Artificial Intelligence Informed search

<u>Peter Antal</u> <u>antal@mit.bme.hu</u> Tadeusz Dobrowiecki <u>tade@mit.bme.hu</u>

Outline

- Informed = use problem-specific knowledge
- Which search strategies?
 - Best-first search and its variants
- Heuristic functions?
 - How to invent them
- Local search and optimization
 - Hill climbing, local beam search, genetic algorithms,...

1.6M vertices 3.8M edges

- (1) Penalty for backtracking. (A*, etc.)
- (2) Search from both directions. (bidirectional)
- (3) Smart usage of depth-first search. (iteratíve)
- (4) Pre-process the graph. (ALT landmarks)
- (5) Start with small memory, in principle. (EMA*)
- (6) Fully give up backtracking. (hill-climbing)
- (7) Use lower quality directions also. (beam search)
- (8) Permit bad directions also. (simulated annealing)
- (9) Prohibit probably bad directions. (tabu search)
- (10) Continuously improve based on partial results.

(learning A*, anytime A*, etc.)

(11) Randomize and repeat.

(12) Stay and search in the original continuous physical space. ...

Penalty for backtracking!

= awarding going forward, **toward the goal**.

What is needed: - In what "direction" to expect the goal?

- How "far" to expect the goal in this direction?.

This information is called **heuristics**, **heuristic function h(n)**:

- Must be computable in every state in the searc space
- Estimates the expected cost of going in a given direction
- If exact, makes the search superficial (if very uncertain, does not help at all)
- At goal is zero: h(goal) = 0

Search using heuristics is a heuristic (informed) search.

Let the heuristics – straightline distance (h_{SLD})

Fullfills conditions?

What about its error?

Best-first search

- General approach of informed search:
 - Best-first search: node is selected for expansion based on an *evaluation function f(n)* in TREE-SEARCH().
- Idea: evaluation function measures distance to the goal.
 - Choose node which *appears* best
- Implementation:
 - *fringe* is queue sorted in decreasing order of desirability.
 - Special cases: greedy search, A* search

(Ro-MohoK)

A* search

- Best-known form of best-first search.
- Idea: avoid expanding paths that are already expensive.
- Evaluation function f(n)=g(n) + h(n)
 - g(n) the cost (so far) to reach the node.
 - i.e. summa of action costs along the path
 - *h(n)* estimated cost to get from the node to the closest goal.
 - *f(n)* estimated total cost of path through *n* to goal.

A* search

- A* search uses an admissible heuristic
 - A heuristic is *admissible* if it *never overestimates* the cost to reach the goal (~optimistic).

Formally:

- 1. $h(n) <= h^*(n)$ where $h^*(n)$ is the true cost from n
- 2. $h(n) \ge 0$ so h(G)=0 for any goal G.

e.g. $h_{SLD}(n)$ never overestimates the actual road distance

Theorem: If *h(n)* is admissible, A^{*} using BEST-FIRST-SEARCH() with selector function f(n) is optimal.

Optimality of A*(standard proof)

Suppose a suboptimal goal G_2 in the queue. Let *n* be an unexpanded node on a shortest to optimal goal *G*.

 $f(G_2) = g(G_2) \qquad \text{since } h(G_2) = 0$ $> g(G) \qquad \text{since } G_2 \text{ is suboptimal}$ $> = f(n) \qquad \text{since } h \text{ is admissible}$

Since $f(G_2) > f(n)$, A* will never select G_2 for expansion (i.e. for checking, but note that G_2 can be inside the queue).

Consistency

A heuristic is consistent if

$$h(n) \le c(n,a,n') + h(n')$$

If h is consistent, we have

$$f(n') = g(n') + h(n')$$

= $g(n) + c(n, a, n') + h(n')$
 $\ge g(n) + h(n)$
 $\ge f(n)$

i.e. f(n) is non-decreasing along any path. Theorem: If *h(n)* is consistent, A * using GRAPH-SEARCH is optimal п

h(n)

c(n,a,n')

h(n')

Optimality of A*(more usefull)

- A* expands nodes in order of increasing *f* value
- Contours can be drawn in state space
 - Uniform-cost search adds circles.
 - F-contours are gradually added:
 - 1) nodes with $f(n) < C^*$
 - 2) Some nodes on the goal

http://mialmanach.mit.bme.hu/demonstraciok/a_kereses_usa_terkepen_konturkovetessel

- Completeness: YES
 - Since bands of increasing *f* are added
 - Unless there are infinitly many nodes with *f<f(G)*

Locally finite graphs – finite branching factor – action $cost > \varepsilon > 0$.

- Completeness: YES
- Time complexity:
 - Number of nodes expanded is still exponential in the length of the solution.

- Completeness: YES
- Time complexity: (exponential with path length)
- Space complexity:
 - It keeps all generated nodes in memory
 - Hence space is the major problem not time

- Completeness: YES
- Time complexity: (exponential with path length)
- Space complexity:(all nodes are stored)
- Optimality: YES
 - Cannot expand f_{i+1} until f_i is finished.
 - A* expands all nodes with $f(n) < C^*$
 - A* expands some nodes with $f(n) = C^*$
 - A* expands no nodes with $f(n) > C^*$

Also *optimally efficient* (not including ties)

Finding heuristic functions

Start State

Goal State

- E.g for the 8–puzzle
 - Avg. solution cost is about 22 steps (branching factor +/-3)
 - Exhaustive search to depth 22: 3.1 x 10¹⁰ states.
 - A good heuristic function can reduce the search process.

Finding heuristic functions

- E.g for the 8-puzzle knows two commonly used heuristics
- *h*₁ = the number of misplaced tiles
 *h*₁(s)=8
- *h*₂ = the sum of the distances of the tiles from their goal positions (manhattan distance).
 - $h_2(s) = 3 + 1 + 2 + 2 + 3 + 3 + 2 = 18$

Quality (error) of heuristic functions

- Effective branching factor b*
 - Is the branching factor that a uniform tree of depth d would have in order to contain N+1 nodes.

$$N+1=1+b*+(b*)^2+...+(b*)^d$$

- Measure is fairly constant for sufficiently hard problems.
 - Can thus provide a good guide to the heuristic's overall usefulness.
 - A good value of b* is 1.

Heuristic quality and dominance

1200 random problems with solution lengths from 2 to 24.

bag	Search Cost			Effective Branching Factor		
d	IDS	$A^*(h_1)$	$A^*(h_2)$	IDS	$\mathbf{A}^{*}(h_{1})$	$A^{*}(h_{2})$
2	10	6	6	2.45	1.79	1.79
4	112	13	12	2.87	1.48	1.45
6	680	20	18	2.73	1.34	1.30
8	6384	39	25	2.80	1.33	1.24
10	47127	93	39	2.79	1.38	1.22
12	3644035	227	73	2.78	1.42	1.24
14	den-need	539	113	Stort - Read	1.44	1.23
16	Section of the	1301	211	-	1.45	1.25
18	-	3056	363	_	1.46	1.26
20	101687 (<u>0</u> 10)	7276	676	1200LUNESS	1.47	1.27
22	03690 - 000	18094	1219	baxal= still	1.48	1.28
24	-	39135	1641	-	1.48	1.26

If h₂(n) >= h₁(n) for all n (both admissible) then h₂ dominates h₁ and is better for search

*h*₁ = the number of misplaced tiles *h*₂ = the sum of the distances of the tiles from their goal positions (manhattan distance)

12 Mg	both in the d	Search Cost	ang taractifong	Effective Branching Factor		
d	IDS	$A^*(h_1)$	$A^*(h_2)$	IDS	$\mathbf{A}^{*}(h_{1})$	$A^*(h_2)$
2	10	6	6	2.45	1.79	1.79
4	112	13	12	2.87	1.48	1.45
6	680	20	18	2.73	1.34	1.30
8	6384	39	25	2.80	1.33	1.24
10	47127	93	39	2.79	1.38	1.22
12	3644035	227	73	2.78	1.42	1.24
14	- Anno - Anno	539	113		1.44	1.23
16		1301	211	-	1.45	1.25
18	-	3056	363		1.46	1.26
20		7276	676	P. P. A.L. T. S.A.	1.47	1.27
22	G3840/-300	18094	1219	barat_ rate	1.48	1.28
24	-	39135	1641	End-toro	1.48	1.26

- Admissible heuristics can be derived from the exact solution cost of a relaxed version of the problem:
 - Relaxed 8-puzzle for h₁: a tile can move anywhere
 As a result, h₁(n) gives the shortest solution
 - Relaxed 8-puzzle for h_2 : a tile can move to any adjacent square.
 - As a result, $h_2(n)$ gives the shortest solution.
- The optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem.
- The optimal solution of a relaxed problem is an admissible heuristics for the real problem.

Gaschnig's Heuristics

(b) A tile can be moved from A to B, if B is empty. admissible, good estimate

- Admissible heuristics can also be derived from the solution cost of a subproblem of a given problem.
- This cost is a lower bound on the cost of the real problem.
- Pattern databases store the exact solution for every possible subproblem instance.
 - The complete heuristic is constructed using the patterns in the DB

cost(subproblem1) + cost(subproblem2)=< cost(subproblem1 + subproblem2)

- $h(n) = max\{ h_1(n),...,h_m(n) \}$
- Another way to find an admissible heuristic is through learning from experience:
 - Experience = solving lots of 8-puzzles
 - An inductive learning algorithm can be used to predict costs for other states that arise during search.
- Cost of computation

Iterative Deepening A* (IDA*)

Every iteration DF search with f-cost limit as depth limit. Every iteration expands all nodes within the given f-cost contour and looks over the contour to find the next contour value.

IDA* **complete** and **optimal**, as A*, but memory complexity is linear.

Time complexity depends on how many values the f cost can take.

Rekursive Best-First search (Ro-RLEK)

Does BF search, acc. to f-cost, until a better alternative appears in left unexpanded branches.

Search switches over, freeing memory, but stores the actual path cost for the future.

Rekursive Best-First search (Ro-RLEK)

Does BF search, acc. to f-cost, until a better alternative appears in left unexpanded branches.

Search switches over, freeing memory, but stores the actual path cost for the future.

Rekursive Best-First search (Ro-RLEK)

Does BF search, acc. to f-cost, until a better alternative appears in left unexpanded branches.

Search switches over, freeing memory, but stores the actual path cost for the future.

Local Search

Looking for optimum place = description of the optimal solution. Generally only the actual state is stored. We look for alternatives only in the vincinity of the actual state.

Special features of the search space ...

No backtracking, memory complexity constant. Time complexity linear. Solvability warranty? (complete?, optimal?)

nt. 2 -1 0 1 22X

Hill-Climbing (discrete gradient) Simulated Annealing Local beam search Random start Genetic algorithms

Hill-Climbing

(Ro-HegyMaszo-K)

- Always tends toward better alternative
- Does not manage search tree

3 main problems

local maximum: stops in the first local optimum **plateau**: no difference in direction of bettering, random choice **ridge**: side slopes of the ridge steep, ridge slope can be very mild.

Randomly started hill-climbing

HC fast, can be frequently restarted

- time spent
- no improvement

Simulated Annealing

Instead of random restart -It is permissible to go some steps back (downwards), to get out from the local optimum.

SA:

- instead of the best action a **random step** is chosen.

- if the step is an **improvement**, it is always done.
- if not, it is accepted only with a probability (Boltzmann-distribution).

$P \approx \exp(-\Delta E / T)$

The probability is exponentially decreasing with the "corrupting" capability of the step

- $-\Delta E$ = deterioration in the cost function
- T = "temperature", cooling as the time (search steps) is going on.

Genetic algorithms

Start: k randomly generated state = population

Every state (individul) = defined over a finite alphabet (typically 0/1 string) = problem coding

- population
- fitness-function
- cross-over (selection, pairing) depending on fitness
- mutation
- elitism
- Darwin-/ Lamarck-inheritance
- Shaping new population

Like Hill-Climbing, etc. (difference in the reproduction)

Genetic algorithms

8-queen problem fitness = 28 - n

Fitness Selection Pairs

Cross-Over

Mutation

Darwin, Lamarck?

2006 NASA ST5 spacecraft antenna

And still more and more search algorithms ...

- a. Every search algorithm has plenty of special versions
- b. Finding new search algorithms always a hot AI topic
- c. Gradient based procedures in continuous spaces

 $\begin{array}{l} \mathbf{x} \leftarrow \mathbf{x} - \alpha \ \nabla f(\mathbf{x}) \\ \mathbf{x} \leftarrow \mathbf{x} - \alpha \ \mathbf{H}^{-1}(\mathbf{x}) \ \nabla f(\mathbf{x}) \\ \text{Relaxation method} \\ \text{Gradient with a fixed step} \\ \text{Gradient with optimized steps} \\ \text{Newton-method} \\ \text{And many more} \end{array}$

- d. (Tunelled hill-climbing (minimizing + tunnelling) ...)
- e. On-line search when the information is deficient or real-time changing (exploratory problems), e.g. **learning real-time A***, etc.

Summary

- Heuristic function
- Admissible heuristics and A*
- Local search
- Suggested reading
 - Prieditis: Machine Discovery of Effective Admissible Heuristics, 1993

