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 Reminder: inference in the joint distribution

 Reminder: efficiency in Naïve Bayesian 
networks

 Properties of irrelevance

 Axiomatizatin of independencies

 Bayesian networks

 Special local models
◦ Noisy-OR

◦ Decision tree CPDs

◦ Decision graph CPDs
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P1(X1) ... Pk(Xk) KB P(X1...,X1)

0 0 0 .01

1 1 1 .1



Every question about a domain can be answered by the joint distribution.

Typically, we are interested in the posterior joint distribution of the query 
variables Y given specific values e for the evidence variables E

Let the hidden variables be H = X - Y – E

Then the required summation of joint entries is done by summing out the 
hidden variables:

P(Y | E = e) = αP(Y,E = e) = αΣhP(Y,E= e, H = h)

 The terms in the summation are joint entries because Y, E and H
together exhaust the set of random variables

 Obvious problems:
1. Worst-case time complexity O(dn) where d is the largest arity

2. Space complexity O(dn) to store the joint distribution

3. How to find the numbers for O(dn) entries?



Decomposition of the joint:

P(Y,X1,..,Xn) = P(Y)∏iP(Xi,|Y, X1,..,Xi-1) //by the chain rule

= P(Y)∏iP(Xi,|Y) // by the N-BN assumption

2n+1 parameteres!

Diagnostic inference:

P(Y|xi1,..,xik) = P(Y)∏jP(xij,|Y) / P(xi1,..,xik)

If Y is binary, then the odds
P(Y=1|xi1,..,xik) / P(Y=0|xi1,..,xik)  = P(Y=1)/P(Y=0) ∏j P(xij,|Y=1) / P(xij,|Y=0)
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„Probability theory=measure theory+independence”

IP(X;Y|Z) or (X⫫Y|Z)P denotes that X is independent of Y 
given Z: P(X;Y|z)=P(Y|z) P(X|z) for all z with P(z)>0.

(Almost) alternatively, IP(X;Y|Z) iff

P(X|Z,Y)= P(X|Z) for all z,y with P(z,y)>0.

Other notations: DP(X;Y|Z) =def= ┐IP(X;Y|Z)

Contextual independence: for not all z.
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(Properties of relevance: transitivity: If X is relevant for Y, and Y for Z, then X is 

relevant for Z.)

Pearl, Judea. Probabilistic reasoning in intelligent systems: networks of plausible inference. 
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1. Semi-graphoids (SG): 

Symmetry, Decomposition, 

Weak Union,

Contraction (holds in all 

probability distribution)

2. Graphoids: Semi-

graphoids+Intersection (holds 

only in strictly positive

distribution)Pearl, Judea. Probabilistic reasoning 

in intelligent systems: networks of 

plausible inference. 
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 A simple, graphical notation for conditional 
independence assertions and hence for compact 
specification of full joint distributions

 Syntax:
◦ a set of nodes, one per variable
◦
◦ a directed, acyclic graph (link ≈ "directly influences")
◦ a conditional distribution for each node given its parents:

P (Xi | Parents (Xi))

 In the simplest case, conditional distribution 
represented as a conditional probability table (CPT) 
giving the distribution over Xi for each combination 
of parent values



 I'm at work, neighbor John calls to say my alarm is ringing, but 
neighbor Mary doesn't call. Sometimes it's set off by minor 
earthquakes. Is there a burglar?

 Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

 Network topology reflects "causal" knowledge:
◦ A burglar can set the alarm off

◦ An earthquake can set the alarm off

◦ The alarm can cause Mary to call

◦ The alarm can cause John to call





 A CPT for Boolean Xi with k Boolean parents has 2k rows for the 
combinations of parent values

 Each row requires one number p for Xi = true
(the number for  Xi = false is just 1-p)

 If each variable has no more than k parents, the complete network 
requires O(n · 2k) numbers

 I.e., grows linearly with n, vs. O(2n) for the full joint distribution

 For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. 25-1 = 31)



The full joint distribution is defined as the product of the local 
conditional distributions:

P (X1, … ,Xn) = πi = 1 P (Xi | Parents(Xi))

e.g., P(j  m  a  b  e)

= P (j | a) P (m | a) P (a | b, e) P (b) P (e)

n



 1. Choose an ordering of variables X1, … ,Xn

 2. For i = 1 to n
◦ add Xi to the network

◦ select parents from X1, … ,Xi-1 such that

P (Xi | Parents(Xi)) = P (Xi | X1, ... Xi-1)

This choice of parents guarantees:

P (X1, … ,Xn) = πi =1 P (Xi | X1, … , Xi-1) //(chain rule)

= πi =1P (Xi | Parents(Xi)) //(by construction)

n

n
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1. Choose an ordering of variables X1, … ,Xn

2. For i = 1 to n
add Xi to the network
select parents from X1, … ,Xi-1 such that

P (Xi | Parents(Xi)) = P (Xi | X1, ... Xi-1)



10/10/2016A.I. 17



 Conditional independencies allows:
◦ efficient representation of the joint probabilitity distribution,

◦ efficient inference to compute conditional probabilites.

 Bayesian networks use directed acyclic graphs to represent
◦ conditional independencies,

◦ conditional parameters,

◦ optionally, causal mechanisms  (see Knowledge engineering lecture later!).

 Design of variables and order of the variables can drastically influence structure

◦ (see Knowledge engineering lecture later!)

 Canonical conditional models can further increase efficiency.

 Suggested reading:
◦ Charniak: Bayesian networks without tears, 1991



Mutation

Onset

Bleeding

absent

P(D|a,l,m)

Regularity

weak

Onset=early Onset=late

h.wild

regular irregular

mutated

P(D|a,l,h.w.)

P(D|a,e)

strong

P(D|Bleeding=strong)

Mutation

P(D|w,i,m)

h.wild mutated

P(D|w,i,h.w.)

P(D|w,r)

Decision tree: Each internal node represent a (univariate) test, the leafs contains 

the conditional probabilities given the values along the path.

Decision graph: If conditions are equivalent, then subtrees can be merged.

E.g. If (Bleeding=absent,Onset=late) ~ (Bleeding=weak,Regularity=irreg)

A.I.: BN homework guide


