
Artificial Intelligence
Uninformed search

9/9/2018 1A.I. Uninformed search

A.I. Uninformed search2

9/9

/20

18

 The “symbols&search” hypothesis for AI

 Problem-solving agents
◦ A kind of goal-based agent

 Problem types
◦ Single state (fully observable)

◦ Search with partial information

 Problem formulation
◦ Example problems

 Basic search algorithms
◦ Uninformed

 The Logic Theorist, 1955
◦  see lectures on logic

 The Dartmouth conference ("birth of AI”, 1956)
 List processing (Information Processing Language, IPL)
 Means-ends analysis ("reasoning as search")

◦  see lectures on planning

 The General Problem Solver
 Heuristics to limit the search space

◦  see lecture on informed search

 The physical symbol systems hypothesis
◦ intelligent behavior can be reduced to/emulated by symbol manipulation

 The unified theory of cognition (1990, cognitive architectures:
Soar, ACT-R)

 Newel&Simon: Computer science as empirical inquiry: symbols
and search, 1975

9/9/2018A.I. Uninformed search 3

 The Box and Banana problem
◦ Human, monkey, pigeon, crow..

9/9/2018A.I. Uninformed search 4

A.I. Uninformed search5

9/9

/20

18

 Four general steps in problem solving:
◦ Goal formulation

 What are the successful world states
◦ Problem formulation

 What actions and states to consider give the goal
◦ Search

 Determine the possible sequence of actions that lead to
the states of known values and then choosing the best
sequence.

◦ Execute

 Give the solution perform the actions.

A.I. Uninformed search6

9/9

/20

18

 Deterministic, fully observable  single state
problem
◦ Agent knows exactly which state it will be in; solution is a

sequence.

 Partial knowledge of states and actions:
 Non-observable  sensorless or conformant problem

 Agent may have no idea where it is; solution (if any) is a
sequence.

 Nondeterministic and/or partially observable 
contingency problem

 Percepts provide new information about current state;
solution is a tree or policy; often interleave search and
execution.

 Unknown state space  exploration problem (“online”)
 When states and actions of the environment are unknown.

A.I. Uninformed search7

9/9

/20

18

 A problem is defined by:
◦ An initial state, e.g. Arad
◦ Successor function S(X)= set of action-state pairs

 e.g. S(Arad)={<Arad  Zerind, Zerind>,…}
intial state + successor function = state space

◦ Goal test, can be

 Explicit, e.g. x=‘at bucharest’
 Implicit, e.g. checkmate(x)

◦ Path cost (additive)

 e.g. sum of distances, number of actions executed, …

 c(x,a,y) is the step cost, assumed to be >= 0

A solution is a sequence of actions from initial to goal state.

Optimal solution has the lowest path cost.

A.I. Uninformed search8

9/9

/20

18

 On holiday in Romania; currently in Arad
◦ Flight leaves tomorrow from Bucharest

 Formulate goal
◦ Be in Bucharest

 Formulate problem
◦ States: various cities

◦ Actions: drive between cities

 Find solution
◦ Sequence of cities; e.g. Arad, Sibiu, Fagaras, Bucharest, …

A.I. Uninformed search9

9/9

/20

18

A.I. Uninformed search10

9/9

/20

18

 Real world is absurdly complex.
State space must be abstracted for problem solving.

 (Abstract) state = set of real states.

 (Abstract) action = complex combination of real actions.
◦ e.g. Arad Zerind represents a complex set of possible routes, detours,

rest stops, etc.

◦ The abstraction is valid if the path between two states is reflected in the
real world.

 (Abstract) solution = set of real paths that are solutions
in the real world.

 Each abstract action should be “easier” than the real
problem.

A.I. Uninformed search 119/9/2018

 States??

 Initial state??

 Actions??

 Goal test??

 Path cost??

A.I. Uninformed search 129/9/2018

 States?? Integer location of each tile

 Initial state?? Any state can be initial

 Actions?? {Left, Right, Up, Down}

 Goal test?? Check whether goal configuration is reached

 Path cost?? Number of actions to reach goal

A.I. Uninformed search 139/9/2018

 States??

 Initial state??

 Actions??

 Goal test??

 Path cost??

A.I. Uninformed search 149/9/2018

Incremental formulation vs. complete-state formulation
 States??
 Initial state??
 Actions??
 Goal test??
 Path cost??

A.I. Uninformed search 159/9/2018

Incremental formulation
 States?? Any arrangement of 0 to 8 queens on the board
 Initial state?? No queens
 Actions?? Add queen in empty square
 Goal test?? 8 queens on board and none attacked
 Path cost?? None

3 x 1014 possible sequences to investigate

A.I. Uninformed search 169/9/2018

Incremental formulation (alternative)
 States?? n (0≤ n≤ 8) queens on the board, one per column in the

n leftmost columns with no queen attacking another.
 Actions?? Add queen in leftmost empty column such that is not

attacking other queens
2057 possible sequences to investigate; Yet makes no
difference when n=100

A.I. Uninformed search 179/9/2018

 States??

 Initial state??

 Actions??

 Goal test??

 Path cost??

A.I. Uninformed search 189/9/2018

 States?? Real-valued coordinates of robot joint angles; parts
of the object to be assembled.

 Initial state?? Any arm position and object configuration.
 Actions?? Continuous motion of robot joints
 Goal test?? Complete assembly (without robot)
 Path cost?? Time to execute

A.I. Uninformed search19

9/9

/20

18

 How do we find the solutions of previous
problems?
◦ Search the state space (remember complexity of space depends

on state representation)

◦ Here: search through explicit tree generation

 ROOT= initial state.

 Nodes and leafs generated through successor function.

◦ In general search generates a graph (same state through multiple
paths)

A.I. Uninformed search 209/9/2018

 A state is a (representation of) a physical configuration

 A node is a data structure belong to a search tree
◦ A node has a parent, children, … and ncludes path cost, depth, …

◦ Here node= <state, parent-node, action, path-cost, depth>
◦ FRINGE= contains generated nodes which are not yet expanded.

 White nodes with black outline

A.I. Uninformed search21

9/9

/20

18

function TREE-SEARCH(problem,fringe) return a solution or failure

fringe  INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)

loop do

if EMPTY?(fringe) then return failure

node  REMOVE-FIRST(fringe)

if GOAL-TEST[problem] applied to STATE[node] succeeds

then return SOLUTION(node)

fringe  INSERT-ALL(EXPAND(node, problem), fringe)

A.I. Uninformed search22 9/9/2018

function EXPAND(node,problem) return a set of nodes

successors  the empty set

for each <action, result> in SUCCESSOR-FN[problem](STATE[node])
do

s  a new NODE

STATE[s]  result

PARENT-NODE[s]  node

ACTION[s]  action

PATH-COST[s]  PATH-COST[node] + STEP-COST(node,
action,s)

DEPTH[s]  DEPTH[node]+1

add s to successors

return successors

A.I. Uninformed search23

9/9

/20

18

 A strategy is defined by picking the order of node
expansion.

 Problem-solving performance is measured in four ways:
◦ Completeness; Does it always find a solution if one exists?
◦ Optimality; Does it always find the least-cost solution?
◦ Space Complexity; Number of nodes stored in memory during search?
◦ Time Complexity; Number of nodes generated/expanded?

 Time and space complexity are measured in terms of
problem difficulty defined by:
◦ b - maximum branching factor of the search tree
◦ d - depth of the least-cost solution
◦ m - maximum depth of the state space (may be )

A.I. Uninformed search24

9/9

/20

18

 (a.k.a. blind search) = use only information
available in problem definition.
◦ When strategies can determine whether one non-goal state is

better than another  informed search.

 Categories defined by expansion algorithm:
◦ Breadth-first search

◦ Uniform-cost search

◦ Depth-first search

◦ Depth-limited search

◦ Iterative deepening search.

◦ Bidirectional search

A.I. Uninformed search 259/9/2018

 Expand shallowest unexpanded node

 Implementation: fringe is a FIFO queue

A

A.I. Uninformed search 269/9/2018

 Expand shallowest unexpanded node

 Implementation: fringe is a FIFO queue

A

B C

A.I. Uninformed search 279/9/2018

 Expand shallowest unexpanded node

 Implementation: fringe is a FIFO queue

A

B C

D E

A.I. Uninformed search 289/9/2018

 Expand shallowest unexpanded node

 Implementation: fringe is a FIFO queue

A

B C

D E F G

A.I. Uninformed search29

9/9

/20

18

 Completeness:
◦ Does it always find a solution if one exists?

◦ YES

 If shallowest goal node is at some finite depth d

 Condition: If b is finite

 (maximum num. Of succ. nodes is finite)

A.I. Uninformed search30

9/9

/20

18

 Completeness:
◦ YES (if b is finite)

 Time complexity:
◦ Assume a state space where every state has b successors.

 root has b successors, each node at the next level has again b
successors (total b2), …

 Assume solution is at depth d

 Worst case; expand all but the last node at depth d

 Total numb. of nodes generated:



b b2  b3  ... bd  (bd 1 b) O(bd 1)

A.I. Uninformed search31

9/9

/20

18

 Completeness:
◦ YES (if b is finite)

 Time complexity:
◦ Total numb. of nodes generated:

 Space complexity:
◦ Idem if each node is retained in memory



b b2  b3  ... bd  (bd 1 b) O(bd 1)

A.I. Uninformed search32

9/9

/20

18

 Completeness:
◦ YES (if b is finite)

 Time complexity:
◦ Total numb. of nodes generated:

 Space complexity:
◦ Idem if each node is retained in memory

 Optimality:
◦ Does it always find the least-cost solution?
◦ In general YES

 unless actions have different cost.


b b2  b3  ... bd  (bd 1 b) O(bd 1)

A.I. Uninformed search33

9/9

/20

18

 Two lessons:
◦ Memory requirements are a bigger problem than its execution time.

◦ Exponential complexity search problems cannot be solved by uninformed
search methods for any but the smallest instances.

DEPTH2 NODES TIME MEMORY

2 1100 0.11 seconds 1 megabyte

4 111100 11 seconds 106 megabytes

6 107 19 minutes 10 gigabytes

8 109 31 hours 1 terabyte

10 1011 129 days 101 terabytes

12 1013 35 years 10 petabytes

14 1015 3523 years 1 exabyte

A.I. Uninformed search34

9/9

/20

18

 Extension of BF-search:
◦ Expand node with lowest path cost

 Implementation: fringe = queue ordered by
path cost.

 UC-search is the same as BF-search when all
step-costs are equal.

A.I. Uninformed search35

9/9

/20

18

 Completeness:
◦ YES, if step-cost >  (smal positive constant)

 Time complexity:
◦ Assume C* the cost of the optimal solution.

◦ Assume that every action costs at least 
◦ Worst-case:

 Space complexity:
◦ Idem to time complexity

 Optimality:
◦ nodes expanded in order of increasing path cost.

◦ YES, if complete.



O(bC*/)

A.I. Uninformed search 369/9/2018

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)
A

A.I. Uninformed search 379/9/2018

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)
A

B C

A.I. Uninformed search 389/9/2018

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)

A

B C

D E

A.I. Uninformed search 399/9/2018

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)

A

B C

D E

H I

A.I. Uninformed search 409/9/2018

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)
A

B
C

D E

H I

A.I. Uninformed search 419/9/2018

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)

A

B C

D E

H I

A.I. Uninformed search 429/9/2018

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)

A

B C

D E

H I J K

A.I. Uninformed search 439/9/2018

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)

A

B C

D E

H I J K

A.I. Uninformed search 449/9/2018

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)

A

B C

D E

H I J K

A.I. Uninformed search 459/9/2018

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)

A

B C

D E

H I J K

F H

A.I. Uninformed search 469/9/2018

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)

A

B C

D E

H I J K

F H

L M

A.I. Uninformed search 479/9/2018

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)

A

B C

D E

H I J K

F H

L M

A.I. Uninformed search48

9/9

/20

18

 Completeness;
◦ Does it always find a solution if one exists?

◦ NO

 unless search space is finite and no loops are possible.

A.I. Uninformed search49

9/9

/20

18

 Completeness;
◦ NO unless search space is finite.

 Time complexity;
◦ Terrible if m is much larger than d (depth of

optimal solution)

◦ But if many solutions, then faster than BF-search



O(bm)

A.I. Uninformed search50

9/9

/20

18

 Completeness;
◦ NO unless search space is finite.

 Time complexity;

 Space complexity;
◦ Backtracking search uses even less memory

 One successor instead of all b.



O(bm1)



O(bm)

A.I. Uninformed search51

9/9

/20

18

 Completeness;
◦ NO unless search space is finite.

 Time complexity;

 Space complexity;

 Optimallity; No
◦ Same issues as completeness

◦ Assume node J and C contain goal states


O(bm1)



O(bm)

A.I. Uninformed search52

9/9

/20

18

 Is DF-search with depth limit l.
◦ i.e. nodes at depth l have no successors.
◦ Problem knowledge can be used

 Solves the infinite-path problem.
 If l < d then incompleteness results.
 If l > d then not optimal.
 Time complexity:
 Space complexity:



O(bl)



O(bl)

A.I. Uninformed search53

9/9

/20

18

function DEPTH-LIMITED-SEARCH(problem,limit) return a solution or
failure/cutoff

return RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]),problem,limit)

function RECURSIVE-DLS(node, problem, limit) return a solution or
failure/cutoff

cutoff_occurred?  false

if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node)

else if DEPTH[node] == limit then return cutoff

else for each successor in EXPAND(node, problem) do

result  RECURSIVE-DLS(successor, problem, limit)

if result == cutoff then cutoff_occurred?  true

else if result  failure then return result
if cutoff_occurred? then return cutoff else return failure

A.I. Uninformed search54

9/9

/20

18

 What?
◦ A general strategy to find best depth limit l.

 Goals is found at depth d, the depth of the shallowest
goal-node.

◦ Often used in combination with DF-search

 Combines benefits of DF- en BF-search

A.I. Uninformed search55

9/9

/20

18

function ITERATIVE_DEEPENING_SEARCH(problem) return a solution or
failure

inputs: problem

for depth  0 to ∞ do

result  DEPTH-LIMITED_SEARCH(problem, depth)

if result  cuttoff then return result

A.I. Uninformed search 569/9/2018

 Limit=0

A.I. Uninformed search 579/9/2018

 Limit=1

A.I. Uninformed search 589/9/2018

 Limit=2

A.I. Uninformed search 599/9/2018

 Limit=3

A.I. Uninformed search60

9/9

/20

18

 Completeness:
◦ YES (no infinite paths)

A.I. Uninformed search61

9/9

/20

18

 Completeness:
◦ YES (no infinite paths)

 Time complexity:
◦ Algorithm seems costly due to repeated generation of certain states.

◦ Node generation:

 level d: once

 level d-1: 2

 level d-2: 3

 …

 level 2: d-1

 level 1: d



N(IDS)  (d)b (d 1)b2  ... (1)bd

N(BFS)  b b2  ... bd  (bd 1  b)



O(bd)



N(IDS)  50 400 3000 20000100000 123450

N(BFS) 10100100010000100000 999990 1111100

Num. Comparison for b=10 and d=5 solution at far right

A.I. Uninformed search62

9/9

/20

18

 Completeness:
◦ YES (no infinite paths)

 Time complexity:

 Space complexity:
◦ Cfr. depth-first search



O(bd)



O(bd)

A.I. Uninformed search63

9/9

/20

18

 Completeness:
◦ YES (no infinite paths)

 Time complexity:

 Space complexity:

 Optimality:
◦ YES if step cost is 1.

◦ Can be extended to iterative lengthening search

 Same idea as uniform-cost search

 Increases overhead.



O(bd)



O(bd)

A.I. Uninformed search 649/9/2018

Criterion Breadth-

First

Uniform-

cost

Depth-First Depth-

limited

Iterative

deepening

Bidirectional

search

Complete? YES* YES* NO YES,

if l  d

YES YES*

Time bd+1 bC*/e bm bl bd bd/2

Space bd+1 bC*/e bm bl bd bd/2

Optimal? YES* YES* NO NO YES YES

 The symbols&search paradigm in AI
 Uninformed search
◦ Space complexity: OK!
◦ Time complexity: exp.  the knowledge paradigm in AI

 Suggested reading
◦ Newel&Simon: Computer science as empirical inquiry:

symbols and search, 1975
◦ Cognitive architectures: ACT-R

 http://act-r.psy.cmu.edu/
 http://act-r.psy.cmu.edu/about/
 Allen Newell describes cognitive architectures as the way to

answer one of the ultimate scientific questions: "How can the
human mind occur in the physical universe?
 http://act-r.psy.cmu.edu/misc/newellclip.mpg

9/9/2018A.I. Uninformed search 65

http://act-r.psy.cmu.edu/
http://act-r.psy.cmu.edu/about/
http://act-r.psy.cmu.edu/misc/newellclip.mpg

