
9/17/2018 A.I. 1

Artificial Intelligence
Informed search

Peter Antal
antal@mit.bme.hu

Tadeusz Dobrowiecki

 tade@mit.bme.hu

mailto:antal@mit.bme.hu
mailto:tade@mit.bme.hu

 Informed = use problem-specific knowledge

 Which search strategies?
 Best-first search and its variants

 Heuristic functions?
 How to invent them

 Local search and optimization
 Hill climbing, local beam search, genetic algorithms,…

9/17/2018 A.I. 2

 1012 !

 2 ?

depth memory complexity

 time -//-

Supercomputers: from 2000 to 2018 years

IBM Summit (2018)

 Oak Ridge Lab, 1223 Pflop

 13 MW

 1015 !

 2.5 ?

 Curse of

 noninformed search

 or

 trade completness for speed

1.6M vertices

3.8M edges

(1) Penalty for backtracking. (A*, etc.)

(2) Search from both directions. (bidirectional)

(3) Smart usage of depth-first search. (iteratíve)

(4) Pre-process the graph. (ALT landmarks)

(5) Start with small memory, in principle. (EMA*)

(6) Fully give up backtracking. (hill-climbing)

(7) Use lower quality directions also. (beam search)

(8) Permit bad directions also. (simulated annealing)

(9) Prohibit probably bad directions. (tabu search)

(10) Continuously improve based on partial results.

 (learning A*, anytime A*, etc.)

(11) Randomize and repeat.

(12) Stay and search in the original continuous physical space. ...

Penalty for backtracking!

= awarding going forward, toward the goal.

What is needed: - In what „direction” to expect the goal?

 - How „far” to expect the goal in this direction?.

This information is called heuristics, heuristic function h(n):

– Must be computable in every state in the searc space

– Estimates the expected cost of going in a given direction

– If exact, makes the search superficial (if very uncertain,

 does not help at all)

– At goal is zero: h(goal) = 0

Search using heuristics is a heuristic (informed) search.

Let the heuristics – straightline distance (hSLD)

 Fullfills conditions?

 What about its error?

 General approach of informed search:
◦ Best-first search: node is selected for expansion based on an

evaluation function f(n) in TREE-SEARCH().

 Idea: evaluation function measures distance to
the goal.
◦ Choose node which appears best

 Implementation:

◦ fringe is queue sorted in decreasing order of desirability.

◦ Special cases: greedy search, A* search

9/17/2018 A.I. 13

(Ro-MohoK)

Best-First with only h(n) is gready!

Complexity: time = memory

If exact h(n): linear time and memory, but if not?

 Best-known form of best-first search.
 Idea: avoid expanding paths that are already

expensive.
 Evaluation function f(n)=g(n) + h(n)
◦ g(n) the cost (so far) to reach the node.
◦ i.e. summa of action costs along the path
◦ h(n) estimated cost to get from the node to the

closest goal.
◦ f(n) estimated total cost of path through n to goal.

9/17/2018 A.I. 15

 A* search uses an admissible heuristic
◦ A heuristic is admissible if it never overestimates the

cost to reach the goal (~optimistic).

Formally:

 1. h(n) <= h*(n) where h*(n) is the true cost from n

 2. h(n) >= 0 so h(G)=0 for any goal G.

e.g. hSLD(n) never overestimates the actual road distance

Theorem: If h(n) is admissible, A* using BEST-FIRST-
SEARCH() with selector function f(n) is optimal.

9/17/2018 A.I. 16

Suppose a suboptimal goal G2 in the queue.

Let n be an unexpanded node on a shortest to optimal goal G.

f(G2) = g(G2) since h(G2)=0

 > g(G) since G2 is suboptimal

 >= f(n) since h is admissible

Since f(G2) > f(n), A* will never select G2 for expansion (i.e. for
checking, but note that G2 can be inside the queue).

A.I. 17 9/17/2018

 A heuristic is consistent if

 If h is consistent, we have

i.e. f(n) is non-decreasing along any path.

Theorem: If h(n) is consistent, A* using GRAPH-
SEARCH is optimal

9/17/2018 A.I. 18



h(n)  c(n,a,n') h(n')



f (n')  g(n') h(n')

 g(n) c(n,a,n') h(n')

 g(n) h(n)

 f (n)

 A* expands nodes in order of increasing f value

 Contours can be drawn in state space
◦ Uniform-cost search adds circles.
◦ F-contours are gradually added:
1) nodes with f(n)<C*
2) Some nodes on the goal

Contour (f(n)=C*).

Contour i has all nodes
with f=fi, where fi < fi+1.

A.I. 19 9/17/2018 http://mialmanach.mit.bme.hu/demonstraciok/a_kereses_usa_terkepen_konturkovetessel

http://mialmanach.mit.bme.hu/demonstraciok/a_kereses_usa_terkepen_konturkovetessel

 Completeness: YES
◦ Since bands of increasing f are added

◦ Unless there are infinitly many nodes with f<f(G)

Locally finite graphs – finite branching factor

 - action cost >  > 0.

9/17/2018 A.I. 20

 Completeness: YES

 Time complexity:
◦ Number of nodes expanded is still exponential in

the length of the solution.

9/17/2018 A.I. 21

 Completeness: YES

 Time complexity: (exponential with path
length)

 Space complexity:
◦ It keeps all generated nodes in memory

◦ Hence space is the major problem not time

9/17/2018 A.I. 22

 Completeness: YES
 Time complexity: (exponential with path

length)

 Space complexity:(all nodes are stored)
 Optimality: YES

◦ Cannot expand fi+1 until fi is finished.

◦ A* expands all nodes with f(n)< C*

◦ A* expands some nodes with f(n)=C*

◦ A* expands no nodes with f(n)>C*

Also optimally efficient (not including ties)

9/17/2018 A.I. 23

 E.g for the 8-puzzle
◦ Avg. solution cost is about 22 steps (branching

factor +/- 3)
◦ Exhaustive search to depth 22: 3.1 x 1010 states.
◦ A good heuristic function can reduce the search

process.

A.I. 24 9/17/2018

 E.g for the 8-puzzle knows two commonly used
heuristics

 h1 = the number of misplaced tiles
◦ h1(s)=8

 h2 = the sum of the distances of the tiles from their
goal positions (manhattan distance).
◦ h2(s)=3+1+2+2+2+3+3+2=18

A.I. 25 9/17/2018

 Effective branching factor b*
◦ Is the branching factor that a uniform tree of depth

d would have in order to contain N+1 nodes.

◦ Measure is fairly constant for sufficiently hard
problems.
 Can thus provide a good guide to the heuristic’s

overall usefulness.

 A good value of b* is 1.

9/17/2018 A.I. 26



N 11 b*(b*)2  ... (b*)d

 1200 random problems with solution lengths
from 2 to 24.

 If h2(n) >= h1(n) for all n (both admissible)

 then h2 dominates h1 and is better for search

9/17/2018 A.I. 27

9/17/2018 A.I. 28

 h1 = the number of misplaced tiles

 h2 = the sum of the distances of the tiles from their
goal positions (manhattan distance)

 Admissible heuristics can be derived from the
exact solution cost of a relaxed version of the
problem:

◦ Relaxed 8-puzzle for h1 : a tile can move anywhere
As a result, h1(n) gives the shortest solution

◦ Relaxed 8-puzzle for h2 : a tile can move to any
adjacent square.
As a result, h2(n) gives the shortest solution.

The optimal solution cost of a relaxed problem is no
greater than the optimal solution cost of the real
problem.

The optimal solution of a relaxed problem is an
admissible heuristics for the real problem.

9/17/2018 A.I. 29

Gaschnig’s Heuristics

(b) A tile can be moved from A to B,

 if B is empty.

 admissible, good estimate

Inventing admissible heuristics

 Admissible heuristics can also be derived from the solution cost of a
subproblem of a given problem.

 This cost is a lower bound on the cost of the real problem.

 Pattern databases store the exact solution for every possible
subproblem instance.
◦ The complete heuristic is constructed using the patterns in the DB

A.I. 31 9/17/2018

3

7

11

12 13 14 15

14 7

3

15 12

11 13

3

7

11

12 13 14 15

7 13

12

15 3

11 14

cost(subproblem1) + cost(subproblem2)

 =< cost(subproblem1 + subproblem2)

 h(n) = max{ h1(n),...,hm(n) }

 Another way to find an admissible heuristic is
through learning from experience:
◦ Experience = solving lots of 8-puzzles

◦ An inductive learning algorithm can be used to
predict costs for other states that arise during
search.

 Cost of computation

9/17/2018 A.I. 32

Iterative Deepening A* (IDA*)

Every iteration DF search with f-cost limit as depth limit.

Every iteration expands all nodes within the given f-cost contour

and looks over the contour to find the next contour value.

IDA* complete and optimal, as A*, but memory complexity is

linear.

Time complexity depends on how many values the f cost can

take.

Rekursive Best-First search (Ro-RLEK)

Does BF search, acc. to f-cost, until a better alternative

appears in left unexpanded branches.

Search switches over, freeing memory, but stores the actual

path cost for the future.

Rekursive Best-First search (Ro-RLEK)

Does BF search, acc. to f-cost, until a better alternative

appears in left unexpanded branches.

Search switches over, freeing memory, but stores the actual

path cost for the future.

Rekursive Best-First search (Ro-RLEK)

Does BF search, acc. to f-cost, until a better alternative

appears in left unexpanded branches.

Search switches over, freeing memory, but stores the actual

path cost for the future.

Local Search

Looking for optimum place = description of the optimal solution.

Generally only the actual state is stored.

We look for alternatives only in the vincinity of the actual state.

Special features of the search space ...

No backtracking, memory complexity constant.

Time complexity linear.

Solvability warranty? (complete?, optimal?)

Hill-Climbing (discrete gradient)

Simulated Annealing

Local beam search

Random start … …

Genetic algorithms

 … ...

 Hill-Climbing (Ro-HegyMaszo-K)

- Always tends toward better alternative

- Does not manage search tree

3 main problems

local maximum: stops in the first local optimum

plateau: no difference in direction of bettering, random choice

ridge: side slopes of the ridge steep, ridge slope can be very mild.

 Randomly started hill-climbing

 HC fast, can be frequently restarted

 - time spent

 - no improvement

Simulated Annealing

Instead of random restart

-It is permissible to go some steps

 back (downwards), to get out

 from the local optimum.

SA:

 - instead of the best action a

 random step is chosen.

 - if the step is an improvement, it is always done.

 - if not, it is accepted only with a probability (Boltzmann-distribution).

 P  exp(- E / T)

The probability is exponentially decreasing with the ‘’corrupting’’ capability of

the step

– E = deterioration in the cost function

- T = “temperature”, cooling as the time (search steps) is going on.

http://en.wikipedia.org/wiki/Simulated_annealing

http://en.wikipedia.org/wiki/Simulated_annealing

Genetic algorithms

Start: k randomly generated state = population

Every state (individul) = defined over a finite alphabet (typically 0/1 string)

= problem coding

- population

- fitness-function

- cross-over (selection, pairing) depending on fitness

- mutation

- elitism

- Darwin-/ Lamarck-inheritance

- Shaping new population

Like Hill-Climbing, etc.

(difference in the reproduction)

Genetic algorithms 8-queen problem

 fitness = 28 - n

Darwin, Lamarck?

2006 NASA ST5 spacecraft antenna

https://en.wikipedia.org/wiki/Evolved_antenna

And still more and more search algorithms ...

a. Every search algorithm has plenty of special versions

b. Finding new search algorithms – always a hot AI topic

c. Gradient based procedures in continuous spaces

 x  x -  f(x)

 x  x -  H-1(x) f(x)

Relaxation method

Gradient with a fixed step

Gradient with optimized steps

Newton-method

And many more

 d. (Tunelled hill-climbing (minimizing + tunnelling) ...)

e. On-line search when the information is deficient or real-time changing

(exploratory problems), e.g. learning real-time A*, etc.

 Heuristic function

 Admissible heuristics and A*

 Local search

 Suggested reading
◦ Prieditis: Machine Discovery of Effective Admissible

Heuristics, 1993

9/17/2018 A.I. 46

9/17/2018 A.I. 47

BF, DF, limDF, ID,

UC, BF, A, HC, …??

