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Outline

» Basics of probability theory

» Relation of two-valued vs probabilistic logic
> Truth vs belief
> Proofs vs inference

» Naive Bayesian networks (N-BN)
» Exercises: SPAM filter construction using N-BNs




Axioms of probability

» For any propositions A, 5
4
-0 <PA <1
- P(true) = 1 and P(false) = 0
- P(Av B) = P(A) + P(B) - P(A A B)

True




About the event space

» Atomic events are mutually exclusive and
exhaustive.

» The single variable case.
- Weatheris one of <sunny,rainy,cloudy,snow>
o P((Weather =sunny)~ (Weather =rainy))

» Challenges in the multivariate case.
- Weather is one of <sunny,rainy,cloudy,snow>

- TemperatureofRain is one of <icy,cold,warn>
- NONE?
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Classical vs probabilistic logic:
truth and beliefs
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Conditional independence -of)

,Probability theory=measure theory+independence” %“7/'//

1,(X;Y|Z) or (X1LY|Z), denotes that X is independent of Y gfven Z:
P(X:Y|z)=P(Y|z) P(X|z) for all z with P(z)>0.

(Almost) alternatively, 1,(X;Y|Z) iff

P(X|Z,Y)= P(X|Z) for all z,y with P(z,y)>0.
Other notations: Dp(X;Y|Z) =def= 4 1,(X;Y|2)
Contextual independence: for not all z.
Homeworks:

Intransitivity: show that it is possible that D(X;Y), D(Y;Z), but
1(X;Z).

order : show that it is possible that 1(X;Z), I(Y;Z), but D(X,Y:;Z).




Naive Bayesian network

Assumptions:

1, Two types of nodes: a cause and effects.

2, Effects are conditionally independent of each other given their cause.

Variables (nodes)
Flu: present/absent
FeverAbove38C: present/absent

Coughing: present/absent P(Flu=present)=0.001
P(Flu=absent)=1-P(Flu=present)

Model

P(Fever=present|Flu=present)=0.6 P(Coughing=present|Flu=present)=0.3
R(Coughing=absent|Flu=present)=1-0.7
P(Fever=present|Flu=absent)=0« P(Cotghing=present|Flu=absent)=0.02

P(Coughing=absent|Flu=absent)=1-0.02



Naive Bayesian network (NBN)
Decomposition of the joint:
P(Y,X4,..,X}) = P(Y)[liPCX,|Y, Xq,.,Xi1) //by the chain rule
= P(Y)['iP(X,|Y) I/l by the N-BN assumption
2n+1 parameteres!

Diagnostic inference:

P(Y [Xig,--+Xik) = P[P Y) 1 P15+ Xik)

If Y is binary, then the odds

P(Y=1[Xi1,, Xy / P(Y=0]Xiz,...%5) = P(Y=1)/P(Y=0) [T, P(x;,|Y=1) / P(x;;,|Y=0)

p(Flu = present | Fever=absent, Coughing = present)
o« p(Flu = present) p(Fever=absent | Flu = present) p(Coughing = present| Flu = present)




Conditional probabilities, odds, odds ratios

P(=S, —LC) P(S, —LC) P(=LC)
. LC P(=S, LC) P(S, LC) P(LC)
Probability: P(=S) P(S)

P(LC)

Conditional probabilities (e.g., probability of LC given S):
P(LC| —=S)=?7?? P(LC| S)= ??? P(LC)

Odds:

[0,1] —[0,]: Odds(p)=p/(1-p)

O(LC| =S)=??? O(LC| S)

Odds Ratio (OR) Independent of prevalence! | |
OR(LC,S)=0(LC| S)/O(LC| —=S) 0 05 1
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Probabilities, odds, odds ratios

I N O
—LC 8 / 15

LC 1 4 5
Independence: 9 11 20
= nullmodell (H))  Contingency table with marginals
. . |- |s ]
—LC 4 .35 /5
LC .05 2 .25
45 .55

Conditional probabilities:
P(LC| =S)=.11 ??? P(LC| S)=.36 ??? P(LC)=.25
Odds:

[0,1] —[0,]: Odds(p)=p/(1-p)
O(LC| =S)=.12 ??? O(LC| S)=.56
Odds Ratio (OR):

C,S)=0O(LC| S)/O(LC| —S)=4.6




BAYES CUBE (~BAYES EYE)

http://bioinfo.mit.bme.hu/

https://www.mit.bme.Hu/eng/system/fiIes/oktatas/targyak/lo337/BayesCube_manual_en_v31.pdf

Computational Biomedicine (Combine) workgroup
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http://bioinfo.mit.bme.hu/

Example: Construct a spam filter
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Summary

Naive Bayesian networks (N-BNs) demonstrate the use of independencies to cope with
- model complexity (~space complexity, number of parameters)
- inferential complexity (~time complexity).
The assumption of conditional independence of the effects given their common cause
allows

the efficient representation of the joint distribution

(in the discrete, multinomial case: linear number of parameters instead of exponential),
the efficient computation of the diagnostic posterior p(Y|X)

(linear number of steps instead of exponential),

Odds, log odds are popular transformations of probabilities.
N-BNs are robust knowledge engineering and data analysis tools.

Suggested reading:

Druzdzell: Building Probabilistic Networks: Where Do the Numbers Come From?, IEEE
Transactions on Knowledge and data engineering, 2000



