Adapted from AIMA slides

Bayesian networks

<u>Peter Antal</u> <u>antal@mit.bme.hu</u>

Outline

- Reminder: inference in the joint distribution
- Reminder: efficiency in Naïve Bayesian networks
- Properties of irrelevance
- Axiomatizatin of independencies
- Bayesian networks
- Special local models
 - Noisy–OR
 - Decision tree CPDs
 - Decision graph CPDs

The joint probability distribution Classical vs probabilistic logic

P ₁ (X ₁)	 $P_k(X_k)$	KB	P(X ₁ ,X ₁)
0	0	0	.01
1	1	1	.1

Inference by enumeration, contd.

Every question about a domain can be answered by the joint distribution.

Typically, we are interested in the posterior joint distribution of the query variables Y given specific values e for the evidence variables E
Let the hidden variables be H = X - Y - E

- Then the required summation of joint entries is done by summing out the hidden variables:
- $\mathbf{P}(\mathbf{Y} \mid \mathbf{E} = \mathbf{e}) = \alpha \mathbf{P}(\mathbf{Y}, \mathbf{E} = \mathbf{e}) = \alpha \Sigma_{\mathsf{h}} \mathbf{P}(\mathbf{Y}, \mathbf{E} = \mathbf{e}, \mathbf{H} = \mathbf{h})$
- The terms in the summation are joint entries because Y, E and H together exhaust the set of random variables
- Obvious problems:
 - 1. Worst-case time complexity $O(d^n)$ where d is the largest arity
 - 2. Space complexity $O(d^n)$ to store the joint distribution
 - 3. How to find the numbers for $O(d^n)$ entries?

Naive Bayesian network (NBN)

Decomposition of the joint:

 $P(Y,X_1,..,X_n) = P(Y)\prod_i P(X_i,|Y, X_1,..,X_{i-1}) //by \text{ the chain rule}$ = P(Y)\productorymodel{eq:productorymodel} = P(Y)\productorymodel{eq:productorymodel} = P(Y)\productorymodel{eq:productorymodel} //by the N-BN assumption 2n+1 parameteres!

Diagnostic inference:

 $P(Y|x_{i1},..,x_{ik}) = P(Y)\prod_{j}P(x_{ij},|Y) / P(x_{i1},..,x_{ik})$

Conditional independence

"Probability theory=measure theory+independence" I_P(X;Y|Z) or $(X \perp Y \mid Z)_P$ denotes that X is independent of Y given Z: P(X;Y|z)=P(Y|z) P(X|z) for all z with P(z)>0.

(Almost) alternatively, $I_P(X;Y|Z)$ iff P(X|Z,Y) = P(X|Z) for all z,y with P(z,y) > 0. Other notations: $D_P(X;Y|Z) = def = \neg I_P(X;Y|Z)$ Contextual independence: for not all z.

Properties of irrelevance

(Properties of relevance: transitivity: If X is relevant for Y, and Y for Z, then X is relevant for Z.)

- a Symmetry: The observational probabilistic conditional independence is symmetric.
- b Decomposition: Any part of an irrelevant information is irrelevant.
- c Weak union: Irrelevant information remains irrelevant after learning (other) irrelevant information.
- d Contraction: Irrelevant information remains irrelevant after forgetting (other) irrelevant information.

 e Intersection: Symmetric irrelevance implies joint irrelevance if there are no dependencies
 Pearl, Judea. Probabilistic reasoning in intelligent systems: networks of plausible inference.

Properties of irrelevance

Decomposition

Weak Union

Contraction

Intersection

Pearl, Judea. *Probabilistic reasoning in intelligent systems: networks of plausible inference*. Semi-graphoids (SG): Symmetry, Decomposition, Weak Union, Contraction (holds in all probability distribution)
 Graphoids: Semigraphoids+Intersection (holds only in strictly positive distribution)

Properties of independence

a Symmetry: The observational probabilistic conditional independence is symmetric.

 $I_p(\mathbf{X}; \mathbf{Y}|\mathbf{Z})$ iff $I_p(\mathbf{Y}; \mathbf{X}|\mathbf{Z})$

b Decomposition: Any part of an irrelevant information is irrelevant.

 $I_p(X; Y \cup W | Z) \Rightarrow I_p(X; Y | Z) \text{ and } I_p(X; W | Z)$

c Weak union: Irrelevant information remains irrelevant after learning (other) irrelevant information.

 $I_p(X; Y \cup W | Z) \Rightarrow I_p(X; Y | Z \cup W)$

d Contraction: Irrelevant information remains irrelevant after forgetting (other) irrelevant information.

 $I_p(X; Y|Z)$ and $I_p(X; W|Z \cup Y) \Rightarrow I_p(X; Y \cup W|Z)$

e Intersection: Symmetric irrelevance implies joint irrelevance if there are no dependencies.

 $I_p(X; Y|Z \cup W) \text{ and } I_p(X; W|Z \cup Y) \Rightarrow I_p(X; Y \cup W|Z)$

Bayesian networks

- A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions
- Syntax:
 - a set of nodes, one per variable
 - 0
 - a directed, acyclic graph (link \approx "directly influences")
 - a conditional distribution for each node given its parents: $P(X_i | Parents(X_i))$
- In the simplest case, conditional distribution represented as a conditional probability table (CPT) giving the distribution over X_i for each combination of parent values

Example

- I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?
- Variables: *Burglary*, *Earthquake*, *Alarm*, *JohnCalls*, *MaryCalls*
- Network topology reflects "causal" knowledge:
 - A burglar can set the alarm off
 - An earthquake can set the alarm off
 - The alarm can cause Mary to call
 - The alarm can cause John to call

Example contd.

Compactness

- A CPT for Boolean X_i with k Boolean parents has 2^k rows for the combinations of parent values
- Each row requires one number p for $X_i = true$ (the number for $X_i = false$ is just 1-p)

- If each variable has no more than k parents, the complete network requires $O(n \cdot 2^k)$ numbers
- I.e., grows linearly with *n*, vs. $O(2^n)$ for the full joint distribution
- For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. $2^{5}-1 = 31$)

Semantics

The full joint distribution is defined as the product of the local conditional distributions:

$$P(X_{1}, ..., X_{n}) = \pi_{i=1} P(X_{i} / Parents(X_{i}))$$

e.g., $P(j \land m \land a \land \neg b \land \neg e)$

 $= P(j | a) P(m | a) P(a | \neg b, \neg e) P(\neg b) P(\neg e)$

Constructing Bayesian networks

- ▶ 1. Choose an ordering of variables X_1, \ldots, X_n
- 2. For i = 1 to n
 - add X_i to the network
 - select parents from X_1, \ldots, X_{i-1} such that

 $P(X_i | Parents(X_i)) = P(X_i | X_1, ..., X_{i-1})$

This choice of parents guarantees:

$$P(X_{1}, ..., X_{n}) = \pi_{i=1}^{n} P(X_{i} | X_{1}, ..., X_{i-1}) //(\text{chain rule}) = \pi_{i=1}^{n} P(X_{i} | Parents(X_{i})) //(\text{by construction})$$

(Re)constructing the example

- 1. Choose an ordering of variables X_1, \ldots, X_n
- 2. For *i* = 1 to *n*

add X_i to the network select parents from X_1, \dots, X_{i-1} such that $P(X_i | Parents(X_i)) = P(X_i | X_1, \dots, X_{i-1})$

Noisy-OR

Noisy-OR distributions model multiple noninteracting causes

- 1) Parents $U_1 \ldots U_k$ include all causes (can add leak node)
- 2) Independent failure probability q_i for each cause alone

 $\Rightarrow P(X|U_1 \dots U_j, \neg U_{j+1} \dots \neg U_k) = 1 - \prod_{i=1}^j q_i$

Cold	Flu	Malaria	P(Fever)	$P(\neg Fever)$
F	F	F	0.0	1.0
F	F	Т	0.9	0.1
F	Т	F	0.8	0.2
F	Т	Т	0.98	$0.02 = 0.2 \times 0.1$
Т	F	F	0.4	0.6
Т	F	Т	0.94	$0.06 = 0.6 \times 0.1$
Т	Т	F	0.88	$0.12 = 0.6 \times 0.2$
Т	Т	Т	0.988	$0.012 = 0.6 \times 0.2 \times 0.1$

Number of parameters **linear** in number of parents

Summary

- Conditional independencies allows:
 - efficient representation of the joint probabilitity distribution,
 - efficient inference to compute conditional probabilites.
- Bayesian networks use directed acyclic graphs to represent
 - conditional independencies,
 - conditional parameters,
 - optionally, causal mechanisms (see Knowledge engineering lecture later!).
- Design of variables and order of the variables can drastically influence structure
 - (see Knowledge engineering lecture later!)
- Canonical conditional models can further increase efficiency.

Suggested reading:

Charniak: Bayesian networks without tears, 1991

Decision trees, decision graphs

Decision tree: Each internal node represent a (univariate) test, the leafs contains the conditional probabilities given the values along the path. Decision graph: If conditions are equivalent, then subtrees can be merged. E.g. If (Bleeding=absent,Onset=late) ~ (Bleeding=weak,Regularity=irreg)

A.I.: BN homework guide