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Simple probabilistic models
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 Basics of probability theory 

 Relation of two-valued vs probabilistic logic
◦ Truth vs belief

◦ Proofs vs inference

 Naïve Bayesian networks (N-BN)

 Exercises: SPAM filter construction using N-BNs



 For any propositions A, B



◦ 0 ≤ P(A) ≤ 1

◦ P(true) = 1 and P(false) = 0

◦ P(A  B) = P(A) + P(B) - P(A  B)

◦



 Atomic events are mutually exclusive and 
exhaustive.

 The single variable case.
◦ Weather is one of <sunny,rainy,cloudy,snow>

◦ P((Weather =sunny)  (Weather =rainy))

 Challenges in the multivariate case.

◦ Weather is one of <sunny,rainy,cloudy,snow>

◦ TemperatureofRain is one of <icy,cold,warm>

 NONE?
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„Probability theory=measure theory+independence”

IP(X;Y|Z) or (X⫫Y|Z)P denotes that X is independent of Y given Z: 
P(X;Y|z)=P(Y|z) P(X|z) for all z with P(z)>0.

(Almost) alternatively, IP(X;Y|Z) iff

P(X|Z,Y)= P(X|Z) for all z,y with P(z,y)>0.

Other notations: DP(X;Y|Z) =def= ┐IP(X;Y|Z)

Contextual independence: for not all z.

Homeworks:

Intransitivity: show that it is possible that D(X;Y), D(Y;Z), but 
I(X;Z).

order : show that it is possible that I(X;Z), I(Y;Z), but D(X,Y;Z).



Variables (nodes) 
Flu: present/absent

FeverAbove38C: present/absent

Coughing: present/absent

Flu

Fever Coughing

P(Fever=present|Flu=present)=0.6

P(Fever=absent|Flu=present)=1-0.6

P(Fever=present|Flu=absent)=0.01

P(Fever=absent|Flu=absent)=1-0.01

P(Flu=present)=0.001

P(Flu=absent)=1-P(Flu=present)Model

P(Coughing=present|Flu=present)=0.3

P(Coughing=absent|Flu=present)=1-0.7

P(Coughing=present|Flu=absent)=0.02

P(Coughing=absent|Flu=absent)=1-0.02

Assumptions: 

1, Two types of nodes: a cause and effects.

2, Effects are conditionally independent of each other given their cause.



Decomposition of the joint:

P(Y,X1,..,Xn) = P(Y)∏iP(Xi,|Y, X1,..,Xi-1) //by the chain rule

= P(Y)∏iP(Xi,|Y) // by the N-BN assumption

2n+1 parameteres!

Diagnostic inference:

P(Y|xi1,..,xik) = P(Y)∏jP(xij,|Y) / P(xi1,..,xik)

If Y is binary, then the odds
P(Y=1|xi1,..,xik) / P(Y=0|xi1,..,xik)  = P(Y=1)/P(Y=0) ∏j P(xij,|Y=1) / P(xij,|Y=0)

Flu

Fever Coughing
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Smoking

Lung cancer

S S

LC P(S, LC) P(S, LC) P(LC)

LC P(S, LC) P(S, LC) P(LC)

P(S) P(S)Probability:

P(LC)

Conditional probabilities (e.g., probability of LC given S): 

P(LC| S)= ??? P(LC| S)= ??? P(LC)

Odds:

[0,1] →[0,∞]: Odds(p)=p/(1-p)

O(LC| S)= ??? O(LC| S)

Odds Ratio (OR) Independent of prevalence!

OR(LC,S)=O(LC| S)/O(LC| S)
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Smoking

Lung cancer

Smoking

Lung cancer

?

S S

LC 8 7 15

LC 1 4 5

9 11 20Independence: 

null modell (H0)

S S

LC .4 .35 .75

LC .05 .2 .25

.45 .55

Contingency table with marginals

Conditional probabilities: 

P(LC| S)=.11 ??? P(LC| S)=.36 ??? P(LC)=.25

Odds:

[0,1] →[0,∞]: Odds(p)=p/(1-p)

O(LC| S)=.12 ??? O(LC| S)=.56

Odds Ratio (OR):

OR(LC,S)=O(LC| S)/O(LC| S)=4.6



http://bioinfo.mit.bme.hu/
https://www.mit.bme.hu/eng/system/files/oktatas/targyak/10337/BayesCube_manual_en_v31.pdf

Computational Biomedicine (Combine) workgroup

Intelligent Systems research group,
Department of Measurement and Information Systems, 

Budapest University of Technology and Economics

http://bioinfo.mit.bme.hu/
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 Naïve Bayesian networks (N-BNs) demonstrate the use of independencies to cope with

◦ model complexity (~space complexity, number of parameters)

◦ inferential complexity (~time complexity).

 The assumption of conditional independence of the effects given their common cause 

allows

◦ the efficient representation of the joint distribution

 (in the discrete, multinomial case: linear number of parameters instead of exponential),

◦ the efficient computation of the diagnostic  posterior p(Y|X)

 (linear number of steps instead of exponential),

 Odds, log odds are popular transformations of probabilities.

 N-BNs are robust knowledge engineering and data analysis tools.



 Suggested reading:

◦ Druzdzell: Building Probabilistic Networks: Where Do the Numbers Come From?, IEEE 

Transactions on Knowledge and data engineering, 2000


