Artificial Intelligence

Péter Antal antal@mit.bme.hu

Computational Biomedicine (Combine) workgroup Intelligent Systems group Department of Measurement and Information Systems, Budapest University of Technology and Economics

A.I. 9/4/2018

Course info

- Course site
 - <u>https://www.mit.bme.hu/eng/oktatas/targyak/VIMIAC00</u>
- Lecturer
 - Péter Antal, <u>antal@mit.bme.hu</u>
 - Tadeusz Dobrowiecki, <u>tade@mit.bme.hu</u>
 - György Strausz, <u>strausz@mit.bme.hu</u>
- Schedule
 - Monday 14.15–15.45, IE224, building I, wing E, 2nd floor
 - Odd academic weeks: Thursday 8.30-10.00, IE224
- Contact hour
 - By appointment, BME IE.412
- Book
 - S. Russell and P. Norvig Artificial Intelligence: A Modern Approach Prentice Hall, 2nd <= editions
- Slides
 - Based on AIMA slides from S.Russel/T.Leanert/H.Ng
 - At course site

Homework, midterm, ...grading

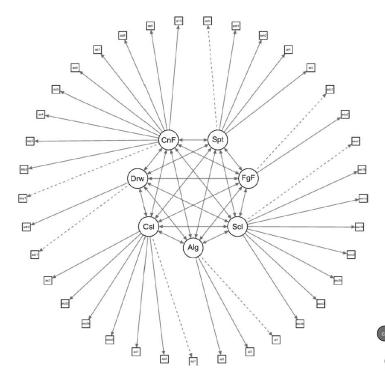
- Grading:
 - Obligatory midterm test,
 - 0-55 points, min.40%,
 - at last week.
 - Major homeworks
 - in 3 topics,
 - solved within 3 weeks,
 - for 15 points in each topic,
 - 2 homeworks should be over 40% (6–6).
 - Overall
 - Weights: midterm: 55%, major: 45%
- Midterm test is a closed-book exam.

Course outline

- Problem solving with search
- Logic
- Uncertainty
- Machine learning
- Cooperative intelligence

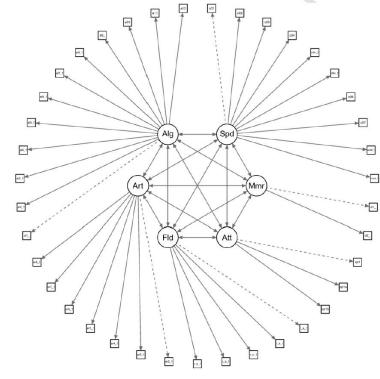
Overview of today lecture

- What is artificial intelligence?
- What is intelligence?
 - Myths, misconceptions, analogies, models..
- Theoretical computational models and Moore's law
- The knowledge era
- The data-intensive age
- The age of online learning with autonomy
- Bayesian decision theory: autonomous agents


Why do we need AI???

- Understanding human cognition
- Supporting and complementing human expertise
- No choice: data & knowledge exceeded the scope of human cognition
- Instead of human experts, it is
 - slightly cheaper ;-), scalable, multiplicable,...
- Curiosity + optimism!

What is intelligence?


- What is X?
 - X=Force, power/energy, life/species, light,...
- What is intelligence?
 - Animal intelligence, IQ, creativity,...
 - Ethics?
 - Consciousness?
- Ingredients:
 - The physical symbol system hypothesis
 - Search
 - language
 - (Quantitatively) optimal behavior
 - Adaptivity & learning
- Application areas
 - Expert systems
 - Data mining (text-mining)
 - Game playing
 - Self-driving car, advanced driver assistance..
 - •

Dimensions of human intelligence

Spt = spatial ability; FgF = figural fluency; Scl = social reasoning; Alg = algebraic reasoning;

CsI = causal reasoning; Drw = drawing ability; CnF = conceptual fluency.

Spd = speed; Mmr = memory; Att = attention; Fld = fluid reasoning; Art = arithmetic reasoning; Alg = algebraic reasoning.

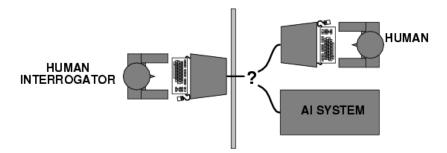
Golino, H.F. and Demetriou, A., 2017. Estimating the dimensionality of intelligence like data using Exploratory Graph Analysis. *Intelligence*.

Each cluster represents a dimension: cluster 1 = arithmetic reasoning; cluster 2 = concepts n.1; cluster 3 = concepts n.2; cluster 4 = sentence completion; cluster 5 = concepts n.3

Genetic factors of intelligence

rsID	Annotation	Alzheimer's disease	-0.36
rs2490272	FOXO3 intronic	Depressive symptoms Attention deficit/hyperactivity disorder	-0.27 H
rs9320913	Intergenic	Ever-smoker	-0.23
	-	Schizophrenia	–0.20 H
rs10236197	PDE1C intronic	Anxiety	-0.19
rs2251499	Intergenic	Neuroticism Waist-to-hip ratio	–0.19 ⊢ <u>–1</u> –0.18 н
rs36093924	CYP2D7 ncRNA_intr	Cigarettes per day	-0.14
		Coronary artery disease	-0.14
rs7646501	Intergenic	Insomnia Maiar depressive diserder	-0.14 ⊢ <u>1</u> -0.11 ⊢ 1
rs4728302	EXOC4 intronic	Major depressive disorder Body mass index, adulthood	-0.11 H
rs10191758	ARHGAP15 intronic	Waist circumference	-0.10 H
		Obesity, childhood	-0.10 H
rs12744310	Intergenic	Body mass index, childhood	-0.05 H
rs66495454	NEGR1 upstream	Type 2 diabetes Asthma	–0.03 ⊢ <u>⊫</u> –0.01 ⊢ – 1
rs113315451	CSE1L intronic	Astrina Parkinson's disease	-0.01 H
		Subjective well-being	-0.01 H
rs12928404	ATXN2L intronic	Bipolar disorder	–0.01 म <u>∔</u>
rs41352752	MEF2C intronic	Hip circumference	-0.01 🕂
rs13010010	LINC01104 ncRNA_intr	Birth length Anorexia nervosa	- 0.05 - 0.08
		Height	■ 0.10
rs16954078	SKAP1 intronic	Birth weight	- 0.15
rs11138902	APBA1 intronic	Autism spectrum disorder	0.21
rs6746731	ZNF638 intronic	Longevity Head circumference in infancy	
********	Intergenie	Intracranial volume	
rs6779302	Intergenic	Smoking cessation	
		Educational attainment	н 0.70
			0, 80 00 40 20 02 02 0 40 00 10

Sniekers, Suzanne, et al. "Genome-wide association metaanalysis of 78,308 individuals identifies new loci and genes influencing human intelligence." *Nature Genetics* (2017).


What is Al?

Al approaches can be grouped as follows:

Thinking humanly	Thinking rationally	
Acting humanly	Acting rationally	

Acting humanly: Turing Test

- Turing (1950) "Computing machinery and intelligence":
- "Can machines think?" \rightarrow "Can machines behave intelligently?"
- Operational test for intelligent behavior: the Imitation Game

- Predicted that by 2000, a machine might have a 30% chance of fooling a lay person for 5 minutes
- Anticipated all major arguments against AI in following 50 years
- Suggested major components of AI: knowledge, reasoning, language understanding, learning

Thinking humanly: cognitive modeling

- 1960s "cognitive revolution": information-processing psychology
- Requires scientific theories of internal activities of the brain
- -- How to validate? Requires
 - Predicting and testing behavior of human subjects (top-down) or 2) Direct identification from neurological data (bottom-up)
- ▶ Both approaches (roughly, Cognitive Science and Cognitive Neuroscience) are now distinct from AI, but→
- Hassabis, Demis, et al. "Neuroscience-inspired artificial intelligence." *Neuron* 95.2 (2017): 245-258.

Thinking rationally: "laws of thought"

- Aristotle: what are correct arguments/thought processes?
- Several Greek schools developed various forms of logic. notation and rules of derivation for thoughts; may or may not have proceeded to the idea of mechanization
- Direct line through mathematics and philosophy to modern AI
- Problems:
 - 1. Not all intelligent behavior is mediated by logical deliberation
 - 2. What is the purpose of thinking? What thoughts should I have?
 - → (Symbolic) reasoning is mainly for collaborative thinking!

Acting rationally: rational agent

- Rational behavior: doing the right thing
- The right thing: that which is expected to maximize goal achievement, given the available information
- Doesn't necessarily involve thinking e.g., blinking reflex – but thinking should be in the service of rational action

Rational agents

- An agent is an entity that perceives and acts
- This course is about designing rational agents
- Abstractly, an agent is a function from percept histories to actions:


$$[f. \mathcal{P}^{\star} \rightarrow \mathcal{A}]$$

- For any given class of environments and tasks, we seek the agent (or class of agents) with the best performance
- Caveat: computational limitations make perfect rationality unachievable
 → design best program for given machine resources

Decision theory probability theory + utility theory

 $P(o_i|a_i)$

- Decision situation:
 - Actions
 - Outcomes
 - Probabilities of outcomes
 - Utilities/losses of outcomes
 - Maximum Expected Utility Principle (MEU)
 - Best action is the one with maximum expected utility Actions a_i
 Probabilities

 a_i o_j $p(o_j | a_i)$ $U(o_j | a_i)$ $EU(a_i) = \sum_j U(o_j | a_i) p(o_j | a_i)$ $a^* = \arg\max_i EU(a_i)$

Utilities, costs Expected utilities

 $U(o_j), C(a_i)$

 $EU(a_i) = \sum P(o_i|a_i)U(o_i)$

Al prehistory

- Philosophy
- Mathematics
- Economics
- Neuroscience
- Psychology
- Computer engineering
- Control theory
- Linguistics

Logic, methods of reasoning, mind as physical system foundations of learning, language, rationality

Formal representation and proof algorithms, computation, (un)decidability, (in)tractability, probability

utility, decision theory

physical substrate for mental activity

phenomena of perception and motor control, experimental techniques

building fast computers

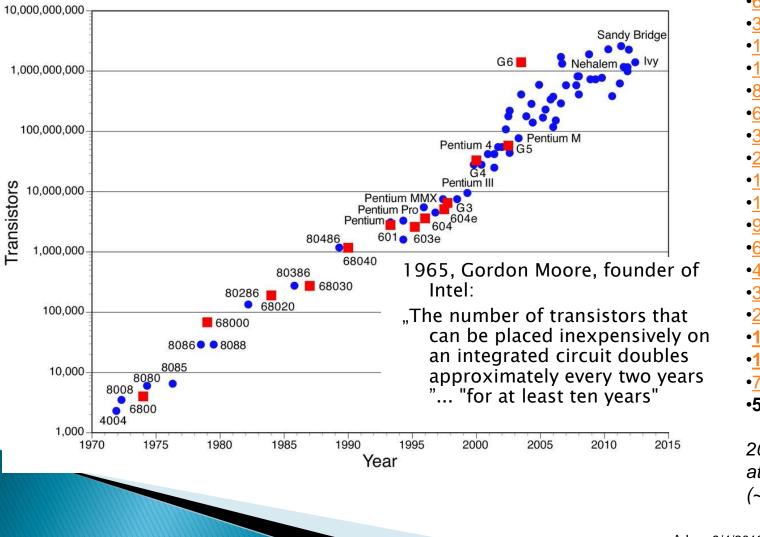
design systems that maximize an objective function over time knowledge representation, grammar

The physical symbol system hypothesis

- A.Newel&H.A.Simon (1976): "A physical symbol system (PSS) has
 - the necessary and
 - sufficient
 - means for general intelligent action."
- "GOFAI": good old-fashioned AI
 - PSS + search
 - General Problem Solver (GPS)

Factors behind intelligence explosion

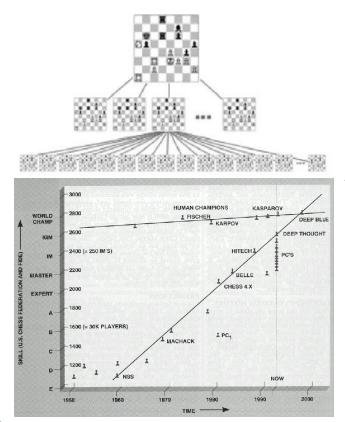
- Computation
 - Moore's law
- Data
 - Big data age
- Knowledge
 - Publications, knowledge bases,...
- Technologies
 - Artificial intelligence? Language understanding?
 - Machine learning? Deep learning?


Computing power: Moore's Law

Transistors Per Die

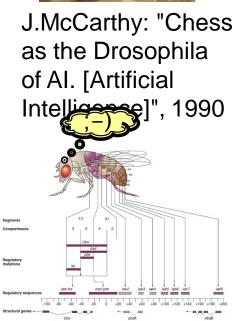
Integration and parallelization wont bring us further. End of Moor's law?

Computing power: Moore's Law


- •<u>10 µm</u> 1971 •<u>6 µm</u> – 1974
- •<u>3 µm</u> 1977
- •<u>1.5 µm</u> 1982
- •<u>1 µm</u> 1985
- •<u>800 nm</u> 1989
- •<u>600 nm</u> 1994
- •<u>350 nm</u> 1995
- •<u>250 nm</u> 1997
- •<u>180 nm</u> 1999
- •<u>130 nm</u> 2001
- •<u>90 nm</u> 2004
- •<u>65 nm</u> 2006
- •<u>45 nm</u> 2008
- •<u>32 nm</u> 2010
- •<u>22 nm</u> 2012
- •<u>14 nm</u> 2014
- •<u>10 nm</u> 2017
- •<u>7 nm</u> ~2019
- •5 nm ~2021

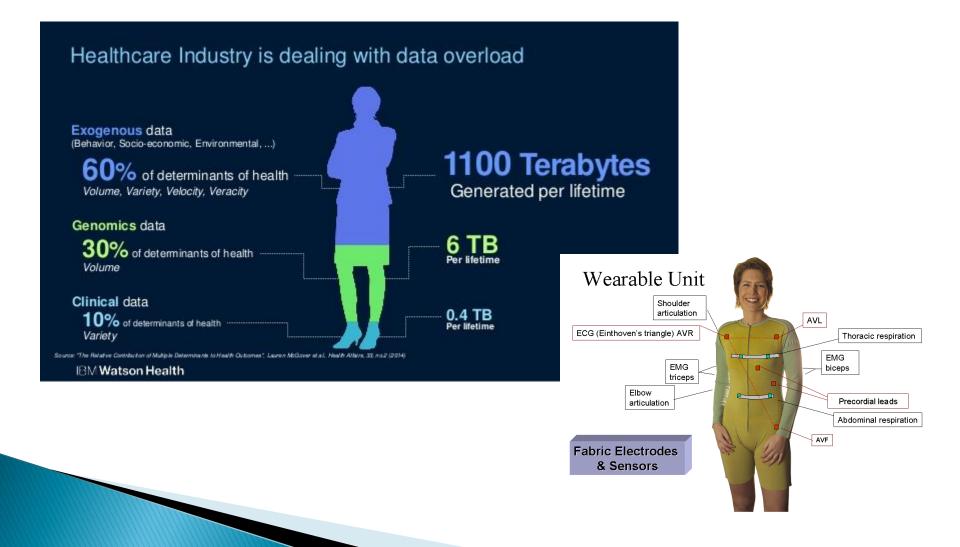
2012: single atom transistor (~0.1n, 1A)

Moore's law: calculation/\$

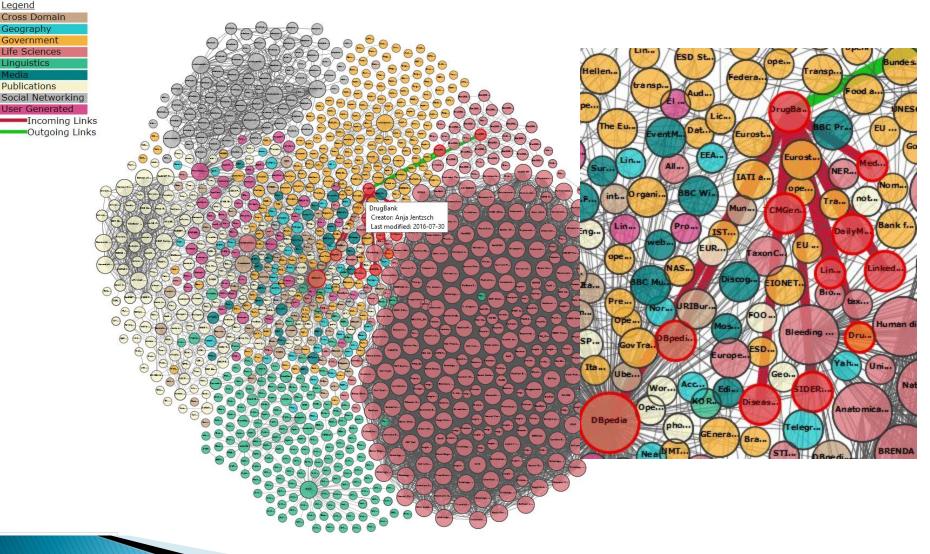


Computing power and search: performance in chess

#	Név	Élőpont
1	SugaR XPrO 1.2 64-bit 4CPU	3415
2	Komodo 11.2 64-bit 4CPU	3402
3	Houdini 5.01 64-bit 4CPU	3382
	IBM Deep Blue (1997)	_


http://www.computerchess.org.uk/ccrl/4040/

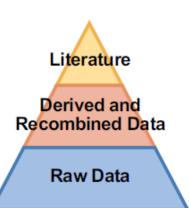
Chess as the Drosophila of Al


- Chase&Simon: Perception in chess, 1973
- Chi: Knowledge structures and memory development, 1978
- Schneider: Chess expertise and memory for chess positions, 1993
- •
- Simons: How experts recall chess positions, 2012

- Mérő László: Észjárások, 1990
 - Kezdő, haladó, mesterjelölt, nagymester

Data: Big data in life sciences

Knowledge: Linked open data



Linking Open Cota cloud diagram 2017, by Andrejs Abele, John P. McCrae, Paul Buitelaar, Anja Jentzso. Ind Richard Cyganiak. http://lod-cloud.net/

E-science, data-intensive science

All Scientific Data Online

- Many disciplines overlap and use data from other sciences
- Internet can unify all literature and data
- Go from literature to computation to data back to literature
- Information at your fingertips
 for everyone-everywhere
- Increase Scientific Information Velocity
- Huge increase in Science Productivity

The FOURTH PARADIGM

DATA-INTENSIVE SCIENTIFIC DISCOVERY

TONY HEY, STEWART TANSLEY, AND KRISTIN TOLLE

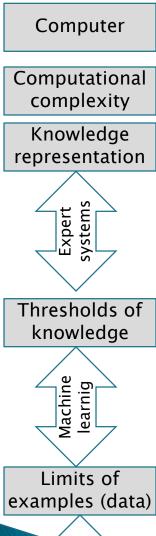
Methods: new learning methods

ARTICLE

doi:10.1038/nature16961

Mastering the game of Go with deep neural networks and tree search

David Silver¹*, Aja Huang¹*, Chris J. Maddison¹, Arthur Guez¹, Laurent Sifre¹, George van den Driessche¹, Julian Schrittwieser¹, Ioannis Antonoglou¹, Veda Panneershelvam¹, Marc Lanctot¹, Sander Dieleman¹, Dominik Grewe¹, John Nham², Nal Kalchbrenner¹, Ilya Sutskever², Timothy Lillicrap¹, Madeleine Leach¹, Koray Kavukcuoglu¹, Thore Graepel¹ & Demis Hassabis¹


LETTER

doi:10.1038/nature14236

Human-level control through deep reinforcement learning

Volodymyr Mnih¹*, Koray Kavukcuoglu¹*, David Silver¹*, Andrei A. Rusu¹, Joel Veness¹, Marc G. Bellemare¹, Alex Graves¹, Martin Riedmiller¹, Andreas K. Fidjeland¹, Georg Ostrovski¹, Stig Petersen¹, Charles Beattie¹, Amir Sadik¹, Ioannis Antonoglou¹, Helen King¹, Dharshan Kumaran¹, Daan Wierstra¹, Shane Legg¹ & Demis Hassabis¹

Milestones and phases in Al

Adaptiv decisio

syster

- ~1930: Zuse, Neumann, Turing..: "instruction is data":
 - Laws of nature can be represented, "executed"/simulated with modifications, learnt
 - Knowledge analogously: representation, execution, adaptation and learning
- 1943 McCulloch & Pitts: Boolean circuit model of brain
- 1950 Turing's "Computing Machinery and Intelligence"
- **1956** Dartmouth meeting: the term "Artificial Intelligence"
- 1950s Early AI programs (e.g. Newell & Simon's Logic Theorist)

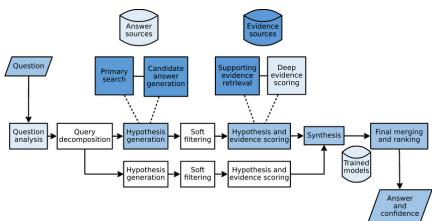
The Symbolic system hypothesis: search

- 1965 Robinson's complete algorithm for logical reasoning
- 1966—73 AI discovers computational complexity Neural network research almost disappears
- 1969—79 Early development of knowledge-based systems
- The knowledge system hypothesis: knowledge is power
 - 1986-- Neural networks return to popularity
 - 1988-- Probabilistic expert systems
- 1995-- Emergence of machine learning
- The "big data" hypothesis: let data speak
- 2005/2015-- Emergence of autonomous adaptive decision systems ("robots", agents)**The autonomy hypothesis??**

Phases, approaches

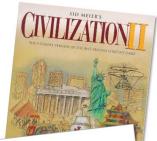
	Expert-era	Data-era	Adaptive decision- era
Math./Sci.	Rational reasoning (3), decision theory	Induction, learnability, causality	Online learning 80's: "prequential" learning
Example- system	Fault diagnostics	Fraud detection	Robot-vacuum cleaner
Example- biomed application	Diagnostics: PathFinder	Data fusion in drug repositioning	RobotScientist: Adam/Eve
Example- human application	Treatment protocol design	Genetic analysis	Adaptive clinical trials
Input	Expert: expensive	Data: big data	Domain: real or simulated
Responsibility	Shared: expert, knowledge engineer, IT, user	Data: garbage-in- garbage-out, performance bounds,	RobotCar: training?, Guaranteed performance??, accident???

State of the art: 🕲

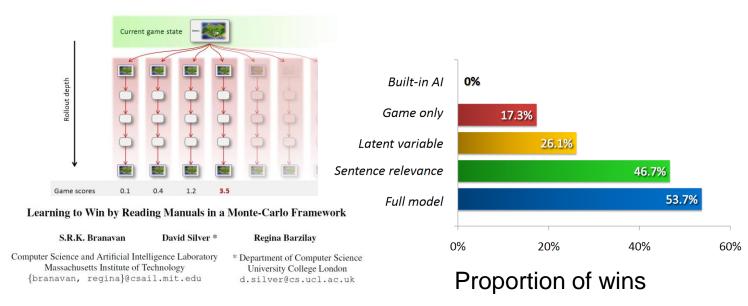

- Deep Blue defeated the reigning world chess champion Garry Kasparov in 1997
- Proved a mathématical conjecture (Robbins conjecture) unsolved for decades
- No hands across America (driving autonomously 98% of the time from Pittsburgh to San Diego)
- During the 1991 Gulf War, US forces deployed an Allogistics planning and scheduling program that involved up to 50,000 vehicles, cargo, and people
- NASA's on-board autonomous planning program controlled the scheduling of operations for a spacecraft
- Proverb solves crossword puzzles better than most humans
- Google search/car/face recognition/...

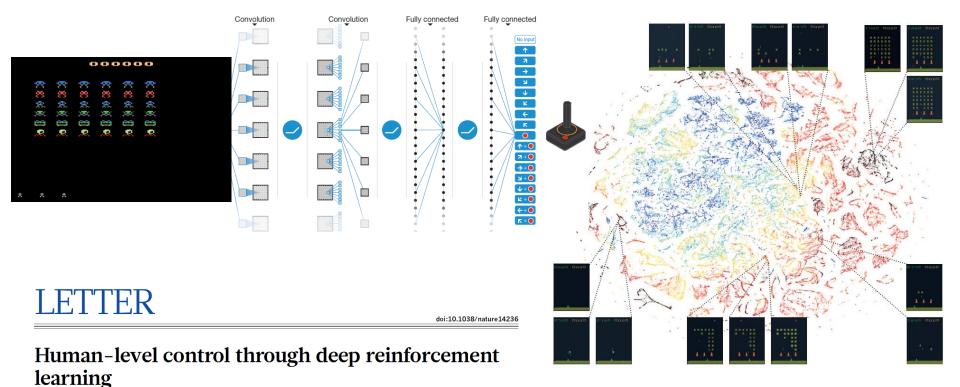
IBM Watson (2011): Jeopardy

IBM Grand Challenge


- 1997: Deep Blue wins human champion G. Kasparov.
- 1999–2006<: Blue Gene, protein prediction
- 2011: Watson
 - Natural language processing
 - inference
 - Game theory

Machines playing Civilization


Teaching + Learning: learning from manual and from practice


Preface & Instruction Manual

At the start of the game, your civilization consists of a single band of wandering nomads. This is a settlers unit. Although settlers are capable of performing a variety of useful tasks, your first task is to move the settlers unit to a site that is suitable for the construction of your first city. Finding suitable locations in which to build cities, especially your first city, is one of the most important decisions you make in the Monte-Carlo Search

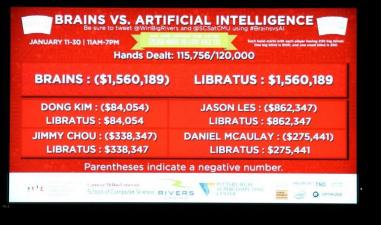
Try many candidate actions from current state & see how well they perform.

Playing computer games

Volodymyr Mnih¹*, Koray Kavukcuoglu¹*, David Silver¹*, Andrei A. Rusu¹, Joel Veness¹, Marc G. Bellemare¹, Alex Graves¹, Martin Riedmiller¹, Andreas K. Fidjeland¹, Georg Ostrovski¹, Stig Petersen¹, Charles Beattie¹, Amir Sadik¹, Ioannis Antonoglou¹, Helen King¹, Dharshan Kumaran¹, Daan Wierstra¹, Shane Legg¹ & Demis Hassabis¹ Go:

- Google DeepMind
- Monte Carlo tree search
- 2016: 9 dan
- 2017: wins against human champion

ARTICLE


doi:10.1038/nature16961

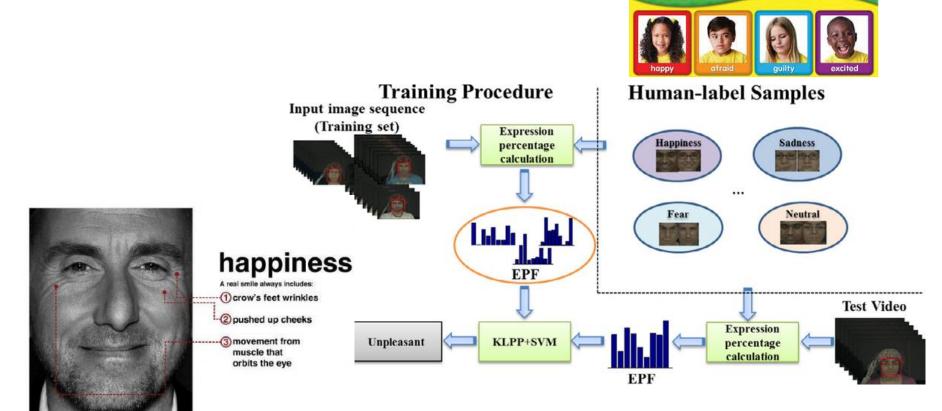
Mastering the game of Go with deep neural networks and tree search

David Silver¹*, Aja Huang¹*, Chris J. Maddison¹, Arthur Guez¹, Laurent Sifre¹, George van den Driessche¹, Julian Schrittwieser¹, Ioannis Antonoglou¹, Veda Panneershelvam¹, Marc Lanctot¹, Sander Dieleman¹, Dominik Grewe¹, John Nham², Nal Kalchbrenner¹, Ilya Sutskever², Timothy Lillicrap¹, Madeleine Leach¹, Koray Kavukcuoglu¹, Thore Graepel¹ & Demis Hassabis¹

Poker: Libratus

- > 2017: Carnegie Mellon University MI: Libratius
- Pittsburgh Supercomputing Center:
 - 1.35 petaflops computati
 - 274 Terabytes memory

Vision: YOLO

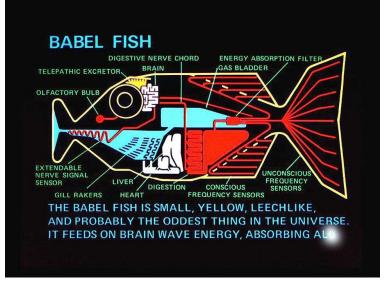

YOLO (you only look once)

https://www.ted.com/talks/joseph_redmon_how_a_computer_learns_to_recognize_obj

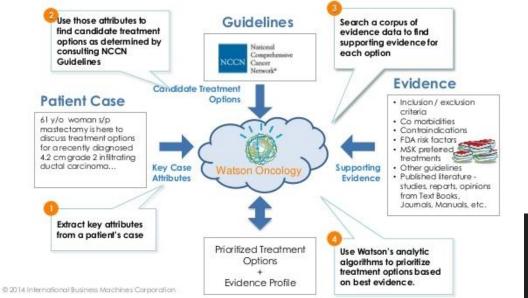
Emotion detection, sentiment analysis

https://www.ted.com/talks/rana_el_kaliouby_this_app_knows_how_you_feel_from_the_look_on_your_face

Walking, movements



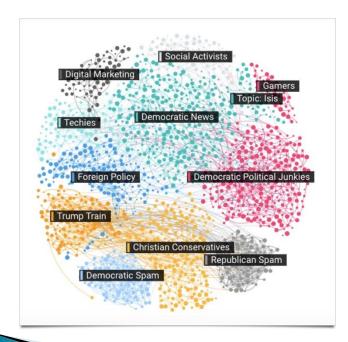
Real-time translation



Pilot Translating Earpiece

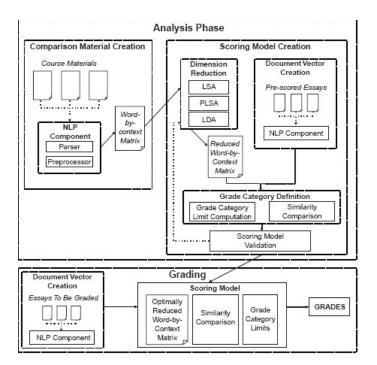
D.Adams: Galaxis útikalauz stoppo Hitchhiker's Guide to the Galaxy"

Clinical decision support systems

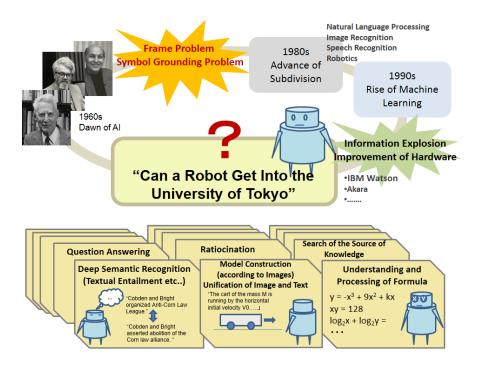


Watson for Oncology – assessment and advice cycle

www.avanteoconsulting.com/machine-learning-accelerates-cancer-research-discovery-innovation/

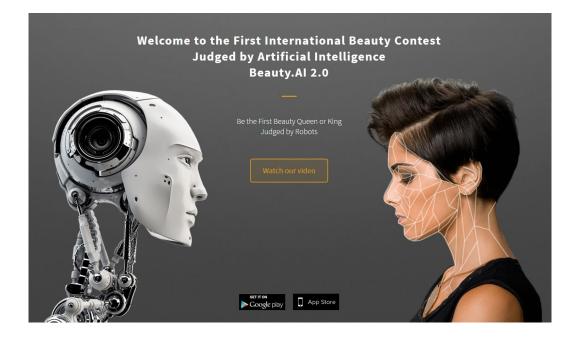

Political analytics: MogIA

~"big data failed, AI correctly predicted the upset victory" (correct prediction of election in the US 3 times in a row)


Automated essay scoring (AES)

University entry exam: Todai robot

http://21robot.org/?lang=english



Legal applications of AI

Juridical decisions:

- Human experts: <u>66%</u> identical decision.
- Katz, D.M., Bommarito II, M.J. and Blackman, J., 2017. A general approach for predicting the behavior of the Supreme Court of the United States. *PloS one*, *12*(4), p.e0174698.
 - 1816–2015 esetek
 - <u>70%< accuracy</u>
- COMPAS CORE

Beauty.Al

http://beauty.ai/

- A beauty contest was judged by AI and the robots didn't like dark skin, Guardian
- Another AI Robot Turned Racist, This Time At Beauty Contest, Unilad

Chatbot: Tay

- Turing-test, Loebner-prize
- Tay was an artificial intelligence chatterbot released by Microsoft Corporation on March 23, 2016. Tay caused controversy on Twitter by releasing inflammatory tweets and it was taken offline around 16 hours after its launch.^[1] Tay was accidentally reactivated on March 30, 2016, and then quickly taken offline again.

Reproduction of artistic style

 Gatys, L.A., Ecker, A.S. and Bethge, M., 2015.
 A neural algorithm of artistic style. *arXiv* preprint arXiv:1508.06576.

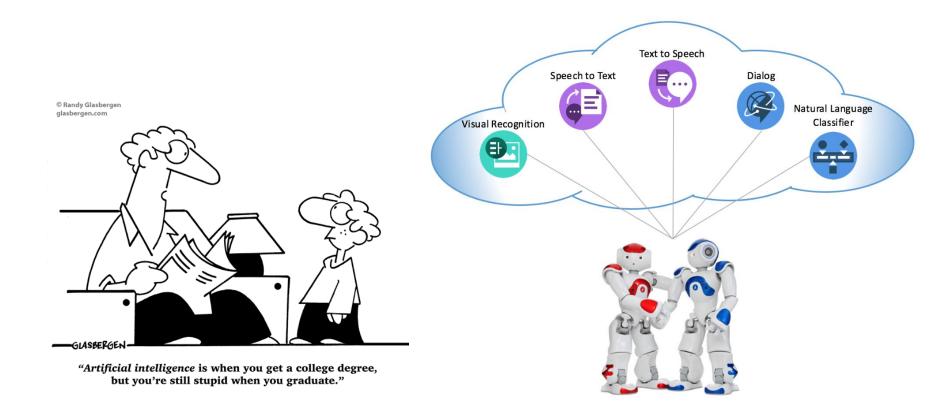
Automated scientific discovery

Langley, P. (1978). Bacon: A general discovery system.

••••

•...

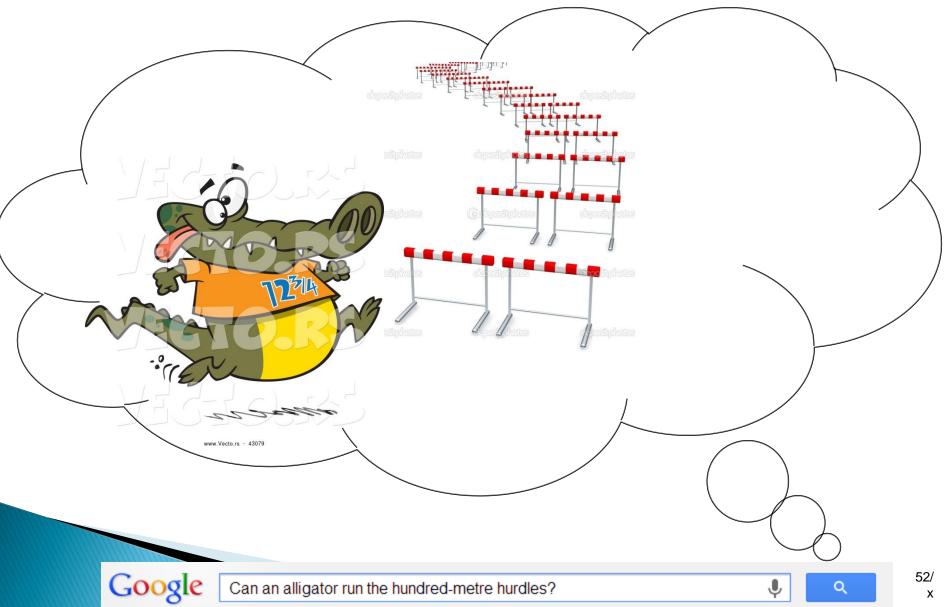
R.D.King et al.: The Automation of Science, Science, 2009
 Sparkes, Andrew, et al.: Towards Robot Scientists for autonomous scientific discovery, 2010



"Adam"

"Eve"

Humour?



State of the art: 😕

WHY CAN'T MY COMPUTER UNDERSTAND ME?

- <u>http://www.newyorker.com/online/blogs/elements/2013/08/why-cant-my-computer-understand-me.html</u>
- Dreyfus claimed that he could see no way that AI programs, as they were implemented in the 70s and 80s, could capture this *background* or do the kind of fast problem solving that it allows. He argued that our unconscious knowledge could *never* be captured symbolically. If AI could not find a way to address these issues, then it was doomed to failure, an exercise in "tree climbing with one's eyes on the moon."^[15]
 - <u>http://en.wikipedia.org/wiki/Hubert_Dreyfus's_views_on_artificial_intelligence</u>
- D.J. Chalmers: The Singularity: A Philosophical Analysis
 - <u>http://consc.net/papers/singularity.pdf</u>
- R. Kurzweil: How to Create a Mind: The Secret of Human Thought Revealed
 - http://www.amazon.ca/How-Create-Mind-Thought-Revealed/dp/0670025291
- **INTEGRATED USE OF COMMON SENSE, EXPERT KNOWLEDGE, DATA**
- CREATIVE USE OF COMMON SENSE, EXPERT KNOWLEDGE, DATA

WHY CAN'T MY COMPUTER UNDERSTAND ME? (COMMON SENSE????)

Summary

- Four approaches to AI
- History of AI
- Phases of AI
- Rational decisions: autonomous agents
- Recent applications of AI

Additional suggested reading:

- A.Turing: Computing machinery and intelligence, 1950
- R.D.King: The Automation of Science, 2009
- G.Marcus: WHY CAN'T MY COMPUTER UNDERSTAND ME?, 2013