
Artificial Intelligence
Uninformed search

9/9/2018 1A.I. Uninformed search

A.I. Uninformed search2

9/9

/20

18

 The “symbols&search” hypothesis for AI

 Problem-solving agents
◦ A kind of goal-based agent

 Problem types
◦ Single state (fully observable)

◦ Search with partial information

 Problem formulation
◦ Example problems

 Basic search algorithms
◦ Uninformed

 The Logic Theorist, 1955
◦ see lectures on logic

 The Dartmouth conference ("birth of AI”, 1956)
 List processing (Information Processing Language, IPL)
 Means-ends analysis ("reasoning as search")

◦ see lectures on planning

 The General Problem Solver
 Heuristics to limit the search space

◦ see lecture on informed search

 The physical symbol systems hypothesis
◦ intelligent behavior can be reduced to/emulated by symbol manipulation

 The unified theory of cognition (1990, cognitive architectures:
Soar, ACT-R)

 Newel&Simon: Computer science as empirical inquiry: symbols
and search, 1975

9/9/2018A.I. Uninformed search 3

 The Box and Banana problem
◦ Human, monkey, pigeon, crow..

9/9/2018A.I. Uninformed search 4

A.I. Uninformed search5

9/9

/20

18

 Four general steps in problem solving:
◦ Goal formulation

 What are the successful world states
◦ Problem formulation

 What actions and states to consider give the goal
◦ Search

 Determine the possible sequence of actions that lead to
the states of known values and then choosing the best
sequence.

◦ Execute

 Give the solution perform the actions.

A.I. Uninformed search6

9/9

/20

18

 Deterministic, fully observable single state
problem
◦ Agent knows exactly which state it will be in; solution is a

sequence.

 Partial knowledge of states and actions:
 Non-observable sensorless or conformant problem

 Agent may have no idea where it is; solution (if any) is a
sequence.

 Nondeterministic and/or partially observable
contingency problem

 Percepts provide new information about current state;
solution is a tree or policy; often interleave search and
execution.

 Unknown state space exploration problem (“online”)
 When states and actions of the environment are unknown.

A.I. Uninformed search7

9/9

/20

18

 A problem is defined by:
◦ An initial state, e.g. Arad
◦ Successor function S(X)= set of action-state pairs

 e.g. S(Arad)={<Arad Zerind, Zerind>,…}
intial state + successor function = state space

◦ Goal test, can be

 Explicit, e.g. x=‘at bucharest’
 Implicit, e.g. checkmate(x)

◦ Path cost (additive)

 e.g. sum of distances, number of actions executed, …

 c(x,a,y) is the step cost, assumed to be >= 0

A solution is a sequence of actions from initial to goal state.

Optimal solution has the lowest path cost.

A.I. Uninformed search8

9/9

/20

18

 On holiday in Romania; currently in Arad
◦ Flight leaves tomorrow from Bucharest

 Formulate goal
◦ Be in Bucharest

 Formulate problem
◦ States: various cities

◦ Actions: drive between cities

 Find solution
◦ Sequence of cities; e.g. Arad, Sibiu, Fagaras, Bucharest, …

A.I. Uninformed search9

9/9

/20

18

A.I. Uninformed search10

9/9

/20

18

 Real world is absurdly complex.
State space must be abstracted for problem solving.

 (Abstract) state = set of real states.

 (Abstract) action = complex combination of real actions.
◦ e.g. Arad Zerind represents a complex set of possible routes, detours,

rest stops, etc.

◦ The abstraction is valid if the path between two states is reflected in the
real world.

 (Abstract) solution = set of real paths that are solutions
in the real world.

 Each abstract action should be “easier” than the real
problem.

A.I. Uninformed search 119/9/2018

 States??

 Initial state??

 Actions??

 Goal test??

 Path cost??

A.I. Uninformed search 129/9/2018

 States?? Integer location of each tile

 Initial state?? Any state can be initial

 Actions?? {Left, Right, Up, Down}

 Goal test?? Check whether goal configuration is reached

 Path cost?? Number of actions to reach goal

A.I. Uninformed search 139/9/2018

 States??

 Initial state??

 Actions??

 Goal test??

 Path cost??

A.I. Uninformed search 149/9/2018

Incremental formulation vs. complete-state formulation
 States??
 Initial state??
 Actions??
 Goal test??
 Path cost??

A.I. Uninformed search 159/9/2018

Incremental formulation
 States?? Any arrangement of 0 to 8 queens on the board
 Initial state?? No queens
 Actions?? Add queen in empty square
 Goal test?? 8 queens on board and none attacked
 Path cost?? None

3 x 1014 possible sequences to investigate

A.I. Uninformed search 169/9/2018

Incremental formulation (alternative)
 States?? n (0≤ n≤ 8) queens on the board, one per column in the

n leftmost columns with no queen attacking another.
 Actions?? Add queen in leftmost empty column such that is not

attacking other queens
2057 possible sequences to investigate; Yet makes no
difference when n=100

A.I. Uninformed search 179/9/2018

 States??

 Initial state??

 Actions??

 Goal test??

 Path cost??

A.I. Uninformed search 189/9/2018

 States?? Real-valued coordinates of robot joint angles; parts
of the object to be assembled.

 Initial state?? Any arm position and object configuration.
 Actions?? Continuous motion of robot joints
 Goal test?? Complete assembly (without robot)
 Path cost?? Time to execute

A.I. Uninformed search19

9/9

/20

18

 How do we find the solutions of previous
problems?
◦ Search the state space (remember complexity of space depends

on state representation)

◦ Here: search through explicit tree generation

 ROOT= initial state.

 Nodes and leafs generated through successor function.

◦ In general search generates a graph (same state through multiple
paths)

A.I. Uninformed search 209/9/2018

 A state is a (representation of) a physical configuration

 A node is a data structure belong to a search tree
◦ A node has a parent, children, … and ncludes path cost, depth, …

◦ Here node= <state, parent-node, action, path-cost, depth>
◦ FRINGE= contains generated nodes which are not yet expanded.

 White nodes with black outline

A.I. Uninformed search21

9/9

/20

18

function TREE-SEARCH(problem,fringe) return a solution or failure

fringe INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)

loop do

if EMPTY?(fringe) then return failure

node REMOVE-FIRST(fringe)

if GOAL-TEST[problem] applied to STATE[node] succeeds

then return SOLUTION(node)

fringe INSERT-ALL(EXPAND(node, problem), fringe)

A.I. Uninformed search22 9/9/2018

function EXPAND(node,problem) return a set of nodes

successors the empty set

for each <action, result> in SUCCESSOR-FN[problem](STATE[node])
do

s a new NODE

STATE[s] result

PARENT-NODE[s] node

ACTION[s] action

PATH-COST[s] PATH-COST[node] + STEP-COST(node,
action,s)

DEPTH[s] DEPTH[node]+1

add s to successors

return successors

A.I. Uninformed search23

9/9

/20

18

 A strategy is defined by picking the order of node
expansion.

 Problem-solving performance is measured in four ways:
◦ Completeness; Does it always find a solution if one exists?
◦ Optimality; Does it always find the least-cost solution?
◦ Space Complexity; Number of nodes stored in memory during search?
◦ Time Complexity; Number of nodes generated/expanded?

 Time and space complexity are measured in terms of
problem difficulty defined by:
◦ b - maximum branching factor of the search tree
◦ d - depth of the least-cost solution
◦ m - maximum depth of the state space (may be)

A.I. Uninformed search24

9/9

/20

18

 (a.k.a. blind search) = use only information
available in problem definition.
◦ When strategies can determine whether one non-goal state is

better than another informed search.

 Categories defined by expansion algorithm:
◦ Breadth-first search

◦ Uniform-cost search

◦ Depth-first search

◦ Depth-limited search

◦ Iterative deepening search.

◦ Bidirectional search

A.I. Uninformed search 259/9/2018

 Expand shallowest unexpanded node

 Implementation: fringe is a FIFO queue

A

A.I. Uninformed search 269/9/2018

 Expand shallowest unexpanded node

 Implementation: fringe is a FIFO queue

A

B C

A.I. Uninformed search 279/9/2018

 Expand shallowest unexpanded node

 Implementation: fringe is a FIFO queue

A

B C

D E

A.I. Uninformed search 289/9/2018

 Expand shallowest unexpanded node

 Implementation: fringe is a FIFO queue

A

B C

D E F G

A.I. Uninformed search29

9/9

/20

18

 Completeness:
◦ Does it always find a solution if one exists?

◦ YES

 If shallowest goal node is at some finite depth d

 Condition: If b is finite

 (maximum num. Of succ. nodes is finite)

A.I. Uninformed search30

9/9

/20

18

 Completeness:
◦ YES (if b is finite)

 Time complexity:
◦ Assume a state space where every state has b successors.

 root has b successors, each node at the next level has again b
successors (total b2), …

 Assume solution is at depth d

 Worst case; expand all but the last node at depth d

 Total numb. of nodes generated:

b b2 b3 ... bd (bd 1 b) O(bd 1)

A.I. Uninformed search31

9/9

/20

18

 Completeness:
◦ YES (if b is finite)

 Time complexity:
◦ Total numb. of nodes generated:

 Space complexity:
◦ Idem if each node is retained in memory

b b2 b3 ... bd (bd 1 b) O(bd 1)

A.I. Uninformed search32

9/9

/20

18

 Completeness:
◦ YES (if b is finite)

 Time complexity:
◦ Total numb. of nodes generated:

 Space complexity:
◦ Idem if each node is retained in memory

 Optimality:
◦ Does it always find the least-cost solution?
◦ In general YES

 unless actions have different cost.

b b2 b3 ... bd (bd 1 b) O(bd 1)

A.I. Uninformed search33

9/9

/20

18

 Two lessons:
◦ Memory requirements are a bigger problem than its execution time.

◦ Exponential complexity search problems cannot be solved by uninformed
search methods for any but the smallest instances.

DEPTH2 NODES TIME MEMORY

2 1100 0.11 seconds 1 megabyte

4 111100 11 seconds 106 megabytes

6 107 19 minutes 10 gigabytes

8 109 31 hours 1 terabyte

10 1011 129 days 101 terabytes

12 1013 35 years 10 petabytes

14 1015 3523 years 1 exabyte

A.I. Uninformed search34

9/9

/20

18

 Extension of BF-search:
◦ Expand node with lowest path cost

 Implementation: fringe = queue ordered by
path cost.

 UC-search is the same as BF-search when all
step-costs are equal.

A.I. Uninformed search35

9/9

/20

18

 Completeness:
◦ YES, if step-cost > (smal positive constant)

 Time complexity:
◦ Assume C* the cost of the optimal solution.

◦ Assume that every action costs at least
◦ Worst-case:

 Space complexity:
◦ Idem to time complexity

 Optimality:
◦ nodes expanded in order of increasing path cost.

◦ YES, if complete.

O(bC*/)

A.I. Uninformed search 369/9/2018

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)
A

A.I. Uninformed search 379/9/2018

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)
A

B C

A.I. Uninformed search 389/9/2018

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)

A

B C

D E

A.I. Uninformed search 399/9/2018

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)

A

B C

D E

H I

A.I. Uninformed search 409/9/2018

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)
A

B
C

D E

H I

A.I. Uninformed search 419/9/2018

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)

A

B C

D E

H I

A.I. Uninformed search 429/9/2018

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)

A

B C

D E

H I J K

A.I. Uninformed search 439/9/2018

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)

A

B C

D E

H I J K

A.I. Uninformed search 449/9/2018

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)

A

B C

D E

H I J K

A.I. Uninformed search 459/9/2018

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)

A

B C

D E

H I J K

F H

A.I. Uninformed search 469/9/2018

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)

A

B C

D E

H I J K

F H

L M

A.I. Uninformed search 479/9/2018

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)

A

B C

D E

H I J K

F H

L M

A.I. Uninformed search48

9/9

/20

18

 Completeness;
◦ Does it always find a solution if one exists?

◦ NO

 unless search space is finite and no loops are possible.

A.I. Uninformed search49

9/9

/20

18

 Completeness;
◦ NO unless search space is finite.

 Time complexity;
◦ Terrible if m is much larger than d (depth of

optimal solution)

◦ But if many solutions, then faster than BF-search

O(bm)

A.I. Uninformed search50

9/9

/20

18

 Completeness;
◦ NO unless search space is finite.

 Time complexity;

 Space complexity;
◦ Backtracking search uses even less memory

 One successor instead of all b.

O(bm1)

O(bm)

A.I. Uninformed search51

9/9

/20

18

 Completeness;
◦ NO unless search space is finite.

 Time complexity;

 Space complexity;

 Optimallity; No
◦ Same issues as completeness

◦ Assume node J and C contain goal states

O(bm1)

O(bm)

A.I. Uninformed search52

9/9

/20

18

 Is DF-search with depth limit l.
◦ i.e. nodes at depth l have no successors.
◦ Problem knowledge can be used

 Solves the infinite-path problem.
 If l < d then incompleteness results.
 If l > d then not optimal.
 Time complexity:
 Space complexity:

O(bl)

O(bl)

A.I. Uninformed search53

9/9

/20

18

function DEPTH-LIMITED-SEARCH(problem,limit) return a solution or
failure/cutoff

return RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]),problem,limit)

function RECURSIVE-DLS(node, problem, limit) return a solution or
failure/cutoff

cutoff_occurred? false

if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node)

else if DEPTH[node] == limit then return cutoff

else for each successor in EXPAND(node, problem) do

result RECURSIVE-DLS(successor, problem, limit)

if result == cutoff then cutoff_occurred? true

else if result failure then return result
if cutoff_occurred? then return cutoff else return failure

A.I. Uninformed search54

9/9

/20

18

 What?
◦ A general strategy to find best depth limit l.

 Goals is found at depth d, the depth of the shallowest
goal-node.

◦ Often used in combination with DF-search

 Combines benefits of DF- en BF-search

A.I. Uninformed search55

9/9

/20

18

function ITERATIVE_DEEPENING_SEARCH(problem) return a solution or
failure

inputs: problem

for depth 0 to ∞ do

result DEPTH-LIMITED_SEARCH(problem, depth)

if result cuttoff then return result

A.I. Uninformed search 569/9/2018

 Limit=0

A.I. Uninformed search 579/9/2018

 Limit=1

A.I. Uninformed search 589/9/2018

 Limit=2

A.I. Uninformed search 599/9/2018

 Limit=3

A.I. Uninformed search60

9/9

/20

18

 Completeness:
◦ YES (no infinite paths)

A.I. Uninformed search61

9/9

/20

18

 Completeness:
◦ YES (no infinite paths)

 Time complexity:
◦ Algorithm seems costly due to repeated generation of certain states.

◦ Node generation:

 level d: once

 level d-1: 2

 level d-2: 3

 …

 level 2: d-1

 level 1: d

N(IDS) (d)b (d 1)b2 ... (1)bd

N(BFS) b b2 ... bd (bd 1 b)

O(bd)

N(IDS) 50 400 3000 20000100000 123450

N(BFS) 10100100010000100000 999990 1111100

Num. Comparison for b=10 and d=5 solution at far right

A.I. Uninformed search62

9/9

/20

18

 Completeness:
◦ YES (no infinite paths)

 Time complexity:

 Space complexity:
◦ Cfr. depth-first search

O(bd)

O(bd)

A.I. Uninformed search63

9/9

/20

18

 Completeness:
◦ YES (no infinite paths)

 Time complexity:

 Space complexity:

 Optimality:
◦ YES if step cost is 1.

◦ Can be extended to iterative lengthening search

 Same idea as uniform-cost search

 Increases overhead.

O(bd)

O(bd)

A.I. Uninformed search 649/9/2018

Criterion Breadth-

First

Uniform-

cost

Depth-First Depth-

limited

Iterative

deepening

Bidirectional

search

Complete? YES* YES* NO YES,

if l d

YES YES*

Time bd+1 bC*/e bm bl bd bd/2

Space bd+1 bC*/e bm bl bd bd/2

Optimal? YES* YES* NO NO YES YES

 The symbols&search paradigm in AI
 Uninformed search
◦ Space complexity: OK!
◦ Time complexity: exp. the knowledge paradigm in AI

 Suggested reading
◦ Newel&Simon: Computer science as empirical inquiry:

symbols and search, 1975
◦ Cognitive architectures: ACT-R

 http://act-r.psy.cmu.edu/
 http://act-r.psy.cmu.edu/about/
 Allen Newell describes cognitive architectures as the way to

answer one of the ultimate scientific questions: "How can the
human mind occur in the physical universe?
 http://act-r.psy.cmu.edu/misc/newellclip.mpg

9/9/2018A.I. Uninformed search 65

http://act-r.psy.cmu.edu/
http://act-r.psy.cmu.edu/about/
http://act-r.psy.cmu.edu/misc/newellclip.mpg

