Adapted from AIMA slides

Simple probabilistic models

Peter Antal antal@mit.bme.hu

Outline

- Basics of probability theory
- Relation of two-valued vs probabilistic logic
 - Truth vs belief
 - Proofs vs inference
- Naïve Bayesian networks (N-BN)
- Exercises: SPAM filter construction using N–BNs

Axioms of probability

For any propositions A, B

$$\circ 0 \leq \mathsf{P}(\mathcal{A}) \leq 1$$

0

- P(true) = 1 and P(false) = 0
- $\circ \mathsf{P}(\mathcal{A} \lor \mathcal{B}) = \mathsf{P}(\mathcal{A}) + \mathsf{P}(\mathcal{B}) \mathsf{P}(\mathcal{A} \land \mathcal{B})$

About the event space

- Atomic events are mutually exclusive and exhaustive.
- The single variable case.
 - Weather is one of <sunny,rainy,cloudy,snow>
 - P((Weather = sunny) \varnot (Weather = rainy))
- Challenges in the multivariate case.
 - Weather is one of < sunny, rainy, cloudy, snow>
 - *TemperatureofRain* is one of *<icy,cold,warm>* NONE?

Classical vs probabilistic logic: truth and beliefs

P ₁		P ₃	KB	S	рКВ	P(query evidence)
F	F	F	F	Т	.01	.1
F	F	Т	Т	F	.12	.2
F	Т	F	F	Т	.35	.3
F	Т	Т	F	F	••	••
Т	F	F	F	Т	••	••
Т	F	Т	Т	Т		•••
Т	Т	F	F	Т	••	••
Т	Т	Т	F	Т	••	••

Conditional independence

"Probability theory=measure theory+independence" $I_P(X;Y|Z)$ or $(X \perp Y \mid Z)_P$ denotes that X is independent of Y given Z: P(X;Y|z)=P(Y|z) P(X|z) for all z with P(z)>0.

(Almost) alternatively, $I_P(X;Y|Z)$ iff P(X|Z,Y) = P(X|Z) for all z,y with P(z,y) > 0. Other notations: $D_P(X;Y|Z) = def = \neg I_P(X;Y|Z)$ Contextual independence: for not all z.

Homeworks:

Intransitivity: show that it is possible that D(X;Y), D(Y;Z), but I(X;Z).

order : show that it is possible that I(X;Z), I(Y;Z), but D(X,Y;Z).

Naive Bayesian network

Assumptions:

1, Two types of nodes: a cause and effects.

2, Effects are conditionally independent of each other given their cause.

Naive Bayesian network (NBN)

Decomposition of the joint:

 $P(Y,X_1,..,X_n) = P(Y)\prod_i P(X_i,|Y, X_1,..,X_{i-1}) //by \text{ the chain rule}$ = P(Y)\product is a sumption in the second secon

Diagnostic inference:

 $P(Y|x_{i1},..,x_{ik}) = P(Y)\prod_{j}P(x_{ij},|Y) / P(x_{i1},..,x_{ik})$

 $P(Y=1|x_{i1},..,x_{ik}) / P(Y=0|x_{i1},..,x_{ik}) = P(Y=1)/P(Y=0) \prod_{j} P(x_{ij},|Y=1) / P(x_{ij},|Y=0)$

p(*Flu* = *present* | *Fever* = *absent*, *Coughing* = *present*)

 $\propto p(Flu = present)p(Fever = absent | Flu = present)p(Coughing = present | Flu = present)$

Conditional probabilities, odds, odds ratios

	−S	S	
⊣LC	P(¬S, ¬LC)	P(S, ¬LC)	P(¬LC)
LC	P(¬S, LC)	P(S, LC)	P(LC)
	P(¬S)	P(S)	

Probability:

P(LC)

Conditional probabilities (e.g., probability of LC given S):

P(LC| \neg S)= ??? P(LC| S)= ??? P(LC) Odds: [0,1] →[0,∞]: Odds(p)=p/(1-p) O(LC| \neg S)= ??? O(LC| S) Odds Ratio (OR) Independent of prevalence!

 $OR(LC,S)=O(LC|S)/O(LC|\neg S)$

Probabilities, odds, odds ratios

	¬S	S	
−LC	8	7	15
LC	1	4	5
	9	11	20

Contingency table with marginals

	−S	S	
−LC	.4	.35	.75
LC	.05	.2	.25
	.45	.55	

Conditional probabilities:

P(LC| ¬S)=.11 ??? P(LC| S)=.36 ??? P(LC)=.25 Odds:

[0,1] →[0,∞]: Odds(p)=p/(1-p) O(LC| \neg S)=.12 ??? O(LC| S)=.56 Odds Ratio (OR): OR(LC,S)=O(LC| S)/O(LC| \neg S)=4.6

BAYES CUBE (~BAYES EYE)

http://bioinfo.mit.bme.hu/

https://www.mit.bme.hu/eng/system/files/oktatas/targyak/10337/BayesCube_manual_en_v31.pdf

Computational Biomedicine (Combine) workgroup Intelligent Systems research group, Department of Measurement and Information Systems, Budapest University of Technology and Economics

Example: Construct a spam filter

Summary

- ▶ Naïve Bayesian networks (N-BNs) demonstrate the use of independencies to cope with
 - model complexity (~space complexity, number of parameters)
 - inferential complexity (~time complexity).
- The assumption of conditional independence of the effects given their common cause allows
 - the efficient representation of the joint distribution
 - (in the discrete, multinomial case: linear number of parameters instead of exponential),
 - the efficient computation of the diagnostic posterior p(Y|X)
 - (linear number of steps instead of exponential),
- Odds, log odds are popular transformations of probabilities.
- ▶ N-BNs are robust knowledge engineering and data analysis tools.

Suggested reading:

 Druzdzell: Building Probabilistic Networks: Where Do the Numbers Come From?, IEEE Transactions on Knowledge and data engineering, 2000