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 Reminder: inference in the joint distribution

 Reminder: efficiency in Naïve Bayesian 
networks

 Properties of irrelevance

 Axiomatizatin of independencies

 Bayesian networks

 Special local models
◦ Noisy-OR

◦ Decision tree CPDs

◦ Decision graph CPDs
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P1(X1) ... Pk(Xk) KB P(X1...,X1)

0 0 0 .01

1 1 1 .1



Every question about a domain can be answered by the joint distribution.

Typically, we are interested in the posterior joint distribution of the query 
variables Y given specific values e for the evidence variables E

Let the hidden variables be H = X - Y – E

Then the required summation of joint entries is done by summing out the 
hidden variables:

P(Y | E = e) = αP(Y,E = e) = αΣhP(Y,E= e, H = h)

 The terms in the summation are joint entries because Y, E and H
together exhaust the set of random variables

 Obvious problems:
1. Worst-case time complexity O(dn) where d is the largest arity

2. Space complexity O(dn) to store the joint distribution

3. How to find the numbers for O(dn) entries?



Decomposition of the joint:

P(Y,X1,..,Xn) = P(Y)∏iP(Xi,|Y, X1,..,Xi-1) //by the chain rule

= P(Y)∏iP(Xi,|Y) // by the N-BN assumption

2n+1 parameteres!

Diagnostic inference:

P(Y|xi1,..,xik) = P(Y)∏jP(xij,|Y) / P(xi1,..,xik)

If Y is binary, then the odds
P(Y=1|xi1,..,xik) / P(Y=0|xi1,..,xik)  = P(Y=1)/P(Y=0) ∏j P(xij,|Y=1) / P(xij,|Y=0)
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„Probability theory=measure theory+independence”

IP(X;Y|Z) or (X⫫Y|Z)P denotes that X is independent of Y 
given Z: P(X;Y|z)=P(Y|z) P(X|z) for all z with P(z)>0.

(Almost) alternatively, IP(X;Y|Z) iff

P(X|Z,Y)= P(X|Z) for all z,y with P(z,y)>0.

Other notations: DP(X;Y|Z) =def= ┐IP(X;Y|Z)

Contextual independence: for not all z.
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(Properties of relevance: transitivity: If X is relevant for Y, and Y for Z, then X is 

relevant for Z.)

Pearl, Judea. Probabilistic reasoning in intelligent systems: networks of plausible inference. 
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1. Semi-graphoids (SG): 

Symmetry, Decomposition, 

Weak Union,

Contraction (holds in all 

probability distribution)

2. Graphoids: Semi-

graphoids+Intersection (holds 

only in strictly positive

distribution)Pearl, Judea. Probabilistic reasoning 

in intelligent systems: networks of 

plausible inference. 
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 A simple, graphical notation for conditional 
independence assertions and hence for compact 
specification of full joint distributions

 Syntax:
◦ a set of nodes, one per variable
◦
◦ a directed, acyclic graph (link ≈ "directly influences")
◦ a conditional distribution for each node given its parents:

P (Xi | Parents (Xi))

 In the simplest case, conditional distribution 
represented as a conditional probability table (CPT) 
giving the distribution over Xi for each combination 
of parent values



 I'm at work, neighbor John calls to say my alarm is ringing, but 
neighbor Mary doesn't call. Sometimes it's set off by minor 
earthquakes. Is there a burglar?

 Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

 Network topology reflects "causal" knowledge:
◦ A burglar can set the alarm off

◦ An earthquake can set the alarm off

◦ The alarm can cause Mary to call

◦ The alarm can cause John to call





 A CPT for Boolean Xi with k Boolean parents has 2k rows for the 
combinations of parent values

 Each row requires one number p for Xi = true
(the number for  Xi = false is just 1-p)

 If each variable has no more than k parents, the complete network 
requires O(n · 2k) numbers

 I.e., grows linearly with n, vs. O(2n) for the full joint distribution

 For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. 25-1 = 31)



The full joint distribution is defined as the product of the local 
conditional distributions:

P (X1, … ,Xn) = πi = 1 P (Xi | Parents(Xi))

e.g., P(j  m  a  b  e)

= P (j | a) P (m | a) P (a | b, e) P (b) P (e)

n



 1. Choose an ordering of variables X1, … ,Xn

 2. For i = 1 to n
◦ add Xi to the network

◦ select parents from X1, … ,Xi-1 such that

P (Xi | Parents(Xi)) = P (Xi | X1, ... Xi-1)

This choice of parents guarantees:

P (X1, … ,Xn) = πi =1 P (Xi | X1, … , Xi-1) //(chain rule)

= πi =1P (Xi | Parents(Xi)) //(by construction)

n

n
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1. Choose an ordering of variables X1, … ,Xn

2. For i = 1 to n
add Xi to the network
select parents from X1, … ,Xi-1 such that

P (Xi | Parents(Xi)) = P (Xi | X1, ... Xi-1)
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 Conditional independencies allows:
◦ efficient representation of the joint probabilitity distribution,

◦ efficient inference to compute conditional probabilites.

 Bayesian networks use directed acyclic graphs to represent
◦ conditional independencies,

◦ conditional parameters,

◦ optionally, causal mechanisms  (see Knowledge engineering lecture later!).

 Design of variables and order of the variables can drastically influence structure

◦ (see Knowledge engineering lecture later!)

 Canonical conditional models can further increase efficiency.

 Suggested reading:
◦ Charniak: Bayesian networks without tears, 1991



Mutation

Onset

Bleeding

absent

P(D|a,l,m)

Regularity

weak

Onset=early Onset=late

h.wild

regular irregular

mutated

P(D|a,l,h.w.)

P(D|a,e)

strong

P(D|Bleeding=strong)

Mutation

P(D|w,i,m)

h.wild mutated

P(D|w,i,h.w.)

P(D|w,r)

Decision tree: Each internal node represent a (univariate) test, the leafs contains 

the conditional probabilities given the values along the path.

Decision graph: If conditions are equivalent, then subtrees can be merged.

E.g. If (Bleeding=absent,Onset=late) ~ (Bleeding=weak,Regularity=irreg)

A.I.: BN homework guide


