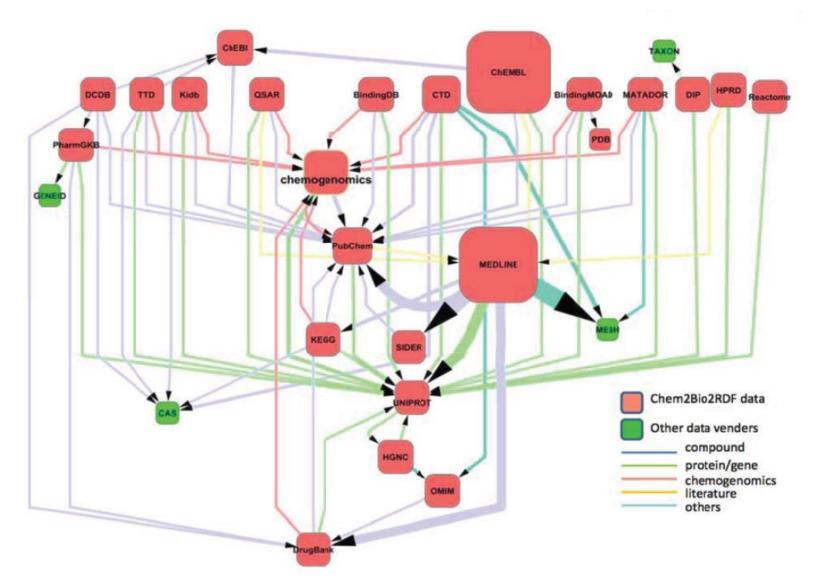
- Whitaker, B.J. and Rzepa, H.S., 1995. Chemical publishing via the Internet. In *International chemical information conference* (pp. 62-71).
- Murray-Rust, P., Rzepa, H.S., Wright, M. and Zara, S., 2000. A universal approach to web-based chemistry using XML and CML. *Chemical Communications*, (16), pp.1471-1472.
- Murray-Rust, P. and Rzepa, H.S., 2002. Scientific publications in XML-towards a global knowledge base. *Data Science Journal*, *1*, pp.84-98.
- Murray-Rust, P., 2008. Chemistry for everyone. Nature, 451(7179), pp.648-651.

BIO22RDF

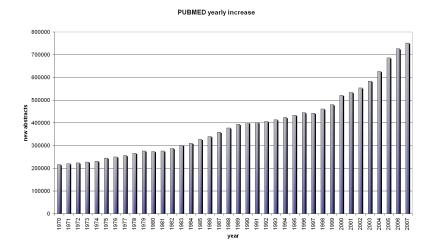
Linked Data for the Life Sciences

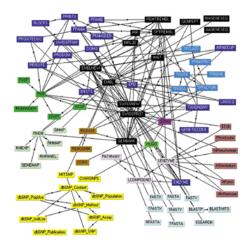
http://bio2rdf.org/

- Belleau, F., Nolin, M.A., Tourigny, N., Rigault, P. and Morissette, J., 2008. Bio2RDF: towards a mashup to build bioinformatics knowledge systems. Journal of biomedical informatics, 41(5), pp.706-716.
- Dumontier, M., Callahan, A., Cruz-Toledo, J., Ansell, P., Emonet, V., Belleau, F. and Droit, A., 2014, October. Bio2RDF release 3: a larger connected network of linked data for the life sciences.


In Proceedings of the 2014 International Conference on Posters & Demonstrations Track-Volume 1272 (pp. 401-404). CEUR-WS.org.

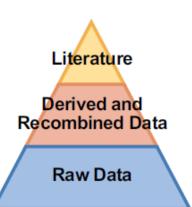
	Search:				
Databases:	# of triples		÷	# of unique entities	
	11895348562			1107871027	
chEMBL [chembl] ChEMBL is a database of bioactive compounds, their quantitative properties and bioactivities (bindir constants, pharmacology and ADMET, etc). The data is abstracted and curated from the primary sci iterature. https://www.ebi.ac.uk/chembldb/ inks: search guery example download				409942525	50061452
ClinicalTrials.gov [clinicaltrials] ClinicalTrials.gov is a registry and results database of publicly and privately supported clinical studi participants conducted around the world. http://clinicaltrials.gov/ Links: search guery example download	es of human	2014-09-25		98835804	7337123
Comparative Toxicogenomics Database [ctd] CTD includes manually curated data describing cross-species chemical-gene/protein interactions a chemical- and gene-disease relationships to illuminate molecular mechanisms underlying variable susceptibility and environmentally influenced diseases. http://ctd.mdibl.org inks: search guery example download	nd	2014-06-09		326720894	19768641
Database of single nucleotide polymorphism [dbsnp] The dbSNP database is a repository for both single base nucleotide subsitutions and short deletion nsertion polymorphisms. http://www.ncbi.nlm.nih.gov/SNP/ Links: search guery example download	and	2014-07-15		8801487	530538
DrugBank [drugbank] The DrugBank database is a bioinformatics and chemoinformatics resource that combines detailed of chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence and pathway) information. http://www.drugbank.ca/ Links: search guery example download		2014-07-25		3672531	316950
CenAge: The Ageing Gene Database [genage] GenAge is a database of human and model organism genes related to longevity and aging, maintair Human Ageing Genomics Resources (HACR) group. http://genomics.senescence.info/genes/ Links: search guery example download	ned by the	2014-06-03		73048	6995
GenDR: The Dietary Restriction Gene Database [gendr] GenDR is a database of genes associated with dietary restriction (DR). GenDR includes two datasets: nferred from experiments in model organisms in which genetic manipulations cancel out or disrup extending effects of DR; 2) genes robustly altered due to DR, derived from a meta-analysis of micro studies in mammals http://genomics.senescence.info/diet/ Links: search guery example download	t the life-	2014-06-03		11663	1129
Gene Ontology Annotation [goa] The GOA (Gene Ontology Annotation) project provides high-quality Gene Ontology (GO) annotation: n the UniProt Knowledgebase (UniProtKB) and International Protein Index (IPI). This involves electro annotation and the integration of high-quality manual GO annotation from all GO Consortium mode groups and specialist groups. http://www.ebi.ac.uk/.COA Links: search guery example download	nic	2014-06-05		97520151	5950074
HUGO Gene Nomenclature Committee Ingnc] The HGNC gives unique and meaningful names to every human gene. For each known human gene a gene name and symbol (short-form abbreviation). All approved symbols are stored in the HGNC d http://www.genenames.org/ Links: search guery example download		2014-07-04		3628205	372136


Chem2Bio2RDF I.


Data Source	RDF Resource Name	# of RDF Triples			
PubChem Compound	compound	233,852			
PubChem BioAssay	pubchem bioassay	1,715,247			
ChEBI	chebi	2,237,330			
KEGG	kegg_ligand	96,000			
KEGG	kegg_interaction	70,029			
KEGG	kegg_pathway_protein	84,760			
CTD	ctd_interaction	2,443,826			
CTD	ctd_chem_disease	2,025,513			
BindingDB	bindingdb_ligand	223,818			
BindingDB	bindingdb_interaction	800,016			
PharmGKB	pharmgkb_drugs	14,760			
PharmGKB	pharmgkb_genes	340,808			
PharmGKB	pharmgkb_rela ions	73,276			
DrugBank	drugbank_drug	47,640			
DrugBank	drugbank _interaction	111,001			
UniProt	uniprot	34,951			
HPRD	hprd	408,177			
Reactome	reactome	21,985			
DIP	dip	1,113,840			
OMIM	omim	23,432			
SIDER	sider	305,510			
PubMed	pubmed2compound	269,178			

Chem2Bio2RDF II.

Semantic publishing: papers vs DBs/KBs

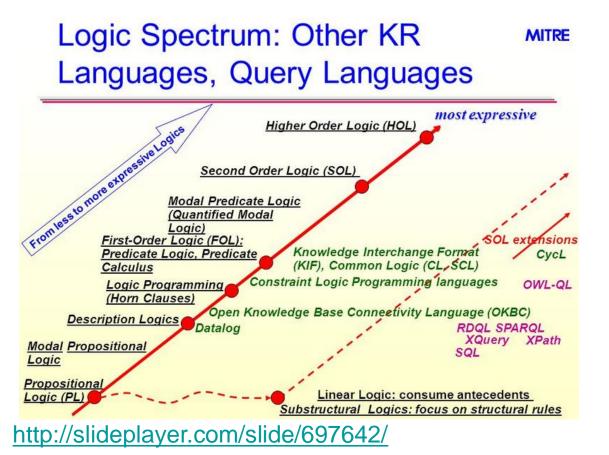


- M. Gerstein, "E-publishing on the Web: Promises, pitfalls, and payoffs for bioinformatics," *Bioinformatics*, 1999
- M. Gerstein: Blurring the boundaries between scientific 'papers' and biological databases, Nature, 2001
- P. Bourne, "Will a biological database be different from a biological journal?," *Plos Computational Biology,* 2005
- M. Gerstein et al: "Structured digital abstract makes text mining easy," Nature, 2007.
- M. Seringhaus et al: "Publishing perishing? Towards tomorrow's information architecture," *Bmc Bioinformatics,* 2007.
- M. Seringhaus: "Manually structured digital abstracts: A scaffold for automatic text mining," *Febs Letters*, 2008.
- D. Shotton: "Semantic publis, and the coming revolution in scientific journal publishing," *Learned* 18 *Publishing*, 2009

E-science, data-intensive science

All Scientific Data Online

- Many disciplines overlap and use data from other sciences
- Internet can unify all literature and data
- Go from literature to computation to data back to literature
- Information at your fingertips
 for everyone-everywhere
- Increase Scientific Information Velocity
- Huge increase in Science Productivity



FOURTH PARADIGM

DATA-INTENSIVE SCIENTIFIC DISCOVERY

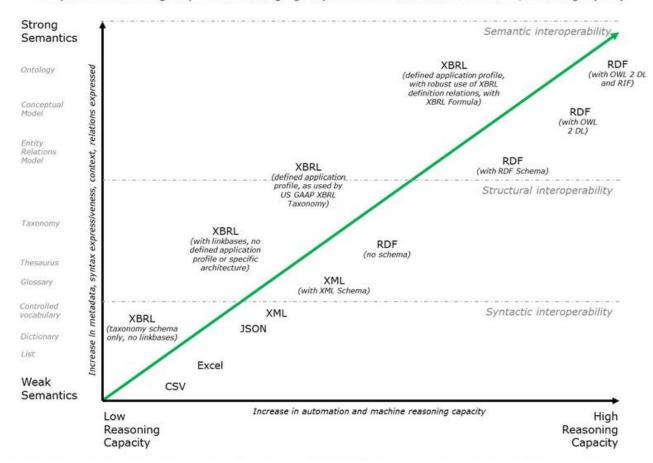
TONY HEY, STEWART TANSLEY, AND KRISTIN TOLLE


The spectrum of logics

For Complexity of reasoning in Description Logics, see e.g.: http://www.cs.man.ac.uk/~ezolin/dl/ For Reasoners in DL: http://www.cs.man.ac.uk/~ezolin/dl/

The spectrum of logics II.

Ontology Spectrum: One View



http://slideplayer.com/slide/697642/

MITRE

Knowledge representations for financial reporting

Comparison of Knowledge Representation Language Expressiveness and Relative Automation/Reasoning Capacity

http://xbrl.squarespace.com/

First-order logic

- Whereas propositional logic assumes the world contains facts,
- first-order logic (like natural language) assumes the world contains
 - Objects: people, houses, numbers, colors, baseball games, wars, ...
 - Relations: red, round, prime, brother of, bigger than, part of, comes between, ...
 - Functions: father of, best friend, one more than, plus, ...

Syntax of FOL: Basic elements

- Constants
- Predicates
- Functions
- Variables
- Connectives
- Equality
- Quantifiers \forall , \exists

- KingJohn, 2,...
- Brother, >,...
- Sqrt, LeftLegOf,...
- x, y, a, b,...
- $eg, \Rightarrow, \land, \lor, \Leftrightarrow$

Atomic sentences

Atomic sentence = $predicate (term_1, ..., term_n)$ or $term_1 = term_2$

Term = *function* (*term*₁,...,*term*_n) or *constant* or *variable*

E.g., Brother(KingJohn,RichardTheLionheart) > (Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn)))

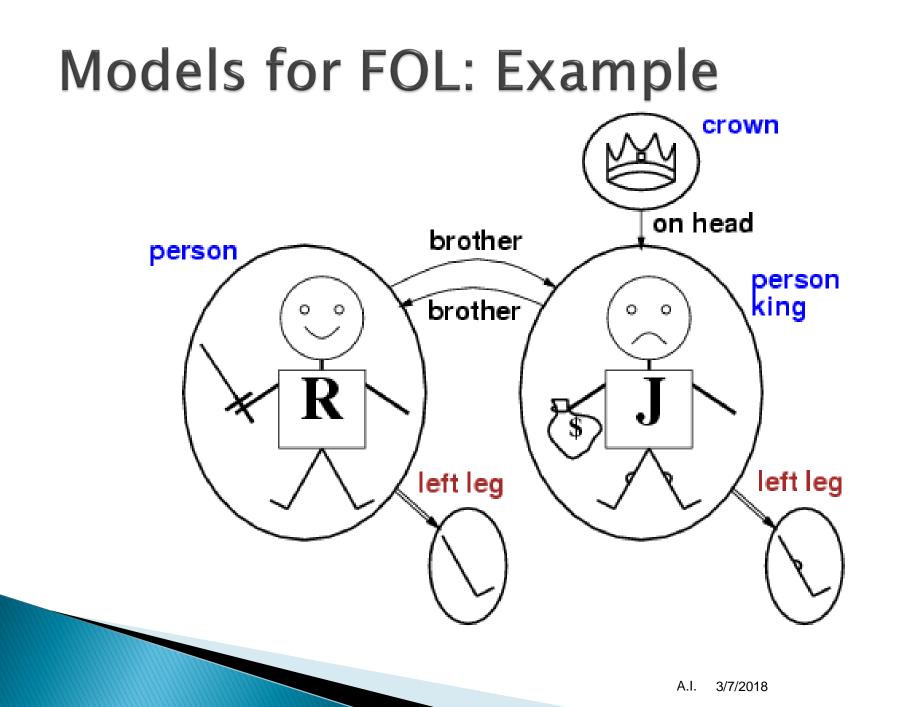
Complex sentences

 Complex sentences are made from atomic sentences using connectives

$$\neg S, S_1 \land S_2, S_1 \lor S_2, S_1 \Rightarrow S_2, S_1 \Leftrightarrow S_2,$$

E.g. *Sibling(KingJohn,Richard)*⇒ *Sibling(Richard,KingJohn)*

 $>(1,2) \lor \leq (1,2)$ $>(1,2) \land \neg >(1,2)$


Truth in first-order logic

- Sentences are true with respect to a model and an interpretation
- Model contains objects (domain elements) and relations among them
- Interpretation specifies referents for constant symbols → objects

predicate symbols → relations

function symbols → functional relations

An atomic sentence *predicate(term₁,...,term_n)* is true iff the objects referred to by *term₁,...,term_n* are in the relation referred to by *predicate*

Universal quantification

```
∀<variables> <sentence>
```

Everyone at Y is smart: $\forall x At(x,Y) \Rightarrow Smart(x)$

- $\forall x P$ is true in a model *m* iff *P* is true with *x* being each possible object in the model
- Roughly speaking, equivalent to the conjunction of instantiations of P
 - At(KingJohn,NUS) \Rightarrow Smart(KingJohn)
 - $\land \qquad At(Richard, NUS) \Rightarrow Smart(Richard)$
 - $\land \qquad At(NUS,NUS) \Rightarrow Smart(NUS)$

^ ...

A common mistake to avoid

- > Typically, \Rightarrow is the main connective with \forall
- Common mistake: using ∧ as the main connective with ∀:
 - $\forall x At(x,Y) \land Smart(x)$
 - means "Everyone is at Y and everyone is smart"

Existential quantification

- ► ∃<variables> < sentence>
- Someone at Y is smart:
- $\exists x \operatorname{At}(x,Y) \land \operatorname{Smart}(x)$
- ► ∃x P is true in a model m iff P is true with x being some possible object in the model
- Roughly speaking, equivalent to the disjunction of instantiations of P
- - ∨ At(Richard,NUS) ∧ Smart(Richard)
 - ✓ At(NUS,NUS) ∧ Smart(NUS)

 $\vee \dots$

Another common mistake to avoid

 \blacktriangleright Typically, \land is the main connective with \exists

Common mistake: using ⇒ as the main connective with ∃:

$$\exists x \operatorname{At}(x,Y) \Rightarrow \operatorname{Smart}(x)$$

is true if there is anyone who is not at Y!

Properties of quantifiers

- $\forall x \ \forall y \text{ is the same as } \forall y \ \forall x$
- $\exists x \exists y \text{ is the same as } \exists y \exists x$
- $\exists x \forall y \text{ is not the same as } \forall y \exists x$
- → ∃x ∀y Loves(x,y)
 - \circ "There is a person who loves everyone in the world"
 - 0

0

- ► $\forall y \exists x Loves(x,y)$
 - "Everyone in the world is loved by at least one person"
- Quantifier duality: each can be expressed using the other
- ∀x Likes(x,IceCream) ¬∃x ¬Likes(x,IceCream)
- → ∃x Likes(x,Broccoli) ¬∀x ¬Likes(x,Broccoli)

Equality

 term₁ = term₂ is true under a given interpretation if and only if term₁ and term₂ refer to the same object

- E.g., definition of *Sibling* in terms of *Parent*.
 - $\forall x, y \ Sibling(x, y) \Leftrightarrow [\neg(x = y) \land \exists m, f \neg (m = f) \land Parent(m, x) \land Parent(f, x) \land Parent(m, y) \land Parent(f, y)]$

Using FOL

The kinship domain:

- Brothers are siblings
 - $\forall x, y \; Brother(x, y) \Leftrightarrow Sibling(x, y)$
- One's mother is one's female parent

∀m,c *Mother(c)* = m ⇔ (*Female(m)* ∧ *Parent(m,c)*)

"Sibling" is symmetric

 $\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x)$

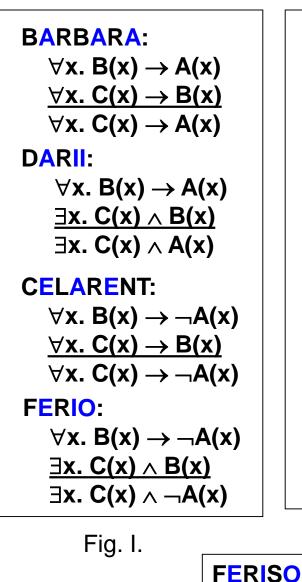
Knowledge engineering in FOL

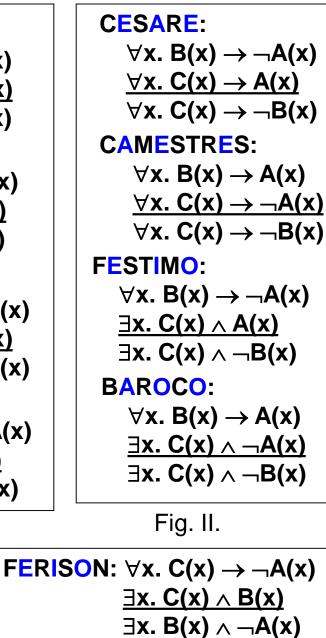
- 1. Identify the task.
- 2. Assemble the relevant knowledge.
- 3. Decide on a vocabulary of predicates, functions, and constants.
- 4. Encode general knowledge about the domain.
- 5. Encode a description of the specific problem instance.
- 6. Pose queries to the inference procedure and get answers.
- 7. Debug the knowledge base.

Inference in FOL

- Syllogisms
- Reducing first-order inference to propositional inference
- Unification
- Generalized Modus Ponens
- Forward chaining
- Backward chaining
- Resolution

	Syllogisms of the First Figure							
	BARBARA		CELARENT					
A	Every B is A.	E	No B is A.					
A	Every C is B.	Α	Every C is B.					
А	Therefore, every C is A.		Therefore, no C is A.					
	DARII		FERIO					
Α	Every B is A.	Е	No B is A.					
Ι	Some C is B.	I	Some C is B.					
<u> </u>	Therefore, some C is A.	0	Therefore, some C is not A.					


AuniversalAffirmative $\forall x. B(x) \rightarrow A(x)$ BARBARA:EuniversalnEgative $\forall x. B(x) \rightarrow \neg A(x)$ $\forall x. I$ Iparticularaffirmative $\exists x. C(x) \land B(x)$ $\forall x. I$ OparticularnOt affirmative (negative) $\exists x. C(x) \land$ $\forall x. I$ $\neg B(x)$ $\forall x. I$ $\forall x. I$ $\forall x. I$


 $\forall x. B(x) \rightarrow A(x)$

 $\forall x. C(x) \rightarrow B(x)$

 $\forall x. C(x) \rightarrow A(x)$

JS	
S	
Ö	
Ō	
X	
С О	

DARAPTI: $\forall x. C(x) \rightarrow A(x)$ $\forall x. C(x) \rightarrow B(x)$ $\exists x. B(x) \land A(x)$ **FELAPTON:** $\forall x. C(x) \rightarrow \neg A(x)$ $\forall x. C(x) \rightarrow B(x)$ $\exists x. B(x) \land \neg A(x)$ **DISAMIS**: $\exists x. C(x) \land A(x)$ $\forall x. C(x) \rightarrow B(x)$ $\exists x. B(x) \land A(x)$ **DATISI:** $\forall x. C(x) \rightarrow A(x)$ $\exists x. C(x) \land B(x)$ $\exists x. B(x) \land A(x)$ **BOCARDO:**

 $\exists x. C(x) \land \neg A(x) \\ \underline{\forall x. C(x)} \rightarrow \underline{B(x)} \\ \exists x. B(x) \land \neg A(x) \\ Fig. III.$

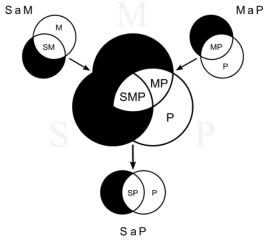

3/7/2018 |

Fig. IV.

Barbara	Celarent		Darii		Terio			Barbari	Celaront				
	Cesare	Camestres			Festino	Baroco			Cesaro	Camestros			
			Datisi	Disamis	Ferison		Bocardo				Felapton	Darapti	
		Calemes		Dimatis	Fresison					Calemos	EU SAME		Bamalip

AAA-1 Modus Barbara

∃x: Mx∧Px	MaP	All M are P,
∧ ∃x: Sx∧Mx	SaM	and all S are M;
⇒∃x: Sx∧Px	SaP	thus all S are P.

Reduction to propositional inference

Suppose the KB contains just the following:

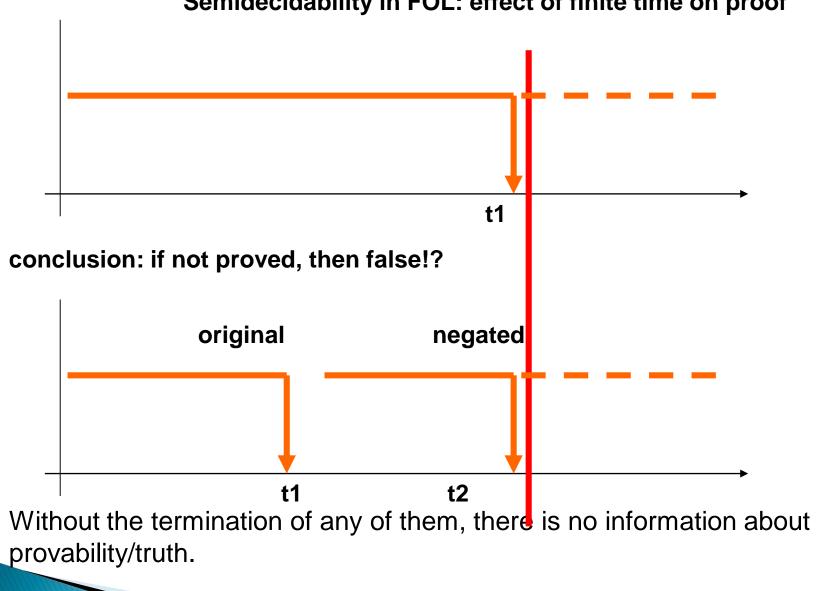
```
\forall x \text{ King}(x) \land \text{Greedy}(x) \Rightarrow \text{Evil}(x)
King(John)
Greedy(John)
Brother(Richard,John)
```

- Instantiating the universal sentence in all possible ways, we have: King(John) ∧ Greedy(John) ⇒ Evil(John) King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard) King(John) Greedy(John) Brother(Richard,John)
- The new KB is propositionalized: proposition symbols are

King(John), Greedy(John), Evil(John), King(Richard), etc.

Reduction contd.

- Every FOL KB can be propositionalized so as to preserve entailment
- (A ground sentence is entailed by new KB iff entailed by original KB)
- Idea: propositionalize KB and query, apply resolution, return result
- Problem: with function symbols, there are infinitely many ground terms,
 - e.g., Father(Father(Father(John)))


Reduction contd.

Theorem: Herbrand (1930). If a sentence α is entailed by an FOL KB, it is entailed by a finite subset of the propositionalized KB

Idea: For n = 0 to ∞ do create a propositional KB by instantiating with depth-*n* terms see if α is entailed by this KB

Problem: works if α is entailed, loops if α is not entailed

Theorem: Turing (1936), Church (1936) Entailment for FOL is semidecidable (algorithms exist that say yes to every entailed sentence, but no algorithm exists that also says no to every nonentailed sentence.)

Semidecidability in FOL: effect of finite time on proof

Problems with propositionalization

- Propositionalization seems to generate lots of irrelevant sentences.
- E.g., from:

```
\forall x \text{ King}(x) \land \text{Greedy}(x) \Rightarrow \text{Evil}(x)
King(John)
\forall y \text{ Greedy}(y)
Brother(Richard,John)
```

- it seems obvious that *Evil(John*), but propositionalization produces lots of facts such as *Greedy(Richard*) that are irrelevant
- With p k-ary predicates and n constants, there are p · n^k instantiations.

Universal instantiation (UI)

• Every instantiation of a universally quantified sentence is entailed by it:

 $\frac{\forall v \alpha}{\text{Subst}(\{v/g\}, \alpha)}$

for any variable v and ground term g

• E.g., $\forall x \text{ King}(x) \land Greedy(x) \Rightarrow Evil(x)$ yields:

King(*John*) ∧ *Greedy*(*John*) ⇒ *Evil*(*John*) *King*(*Richard*) ∧ *Greedy*(*Richard*) ⇒ *Evil*(*Richard*) *King*(*Father*(*John*)) ∧ *Greedy*(*Father*(*John*)) ⇒ *Evil*(*Father*(*John*))

Existential instantiation (EI)

For any sentence α, variable ν, and constant symbol k that does not appear elsewhere in the knowledge base:

 $\frac{\exists \nu \alpha}{\text{Subst}(\{\nu/k\}, \alpha)}$

► E.g., ∃*x Crown*(*x*) ∧ *OnHead*(*x,John*) yields:

 $Crown(C_1) \land OnHead(C_1, John)$

provided C_1 is a new constant symbol, called a Skolem constant

- We can get the inference immediately if we can find a substitution θ such that King(x) and Greedy(x) match King(John) and Greedy(y)
- $\theta = \{x/John, y/John\} works$

• Unify(α , β) = θ if $\alpha\theta$ = $\beta\theta$

	•		
_	р	q	θ
	Knows(John,x)	Knows(John,Jane)	
	Knows(John,x)	Knows(y,OJ)	
	Knows(John,x)	Knows(y,Mother(y))	
	Knows(John,x)	Knows(x,OJ)	

- We can get the inference immediately if we can find a substitution θ such that King(x) and Greedy(x) match King(John) and Greedy(y)
- $\theta = \{x/John, y/John\} works$
- Unify(α , β) = θ if $\alpha\theta$ = $\beta\theta$

•		
р	q	θ
Knows(John,x)	Knows(John,Jane)	{x/Jane}}
Knows(John,x)	Knows(y,OJ)	
Knows(John,x)	Knows(y,Mother(y))	
Knows(John,x)	Knows(x,OJ)	

- We can get the inference immediately if we can find a substitution θ such that King(x) and Greedy(x) match King(John) and Greedy(y)
- $\theta = \{x/John, y/John\} works$

• Unify(α,β) = θ if $\alpha\theta$ = $\beta\theta$				
•				
р	q	θ		
Knows(John,x)	Knows(John,Jane)	{x/Jane}}		
Knows(John,x)	Knows(y,OJ)	{x/OJ,y/John}}		
Knows(John,x)	Knows(y,Mother(y))			
Knows(John,x)	Knows(x,OJ)			

- We can get the inference immediately if we can find a substitution θ such that King(x) and Greedy(x) match King(John) and Greedy(y)
- $\theta = \{x/John, y/John\} works$

• Unify(α,β) = θ if $\alpha\theta$ = $\beta\theta$				
•				
р	q	θ		
Knows(John,x)	Knows(John,Jane)	{x/Jane}}		
Knows(John,x)	Knows(y,OJ)	{x/OJ,y/John}}		
Knows(John,x)	Knows(y,Mother(y))	{y/John,x/Mother(John)}}		
Knows(John,x)	Knows(x,OJ)			

- We can get the inference immediately if we can find a substitution θ such that King(x) and Greedy(x) match King(John) and Greedy(y)
- $\theta = \{x/John, y/John\} works$

• Unify(α , β) = θ if $\alpha\theta$ = $\beta\theta$

•		
р	q	θ
Knows(John,x)	Knows(John,Jane)	{x/Jane}}
Knows(John,x)	Knows(y,OJ)	{x/OJ,y/John}}
Knows(John,x)	Knows(y,Mother(y))	{y/John,x/Mother(John)}}
Knows(John,x)	Knows(x,OJ)	{fail}

To unify *Knows(John,x)* and *Knows(y,z)*,

 $\theta = \{y/John, x/z \} \text{ or } \theta = \{y/John, x/John, z/John\}$

- The first unifier is more general than the second.
- There is a single most general unifier (MGU) that is unique up to renaming of variables.

 $MGU = \{ y/John, x/z \}$

Generalized Modus Ponens (GMP)

 $\begin{array}{c} p_1', p_2', \dots, p_n', (p_1 \land p_2 \land \dots \land p_n \Rightarrow q) \\ q\theta \\ p_1' \text{ is } \textit{King}(\textit{John}) & p_1 \text{ is } \textit{King}(x) \\ p_2' \text{ is } \textit{Greedy}(y) & p_2 \text{ is } \textit{Greedy}(x) \\ \theta \text{ is } \{x/\text{John}, y/\text{John}\} & q \text{ is } \textit{Evil}(x) \\ q \theta \text{ is } \textit{Evil}(\textit{John}) \end{array}$

where $p_i \theta = p_i \theta$ for all *i*

- GMP used with KB of definite clauses (exactly one positive literal)
- All variables assumed universally quantified

Resolution: brief summary

Full first-order version:

$$\begin{aligned} & \ell_1 \vee \cdots \vee \ell_k, \qquad m_1 \vee \cdots \vee m_n \\ \hline (\ell_1 \vee \cdots \vee \ell_{i-1} \vee \ell_{i+1} \vee \cdots \vee \ell_k \vee m_1 \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_n) \\ \text{where Unify}(\ell_i, \neg m_i) &= \theta. \end{aligned}$$

- The two clauses are assumed to be standardized apart so that they share no variables.
- For example,

 $(l_1$

with $\theta = \{x / Ken\}$

• Apply resolution steps to CNF(KB $\land \neg \alpha$); complete for FOL

Conversion to CNF

- Everyone who loves all animals is loved by someone: $\forall x [\forall y (Animal(y) \Rightarrow Loves(x,y))] \Rightarrow [\exists y Loves(y,x)]$
- 1. Eliminate biconditionals and implications
 ∀x [¬∀y (¬*Animal*(y) ∨ *Loves*(x,y))] ∨ [∃y *Loves*(y,x)]
- ▶ 2. Move ¬ inwards: $\neg \forall x \ p \equiv \exists x \neg p, \neg \exists x \ p \equiv \forall x \neg p$

 $\forall x [\exists y \neg (\neg Animal(y) \lor Loves(x,y))] \lor [\exists y Loves(y,x)] \\ \forall x [\exists y \neg \neg Animal(y) \land \neg Loves(x,y)] \lor [\exists y Loves(y,x)] \\ \forall x [\exists y Animal(y) \land \neg Loves(x,y)] \lor [\exists y Loves(y,x)]$

Conversion to CNF contd.

3. Standardize variables: each quantifier should use a different one $\forall x [\exists y Animal(y) \land \neg Loves(x,y)] \lor [\exists z Loves(z,x)]$

4. Skolemize: a more general form of existential instantiation. Each existential variable is replaced by a Skolem function of the enclosing universally quantified variables:

 $\forall x [Animal(F(x)) \land \neg Loves(x,F(x))] \lor Loves(G(x),x)$

5. Drop universal quantifiers:

 $[Animal(F(x)) \land \neg Loves(x,F(x))] \lor Loves(G(x),x)$

6. Distribute \lor over \land :

 $[Animal(F(x)) \lor Loves(G(x), x)] \land [\neg Loves(x, F(x)) \lor Loves(G(x), x)]$

Monotonicity

- If $KB_1 \models a$, then $(KB_1 \cup KB_2) \models a$
- Old theorems are not invalidated by additional axioms.
- Robotics:
 - Inferred results remains valid after expanding the knowledge-base with new facts from observations.
- Non-monotonic logics
 - truth-maintenance systems
 - default logic..

Summary

- First-order logic:
 - objects and relations are semantic primitives
 - syntax: constants, functions, predicates, equality, quantifiers
- Inference
 - Resolution (CNF-based)
 - Semi-decidable
- Suggested reading:
 - Puzzles
 - http://www.greylabyrinth.com/puzzle/puzzle102
 - http://www.greylabyrinth.com/puzzle/puzzle107
 - Interview with R. M. Smullyan
 - <u>http://www.doverpublications.com/mathsci/0227/news.html</u>
 - R. M. Smullyan: What Is the Name of This Book?, 197

Abductive inference/reasoning

- C.S.Pierce: inference of the most pragmatical explanation for an observation.
- Types of inference
 - Deduction: model \rightarrow observation
 - Induction: observation(s)
 → model
 → observation
 - observation(s) \rightarrow model
 - observation(s) \rightarrow [model \rightarrow] observation
 - Abduction: observation(s) → model
 - Transduction: observation(s) \rightarrow observation

 - Counterfactual: (observation/intervention \rightarrow effect) \rightarrow (imagery intervention \rightarrow imagery effect)
- Related to abduction
 - theories of explanation
 - philosophy of science
 - theories of belief change in artificial intelligence
- Subtypes of abduction
 - Common sense
 - Scientific (Ockham's razor)
 - Logical
 - Probabilistic (most probable explanation)
 - Causal (necessary and sufficient cause)