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Outline

» Can we represent exactly (in)dependencies by a BN?
- From a causal model? Suff.&nec.?

» Can we interpret
- edges as causal relations
- with no hidden variables?
- in the presence of hidden variables?
> local models as autonomous mechanisms?

» Can we infer the effect of interventions?




Motivation: from observational inference...

» In a Bayesian network, any query can be
answered corresponding to passive
observations: p(Q=q|E=e).

- What is the (conditional) probability of Q=g given
that £=e.

- Note that Q can preceed temporally E.

» Specification: p(X), p(Y|X)
» Joint distribution: p(X,Y)
» Inferences: p(X), p(Y), p(Y|X), p(X]Y)
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Motivation: to interventional inference...

Perfect intervention: do(X=x) as set X to x.
What is the relation of p(Q=q|E=e) and p(Q=qg|do(E=e))?

v Vv

» Specification: p(X), p(Y|X)
» Joint distribution: p(X,Y)
» Inferences:
» P(Y|X=x)=p(Y|do(X=x))
» P(X[Y=y)#p(X|do(Y=y))

What is a formal knowledge representation of a causal model?
What is the formal inference method?

v Vv
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Motivation: and to counterfactual inference

Imagery observations and interventions:

- We observed X=x, but imagine that x’ would have been observed: denoted as X’=x’.
- We set X=x, but imagine that x’ would have been set: denoted as do(X’=x’).

What is the relation of

> Observational p(Q=qg|E=e, X=x’)

> Interventional p(Q=q|E=e, do(X=x"))

- Counterfactual p(Q’=q’|Q=q, E=e, do(X=x), do(X’=x"))

v

v

» O: What is the probability that the patient recovers if he takes the drug x’.
I:What is the probability that the patient recovers if we prescribe* the drug x’.

» C: Given that the patient had not recovered for the drug x, what would have
been the probability that patient recovers if we had prescribed* the drug x’,
instead of x.

v

» *: Assume that the patient is fully compliant.
**7 expected to neither he will.

v
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Challenges in a complex domain

The domain is defined by the joint distribution
P(X;,..., X,|Structure,parameters)

. ?
1. Representatlon of parameteres I |
,Ssmall number of parameters” quantitave
2. Representation of independencies " passive
,what is relevant for diagnosis” qualitative (OPservational)

-

3. Representation of causal relations .
cuve
,what is the effect of a treatment” (interventional,

Representation of possible worlds Imagery

(counterfactual)




Principles of causality

v vV v

strong association,
X precedes temporally Y,

Blausible explanation without alternative explanations
ased on confounding,

necessity (generally: if cause is removed, effect is
decreased or actually: y would not have been occurred
with that much probability if x had not been present),

sufficiency (generally: if exposure to cause is increased,
effect is increased or actually: y would have been occurred
with larger probability if x had been present).

Autonomous, transportable mechanism.

The probabilistic definition of causation formalizes many,
but for example not the counterfactual aspects.
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Conditional independence -of)

1,(X;Y|Z) or (X1LY|Z), denotes that X is independent
of Y given Z: P(X;Y|z)=P(Y|z) P(X|z) for all z with
P(z)>0.

(Almost) alternatively, 1,(X;Y|2Z) iff
P(X|Z,Y)= P(X|Z) for all z,y with P(z,y)>0.

Other notations: D,(X;Y|Z) =def= 4 Ix(X;Y|Z)
Contextual independence: for not all z.




The independence model of a
distribution

The independence map (model) M of a
distribution P is the set of the valid
independence triplets:

MP:{IP,] (X] ,Y'| |Z'|)!"'! IP,K(XK;YKlzK)}

If P(X,Y,Z) is a Markov chain, then O-O-@
Mp={D(X;Y), D(Y;2), 1(X;Z|Y)}
Normally/almost always: D(X;2)
Exceptionally: I(X;Z)




The semi-graphoid axioms

1. Symmetry: The observational probabilistic conditional independence is symmetric.
L(X;Y|Z)iff I,(Y; X|Z)
2. Decomposition: Any part of an irrelevant information is irrelevant.
ILX; YUW|Z)= [,(X;Y|Z)and I,(X;W|Z)

3. Weak union: Irrelevant information remains irrelevant after learning (other) irrelevant
information.

L(X;YUW|Z)= L(X;Y|ZUW)

4. Contraction: Irrelevant information remains irrelevant after forgetting (other) irrelevant
information.

I(X;Y|Z)and I,( X; W] ZUY )= ,(X; YUW|Z)
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The independence map of a N-BN

 »

If P(Y,X,Z) Is a naive Bayesian network, then
Mp={D(X;Y), D(Y;2), I(X;Z]Y)}
Normally/almost always: D(X;Z)
Exceptionally: I(X;Z)




Bayesian networks
Directed acyclic graph (DAG)

- nodes - random variables/domain entities
- edges - direct probabilistic dependencies
(edges- causal relations

Local models - P(X;[Pa(X;)) |

Three interpretations@

3. Concise representation of joint

distributions
P(M,0O,D,S,T) =

P(M)P(O|M)P(D|O,

P(O|M)]

S|D)P(T|S.M)

1. Causal model

P:{IP,l(Xl;Yllz%;' .}

2. Graphical representation of
(in)dependencies



Inferring independencies from
structure: d-separation

1c(X;Y|Z) denotes that X is d-separated
(directed separated) from Y by Z in directed

graph G. .
o | O—1O0+O+0+0
o | OO0+ 1010
o | O—0 R OO

O O




d-separation and the global
Markov condition

Definition 7 A distribution F(X1,. .., X,) obeys the global Markov condition w.r.t. DAG G, if
VX, Y,ZCU (X LY|Z),; = (X LY|Z)p, (9)

where (X 1l Y|Z).; denotes that X andY are d-separated by Z, that is if every path p
between a node in X and a node in Y is blocked by Z as follows

1. either path p contains a node n. in Z with non-converging arrows (i.e. — n — or
— n —+),

2. or path p contains a node n. not in Z with converging arrows (i.e. — n +) and none of
its descendants of n is in Z.




Representation of independencies

D-separation provides a sound and complete, computationally efficient algorithm to read off
an (in)dependency model consisting the independencies that are valid in all distributions
Markov relative to G, thatisv¥ X, Y, Z CV

(X UL Y|Z); & (X LY|Z)p in all P Markov relative to G). (10)

For certain distributions exact representation is not possible by Bayesian networks, e.g.:
1. Intransitive Markov chain: X=>Y=>Z

2. Pure multivariate cause: {X,Z}=2>Y
3. Diamond structure:

P(X,Y,Z,V) with M={D(X;Z), D(X;Y), D(V;X), D(V;2),
[(V;YI{X,Z}), ICX;Z[{V,Y)).. }.




Parametrically encoded intransitivity of
dependencies

» In the first order Markov chain below, despite the dependency of X-Y
and Y-Z, X and Z can be independent (assuming non-binary Y).

000

.



Parametrically encoded pairwise in
dependencies

» Pairwise independence does not imply
multivariate independence!

.



Markov conditions

Definition 4 A distribution P(X1, ..., X)) IS Markov relative to DAG G or factorizes w.r.t G, if
P(Xy,..., X,) = || P(X:i|Pa(X;)), (6)
i=1

where FPa(X;) denotes the parents of X; inG.

Definition 5 A distribution P( X1, ..., X,,) obeys the ordersd Markov condition w.r.t. DAG G,
if

Vi=1,...,n: ( Xy L {Xr)y - Xnp—n) H/ FPa(Xzy)|Pa(Xr ) e, (7)
where w () is some ancestral ordering w.r.t. G (i.e. compatible with arrows in G).

Definition 6 A distribution P(X1,..., X, ) obeys the local (or parental) Markov condition w.r.t.
DAG G, if

Yi=1,...,n:(X; 1 Nondescendants(X;)|Pa(X;))s, (8)

where Nondescendants(X; ) denotes the nondescendants of X; in G.




Bayesian network definitions

Theorem 1 Let F(U) a probability distribution and G a DAG, then the conditions above
(repeated below) are equivalent:

F F is Markov relative G or F factorizes w.r.t =,
O F obeys the ordered Markov condition w.r.t. &,
L F obeys the local Markov condition w.r.t. &,

G F obeys the global Markov condition w.r.t. G.

Definition 8 A directed acyclic graph (DAG) G is a Bayesian network of distribution F (L) iff
the variables are represented with nodes in G and (G, FP) satisfies any of the conditions

F. O, L,G& such that G is minimal (i.e. no edge(s) can be omitted without violating a
condition F', O, L, G).




A practical definition

Definition 9 A Bayesian network model M of domain with variables U consisis of a
structure G and parameters 8. The structure & is a DAG such that each node represents a
variable and local probabilistic models p(X;|pa(X;)) are attached to each node w.r.t. the
structure &, that is they describe the stochastic dependency of variable X; on its parents
pa(X;). As the conditionals are frequently from a certain parametric family, the conditional
for X; is parameterized by 8;, and 8 denotes the overall parameterezation of the model.




Observational equivalence of
causal models

Causal models: J.Pegrl: ;

From passive observations:
P(Xye X))

MP:{IP,l(Xl;Yllzl)" ey IP,K(XK;YKlzK)}

,2D projection”

Different causal models can have the same independence map!

Typically causal models cannot be identified from passive observations, they are
observationally equivalent.




Association vs. Causation: Markov
chain

Causal models:

Markov chain

P(Xy,...)
Mp={I(Xi+1:Xi.1|X))}
Jfirst order Markov propertv”

Flow of time?



The building block of causality:
v-structure (arrow of time)

P(X),p(Z]X),p(Y|2)

O-O-®

P(X),p(Z[X,Y),p(Y)
P(X|2).p(2]Y).p(Y) “transitive” M # ,intransitive” M
@ @ @ .o @
P(X[2),p(2),p(Y|2)

m ,v-structure”

Mp={D(X;Z), D(Z;Y), D(X,Y), I(X;Y|2)} Mp={D(X;Z), D(Y;2), 1(X;Y), D(X;Y|Z) }

Often: present knowledge renders future states conditionally independent.
(confounding)

ver(?): present knowledge renders past states conditionally independent.

Qackward/atemporal confounding)




Observational equivalence:
total independence

,Causal” model: @
-
C
-
'” ‘ ,
)
One-to-one relation
Dependency map:
P(Xye X))

Mp={lp1(X1;X),...}

.



Observational equivalence:
full dependence

One-to-many relation
Dependency map:

P(X{,.s X))

Mp={Dp 1(X1;X5)....}




Observational equivalence of
causal models

Definition 11 Two DAGs G, (G5 are observationally equivalent , if they imply the same set of
independence relations (i.e. (X 1L Y|Z),,) < (X 1L Y|Z),,)

The implied equivalence classes may contain n! humber of DAGs (e.g. all the full networks
representing no independencies) or just 1.

Theorem 2 Two DAGs 1, G2 are observationally equivalent , iff they have the same skeleton
(i.e. the same edges without directions) and the same set of v-structures (i.e. two converging
arrows without an arrow between their tails).

Definition 12 The essential graph representing observationally equivalent DAGs is a partially
oriented DAG (FPDAG), that represents the identically oriented edges called compelled edges
of the observationally equivalent DAGSs (i.e. in the equivalence class), such a way that in the
common skeleton only the compelled edges are directed (the others are undirected
representing inconclusiveness).




Compelled edges and PDAG

(“can we interpret edges as causal relations?”=»compelled edges)




The Causal Markov Condition

» A DAG is called a causal structure over a set of variables, if
each node represents a variable and edges direct
influences. A causal modelis a causal structure extended
with local probabilistic models.

» A causal structure G and distribution Psatisfies the Causal
Marko(\;/ Condition, if P obeys the local Markov condition
w.r.t. G.

» The distribution P is said to stable (or faithful), if there
exists a DAG called perfect map exactly representing its
(in)dependencies (i.e. I:(X;Y|Z) & 1,(X;Y|Z) V X,Y,Z = V).

» CMC: sufficiency of G (there is no extra, acausal edge)

» Faithfulness/stability: necessity of G (there are no extra,
parametric independency)




Interventional inference in causal
Bayesian networks

» (Passive, observational) inference
> P(Query|Observations)

» Interventionist inference
- P(Query|Observations, Interventions)

» Counterfactual inference
- P(Query| Observations, Counterfactual conditionals)




Interventions and graph surgery

If G is a causal model, then compute p(Y|do(X=x)) by
1. deleting the incoming edges to X
2. setting X=X
3. performing standard Bayesian network inference.

@ -

-




Association vs. Causation

Causal models:
X causes Y Y causes X 2 I

There is a common cause Causal effect of Y on X
(pure confounding) Is confounded by many
factors

From passive observations:
P(X,Y)

Me=DxY)} @— @D

X andY are associated”

Reichenbach's Common Cause Principle:

a correlation between events Xand Yindicates either that X causes Y, or that YV
causes X, or that Xand Y have a common cause.




Local Causal Discovery

“can we interpret edges as causal relations in the presence of hidden variables?”

» Can we learn causal relations from observational data in presence of
confounders???

Increaded propensity

ad susceptibility

= Automated, tabula rasa causal inference from (passive) observation is
possible, i.e. hidden, confounding variables can be excluded




A deterministic concept of causation

» H.Simon
o Xi=fi(Xq,.., X)) fori=1..n

> In the linear case the sytem of equations indicates a natural
causal ordering (flow of time?)

>
X | X| X[ X

The probabilistic conceptualization is its generalization:
P(Xi’lxli"’xi—l) - Xi:fi(xli"’xi-l)




Summary

Can we represent exactly (in)dependencies by a BN?
» almost always

Can we interpret
- edges as causal relations
with no hidden variables?

compelled edges as a filter
in the presence of hidden variables?

Sometimes, e.g. confounding can be excluded in certain cases
in local models as autonomous mechanisms?
- apriori knowledge, e.g. Causal Markov Assumption

Can we infer the effect of interventions in a causal model?

» Graph surgery with standard inference in BNs
Optimal study design to infer the effect of interventions?

» With no hidden variables: yes, in a non-Bayesian framework

» In the presence of hidden variables: open issue

Suggested reading
> J. Pearl: Causal inference in statistics, 2009




