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» Reminder: inference in the joint distribution

» Reminder: efficiency in Naive Bayesian
networks

» Properties of irrelevance
» Axiomatizatin of independencies
» Bayesian networks

» Special local models
> Noisy-OR
- Decision tree CPDs
> Decision graph CPDs




The joint probability distribution
Classical vs probabilistic logic
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Inference by enumeration, contd.

Every question about a domain can be answered by the joint distribution.

Typically, we are interested in the posterior joint distribution of the query
variables Y  given specific values e for the evidence variables E

Let the hidden variables be H=X-Y -E

Then the required summation of joint entries is done by summing out the
hidden variables:

PY|E=¢e)=aP(Y,E=¢e) = «Z,P(Y,E=e,H =h)

» The terms in the summation are joint entries because Y, Eand H
together exhaust the set of random variables

» Obvious problems:
1. Worst-case time complexity O(@’) where dis the largest arity
2. Space complexity O(d@”)to store the joint distribution
3. How to find the numbers for O(@") entries?




Naive Bayesian network (NBN)

Decomposition of the joint:
P(Y,X4,..,X}) = P(Y)[liPCX,|Y, Xq,..,Xi1) //by the chain rule
= P(Y)[liP(X,|Y) I/ by the N-BN assumption

2n+1 parameteres!

Diagnostic inference:

P(Y [Xig,--+Xik) = P[P Y) 1 P15+ %)

If Y is binary, then the odds

P(Y=1[X3,...Xy) I P(Y=0[Xi1,...%) = P(Y=1)/P(Y=0) [']; P(X;;;|Y=1) / P(x;;,| Y=0)

p(Flu = present | Fever=absent, Coughing = present)
o« p(Flu = present) p(Fever=absent | Flu = present) p(Coughing = present| Flu = present)




Conditional independence .o%)

,Probability theory=measure theory+independence’

1,(X;Y|Z) or (X1Y|Z), denotes that X is independent of Y
given Z: P(X;Y|z)=P(Y|z) P(X|z) for all z with P(z)>0.

(Almost) alternatively, I(X;Y|2Z) iff

P(X|Z,Y)= P(X|Z) for all z,y with P(z,y)>0.
Other notations: Dp(X;Y|Z) =def= q 1,(X;Y|Z)
Contextual independence: for not all z.




Properties of irrelevance

(Properties of relevance: transitivity: If X is relevant for Y, and Y for Z, then X is
relevant for Z.)

a Symmetry: The observational probabilistic conditional independence is
symmetric.

b Decomposition: Any part of an irrelevant information is irrelevant.

¢ Weak union: Irrelevant information remains irrelevant after learning
(other) irrelevant information.

d Contraction: Irrelevant information remains irrelevant after forgetting
(other) irrelevant information.

Intersection: Symmetric irrelevance implies joint irrelevance if there are
no dependencies

Pearl, Judea. Probabilistic reasoning in intelligent systems: networks of plausible inference.
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roperties of irrelevance
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in intelligent systems: networks of
plausible inference.
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Properties of independence

a Symmetry: The observational probabilistic conditional independence is
symmetric.

I,(X:Y|Z) iff I,(Y: X|Z)
b Decomposition: Any part of an irrelevant information is irrelevant.
L(X;YUW|Z) = [,(X:;Y|Z) and I,(X; W|Z)
¢ Weak union: Irrelevant information remains irrelevant after learning
(other) irrelevant information.
LX;YUW|Z) = L(X;Y|ZUW)
d Contraction: Irrelevant information remains irrelevant after forgetting
(other) irrelevant information.

L(X;Y|Z) and I, X; W|ZUY) = L(X;Y UW|Z)

e Intersection: Symmetric irrelevance implies joint irrelevance if there are
no dependencies.

L(X;Y|ZUW) and I,(X; W|ZUY) = L(X;Y UW|Z)

A.l.  10/10/2016



Bayesian networks

» A 5|mple graphical notation for conditional
independence assertions and hence for compact
speC|f|cat|on of full joint distributions

» Syntax:
a set of nodes, one per variable

(¢]

a directed, acyclic graph (link = "directly influences")
a conditional distribution for each node given its parents:
P (X; | Parents (X))

o o o

» In the simplest case, condltlonal distribution
represented as a con |t|onaI)J3robab|I|ty table (CPT)
giving the distribution over
of parent values

for each combination




Example

» I'm at work, neighbor John calls to say my alarm is ringing, but
neighbor Mary doesn't call. Sometimes it's set off by minor
earthquakes. Is there a burglar?

» Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

» Network topology reflects "causal” knowledge:
A burglar can set the alarm off

An earthquake can set the alarm off

The alarm can cause Mary to call

The alarm can cause John to call

o

(¢]

(¢]

[e]




Example contd.
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Compactness

» A CPT for Boolean X;with k& Boolean parents has 2% rows for the
combinations of parent values

®
» Each row requires one number pfor X; = true A}
(the number for X; = falseis just 7-p) .x
g

» If each variable has no more than k parents, the complete network
requires O(n - 2%¥) numbers

» l.e., grows linearly with n, vs. O(27) for the full joint distribution

» For burglarynet, 1 + 1+ 4+ 2 + 2 =10 numbers (vs. 2°-1 = 31)




Semantics

The full joint distribution is defined as the product of the local
conditional distributions:

n

o
P, ... ,X)=r1,_,;P(X;/ Parents(X)) A
o

eg., PArmnaan—bns—e

=P(@G/a)P(m/a)P@/-b —e)P(=b)P(-e)




Constructing Bayesian networks

» 1. Choose an ordering of variables X;, ... ,X,
» 2.Fori=1ton
> add X;to the network
- select parents from X;, ... ,X._; such that

P (X; | Parents(X)) = P(X; | X;, ... X;._;)
This choice of parents guarantees:

PX, .. X) =m_, PX./X,, ..., X.,) //chain rule)

— 17, _,P (X, ] Parents(X)) //(by construction)




(Re)constructing the example

1. Choose an ordering of variables X, ... , X,

2.Fori=1ton
add X; to the network
select parents from X,, ... ,X_; such that
P (X, | Parents(X)) = P (Xi | X, ... Xi.1)

A.l.  10/10/2016 16



Noisy-OR

Noisy-OR distributions model multiple noninteracting causes
1) Parents Uy ... U include all causes (can add leak node)
2) Independent failure probability ¢; for each cause alone

= P(X|Uy...U;, ~Us ..

_|LT)_1_ z—lgi

Cold Flu  Malaria| P(Fever)| P(—Fever)

F F F 0.0 1.0

F F T 0.9 0.1

F T F 0.8 0.2

F T T 0.98 0.02=0.2 x 0.1

T F F 0.4 0.6

T F T 0.94 0.06 = 0.6 x 0.1

T T F 0.88 0.12=0.6 x 0.2

T T T 0.988 0.012=10.6 x 0.2 x 0.1

Number of parameters linear in number of parents

A.l.  10/10/2016
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Summary

Conditional independencies allows:

- efficient representation of the joint probabilitity distribution,

- efficient inference to compute conditional probabilites.

Bayesian networks use directed acyclic graphs to represent
> conditional independencies,

- conditional parameters,
o optionally, causal mechanisms (see Knowledge engineering lecture later!).

Design of variables and order of the variables can drastically influence structure
(see Knowledge engineering lecture later!)

Canonical conditional models can further increase efficiency.
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Suggested reading:

> Charniak: Bayesian networks without tears, 1991




Decision trees, decision graphs

?’(D|Bleeding:strong)

Onsetzyaﬁy Nlar
P(Dla,e)

h.Wi|d/ h.wild/ mutated

P(Dla,l,h.w.) P(Dla,l,m) P(D|w,i,h.w.) P(D|w,i,m)

Decision tree: Each internal node represent a (univariate) test, the leafs contains
the condltlonal probabilities given the values along the path.
; graph If conditions are equivalent, then subtrees can be merged.
aeabsent,Onset=late) ~ (Bleeding=weak,Regularity=irreq)




