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Inferring 
independence and causal relations

and effect of interventions
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 Can we represent exactly (in)dependencies by a BN?
◦ From a causal model? Suff.&nec.? 

 Can we interpret 
◦ edges as causal relations

 with no hidden variables?

 in the presence of hidden variables?

◦ local models as autonomous mechanisms?

 Can we infer the effect of interventions?



 In a Bayesian network, any query can be 
answered corresponding to passive 
observations: p(Q=q|E=e).
◦ What is the (conditional) probability of Q=q given 

that E=e.

◦ Note that Q can preceed temporally E.
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X

Y

 Specification: p(X), p(Y|X)

 Joint distribution: p(X,Y)

 Inferences: p(X), p(Y), p(Y|X), p(X|Y)



 Perfect intervention: do(X=x) as set X to x.

 What is the relation of p(Q=q|E=e) and p(Q=q|do(E=e))?

 What is a formal knowledge representation of a causal model?

 What is the formal inference method?
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X

Y

 Specification: p(X), p(Y|X)
 Joint distribution: p(X,Y)
 Inferences:

 p(Y|X=x)=p(Y|do(X=x))
 p(X|Y=y)≠p(X|do(Y=y))



 Imagery observations and interventions:
◦ We observed X=x, but imagine that x’ would have been observed: denoted as X’=x’.

◦ We set X=x, but imagine that x’ would have been set: denoted as do(X’=x’).

 What is the relation of 
◦ Observational p(Q=q|E=e, X=x’) 

◦ Interventional p(Q=q|E=e, do(X=x’))

◦ Counterfactual p(Q’=q’|Q=q, E=e, do(X=x), do(X’=x’))

 O: What is the probability that the patient recovers if he takes the drug x’.

 I:What is the probability that the patient recovers if we prescribe* the drug x’.

 C: Given that the patient had not recovered for the drug x, what would have 
been the probability that patient recovers if we had prescribed* the drug x’, 
instead of x.

 *: Assume that the patient is fully compliant.

 **” expected to neither he will.
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The domain is defined by the joint distribution

P(X1,..., Xn|Structure,parameters)

1. Representation of parameteres

2. Representation of independencies

3. Representation of causal relations

4. Representation of possible worlds

quantitave

qualitative

passive

(observational)

Active

(interventional)

„small number of parameters”

„what is relevant for diagnosis”

„what is the effect of a treatment”

?

Imagery

(counterfactual)



 strong association,
 X precedes temporally Y,
 plausible explanation without alternative explanations 

based on confounding,
 necessity (generally: if cause is removed, effect is 

decreased or actually: y would not have been occurred 
with that much probability if x had not been present),

 sufficiency (generally: if exposure to cause is increased, 
effect is increased or actually: y would have been occurred 
with larger probability if x had been present).

 Autonomous, transportable mechanism.

 The probabilistic definition of causation formalizes many, 
but for example not the counterfactual aspects.
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IP(X;Y|Z) or (X⫫Y|Z)P denotes that X is independent 
of Y given Z: P(X;Y|z)=P(Y|z) P(X|z) for all z with 
P(z)>0.

(Almost) alternatively, IP(X;Y|Z) iff

P(X|Z,Y)= P(X|Z) for all z,y with P(z,y)>0.

Other notations: DP(X;Y|Z) =def= ┐IP(X;Y|Z)

Contextual independence: for not all z.



The independence map (model) M of a 
distribution P is the set of the valid 
independence triplets:

MP={IP,1(X1;Y1|Z1),..., IP,K(XK;YK|ZK)}

X Y ZIf P(X,Y,Z) is a Markov chain, then 

MP={D(X;Y), D(Y;Z), I(X;Z|Y)}

Normally/almost always: D(X;Z)

Exceptionally: I(X;Z)
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J.Pearl: Prob. Reasoning in intelligent systems, 1998



X

Y

Z

If P(Y,X,Z) is a naive Bayesian network, then 

MP={D(X;Y), D(Y;Z), I(X;Z|Y)}

Normally/almost always: D(X;Z)

Exceptionally: I(X;Z)



Directed acyclic graph (DAG)
◦ nodes – random variables/domain entities
◦ edges – direct probabilistic dependencies

(edges- causal relations

Local models - P(Xi|Pa(Xi))
Three interpretations:

MP={IP,1(X1;Y1|Z1),...}

),|()|(),|()|()(
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3. Concise representation of joint 
distributions

2. Graphical representation of 

(in)dependencies

1. Causal model



IG(X;Y|Z) denotes that X is d-separated 
(directed separated) from Y by Z in directed 
graph G.





For certain distributions exact representation is not possible by Bayesian networks, e.g.:

1. Intransitive Markov chain: XYZ

2. Pure multivariate cause: {X,Z}Y

3. Diamond structure:

P(X,Y,Z,V) with MP={D(X;Z), D(X;Y), D(V;X), D(V;Z), 

I(V;Y|{X,Z}), I(X;Z|{V,Y}).. }. X

Y

Z

V



 In the first order Markov chain below, despite the dependency of X-Y
and Y-Z, X and Z can be independent (assuming non-binary Y).

X Y Z



 Pairwise independence does not imply 
multivariate independence!

X

Y

Z

XOR









Causal models:

P(X1,..., Xn) 

From passive observations:

MP={IP,1(X1;Y1|Z1),..., IP,K(XK;YK|ZK)}

Different causal models can have the same independence map!

Typically causal models cannot be identified from passive observations, they are

observationally equivalent.

J.Pearl:

~„3D objects”

„2D projection”



Causal models:

X1 X2 X3 X4 X4X3X2X1

Flow of time?

MP={I(Xi+1;Xi-1|Xi)} 

P(X1,...) 

„first order Markov property”

Markov chain



X Z Y

p(X),p(Z|X),p(Y|Z)

X Z Y

p(X|Z),p(Z|Y),p(Y)

X Z Y

p(X|Z),p(Z),p(Y|Z)

“transitive” M ≠ „intransitive” M
X

Z
Y

p(X),p(Z|X,Y),p(Y)

„v-structure”

MP={D(X;Z), D(Y;Z), I(X;Y), D(X;Y|Z) }MP={D(X;Z), D(Z;Y), D(X,Y), I(X;Y|Z)}

Often: present knowledge renders future states conditionally independent.

(confounding)

Ever(?): present knowledge renders past states conditionally independent.

(backward/atemporal confounding)



„Causal” model:

P(X1,..., Xn) 

Dependency map:

MP={IP,1(X1;X2),...}

One-to-one relation



„Causal” models (there is a DAG for each ordering, i.e. n! DAGs):

P(X1,..., Xn) 

Dependency map:

MP={DP,1(X1;X2),...}

One-to-many relation







 A DAG is called a causal structure over a set of variables, if 
each node represents a variable and edges direct 
influences. A causal model is a causal structure extended 
with local probabilistic models.

 A causal structure G and distribution P satisfies the Causal 
Markov Condition, if P obeys the local Markov condition 
w.r.t. G.

 The distribution P is said to stable (or faithful), if there 
exists a DAG called perfect map exactly representing its 
(in)dependencies (i.e. IG(X;Y|Z) ⇔ IP(X;Y|Z) ∀ X,Y,Z ⊆ V ).

 CMC: sufficiency of G (there is no extra, acausal edge)
 Faithfulness/stability: necessity of G (there are no extra, 

parametric independency)



 (Passive, observational) inference
◦ P(Query|Observations) 

 Interventionist inference
◦ P(Query|Observations, Interventions)

 Counterfactual inference
◦ P(Query| Observations, Counterfactual conditionals) 



If G is a causal model, then compute p(Y|do(X=x)) by
1. deleting the incoming edges to X

2. setting X=x

3. performing standard Bayesian network inference.

Mutation

Disease

Subpopulation

Location

?

E

X

Y

*

?



Reichenbach's Common Cause Principle:
a correlation between events X and Y indicates either that X causes Y, or that Y

causes X, or that X and Y have a common cause.

X Y X Y

X

*

Y
X

*

Y

*...

...

Causal models:

X causes Y Y causes X

There is a common cause 

(pure confounding)

Causal effect of Y on X

is confounded by many 

factors

X YMP={D(X;Y)} 

P(X,Y) 
From passive observations:

„X and Y are associated”



 Can we learn causal relations from observational data in presence of 
confounders???

E

X

Y

*

?

???

Smoking

Lung cancer

 Automated, tabula rasa causal inference from (passive) observation is 
possible, i.e. hidden, confounding variables can be excluded

Smoking

Lung cancer

A genetic

polymorphism*

Increased susceptibility

Increased propensity



 H.Simon

◦ Xi=fi(X1,..,Xi-1) for i=1..n

◦ In the linear case the sytem of equations indicates a natural 
causal ordering (flow of time?)

X

X X

X X X

X X X X

....

The probabilistic conceptualization is its generalization: 

P(Xi,|X1,..,Xi-1) ~ Xi=fi(X1,..,Xi-1) 



 Can we represent exactly (in)dependencies by a BN?

 almost always

 Can we interpret 

◦ edges as causal relations

 with no hidden variables?

 compelled edges as a filter

 in the presence of hidden variables?

 Sometimes, e.g. confounding can be excluded in certain cases

 in local models as autonomous mechanisms?

 a priori  knowledge, e.g. Causal Markov Assumption

 Can we infer the effect of interventions in a causal model?

 Graph surgery with standard inference in BNs

 Optimal study design to infer the effect of interventions?

 With no hidden variables: yes, in a non-Bayesian framework

 In the presence of hidden variables: open issue

 Suggested reading

◦ J. Pearl: Causal inference in statistics, 2009


