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Outline

» Can we represent exactly (in)dependencies by a BN?
- From a causal model? Suff.&nec.?




The independence model of a
distribution

The independence map (model) M of a
distribution P is the set of the valid
independence triplets:

MP:{IP,] (X] ,Y'| |Z'|)!"'! IP,K(XK;YKlzK)}

If P(X,Y,Z) is a Markov chain, then O-O-@
Mp={D(X;Y), D(Y;2), 1(X;Z|Y)}
Normally/almost always: D(X;2)
Exceptionally: I(X;Z)




The semi-graphoid axioms

1. Symmetry: The observational probabilistic conditional independence is symmetric.
L(X;Y|Z)iff I,(Y; X|Z)
2. Decomposition: Any part of an irrelevant information is irrelevant.
ILX; YUW|Z)= [,(X;Y|Z)and I,(X;W|Z)

3. Weak union: Irrelevant information remains irrelevant after learning (other) irrelevant
information.

L(X;YUW|Z)= L(X;Y|ZUW)

4. Contraction: Irrelevant information remains irrelevant after forgetting (other) irrelevant
information.

I(X;Y|Z)and I,( X; W] ZUY )= ,(X; YUW|Z)




The independence map of a N-BN

 »

If P(Y,X,Z) Is a naive Bayesian network, then
Mp={D(X;Y), D(Y;2), I(X;Z]Y)}
Normally/almost always: D(X;Z)
Exceptionally: I(X;Z)




Bayesian networks
Directed acyclic graph (DAG)

- nodes - random variables/domain entities
- edges - direct probabilistic dependencies
(edges- causal relations

Local models - P(X;[Pa(X;)) |

Three interpretations@

3. Concise representation of joint

distributions
P(M,0O,D,S,T) =

P(M)P(O|M)P(D|O,

P(O|M)]

S|D)P(T|S.M)

1. Causal model

P:{IP,l(Xl;Yllz%;' .}

2. Graphical representation of
(in)dependencies



Inferring independencies from
structure: d-separation

1c(X;Y|Z) denotes that X is d-separated
(directed separated) from Y by Z in directed

graph G. .
o | O—1O0+O+0+0
o | OO0+ 1010
o | O—0 R OO

O O




d-separation and the global
Markov condition

Definition 7 A distribution F(X1,. .., X,) obeys the global Markov condition w.r.t. DAG G, if
VX, Y,ZCU (X LY|Z),; = (X LY|Z)p, (9)

where (X 1l Y|Z).; denotes that X andY are d-separated by Z, that is if every path p
between a node in X and a node in Y is blocked by Z as follows

1. either path p contains a node n. in Z with non-converging arrows (i.e. — n — or
— n —+),

2. or path p contains a node n. not in Z with converging arrows (i.e. — n +) and none of
its descendants of n is in Z.




Bayesian network definitions

Theorem 1 Let F(U) a probability distribution and G a DAG, then the conditions above
(repeated below) are equivalent:

F F is Markov relative G or F factorizes w.r.t =,
O F obeys the ordered Markov condition w.r.t. &,
L F obeys the local Markov condition w.r.t. &,

G F obeys the global Markov condition w.r.t. G.

Definition 8 A directed acyclic graph (DAG) G is a Bayesian network of distribution F (L) iff
the variables are represented with nodes in G and (G, FP) satisfies any of the conditions

F. O, L,G& such that G is minimal (i.e. no edge(s) can be omitted without violating a
condition F', O, L, G).




Representation of independencies

D-separation provides a sound and complete, computationally efficient algorithm to read off
an (in)dependency model consisting the independencies that are valid in all distributions
Markov relative to G, thatisv¥ X, Y, Z CV

(X UL Y|Z); & (X LY|Z)p in all P Markov relative to G). (10)

For certain distributions exact representation is not possible by Bayesian networks, e.g.:
1. Intransitive Markov chain: X=>Y=>Z

2. Pure multivariate cause: {X,Z}=2>Y
3. Diamond structure:

P(X,Y,Z,V) with M={D(X;Z), D(X;Y), D(V;X), D(V;2),
[(V;YI{X,Z}), ICX;Z[{V,Y)).. }.




