Adapted from AIMA

Logic proof and truth syntacs and semantics

<u>Peter Antal</u> <u>antal@mit.bme.hu</u> György Strausz strausz@mit.bme.hu

A.I. 10/2/2018

1

Outline

- History
- Knowledge-based agents
- Wumpus world
- Logic in general
 - Syntacs
 - transformational grammars
 - Semantics
 - Truth, meaning, models and entailment
 - Inference
 - Model-based inference methods
 - Syntactic proof methods
- Propositional (Boolean) logic
- On proof and truth

What is Logic?

Logic is the study of arguments.

What is an argument?

Arguments have structure:

- Conclusion: a sentence (or `proposition') argued for.
- Premises: sentences (or `propositions') intended to give reasons for thinking conclusion is true.

The Labour Party will win the next UK General Election. When real wages are falling, the opposition party tends to win. Moreover, real wages *are* falling and Labour is the opposition party.

Is this an argument?

If so, what is the conclusion? What are the premises?

The Labour Party will win the next UK General Election. When real wages are falling, the opposition party tends to win. Moreover, real wages *are* falling and Labour is the opposition party.

Argument 1:

- P1: When real wages are falling, the opposition party tends to win (the following General Election).
- P2: Real wages are falling and Labour is the opposition party.
 - C: The Labour Party will win the next UK General Election.

Is the following a **good** argument? Why or why not?

Argument 2:

P1: All bachelors are unmarried.

P2: Prince Harry is a bachelor.

C: Prince Harry is unmarried.

How about this one?

Argument 3:

P1: All men are unmarried.

P2: Prince Harry is a man.

C: Prince Harry is unmarried.

And this one?

Argument 4:

P1: All bachelors are unmarried.

P2: Prince Harry is a bachelor.

C: Prince Harry has red hair.

Finally, what about this one?

Argument 5:

P1: All men are unmarried.

P2: Prince Harry is a man.

C: Prince Harry has red hair.

What makes an argument good?

Two main criteria:

- 1. All of the premises are true.
- 2. The premises support the conclusion.

As logicians, we tend to be more interested in 2 than 1.

Argument 1:

- P1: When real wages are falling, the opposition party tends to win (the following General Election).
- P2: Real wages *are* falling and Labour is the opposition party.
 - C: The Labour Party will win the next UK General Election.

Truth of premises are matters that economists & political scientists (or Google!) are best qualified to answer.

Logicians better qualified to evaluate whether premises support conclusion.

Caveat:

Truth/falsity of a premise (or conclusion) sometimes a purely **logi**cal, rather than **empirical**, matter.

E.g. All bachelors are unmarried.

True in virtue of meaning of 'bachelor' & 'married'.

- An argument is **valid** iff it's impossible for all of the premises to be true & the conclusion to be false (at the same time).
- Where this is so, the premises logically entail the conclusion.

Is this argument valid?

Argument 1:

P1: When real wages are falling, the opposition party tends to win (the following General Election).

P2: Real wages are falling and Labour is the opposition party.

C: The Labour Party will win the next UK General Election.

What about this one?

Argument 2:

P1: All bachelors are unmarried.

P2: Prince Harry is a bachelor.

C: Prince Harry is unmarried.

How about this one?

Argument 3:

P1: All men are unmarried.

P2: Prince Harry is a man.

C: Prince Harry is unmarried.

And this one?

Argument 4:

P1: All bachelors are unmarried.

P2: Prince Harry is a bachelor.

C: Prince Harry has red hair.

Finally, what about this one?

Argument 5:

P1: All men are unmarried.

P2: Prince Harry is a man. C:

Prince Harry has red hair.

Can an argument be good if it's not valid?

Why or why not?

Argument 1:

- P1: When real wages are falling, the opposition party tends to win (the following General Election).
- P2: Real wages are falling and Labour is the opposition party.
 - C: The Labour Party will win the next UK General Election.

Premises **inductively support** conclusion when premises make conclusion **likely**, but it's possible for premises to all be true & conclusion false.

Such an argument is inductively cogent, but not valid.

Can an argument be <u>bad</u> if it <u>is</u> valid?

Why or why not?

Is this a good argument?

Argument 3:

P1: All men are unmarried.

P2: Prince Harry is a man.

C: Prince Harry is unmarried.

Soundness

An argument is sound iff it is valid & all of its premises are true.

Is this argument sound?

Argument 2:

P1: All bachelors are unmarried.

P2: Prince Harry is a bachelor.

C: Prince Harry is unmarried.

How about this one?

Argument 3:

P1: All men are unmarried.

P2: Prince Harry is a man.

C: Prince Harry is unmarried.

How about this one?

Argument 4:

P1: All bachelors are unmarried.

P2: Prince Harry is a bachelor.

C: Prince Harry has red hair.

Finally, what about this one?

Argument 5:

P1: All men are unmarried.

P2: Prince Harry is a man. C:

Prince Harry has red hair.

Thinking rationally: "laws of thought"

- Aristotle: what are correct arguments/thought processes?
- Several Greek schools developed various forms of *logic*. *notation* and *rules of derivation* for thoughts; may or may not have proceeded to the idea of mechanization
- Direct line through mathematics and philosophy to modern Al
- Pro
 - Problems:

- 1. Not all intelligent behavior is mediated by logical deliberation
- 2. What is the purpose of thinking? What thoughts should I have?
- → (Symbolic) reasoning is mainly for collaborative thinking!

S **CESARE**: **BARBARA**: **DARAPTI:** $\forall x. B(x) \rightarrow \neg A(x)$ E $\forall x. B(x) \rightarrow A(x)$ $\forall x. C(x) \rightarrow A(x)$ $\forall x. C(x) \rightarrow A(x)$ $\forall x. C(x) \rightarrow B(x)$ $\forall x. C(x) \rightarrow B(x)$ $\forall x. C(x) \rightarrow \neg B(x)$ $\forall x. C(x) \rightarrow A(x)$ $\exists x. B(x) \land A(x)$ S **CAMESTRES:** DARII: **FELAPTON:** $\forall x. B(x) \rightarrow A(x)$ $\forall x. B(x) \rightarrow A(x)$ $\forall x. C(x) \rightarrow \neg A(x)$ $\forall x. C(x) \rightarrow \neg A(x)$ $\exists x. C(x) \land B(x)$ \mathbf{O} $\underline{\forall x. \ C(x) \rightarrow B(x)}$ $\forall x. C(x) \rightarrow \neg B(x)$ $\exists x. C(x) \land A(x)$ $\exists x. B(x) \land \neg A(x)$ **VIIO FESTIMO**: **CELARENT**: **DISAMIS**: $\forall x. B(x) \rightarrow \neg A(x)$ $\forall x. B(x) \rightarrow \neg A(x)$ $\exists x. C(x) \land A(x)$ $\exists x. C(x) \land A(x)$ $\forall x. C(x) \rightarrow B(x)$ $\forall x. C(x) \rightarrow B(x)$ $\exists x. C(x) \land \neg B(x)$ $\forall x. C(x) \rightarrow \neg A(x)$ $\exists x. B(x) \land A(x)$ **BAROCO**: FERIO: DATISI: $\forall x. B(x) \rightarrow A(x)$ $\forall x. B(x) \rightarrow \neg A(x)$ $\forall x. C(x) \rightarrow A(x)$ $\exists x. C(x) \land \neg A(x)$ $\exists x. C(x) \land B(x)$ $\exists x. C(x) \land B(x)$ $\exists x. C(x) \land \neg B(x)$ $\exists x. C(x) \land \neg A(x)$ $\exists x. B(x) \land A(x)$ Fig. II. **BOCARDO:** Fig. I. $\exists x. C(x) \land \neg A(x)$ **FERISON**: $\forall x. C(x) \rightarrow \neg A(x)$ $\forall x. C(x) \rightarrow B(x)$ $\exists x. C(x) \land B(x)$ $\exists x. B(x) \land \neg A(x)$ $\exists x. B(x) \land \neg A(x)$ Fig. III. Fig. IV. 10/2/2018

(Narrow) Expert Systems

- Al in 60's, 70's, 80's
- Lenat, D.B. and Feigenbaum, E.A., 1991. On the thresholds of knowledge. *Artificial intelligence*, *47*(1–3), pp.185–250.
- Performance level in a given ("narrow") domain:

novice, expert, master, grand master

Lessons from chess

- Brute-force search
- Knowledge is power
- Stages of expertise
 - Quantity: #(concepts)
 - Quality: type of reasoning and learning

Performance in chess

Chess and cognition -

levels of expertise, thresholds of knowledge

- Reconstruction of full chess positions:
 - Chase&Simon: Perception in chess, 1973
 - Chi: Knowledge structures and memory development, 1978
 - Schneider: Chess expertise and memory for chess positions, 1993

•

- Simons: How experts recall chess positions, 2012
 - <u>http://theinvisiblegorilla.com/blog/2012/02/15/how-experts-recall-chess-positions/</u>
- The Élő rating system
 - Beginner/novice, expert, master, grandmaster
 - Number of gestalt, schema, schemata, pattern, chunk,...
 - Way of thinking?
 - Way of learning?

- "Developmental" machine learning (change of paradigm)
- General levels of a beginner, expert, master, grandmaster?
 - Mérő: Ways of Thinking: The Limits of Rational Thought and Artificial Intelligence, 1990

The Cyc project:1984-2016(..)

- Goal: common sense
 Estimation in 1984 :

 250 rules
 350 man-year

 Language: CycL
 Availability: OpenCyc
 Current state

 239,000 concepts
 - 2,093,000 facts

Domain-Specific Knowledge (e.g., Healthcare, Computer Security, Command and Control, Mortgage Banking, ...)

Domain-Specific Facts and Data

Abductive inference/reasoning

- C.S.Pierce: inference of the most pragmatical explanation for an observation.
- Types of inference
 - Deduction: model > observation
 - Induction: observation(s) → model → observation
 - observation(s) \rightarrow model
 - observation(s) \rightarrow [model \rightarrow] observation
 - Abduction: observation(s) \rightarrow model
 - Transduction: observation(s) **>** observation
 - Causal: intervention → effect
 - Counterfactual: (observation/intervention \rightarrow effect) \rightarrow (imagery intervention \rightarrow imagery effect)
- Related to abduction
 - theories of explanation
 - philosophy of science
 - theories of belief change in artificial intelligence
- Subtypes of abduction
 - Common sense
 - Scientific (Ockham's razor)
 - Logical
 - Probabilistic (most probable explanation)
 - Causal (necessary and sufficient cause)

Knowledge bases

- Knowledge base = set of sentences in a formal language
- Declarative approach to building an agent (or other system):
 Tell it what it needs to know
- Then it can Ask itself what to do answers should follow from the KB
- Agents can be viewed at the knowledge level i.e., what they know, regardless of how implemented
- Or at the implementation level
 - i.e., data structures in KB and algorithms that manipulate them

A simple knowledge-based agent

function KB-AGENT(percept) returns an action

static: KB, a knowledge base

t, a counter, initially 0, indicating time

Tell(KB, MAKE-PERCEPT-SENTENCE(percept, t)) $action \leftarrow Ask(KB, MAKE-ACTION-QUERY(t))$ Tell(KB, MAKE-ACTION-SENTENCE(action, t)) $t \leftarrow t + 1$ return action

- The agent must be able to:
 - Represent states, actions, etc.
 - Incorporate new percepts
 - Update internal representations of the world
 - Deduce hidden properties of the world
 - Deduce appropriate actions

Wumpus World PEAS description

Performance measure

- \circ gold +1000, death -1000
- -1 per step, -10 for using the arrow

Environment

- Squares adjacent to wumpus are smelly
- Squares adjacent to pit are breezy
- Glitter iff gold is in the same square
- Shooting kills wumpus if you are facing it
- Shooting uses up the only arrow
- Grabbing picks up gold if in same square
- Releasing drops the gold in same square
- Sensors: Stench, Breeze, Glitter, Bump, Scream
- Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot

ок		
ок А	ок	

B A Å	ок		
A	ок]	ок	

A.I. 10/2/2018

Logic in general

- Logics are formal languages for representing information such that conclusions can be drawn
- Syntax defines the sentences in the language
- Semantics define the "meaning" of sentences;

```
    i.e., define truth of a sentence in a world
```

E.g., the language of arithmetic
 x+2 ≥ y is a sentence; x2+y > {} is not a sentence
 ₀

• $x+2 \ge y$ is true iff the number x+2 is no less than the number y •

- $x+2 \ge y$ is true in a world where x = 7, y = 1
- $x+2 \ge y$ is false in a world where x = 0, y = 6

Propositional logic

- Propositional logic is the simplest logic illustrates basic ideas
- The proposition symbols P₁, P₂ etc are sentences

```
If S is a sentence, \negS is a sentence (negation)

If S<sub>1</sub> and S<sub>2</sub> are sentences, S<sub>1</sub> \land S<sub>2</sub> is a sentence (conjunction)

If S<sub>1</sub> and S<sub>2</sub> are sentences, S<sub>1</sub> \lor S<sub>2</sub> is a sentence (disjunction)

If S<sub>1</sub> and S<sub>2</sub> are sentences, S<sub>1</sub> \Rightarrow S<sub>2</sub> is a sentence (implication)

If S<sub>1</sub> and S<sub>2</sub> are sentences, S<sub>1</sub> \Rightarrow S<sub>2</sub> is a sentence (biconditional)

How can the "well–formed" sentences be defined?
```

• → Transformational grammars

Syntacs – Transformational grammars (TG)

- Colourless green ideas sleep furiously'.
- N. Chomsky constructed finite formal machines 'grammars'.
- 'Does the language contain this sentence?' (intractable) ⇔ 'Can the grammar create this sentence?' (can be answered).
- ▶ TG are sometimes called *generative grammars.*

Transformational grammars

- ► TG = ({symbols}, {rewriting rules $\alpha \rightarrow \beta$ productions})
- \$ {symbols} = {nonterminal} U {terminal}
- α contains at least one nonterminal, β terminals and/or nonterminals.
- $S \rightarrow aS, S \rightarrow bS, S \rightarrow e (S \rightarrow aS \mid bS \mid e)$
- Derivation: S=>aS=>abS=>abbS=>abb.
- Parse tree: root start nonterminal S, leaves the terminal symbols in the sequence, internal nodes are nonterminals.
- > The children of an internal node are the productions of it.

The Chomsky hierarchy

- W nonterminal, a terminal, α and γ strings of nonterminals and/or terminals including the null string, β – the same not including the null string.
- regular grammars:

• $W \rightarrow aW$ or $W \rightarrow a$

context-free grammars:

$$W \to \beta$$

context-sensitive grammars:

• $\alpha_1 W \alpha_2 \rightarrow \alpha_1 \beta \alpha_2 AB \rightarrow BA$

unrestricted (phase structure) grammars:

 $\circ \ \alpha_1 W \alpha_2 \to \gamma$

The Chomsky hierarchy

Automata

- Each grammar has a corresponding abstract computational device – automaton.
- Grammars: generative models, automata: parsers that accept or reject a given sequence.
- automata are often more easy to describe and understand than their equivalent grammars.

- automata give a more concrete idea of how we might recognise a sequence using a formal grammar.

On truth: entailment

• Entailment means that one thing follows from another:

$\mathsf{KB} \models \alpha$

- Knowledge base *KB* entails sentence α if and only if α is true in all worlds where *KB* is true
 - E.g., the KB containing "the Giants won" and "the Reds won" entails "Either the Giants won or the Reds won"
 - E.g., x+y = 4 entails 4 = x+y
 - Entailment is a relationship between sentences (i.e., syntax) that is based on semantics

Models

0

- Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated
- We say *m* is a model of a sentence
- $M(\alpha)$ is the set of all models of α
- Then KB $\models \alpha$ iff $M(KB) \subseteq M(\alpha)$
 - E.g. KB = Giants won and Reds won $\alpha = Giants$ won

Propositional logic: Semantics

Each model specifies true/false for each proposition symbol

E.g. $P_{1,2}$ $P_{2,2}$ $P_{3,1}$ false true false

With these symbols, 8 possible models, can be enumerated automatically.

Rules for evaluating truth with respect to a model *m*:

$$\begin{array}{lll} \neg S & \text{is true iff} & S \text{ is false} \\ S_1 \wedge S_2 & \text{is true iff} & S_1 \text{ is true and} & S_2 \text{ is true} \\ S_1 \vee S_2 & \text{is true iff} & S_1 \text{ is true or} & S_2 \text{ is true} \\ S_1 \Rightarrow S_2 & \text{is true iff} & S_1 \text{ is false or} & S_2 \text{ is true} \\ \text{i.e.,} & \text{is false iff} & S_1 \text{ is true and} & S_2 \text{ is true} \\ S_1 \Rightarrow S_2 & \text{is true iff} & S_1 \text{ is false or} & S_2 \text{ is true} \\ S_1 \Rightarrow S_2 & \text{is true iff} & S_1 \Rightarrow S_2 \text{ is true and} & S_2 \text{ is true} \\ S_1 \Rightarrow S_2 & \text{is true iff} & S_1 \Rightarrow S_2 \text{ is true and} & S_2 \text{ is true} \\ S_1 \Rightarrow S_2 & \text{is true iff} & S_1 \Rightarrow S_2 \text{ is true and} & S_2 \Rightarrow S_1 \text{ is true} \\ \end{array}$$

Simple recursive process evaluates an arbitrary sentence, e.g.,

 $\neg P_{1,2} \land (P_{2,2} \lor P_{3,1}) = true \land (true \lor false) = true \land true = true$

A.I. 10/2/2018

Truth tables for connectives

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Logical equivalence

Two sentences are logically equivalent} iff true in same models: $\alpha \equiv \beta$ iff $\alpha \models \beta$ and $\beta \models \alpha$ $(\alpha \wedge \beta) \equiv (\beta \wedge \alpha)$ commutativity of \wedge $(\alpha \lor \beta) \equiv (\beta \lor \alpha)$ commutativity of \lor $((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma))$ associativity of \land $((\alpha \lor \beta) \lor \gamma) \equiv (\alpha \lor (\beta \lor \gamma))$ associativity of \lor $\neg(\neg \alpha) \equiv \alpha$ double-negation elimination $(\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha)$ contraposition $(\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta)$ implication elimination $(\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$ biconditional elimination $\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$ de Morgan $\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$ de Morgan $(\alpha \land (\beta \lor \gamma)) \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma))$ distributivity of \land over \lor $(\alpha \lor (\beta \land \gamma)) \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma))$ distributivity of \lor over \land

Truthtable method: an example

"Adam, Betty, and Chris played and a window got broken. Adam says: 'Betty made, Chris is innocent.' Betty says: 'If Adam is guilty, then Chris too'. Chris says: 'I am innocent; someone else did it'."

Consistency?
 Who lies?
 Who is guilty?

Truthtable method: formalization

Propositional symbols:

- A: Adam is not guilty (innocent).
- B: Betty is not guilty (innocent).
- C: Chris is not guilty (innocent).

Statements:

SA:
$$\neg B \land C$$

SB: $\neg A \rightarrow \neg C$
SC: $C \land (\neg B \lor \neg A)$

Α	В	С	SA	SB	SC	SA ^ SB ^ SC
F	F	F	F	Т	F	F
F	F	Т	т	F	Т	F
F	Т	F	F	т	F	F
F	Т	Т	F	F	Т	F
Т	F	F	F	т	F	F
Т	F	Т	т	т	Т	T (1)(3)
Т	Т	F	F	т	F	F
Т	Т	Т	F	т	F	F (2)

(1) There is a combination that all of them tells the truth.

(2) If they are not guilty, then Adam and Betty lied.

(3) If they told the truth, then Betty is guilty. Propositional symbols:

- Adam is not guilty (innocent). A:
- Betty is not guilty (innocent). B:
- C: Chris is not guilty (innocent).

Statements:

SA:
$$\neg B \land C$$

SB: $\neg A \rightarrow \neg C$
A.I. 10/2/20 $\frac{10}{8}$ C: $C \land (\neg B \lor \neg A)$ 66

Entailment in the wumpus world

Situation after detecting nothing in [1,1], moving right, breeze in [2,1]

Consider possible models for *KB* assuming only pits

3 Boolean choices \Rightarrow 8 possible models

KB = wumpus-world rules + observations

A.I. 10/2/2018

KB = wumpus-world rules + observations
 $\alpha_1 = "[1,2]$ is safe", *KB* ⊨ α_1 , proved by model checking

KB = wumpus-world rules + observations

KB = wumpus−world rules + observations $\alpha_2 = "[2,2]$ is safe", *KB* $\models \alpha_{2_1}$

A.I. 10/2/2018
Validity and satisfiability

A sentence is valid if it is true in all models, e.g., *True*, $A \lor \neg A$, $A \Rightarrow A$, $(A \land (A \Rightarrow B)) \Rightarrow B$

Validity is connected to inference via the Deduction Theorem: $KB \models \alpha$ if and only if $(KB \Rightarrow \alpha)$ is valid

- A sentence is satisfiable if it is true in some model e.g., $A \lor B$, C
- A sentence is unsatisfiable if it is true in no models e.g., A^-A
- Satisfiability is connected to inference via the following: $KB \models \alpha$ if and only if $(KB \land \neg \alpha)$ is unsatisfiable

Wumpus world sentences

Let $P_{i,j}$ be true if there is a pit in [i, j]. Let $B_{i,j}$ be true if there is a breeze in [i, j].

$$\neg P_{1,1} \\ \neg B_{1,1} \\ B_{2,1}$$

Pits cause breezes in adjacent squares"

$$\begin{array}{lll} \mathsf{B}_{1,1} \Leftrightarrow & (\mathsf{P}_{1,2} \lor \mathsf{P}_{2,1}) \\ \mathsf{B}_{2,1} \Leftrightarrow & (\mathsf{P}_{1,1} \lor \mathsf{P}_{2,2} \lor \mathsf{P}_{3,1}) \end{array}$$

Truth tables for inference

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	KB	α_1
false	true							
false	false	false	false	false	false	true	false	true
:	-	÷	:	-	:	:	:	-
false	true	false	false	false	false	false	false	true
false	true	false	false	false	false	true	<u>true</u>	<u>true</u>
false	true	false	false	false	true	false	<u>true</u>	<u>true</u>
false	true	false	false	false	true	true	\underline{true}	\underline{true}
false	true	false	false	true	false	false	false	true
:	:	:	:	:	:	:	:	:
true	false	false						

Inference by enumeration

> Depth-first enumeration of all models is sound and complete

function TT-ENTAILS? (KB, α) returns true or false

 $symbols \leftarrow$ a list of the proposition symbols in KB and α return TT-CHECK-ALL($KB, \alpha, symbols, []$)

function TT-CHECK-ALL(KB, α, symbols, model) returns true or false
if EMPTY?(symbols) then
if PL-TRUE?(KB, model) then return PL-TRUE?(α, model)
else return true

else do

 $P \leftarrow \text{FIRST}(symbols); rest \leftarrow \text{REST}(symbols)$ return TT-CHECK-ALL(*KB*, α , rest, EXTEND(*P*, true, model) and TT-CHECK-ALL(*KB*, α , rest, EXTEND(*P*, false, model)

For *n* symbols, time complexity is *O(2ⁿ)*, space complexity is *O(n)*

On proof

- $KB \vdash_i \alpha =$ sentence α can be derived from KB by procedure *i*
- Inference methods divide into (roughly) two kinds:
 - Application of inference rules
 - Legitimate (sound) generation of new sentences from old
 - Proof = a sequence of inference rule applications Can use inference rules as operators in a standard search algorithm
 - E.g. Modus Ponens, Modus Tollens, resolution
 - Typically require transformation of sentences into a normal form, e.g. into Conjunctive Normal Form (CNF)

77

- Model checking
 - truth table enumeration (always exponential in n)
 - improved backtracking, e.g., Davis--Putnam-Logemann-Loveland
 - heuristic search in model space (sound but incomplete) e.g., min-conflicts-like hill-climbing algorithms

On truth and proof

- Soundness: *i* is sound if whenever $KB \models \alpha$, it is also true that $KB \models \alpha$
- Completeness: *i* is complete if whenever $KB \models \alpha$, it is also true that $KB \models_i \alpha$
- Preview: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.
- That is, the procedure will answer any question whose answer follows from what is known by the *KB*.

Summary

- Logical agents apply inference to a knowledge base to derive new information and make decisions
- Basic concepts of logic:
 - syntax: formal structure of sentences
 - semantics: truth of sentences wrt models
 - entailment: necessary truth of one sentence given another
 - inference: deriving sentences from other sentences
 - soundness: derivations produce only entailed sentences
 - completeness: derivations can produce all entailed sentences
- Wumpus world requires the ability to represent partial and negated information, reason by cases, etc.
- Propositional logic lacks expressive power
- Suggested reading:
 - A.Tarski:Truth and Proof, 1969
 - <u>http://people.scs.carleton.ca/~bertossi/logic/material/tarski.pdf</u>
 - Interview with Douglas R. Hofstadter
 - <u>http://www.americanscientist.org/bookshelf/pub/douglas-r-hofstadter</u>
 - D.R.Hofstadter: Gödel, Escher, Bach, 1979

