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FOREWORD

On behalf of the Organizing Committee, I welcome you to the 27th Minisymposium of the Department
of Measurement and Information Systems at the Budapest University of Technology and Economics.

As it used to be from the beginning of the history of the Minisymposium, the main idea of this event is
to provide the Ph.D. students of the department the opportunity to present and discuss their scientific
results. Furthermore, the students can also gain some insights into the practical steps of organizing a
scientific event. We are happy to see that in the last few years, the Minisymposium expanded to give
space for our international industrial and scientific partners, as well as to our talented Bachelor and
Master students.

During the years, besides the circle of lecturers, the scope of covered topics has broadened, as well;
though our department still have research topics in the field of measurement and instrumentation, the
investigated areas have been gradually growing to cover embedded information systems, dependability
and security, artificial intelligence, bioinformatics, and cyber-physical systems.

Similarly to the last years’ practice, and also conforming to the international trends, the proceedings
will only be published in electronic form. We have experienced that the easy accessibility of the digital
proceedings makes it insufficient to publish a printed edition. We hope that any emerging inconvenience
will be dominated by the advantages of the electronic form.

We wish that the forthcoming one and a half days will not only be fruitful in a sense that we will be able
to gain insight into the research of one another, but it will also be a time for discussions and collecting
ideas for future research, as well as for finding possible interdisciplinary cooperation areas.

Budapest, February, 2020

Balázs Renczes
General Chair
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Földvári, András and
Pataricza, András

Support of System Identification by Knowledge
Graph-based Information Fusion

12

Nagy, Péter and
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Comparison of LMS-based Adaptive Audio Filters
Kristóf Horváth, Balázs Bank

Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest, Hungary
Email: {hkristof, bank}@mit.bme.hu

Abstract—In the field of audio signal processing, logarithmic
frequency resolution IIR filters, such as fixed-pole parallel filters
and Kautz filters, are commonly used. These proven structures
can efficiently approximate the frequency resolution of hearing,
which is a highly desired property in audio applications. In
recursive adaptive filtering however, the FIR structure with LMS
algorithm is the most commonly used. Since the linear frequency
resolution of FIR filters is less than ideal for audio applications, in
this paper we explore the possibility of combining the logarithmic
frequency resolution IIR filters with the LMS algorithm. To this
end the LMS algorithm is applied to fixed-pole parallel and Kautz
filters, and the resulting structures are compared against each
other and to the FIR-LMS filters in terms of convergence time
and remaining error.

Index Terms—audio signal processing, LMS, fixed-pole parallel
filters, Kautz filters

I. INTRODUCTION

Infinite impulse response (IIR) filters are commonly used
in audio signal processing [1], where logarithmic frequency
resolution is highly desired when modeling a transfer function.
To achieve this, specialized filter design methodologies have
been developed, including warped filters [2], second-order
fixed-pole parallel filters [3], and Kautz filters [4].

In adaptive filtering, finite impulse response (FIR) filter
structures with least mean squares (LMS) method are pop-
ular choices. The reason for their popularity is their global
convergence, however, they require more parameters to model
a given response, as opposed to IIR filters. Another drawback
is that their residual error (misadjustment) is related to the
step-size coefficient (µ), and thus, a trade-off must be made
between convergence time and residual error [5].

Common applications for adaptive audio filters, such as
compensation, or noise reduction, contain an adaptive filter
that identifies a given signal path. Thus, as a first step for com-
paring logarithmic frequency resolution IIR filters in adaptive
context, this paper explores the identification capabilities of
the different IIR structures using LMS algorithm.

In this paper, the LMS algorithm is applied to the parallel
and Kautz filters, and the resulting adaptive IIR filters are
compared to each other and to the common FIR-LMS filters.

II. THE LMS ALGORITHM

The Least Mean Squares (LMS) algorithm is a stochastic
grade descent method where the coefficients are adapted based
on the current error in time [5]. It uses the estimate of the
mean square error (MSE) gradient vector from the available

Fig. 1. LMS-based adaptive filter used for identification.

data, to make successive corrections to the filter coefficients
in the direction of the negative of the gradient vector. This
iterative procedure eventually leads to minimum mean square
error.

The block scheme of the LMS filter can be found in Fig. 1.
The common input of the system to be identified and the
adaptive filter is denoted by u(k), and the outputs are marked
by y(k) and ŷ(k) respectively.

The output of the adaptive filter is computed as

ŷ(k) = w>(k)x(k). (1)

The recursive function for coefficient adaptation is the
following:

w(k + 1) = w(k)− µe(k)x(k), (2)

where w denotes the filter coefficients, k is the discrete time,
µ is the step-size parameter, x is the estimated gradient and e
is the output error, where e(k) = y(k)− ŷ(k).

The input vector x(k), which acts as the estimated gradient
vector, is unique for every filter structure. For FIR filters, it
is a delay line; for other structures it can be deduced using
Equation 1.

Note that each element of x(k) is a function of time, and
they span the space of the output function. Because they
act as base functions, their correlation has an impact on the
convergence time: the lower the eigenvalue spread of the
correlation matrix R, the faster the convergence [5].
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The estimated autocorrelation matrix of x(k) is calculated
as:

R̂ =
1

L

L∑

k=0

x(k) · x>(k), (3)

where L denotes the number of samples.
The main drawback of the LMS algorithm is that the gra-

dient vector scales with the input, which can cause instability
in the adaption. As a remedy, the Normalized-LMS (NLMS)
method is used, which normalizes the power of the input [5]:

w(k + 1) = w(k)− µ e(k)x(k)

α+ x>(k)x(k)
, (4)

where α is a small positive number used to avoid the denom-
inator to become zero.

In this paper we used the NLMS algorithm for realizing
adaptive filters.

III. ADAPTIVE IIR FILTERS

Adaptive IIR filters require fewer parameters compared to
FIR filters, however, early research showed that adaptively
varying both the poles and zeros can lead to suboptimal per-
formance caused by multimodal error surfaces [6] or because
they require satisfaction of a strict positive real condition [7].

Alternatively, the poles of the IIR filter can be fixed at pre-
determined values, which preserves the linearity in parameters
and leads to well-behaved adaptation properties [8].

In audio signal processing, fixed-pole filters are commonly
used. The Kautz (Fig. 3) and the fixed-pole parallel filters
(Fig. 2) are proven to have equivalent transfer functions when
designed off-line [3]. The main difference between them lies in
the computational demand (see Table I): the fixed-pole parallel
filter need approximately 47% less operations compared to
the Kautz filter. The tap outputs of the two filters span the
same space, but the base functions of the Kautz filter are
orthonormal [9]. This results in convergence properties similar
to that of FIR filters [8].

The general structure of the parallel second-order structure
can be found in Fig. 2. The second-order sections can be
implemented as either direct-form, or other structures [10].
Note that the structure of the second-order sections have direct
impact on the parameters, and thus, affects the convergence
properties if the second-order section is used in an adaptive
filter realization.

Adapting the aforementioned fixed-pole audio filters using
the LMS algorithm can be done by substituting the IIR filter
to the ∇ block in Fig. 1, with the output multiplications and
summation replaced by the adaptive linear combination of the
LMS algorithm. For example, in case of the Kautz filter in
Fig. 3 it means that the ci coefficients are the tuned parameters.

IV. ORTHOGONAL SECOND-ORDER SECTION

In order to improve convergence, we present a new second-
order structure (Fig. 4), which, to our knowledge, has not
been presented before. The new structure is equivalent to a
second-order Kautz filter, therefore its two tap outputs are

TABLE I
NUMBER OF ARITHMETIC OPERATIONS REQUIED FOR THE TESTED

ADAPTIVE IIR FILTERS HAVING N CONJUGATE-COMPLEX POLE PAIRS
IMPLEMENTED USING DIRECT-FORM 2 (DF2) OR ORTHOGONAL

SECOND-ORDER SECTIONS.

Multiplication Addition
Fixed-pole parallel filter (DF2) 6N 3N − 1
Fixed-pole parallel filter (orth.) 6N 5N − 1

Kautz filter (DF2) 9N + 2 8N + 1

Fig. 2. Parallel second-order filter. Note that in our investigations we omitted
the constant K section.

orthogonal. As this structure is more complex than the direct-
form implementation, its usage in parallel filters result in
computational demand between the direct-form parallel filter
and the Kautz filter.

The parameters a1 and a2 are the same as in the direct form.
The p and q coefficients can be computed from the direct-form
parameters b0 and b1 with the following formulas:

p =
b0 − b1

2
, (5)

q =
b0 + b1

2
. (6)

The estimates of the autocorrelation matrices can be found
in Fig. 5. It can be seen that the orthonormal property of the
Kautz filter results in a unity autocorrelation matrix. In fixed-
pole parallel filters however, the neighboring tap outputs have
high levels of cross-correlation. This effect is lower when the
orthogonal second-order sections are used: only the tap outputs
of the different sections are correlated, resulting in a periodic
pattern.

V. NORMALIZING THE TAP OUTPUTS

The convergence rate of the LMS algorithm is related
to the eigenvalues of the R matrix [5]. It is shown that
if the eigenvalue spread of the R matrix is the minimum
over all possible matrices, the maximum convergence rate
can be achieved. As a consequence, the tap outputs of the
filter (denoted by X(k)) having the same output power is a
necessary condition. This criterion is inherently satisfied for
orthonormal filters [8], but not for fixed-pole second-order
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Fig. 3. Kautz filter structure.

filters. Therefore, the tap outputs of the second-order sections
need to be scaled.

To determine the normalizing coefficients, we compute the
impulse responses between the input and the tap outputs. The
scaling factors are then determined by the sum of squares of
the impulse responses:

si =
1

∞∑
k=0

(
hi(k)

)2 , (7)

where hi denotes the impulse response between the filter input
and the i-th filter tap output. Using this scaling, the tap outputs
will have the same power when the input is white noise.

VI. COMPARISONS

In our investigation we used the NLMS algorithm as a
method for system identification (Fig. 1). The input was
a white noise uniformly distributed in range [−1;+1]. The
system to be identified was implemented using a 10000-
tap long FIR filter, whose coefficients were based on actual
impulse response measurements.

Fig. 4. Orthogonal second-order structure, with normalizing terms s1 and s2.
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Fig. 5. Visualization of R̂ matrices. Top left: parallel filter with direct-
form sections; top right: parallel filter with orthogonal second-order sections;
bottom left: Kautz filter.

The filters to be compared are fixed-pole second-order
parallel filters (without FIR section), implemented using both
direct-form and improved second-order sections, a Kautz filter
and as a reference, a FIR filter. The IIR filters have 20
conjugate complex pole pairs, placed along a logarithmic scale
between 20 Hz and 20 kHz, assuming 44.1 kHz sampling
frequency. The quality factors of the poles were chosen that
the neighboring sections had their magnitude response cross
at their -3 dB point [11]. The FIR filter has 40 taps, thus the
filters have the same amount of free parameters.

The mean square error (MSE) of adapted filter parameters
are computed on a logarithmic scale: the error, denoted by e(k)
in Fig. 1, has its DFT spectrum sampled at certain frequencies
having logarithmic distribution. The samples are then squared
and summed from 20 Hz to 20 kHz, assuming fs = 44.1 kHz
sampling rate:

E(jω) = DFT{e(k)}, (8)

MSE =

f=20kHz∑

f=20Hz

∣∣E(j2πf/fs)
∣∣2. (9)

For comparison, the MSE was calculated for all structures at
every 256 samples and then plotted.

In our investigation, we used two example transfer functions
for testing the algorithms: a minimumphase one-way loud-
speaker (Fig. 6 top) and a larger, two-way loudspeaker with
non-minimumphase response (Fig. 6 bottom). In the figures,
we marked the result of the off-line LS design as well as the
magnitude response of the adaptive fixed-pole parallel filter
that is implemented using orthogonal second-order sections.
Note that the transfer function of the adaptive Kautz is omitted
because it fits the LS solution after the simulation time (65536
samples).
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Fig. 6. Magnitude plots of the example transfer functions (black lines).
Top: minimumphase one-way loudspeaker; bottom: non-minimumphase two-
way loudspeaker. The LS approximations are plotted using red lines. The
magnitude responses of the fixed-pole parallel filters using orthogonal second-
order sections, after 65536 samples, are also plotted (blue lines).
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Fig. 7. MSE by time, for a minimumphase one-way loudspeaker response.

The MSE plots of the systems identifying the example
transfer functions can be found in Fig. 7 and 8. For each
of the filters, the µ step-size parameter is tuned in a way
that the curves would have the best fit with each other on
the first 12800 samples. As reference, the MSE of offline
designed filters, based on the LS approximation, are shown
on the figures using dashed and dotted horizontal lines.

According to figures 7 and 8, the Kautz filter has the best
convergence: for the minimumphase system its MSE is on par
with the LS approximation, and for the non-minimumphase
system it has the fastest convergence among the tested struc-
tures.
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Fig. 8. MSE by time, for a non-minimumphase two-way loudspeaker
response.

VII. CONCLUSION

This paper compared the LMS-based adaptive implementa-
tions of the most common fixed-pole IIR filters used in audio.
As a result, we recommend to use the Kautz structure in LMS-
based adaptive audio filters, if its computational demand can
be satisfied.

Future research includes the usage of other filter structures:
the delayed fixed-pole parallel filter, a modified Kautz structure
with FIR component, and the resonator-based filter.
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Abstract—The vehicles of the future will be capable of com-
municating with each other and with the road infrastructure
as well. Based on this ability, complex multiagent systems can
be designed, including smart cars and intelligent traffic control
systems (referred to as judges).

Such system was implemented by extending an open-source
traffic simulation tool, called Simulation of Urban MObility
platform (SUMO). The implemented system can be used to
experiment with and to verify various algorithmic approaches
aimed to increase the intelligence of autonomous drivers and
urban traffic controllers.

Our study investigated the adaptation of the operating system
task schedulers and the Explicit Congestion Notification algo-
rithm of computer networks. It resulted in a layered cooperative
multi agent system composed from platooning car drivers in the
lower layer and the cooperating intersection judges in the upper
layer.

Results indicate that the implemented system can organize
the traffic better in extraordinary cases (e.g. an accident, road
works on some major streets, etc.). The regulatory capability of
the proposed system depends greatly on the topology of the road
connections. This aspect (especially the problem of congestions)
is currently under investigation.

Index Terms—intelligent traffic control, smart vehicles, multia-
gent system, platooning, explicit congestion notification, schedul-
ing algorithms

I. INTRODUCTION

One of the major problems of our cities is the regular
congestion of road networks. As the number of vehicles
is rapidly increasing, improving the flow of the traffic and
reducing traveling time becomes an even more challenging
task. The connected vehicles of the future and the wide variety
of IoT devices implemented in the road infrastructure may
create new ways to optimize the traffic.

For example, smart cars can form groups, so called platoons,
near intersections. The cars which form a platoon can change
lanes or can pass through intersections together, therefore
causing less impact on the traffic.

Another possibility is to create intelligent traffic controllers,
so called judges. Let us suppose that the number of incoming
vehicles from each direction is known. In this case, as the

The research has been supported by the European Union, co-financed by the
European Social Fund (EFOP-3.6.2-16-2017-00013, Thematic Fundamental
Research Collaborations Grounding Innovation in Informatics and Infocom-
munications).

demand is known for the near future, theoretically well estab-
lished scheduling algorithms can be applied. Moreover, these
judges can be made cooperative as well in order to make a
globally optimal solution.

Some ideas have already been implemented as a multilay-
ered multi-agent system. In our implemented system there are
two types of agents, i.e. smart cars and judges. They can
communicate with each other in order to perform some intel-
ligent actions. For example, smart cars can form platoons, or
ask the judges whether they can pass through an intersection.
Judges can also send messages to each other, cooperatively
evaluating the state of the roadnetwork, to attempt to avoid
the congestion. The performance of our system was validated
by simulations. The used simulation platform was created
by extending the Simulation of Urban MObility (SUMO) [5]
microscopic traffic simulation program.

II. LITERATURE REVIEW

Creating platoons of smart cars, besides reducing the com-
putational demands on intelligent traffic controllers, results in
a more efficient lane-changing strategy. Let us suppose that
the lane-changing of a platoon can be modeled as a single
lane-change of a truck. In [9] the authors have shown that
a double semi-trailer truck is equivalent to 3 personal cars.
It takes, however, more space on the road than those 3 cars.
Consequently, platooning also seem to be an effective way to
reduce the impact of lane-changes.

Consider now the perspective of a judge, i.e. an intersection
controller. The task of the judge is analogous to that of the
scheduler of an operating system. Both are responsible for
deciding which competing entity (task or vehicle) can use a
unique resource (the processor or the part of the intersection).
A scheduling solution to control intersection lamps was sug-
gested by [1], where so called Minimal Destination Distance
First (MDDF) method was used, based on the well known
Shortest Job First scheduler (SJF)1 of operating systems.
Unfortunately, that proposed algorithm is not fair and was
verified only in a highly regular intersection environment.

Coordination of the traffic signals is an old idea, and for
example can be achieved by green-waves. There are some

1To be precise it is based on the Shortest Remaining Time First, the
preemptive version of SJF.
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traditional algorithms, like TRANSYT and SCOOT [7], which
try to shorten the queue lengths behind the traffic lights. In the
last decades, new methods were published, for example the one
based on a reservation system [2]. In this algorithm, smart cars
have to book time and space slots when they are permitted to
pass through the intersection. An intersection manager stores
these bookings and checks whether an incoming booking is
feasible. This system has a major disadvantage, namely when
there is a vast amount of vehicles with a vast amount of
bookings, the feasibility check would be a really processing-
intensive task. An agent based solution was proposed in [10].
In this approach every neighboring intersection was connected,
therefore it is theoretically possible to create unstable states.
The green time of a traffic signal is only modified a little bit,
making its neighbors also to modify a little bit more, and so
on. As a result of this butterfly-effect, the whole system might
become unstable, causing unpredictable traffic flows, therefore
increasing the risk of an accident.

III. INTERACTION BETWEEN SMART CARS – PLATOONING

A. Formation of a Platoon

Smart cars are basically competing agents (for the green
light slot), but they are willing to form a coalition – a platoon –
in order to go through an intersection as efficiently as possible,
if their interests (path) coincide.

When a smart car approaches an intersection2, it has to join
a platoon. The cars of a platoon have the exactly same trajec-
tory: they arrive at the intersection from the same direction, in
the same lane and leave via the same exit lane. For the time
the platoon exists, its cars are joined virtually into a chain
maintaining about 5 m of distance between each other.3

If the platoon in front of a smart car is not suitable, the
smart car has to create a new platoon.

In the front of the platoon is the platoon leader, all the
other vehicles in the platoon are the platoon members. Platoon
leaders are responsible for their platoons, and the platoon
members have to follow the platoon leader.

After crossing the junction, the platoon leader exits its
platoon and passes over its prerogatives to the next-in-line
in the platoon. This smart car will be the new platoon leader.
It is an easy and effective way to avoid the problems which
can be caused by the preemptive scheduler of the judges.

B. Lane-Changing of Platoons

Reducing the impact of changing lanes before intersections
can provide a significant improvement in the traffic flow. In the
SUMO platform sophisticated lane change models are already
implemented. In our research we modified the SL2015 model
[3] to calculate also with the platooning concept. So while a
smart car belongs to a platoon, it has to behave differently,
depending on whether it is the leader or a simple member.

2Some markers are placed as new traffic signs which instruct the smart cars
to join or leave a platoon.

3Platooning in this case is an adhoc formation and slightly differs from
platoons created on highways. The aim of our platoons is to pass through
intersections more effectively than individual vehicles are able to do so.

In a platoon only the platoon leader can make a lane-change
decision. All the other members have to follow the car in front
of them.

If the platoon leader finds out that a lane change is needed4,
it makes contact with the platoon leader (if there is any) in the
target lane. The two platoon leaders make an agreement whose
platoon will be ahead of the other.5 Platoon in the target lane
will slow down or even stop if necessary to make sure that
the maneuver will be successful. Another possibility is that the
mover leader has to wait until the asked leader and its platoon
leaves the target lane. The platoon manages the lane change
car-by-car, sending lane-change command down the platoon
chain.

IV. INTERSECTION CONTROLLING ALGORITHMS OF
UNCONNECTED JUDGES

In our first approach, unconnected (i.e. non-communicating)
judges were implemented. From the operating system field we
borrow two simple scheduling algorithms. One is the Round
Robin (RR) algorithm, which is fair (free of starvation) and the
other is the Shortest Job First (SJF), which yields an optimal
response time, but is unfair. These two simple schedulers (and
their preemptive versions respectively) provide the basics of
all kinds of much more complex scheduling algorithms. Due to
this fact, we decided to try out these two methods, as conflict
class6 selector algorithms of an intelligent judge agent.

1) RR: A simple round robin scheduler can be implemented
as a traffic controlling method without any significant modi-
fication to the original algorithm. We prescribe time slices to
each conflict class. This will be the maximal amount of time
in which a conflict class can be active. After this time slice is
elapsed, we simply select the next conflict class from the list.

2) MDDF: [1] Minimal Destination Distance First traffic
controlling system is based on the optimal scheduler, called
Shortest Job First (specifically its preemptive version, the so-
called Shortest Remaining Time first). The problem with this
solution is that it is not fair.

Let us suppose that a lonely car is waiting in an intersec-
tion to pass. This car is at the beginning of its route to a
very distant destination, but vehicles with significantly shorter
routes are continuously arriving. The car with the long route
to its destination can wait forever without getting through this
intersection.

To make the algorithm fair, we redefined our scheduler as
a two-level scheduler. On the higher priority level a simple
Round Robin scheduler is running, and on the lower priority
level a scheduling algorithm similar to the implementation of
[1] is used. At first, every conflict class is scheduled by the
lower priority level. If a conflict class was not active in the
last 90 s, it would change its priority to the high level. This

4In this state, smart cars’ lane change model calculates with length of
platoons instead of single vehicles.

5 [3] has already worked out the protocol and algorithm of this agreement.
We modified the existing solution to have the contract made only between
platoon leaders instead of single vehicles.

6A conflict class is a group of cars, which are permitted to pass through
an intersection simultaneously.
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way it is guaranteed that every vehicle will be scheduled in a
limited amount of time. The Round Robin also prevents the
occurrence of starvation.

V. INTERSECTION CONTROLLING ALGORITHMS OF
CONNECTED JUDGES

A. The ECN-based method

It is a simple idea to connect the judges (i.e. to permit
them to communicate) with each other in order to improve the
capabilities of the system. This improvement is a signal coor-
dination which aims to prevent the formation of congestions.
Such algorithms are already in use in the domain of computer
networking. However, the character of the traffic is different
and the majority of them cannot be applied in the road traffic
environment. An algorithm which could be applied, or at least
be experimented with, is the so called Explicit Congestion
Notification (ECN) method [4], which we implemented in our
simulations.

The basic idea behind ECN is that the receiver node (an
intersection manager or a network router) can inform the
sender if the queue length (of vehicles or datagrams) at the
receiver side reaches a certain level (let us call this signal the
ECN-signal). This means that a congestion is about to form.
To avoid the congestion, the sender must decrease its output
in this case. A new kind of judge, the so-called ECN-judge,
was implemented which is based on this discussed method.

The ECN algorithm has a great advantage that it does
not require the definition of arterial directions7. Defining
arterials would demolish the merits of the intelligent system in
extraordinary situations, when the proposed system can clearly
outperform the traditional system, for details, see Section VI.

B. Challenges in the Implementation

The state-space of the ECN judge can be enormous since it
depends both on the number of incoming vehicles and on the
number of the neighboring intersections. Therefore, storing a
signal plan for all of the states is quite memory-consuming.
Instead of doing this, a dynamical signal plan generation
method was implemented (for an overview, see Figure 1).

The calculation of simple signal phase can be formalized as
an integer programming problem (IP). Our goal is to maximize
the number of directions which receive green light at the same
time, subject to the actual state of the network. This state
consists of dynamic parts, like the incoming ECN-signals or
the decision of a scheduling algorithm (eg. a Round Robin) as
well as static parts, which describes which directions cannot
pass through an intersection simultaneously.

If the IP is solved, we only know the signal phase for
a given moment. In order to generate a signal plan (which
describes how long a direction should get a green or a red
light), it is necessary to recalculate this IP problem from time
to time. In our implementation the recalculation time is a
linear function of the number of incoming vehicles, but cannot
exceed 45 seconds.

7Arterial direction is the main route which for example receives a green-
wave.

Fig. 1. Overview of the ECN-judge

There is another topic which should be discussed, namely
the identification of the forming congestions. It is a quite
difficult task [6], [8], and our research did not focus on
solving this problem, thus based on preliminary simulations,
we simply calculated the traffic density, which can provide the
highest traffic flow. We say that there is a congestion forming
when the 90% of this level is reached, so the ECN-signal is
sent at this event.

VI. SIMULATIONS

Our solutions were tested by an extension to the Simulation
of Urban MObility program (see Figure 2 for details). The
simulated network was the BAH intersection8 of Budapest and
its close neighborhood.

Fig. 2. The developed extension of the SUMO. The components of the
multilayered, multiagent system are shown in green. Some modules are
necessary to create an abstraction layer between the original source code of the
SUMO and the intelligent system’s layer. This abstraction layer is presented
in orange and blue in this figure.

Basically two types of traffic demand were modeled: some
cases of regular traffic (eg. night traffic, morning traffic, noun
traffic) and irregular traffic (Budaörsi út is closed9) were fed
into the simulator.

8Where streets of Hegyalja út, Jagelló út, Villányi út, Budaörsi út and
Alkotás utca intersect.

9Irregular1 case: Obstacle is northbound of “Budaörsi út”, can be bypassed
via Karolina and Villányi streets.
Irregular2 case: Obstacle is southbound of “Budaörsi út”, bypass route is via
“Hegyalja út”.
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A. Simulating The Unconnected Judges

As a first attempt, we tested the behavior of the platooning
system and the simple, unconnected judges. These measure-
ments basically show that such kind of systems may be able
to reduce waiting and traveling times through this intersection.

The results show (see Table I and Table II) that such a
system is able to decrease the waiting (for example at red
lights) and average traveling times in irregular situations. On
the other hand, the improvement of the traffic flow10 is not so
obvious in regular cases, see Figure 3.

TABLE I
SIMULATION RESULTS OF “IRREGULAR1” CASE

Test case Arrived Waiting Time Average Traveling Time
(%) (s) (s)

Traditional 33.81 29.68 170.55
RR 29.19 12.117 174.87
MDDF 22.77 12.41 154.02

TABLE II
SIMULATION RESULTS OF “IRREGULAR2” CASE

Test case Arrived Waiting Time Average Traveling Time
(%) (s) (s)

Traditional 38.48 36.44 199.38
RR 32.71 11.43 170.07
MDDF 34.39 10.74 176.72

B. Simulating The Connected Judges

In order to improve the traffic flow, some judges11 were re-
programmed to ECN-judges. Theoretically this system would
have greater chance to find a globally optimal solution, than
the unconnected judges, which are only capable of finding a
locally optimal scheduling.

The trial of the system gave surprising results. Instead of
improving the flow of the traffic in the BAH-intersection,
this method rather reduced this value. As it can be seen in
Figure 3, the new judges limit the density of the traffic to
around 65-70 vehicles/km, almost regardless of the height of
the traffic demand. (With a combined system, which contains
both connected ECN-type and unconnected Round Robin-type
judges, this limit is slightly higher.) Partly by this density
limitation, partly by some yet unknown effects, the traffic flow
is strongly reduced by the ECN-judge system.

VII. CONCLUSION AND FURTHER RESEARCH AIMS

As the traditional system is likely to be numerically opti-
mized, it is a challenging task to achieve the same or even
better results with a new intelligent solution in regular cases.
On the other hand, in extraordinary situations, an intelligent,

10The traffic flow is a commonly calculated value. It is the product of the
traffic density ( vehicles

km
) and the mean velocity of the vehicles ( km

h
). These

values can be measured by different types of detectors, cameras, etc.
11Namely the judge supervising the intersection of Villányi and Budaörsi

streets, the one supervising the Budaörsi, Hegyalja and Alkotás street inter-
section and the one placed at the Jagelló and Hegyalja crossing.

Fig. 3. Traffic flow in the traditional and in the unconnected intelligent system,
consisting of RR-type judegs.

multi-agent based solution can be much more flexible. This
flexibility provides better traveling times by reducing the
unnecessary waiting times.

The ECN-judges have no benefits in the BAH intersection
scenario, if our goal is to improve the flow of the traffic.
Supposing that there are situations where the traffic density
(and therefore the flow) limitation is a desired effect, our
proposed system might be beneficial as well. Such situations
can be the limitation of the traffic going through residential
areas or nature reserves.

Further research is needed to verify that the ECN-judge
system is able to cause such effect in these kinds of networks.
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Abstract—The paper presents a knowledge graph-based so-
lution for creating the core models for supervisory control of
complex Cyber-Physical Systems (CPS) and computing infras-
tructures from design models and operational logs.

The core element of modern supervisory control approaches
is a digital twin, which maps the observations about the system
into a hybrid run-time model representing the expected system
state. It serves as a basis for interaction between the controller
and the controlled system.

The high-level discrete-state machine of digital twins rep-
resents the different operational regimes (domains of similar
behavior) and transitions between them. A continuous model
describes the intra-domain behavior in detail. A special case is
the qualitative domain model using discretized state variables
in the form of a few ordered values (e.g. low, medium, high).
This model category is extremely beneficial, when representing
partial, dimensioning dependent behavior.

Parts of the digital twin model can be directly derived from
the design models, but the description of dynamics of the
qualitative domain models necessitates system identification from
observations (operation logs or benchmark results). This way
the creation of the digital twin necessitates information fusion
from different sources. Knowledge graphs provide an abstract
semantic framework for this purpose.

Our goal is to support system identification by deductive
reasoning performing step-by-step checks of the abstract model
to assure consistency and completeness of the observations and
their respective evolving models.

Index Terms—cyber-physical systems, system identification,
knowledge graph, digital twin

I. INTRODUCTION

The purpose of cyber-physical systems (CPS) [1] is to
observe and control the physical world through intelligent
mechanisms. They operate over continuous and discrete sig-
nals originating in the physical world, for which they consist
of physical and computational components interacting through
communication layers [2].

The core concept in modern supervisory control of CPSs
is the “digital twin.” Data delivered by sensors continuously

The results presented in this research report were established in the
framework of the professional community of Balatonfüred Student Research
Group of BME-VIK to promote the economic development of the region.
During the development of the achievements, we took into consideration the
goals set by the Balatonfüred System Science Innovation Cluster and the plans
of the ”BME Balatonfüred Knowledge Center”, supported by EFOP 4.2.1-16-
2017-00021.).

synchronize this model of the system under control with the
physical world. Assurance of dependability and resilience of
critical CPSs necessitates the faithfulness of the twin model.

Modern CPS design relies on the integration of pre-
implemented components. The compliance to the designated
temporal properties (timeliness, throughput, etc.) necessitates
a proper dimensioning of the resources allocated to the com-
ponents prior to the deployment.

The performance domain can influence the logic behavior.
Non-linear effects resulting in bottlenecks, like the saturation
of a particular resource, may change the dynamic behavior
of the system. Moreover, CPS activates the built-in overload
protection mechanisms, this way the behavior of a particular
component, subsystem, and the entire system depend both on
the functional logic (functional architecture of the system) and
on its parametrization.

This way, scalability of the digital twin, similar to the
deployed system requires hybrid modeling (Fig. 1) approach
separating the dimensioning-independent overall logic of the
behavior (discrete domain) and its actual state within an oper-
ation regime under the current workload and parametrization
(continuous domain).

Fig. 1. Hybrid modeling

Creating a hybrid model as part of the system identification
process necessitates the clustering of the data into domains
(operational regimes), which show qualitatively identical be-
havior of the system. This task referred to as discretization can
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be performed by an expert manually or by automated means.
Manual methods executed by an expert have the advantage

that the discretization process can rely on the background
knowledge of the expert. Furthermore, experts are also able
to use their domain skills for variable selections, among
others. On the other hand, if the number of the measured
characteristics is large (as required for finite granular models),
a pure expert-based approach becomes impossible.

A. Objective

Our goal was to support system identification (Fig. 2) by
merging the prior knowledge and the qualitative system model
into a knowledge graph and perform step-by-step checks of the
abstract model to assure consistency and completeness of the
observations and their respective evolving models.

Fig. 2. Reasoning

One approach to achieve this goal uses the phenomenolog-
ical behavior of the system which provides an abstract view
of the system.

In our approach, we extend the phenomenon analysis with
prior knowledge about the system. Knowledge graphs serve
as information representation and fusion tool. Extending the
knowledge graph with prior knowledge about the system pro-
vides a more detailed view and allows more precise reasoning
about the system state.

If a new information (observation, input) does not fit into
the knowledge graph it could indicate that 1) the digital twin
model does not fit to the real system; 2) it indicates a faulty
operation in the real system; or 3) the inputs are noisy. This
way, deductive reasoning on the knowledge graph helps to
identify these behaviors.

B. Structure of the paper

The rest of the paper is split into four main sections.
1) Section II presents how qualitative reasoning supports the

definition of operational modes.
2) Section III presents the types of the prior knowledge in

form of engineering models.
3) Section IV presents causal models in details and presents

a causal model building method based on the engineering
model.

4) Sections V presents a knowledge graph-based information
fusion and deductive reasoning.

II. QUALITATIVE REASONING

The discrete (qualitative) state machine is an abstract form
of representing the logic of the dynamic behavior of the
system. Its granularity corresponds to individual operation
regimes (clusters of states of similar behavior) mapped to in-
dividual states with transitions activated by crossing the inter-
cluster boundaries in the continuous state space. A continuous
sub-model associated with each discrete state describes the
intra-cluster behavior in detail.

An upper, discrete ”super”-model assures portability in-
dependent of the actual dimensioning when it covers the
union of all abstract behaviors potentially occurring in some
configuration.

It allows (qualitative) reasoning [3] about the system be-
havior by highlighting potential phenomena at a logic level.
Moreover, it allows running simulations after the parametriza-
tion of the qualitative model to a quantitative one. Although,
discrete modeling has many advantages, due to the high level
of abstraction it may also cause ambiguity.

Moreover, the structure of the model is typically unknown,
and its creation necessitates observation-based system iden-
tification or prior knowledge-based model building. Bench-
marking and operational log analysis are the primary means to
ensure the match between model architecture and observations.

The model formulation is about to determine the input
description of the system. Input description takes into account
the knowledge of the kinds of entities and phenomena that
can occur (model fragment). It is also necessary to add
constraints to the model about the boundaries of the system
— this collected knowledge called domain theory. Knowledge
bases allow storing the domain theory by providing a rich set
of functionality (e.g., built-in reasoning) and representation
mechanisms (relations, attributes, rules, etc.).

A. Clustering

The goal of clustering is the aggregation of the funda-
mentally similar states into a uniform qualitative state in the
discrete state machine of the digital twin representing different
operational modes. There are several approaches to achieve
this goal:

1) Speculative approach: As operational modes at least
in the logic domain and runtime resource management
are subjects of the design process an initial clustering
can be extracted from the design models. However, due
to the complex interaction between logic functionality
and resource management, the initial model has to be
refined on the basis of observations originating in targeted
experiments, benchmarks and operational log mining.

2) Visual methods: For example, visual EDA uses diagrams
(e.g., scatter plots, time-series diagrams) to identify clus-
ter and their respective boundaries of each operational
mode. Because it is a heuristic process, it requires com-
prehensive domain knowledge.
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3) Algorithmic clustering: Algorithmic clustering (e.g.,
decision tree, support vector machines, random forest,
k-means) partitions the observed data into blocks cor-
responding to uniform operation modes. These are algo-
rithmic processes that need manual verification to check
the consistency with other models.

The representativity of the inout dataset needs verification
by comparing the generated set of clusters with the initial
state machine for proper coverage of states and transitions in
a similar way as testing of models.

a) Cluster boundaries: Mapping continuous variables
into qualitative values requires the definition of thresholds for
discretization by a classification algorithm according to the
clusters identified:

• Input data: The input of the digital twin is quantitative
data. The discretized data perform synchronization of the
digital twin with the compatible sets of the controlled
system states. Classification (into operational modes) of
the continuous incoming data is based on the identified
thresholds.

• Magnitude of the actuation: Thresholds can be used
to identify the magnitude of the actuation. This way,
it can provide a more precise value for actuation by
transforming the qualitative values into continuous ones.

III. BACKGROUND KNOWLEDGE

The input information of the method is a set of observations
that usually came from benchmarks or operational logs. They
describe the system (output metrics) under specific workload
parameters.

The first step is to analyze the measurement campaign on
its own. Experts have to take into account the context of the
measurement and outlier data.

The context of the measurement covers the measured param-
eters and boundaries of the measurement campaign. Outlier
data can warn about a non-functional operation of the system
or indicates that the measurement is not trustworthy.

However, different parametrizations of the same experiment
(i.e., different resource allocation) may expose profoundly
different phenomena. A scalable model has to merge all of
this even potentially different behaviors. This way, the model
building has to be adopted to the fundamental configuration
settings.

A deeper understanding of the measurement data requires a
priori knowledge of the domain expert.

A. Modeling approaches

Processing the measurement requires having (partially) the
system architecture and functional model. The information
extracted from these models can be used during the evaluation
phase. The design and development phase of the system pro-
vides background information on different abstraction levels.

However, it is possible to work with partial knowledge about
the system. It is not necessary to know all the details (e.g.,
third-party components as a black box, only the input-output
parameters are known with integration details).

Analysis of a system requires the collection of all prior
knowledge that is available for the analyst. The background
knowledge comes from different sources and covers different
aspects of the system and includes the architecture, functional,
resource allocation, deployment, and causal model of the
system.

The system architecture and the functional model provides
a high abstraction about the system components and their ob-
jectives. Causal models can be built by extracting information
from other engineering models.

The resource allocation model closely connects to the
functional model. It describes which component uses which
resource (e.g., networking capabilities, CPU, RAM). The
installation model presents the physical or logical layout of
the system.

The causal model expresses the causal connections in the
system based on prior knowledge about the domain and the
previous models. Furthermore, it is possible to extend the
causal model by adding external (out of the measurement
campaign’s context) causal connections to the model.

Collecting and systematizing the background knowledge is
necessary for further analysis.

IV. CAUSAL MODEL

Causality is a natural, universal concept, so deeply present
in our everyday life that we instinctively think in causal
relations without pondering about their actual complexity and
importance. The whole physical world around us is fueled by
causality. It is the connection through which -under certain
circumstances- one thing (the cause) influences another (the
effect) in a deterministic way.

Causal models [4] [5] allow the exploration of the causal
context of a system and the detection of independent properties
and events. Causal graphs are one representation of causal
models.

A causal graph is a Directed Acyclic Graph (DAG), where
the relations represent the causation among the variables.
Two variables of interest are distinguishable: 1) the exposure
(independent variable, cause); 2) and the outcome (dependent
variable, effect). Other variables (whether measured or not
measured) are called covariates. Covariates can be categorized
into several roles and they help in the further analysis of the
system.

It is possible to build causal models (Fig. 3) by using classi-
cal engineering techniques (e.g. UML, SysML [6]). Classical
engineering models collect the background knowledge that
is required for building the causal model. The causal model
is derivable from the functional model of the system and
its resource allocation model (together with the deployment
instance).

The functional model describes the continuous processes
of the system, which defines the skeleton of the causal
model. The causal model uses the described data flow by the
functional model.

Extending the functional model with the resource allocation
model also extends the causal graph with detailed causal
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Fig. 3. Causal model building

relations. This model can present the causal connections
between the resources and the functions (e.g., it is observable
if two components using the same resource). This knowledge
is usually verified by an expert who knows the system and its
domain in great detail.

V. KNOWLEDGE REPRESENTATION

Knowledge graph (KG) is a kind of a database to or-
ganize complex networks of data. It provides a general-
purpose approach to organize, efficiently store and query
complex schemata to capture abstract concepts, entities, in-
stances (represented as nodes of a graph) and their relations
(the edges). Moreover, advanced knowledge database engines
provide strong reasoning capabilities in an explainable and
reusable form.

The simplicity and general validity of the underlying math-
ematical paradigm facilitate the use of a KG-based NoSQL
database as the core element of digital twin creation and
instantiation by merging the a priori knowledge with the
observations.

The key asset (Fig. 4) in the creation phase of the digital
twin model structure is an ontology-style merging of the
design models (architecture, functional, resource allocation,
deployment, and causal model) describing the different aspects
of the system [7]. The methodology considers different input
data and metamodels during the information fusion and uni-
formization.

A refinement of the initial core model in the KG enriches
it with the domains of the variables, and their interactions
as formulated in the qualitative model after processing the
teaching set of observations.

Finally, the incoming stream of observations triggers a
check of the consistency of the incoming data with the system
model and updates the state of the digital twin model in the
KG.

In this paper, GRAKN.AI [8] was used to store the models
and qualitative benchmarking data.

A. Knowledge graph building

The schema of the GRAKN.AI knowledge graph is based
on ER (Entity-Relationship) modeling. ER models include
entities, relations, and attributes. It defines the objects of the
examined world and the relationship between the objects. The
objects could have attributes that describe their properties.

Fig. 4. Knowledge database

The language allows the definition of type hierarchies, hyper-
entities, hyper-relations, and rules.

This way, it is possible to define the knowledge graph
on different abstraction levels. The traceability between the
abstraction levels is performed by the built-in reasoning mech-
anism.

B. Deductive reasoning

The knowledge graph accepts those observations which
comply with the operation of the system represented by the
knowledge graph. One of our research question is the follow-
ing: How should we handle data that violates the operation of
the system represented by the knowledge graph?

Violation can indicate different behaviors:

1) the digital twin model does not fit to the real system;
2) it indicates a faulty operation in the real system;
3) the inputs are noisy.

The identification of the violation requires further analysis
involving domain experts and algorithmic mechanisms.

GRAKN.AI provides user-defined rules to support deductive
reasoning. Rules look for a given pattern in the dataset and
when found, create the given queryable relation. The rule-
based reasoning allows automated capture and evolution of
patterns within the knowledge graph.

VI. SUMMARY AND FURTHER RESEARCH

Qualitative reasoning and knowledge graph management of
the system models provide an abstract semantic framework
for information fusion from different sources and automated
model extraction. They define the operational modes of the
system and makes it possible to verify the ranges by discrete
value representation.

Deductive reasoning checks the compliance and complete-
ness of the observations and their respective evolving models.

Further research is needed to generalize the models with
respect to the observations. This way a general hypothesis can
be constructed that is generally valid in similar operational
modes. Also, if the hypothesis is proven to be valid, it will be
reusable.
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Abstract—Heart rate variability (HRV) is a widely used 

measure to assess emotional arousal and stress level. It measures 

the variation in the duration of heart cycles. If HRV is 

determined based on the ECG signal, the duration of heart cycles 

is conventionally calculated as the time difference between 

successive R-peaks. However, the heart cycle begins with atrial 

depolarization, therefore, the onset of the P-wave is a 

physiologically more appropriate fiducial point to define 

successive heart cycles. This paper investigates the effect of using 

the onset of P-waves instead of R-peaks on HRV calculation. 

Measurements containing ECG signals recorded in Einthoven II 

lead and one measurement containing simultaneously recorded 

intracardiac electrograms and surface ECG signals were used. 

Our results suggest that the classification of successive heart 

cycle length differences is different depending on whether the 

onset of P-waves or R-peaks are used as fiducial points. 

Keywords—heart period; heart rate variability; 

electrocardiogram; intracardiac electrogram; P-wave delineation 

I.  INTRODUCTION 

Blood pressure measurement is one of the most commonly 
used daily procedures in medical examinations and home 
health monitoring to assess the state of the cardiovascular 
system. However, the accuracy of the measurement can be 
influenced by many physiological and external factors [1] [2]. 
Stress level of the examined person can have a large impact on 
the accuracy of blood pressure measurement results and may 
induce incorrect medical conclusions if high stress level 
remains undetected [3]. Heart rate variability (HRV) is a 
widely used measure to assess momentary stress level of the 
tested person [4]. The calculation of HRV is based on the 
measurement of heart periods (the duration of heart cycles), 
also designated as beat-to-beat intervals. Heart periods can be 
measured in different ways. One of the most commonly used 
methods is to define heart periods as the time difference 
between successive R-peaks in the ECG signal. However, the 
heart cycle begins with atrial depolarization, while the R-peak 
corresponds to ventricular depolarization. Accurate 
measurement of heart periods should be based on precise 
detection of the initiation of atrial activity [5]. The P-wave 
corresponds to atrial depolarization in the ECG signal, 
however, accurate detection of the onset of P-waves is a 
challenging task, especially when the amplitude of P-waves is 
small. In this paper, we calculate HRV values using the onset 
of P-waves as fiducial points for recordings with high signal-
to-noise ratio (SNR) and compare these results to HRV values 

calculated using R-peaks as fiducial points. Besides surface 
ECG signals, we analyze a measurement where intracardiac 
electrogram was also recorded. 

II. MATERIALS AND METHODS 

A. Detecting the Onset of Atrial Activity in the Intracardiac 

Signal 

Validating the detection of the onset of P-waves can be 
difficult, because there is no universally accepted rule for the 
onset and offset of the P-wave [6], moreover, in annotated 
databases like the QT database [7], manual annotations by 
experts may be inaccurate in some cases. For validation 
purposes, we used a clinical recording, where 12-channel 
surface ECG and intracardiac electrogram (EGM) were 
measured simultaneously. The intracardiac signals were 
recorded by a 4-electrode catheter. The bipolar signal of the 
electrode pair, closest to the sinoatrial node was used to locate 
the onset of atrial activity. Signals were sampled with 1 kHz 
sampling rate. 

For the detection of the onset of atrial activity in the 
intracardiac signal, we used the algorithm described by 
Schilling [8] which is based on the non-linear energy operator 
(NLEO). The NLEO is a measure for the energy of a discrete-
time signal. It is proportional to the squared amplitude as well 
as squared frequency of the given signal. Application of the 
NLEO to the EGM followed by filtering and thresholding can 
be used to analyze atrial activity. 

B. Detecting the Onset of P-waves in the Surface ECG Signal 

In the clinical recording, 12-channel ECG signals were 
recorded in parallel with the intracardiac signals. Moreover, a 
measurement series was conducted in laboratory environment, 
where only ECG in Einthoven II lead was recorded. One 
healthy senior adult and one healthy young adult participated in 
the measurement series. Healthy adults had normal ECG with 
no arrhythmia. 5 measurements were recorded for both tested 
persons. The recording length was between 100 and 120 
seconds. Signals were sampled with 1 kHz sampling rate. The 
onset of P-waves was detected using the algorithm described 
by Martínez et al. [9]. The algorithm is based on wavelet 
transformation of the ECG signal with different scales. For the 
transformation, a quadratic spline wavelet is used. First, the 
QRS complex is located. After that, the P-wave is located using 
thresholds based on the root mean square of the transformed 
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signal. The peak of the P-wave is also detected. In this study, 
the peak of the P-wave was defined as the local maximum 
between the P-wave onset and the Q-wave in the corresponding 
heart cycle. 

C. Detecting R-peaks in the Surface ECG Signal 

Localization of R-peaks was carried out in two steps as 
described and evaluated in a previous study [10]. The first step 
is the designation of the QRS complex with any of the usual 
techniques. In this study, the QRS complex was located as part 
of the P-wave onset detection. In the second step, the original 
signal is re-filtered (independently of the filtering in the first 
step) with two notch filters at 50 Hz and 100 Hz (4th order 
Butterworth), and a low-pass filter at 120 Hz (3rd order 
Butterworth) and the maximum value is searched for within the 
QRS complex. We chose the described method because it 
showed very high accuracy for simulated noisy ECG signals. 

D. Measurements for Experimentally Induced Physical Stress 

 For the analysis of the effect of stress on HRV, data were 
also analyzed from measurements where short-term physical 
stress was induced for the tested persons by running 1 floor 
downstairs then 1 floor upstairs. One healthy senior adult and 
one healthy young adult participated in the measurement. Data 
were recorded directly before and immediately after physical 
stress. The recording length was between 100 and 120 seconds. 
Signals were sampled with 1 kHz sampling rate. 

E. Characterizing HRV in Short Recordings 

HRV contains dominant frequency components between 
0.0033 - 0.4 Hz [11]. Therefore, frequency domain analysis of 
HRV is not appropriate for short recordings (1-2 minutes) 
typically applicable before or during blood pressure 
measurement. For short recordings, time domain analysis is 
more appropriate.  In the present study we used the pNN0_20, 
pNN20_50 and pNN50 parameters to characterize HRV. 
pNN0_20 is the ratio of Differences in Subsequent Heart 
Periods (DSHP) that lie between 0 and 20 ms compared to the 
total number of DSHP. pNN20_50 stands for the same ratio but 
for DSHP that lie between 20 and 50 ms. pNN50 designates the 
ratio for DSHP greater than 50 ms. In a previous study, these 
parameters reflected changes in stress level in situations, where 
the widely used pNN50 alone indicated no or only negligible 
changes in stress level [12]. 

III. RESULTS 

A. Analyzing the Effect of Fiducial Point Designation Using 

ECG and EGM Signals 

The effect of fiducial point designation was analyzed using 
the clinical measurement where 12-channel surface ECG and 
intracardiac EGM were measured simultaneously. For the 
analysis, Einthoven II lead was selected from the ECG, 
because it was also available in other recordings. From the 
intracardiac recording, the bipolar signal of the electrode pair, 
closest to the sinoatrial node was used. Figure 1 shows a P-
wave in the ECG signal with the detected P-wave onset and the 
point corresponding to the time point of the onset of atrial 
activity in the EGM signal. 

 

 

Fig. 1. A P-wave in the ECG signal (Einthoven II lead) with the P-wave 

onset point (circle) detected by the method described in chapter II.B and the 
point corresponding to the time point of the onset of atrial activity in the EGM 

signal (triangle) detected by the method described in chapter II.A. 

 

Fig. 2. The differences between heart periods calculated based on tRR, tPP 

and tOnOn. Solid line: tRR-tPP; Dotted line: tRR-tOnOn. 

Heart periods were calculated based on R-peaks from the 
ECG (tRR), the onset of P-waves from the ECG (tPP) and the 
onset of atrial activity from the EGM signal (tOnOn). Figure 2 
shows the differences between calculated heart periods. Table I 
summarizes the pNN0_20, pNN20_50 and pNN50 values 
calculated using three different fiducial point definitions. Note 
that the length of the recording was approximately 50 seconds 
(55 heart cycles), so identical values in the cells of the table are 
not improbable (e.g. pNN0_20 = 30 % means that 16 of 54 
DSHP lie between 0 and 20 ms). 

The effect of fiducial point designation was also analyzed 
in recordings, where only ECG in Einthoven II lead was 
recorded. Recordings from one healthy senior adult (HSA) and 
one healthy young adult (HYA) were used. The difference 
between heart periods calculated based on R-peaks and the 
onset of P-waves (tRR-tPP) for one recording of the senior 
adult is plotted in Figure 3. 
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TABLE I.  PNN0_20, PNN20_50 AND PNN50 VALUES CALCULATED 

BASED ON DIFFERENT FIDUCIAL POINTS 

 pNN0_20 (%) pNN20_50 (%) pNN50 (%) 

tRR 32 46 22 

tPP 30 46 24 

tOnOn 30 40 30 

 

 

Fig. 3. The difference between heart periods calculated based on R-peaks 

and the onset of P-waves (tRR-tPP) for one recording of the senior adult. 

The average difference in pNN0_20, pNN20_50 and 
pNN50 values calculated based on R-peaks and P-wave onset 
points was also calculated. The results are shown in Table II. 

TABLE II.  AVERAGE DIFFERENCE IN PNN0_20, PNN20_50 AND PNN50 

VALUES CALCULATED BASED ON R-PEAKS AND P-WAVE ONSET POINTS 

 
Diff(pNN0_20) 

(%) 
Diff(pNN20_50) 

(%) 
Diff(pNN50) 

(%) 

HSA 2 2 0 

HYA 2 1 1 

 

B. The Effect of Physical Stress on HRV 

The pNN0_20, pNN20_50 and pNN50 values were 
calculated for measurements recorded before and after short 
physical stress was induced for the tested person. Values were 
calculated based on both R-peaks and the onset of P-waves. 
Table III shows the calculated values for both conditions, 
before stress (Pre) and after stress (Post) based on tRR and tPP, 
for the healthy senior adult (HSA) and for the healthy young 
adult (HYA). 

In order to investigate the change in the conduction time 
through the atrioventricular node during regeneration after 
physical stress, the P-peak-R-peak interval was also calculated. 
We used the interval between peaks instead of the commonly 
used P-R interval because the detection of peaks is more robust 
than the detection of onset points. Figure 4 shows the 
calculated intervals for both tested persons. 

TABLE III.  PNN0_20, PNN20_50 AND PNN50 VALUES CALCULATED 

BEFORE AND AFTER SHORT PHYSICAL STRESS 

 pNN0_20 (%) pNN20_50 (%) pNN50 (%) 

 Pre Post Pre Post Pre Post 

tRR, 
HSA 

56 36 43 48 1 16 

tPP, 
HSA 

49 30 50 44 1 26 

tRR, 
HYA 

10 8 27 16 63 76 

tPP, 
HYA 

10 8 30 14 60 78 

 

 

Fig. 4. P-peak-R-peak intevals after short physical stress for the healthy 

senior adult (solid line) and the healthy young adult (dotted line). 

IV. DISCUSSION 

The difference in the pNN0_20, pNN20_50 and pNN50 
values is less than 2 % if R-peaks and P-wave onsets are 
compared in the clinical recording. However, if R-peaks in the 
ECG and the onset of atrial activity in the EGM are compared, 
the difference is more that 5 % for the pNN20_50 and pNN50 
parameters. In the previous study [12], pNN0_20, pNN20_50 
and pNN50 values were determined in different physical and 
psychical conditions. According to the results in [12], 5 % 
difference can mask the change in stress level between certain 
conditions. 

Recordings from the measurement series, where only ECG 
in Einthoven II lead was recorded yielded similar results to the 
clinical recording with respect to the pNN0_20, pNN20_50 and 
pNN50 differences between R-peak- and P-wave onset-based 
calculations. The very small difference in pNN50 of the 
healthy senior adult is in accordance with the fact, that the 
number of DSHP that exceed 50 ms can be very small for 
senior adults. It can be even zero for a short recording. 

Physical stress has different effect on the pNN0_20, 
pNN20_50 and pNN50 parameters. For pNN50, physical stress 
increased values by more than 10 % for both tested persons. 
The pNN0_20 decreased for both persons, but for the young 
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adult, the amount of decrease is less than 2 %. The pNN20_50 
decreased as a result of physical stress by more than 10 % for 
the young adult and decreased or increased for the senior adult 
depending on whether R-peaks or P-wave onsets were used for 
the calculation. The effect of fiducial point designation resulted 
in differences smaller than 5 % for all parameters in case of the 
young adult. For the senior adult, differences larger than 5 % 
appeared for both conditions in the pNN0_20 parameter, before 
physical stress in the pNN20_50 parameter and after physical 
stress in the pNN50 parameter. Moreover, the effect of 
physical stress on the pNN20_50 parameter is an increase if the 
calculation is based on R-peaks and a decrease if the 
calculation is based on the onset of P-waves. This result 
demonstrates that the effect of fiducial point designation can 
mask the change in stress level between different conditions. 

The P-peak-R-peak intervals after short physical stress 
show an upward trend for the healthy senior adult, with more 
than 40 ms difference between the shortest and longest interval 
in the recording. For the healthy young adult, the upward trend 
can be observed only in the first 20 seconds but the difference 
between the shortest and longest interval is more than 25 ms. 
This result suggests that the conduction time through the 
atrioventricular node during regeneration after physical stress 
can change significantly in time. Thus, the effect of fiducial 
point designation on the calculated heart periods is not stable 
for a person-specific time interval after physical stress. 

Interpretation of the results requires consideration of the 
accuracy of methods used to detect characteristic points in the 
ECG signal. The accuracy of the method we used for R-peak 
detection was assessed in [10]. The mean absolute error and 
standard deviation for a simulated noisy ECG signal were 
below 1 ms. Although the method was not evaluated on 
standard databases, we can expect similar results for real 
recordings because the SNR of the simulated signal was lower 
than that of most real ECG signals. The accuracy of the method 
we used for the detection of the onset of P-waves was assessed 
in [9]. The reported mean and standard deviation of the error of 
P-wave onset detection is 2.0 ± 14.8 ms for the QT database [7] 
and -4.9 ± 5.4 ms for the CSE database [13]. These error values 
are comparable to the effect of fiducial point designation on the 
heart period calculation (see Figure 3). Therefore, in case of 
recordings, where no intracardiac signal is available, heart 
period values based on the onset of P-waves must be handled 
carefully. R-peaks can be designated more accurately than P-
wave onsets, however, the onset of the P-wave is 
physiologically more appropriate to define heart cycles. Further 
measurements and cooperation with medical experts can help 
to define HRV metrics using the information in both tRR and 
tPP for more accurate assessment of actual stress level.  

V. CONCLUSION 

Stress level of the examined person can have a large impact 
on the accuracy of blood pressure measurement. In this paper 
we investigated the effect of fiducial point designation on the 

calculation of HRV. The pNN0_20, pNN20_50 and the pNN50 
parameters were investigated. Our results show that using the 
onset of P-waves in the surface ECG instead of R-peaks can 
lead to more than 5 % difference in the calculated values and 
may result in significant differences in stress level assessment. 
However, the inaccuracy of existing methods for the 
delineation of P-waves is comparable to the effect of fiducial 
point designation on heart period calculation. Further research 
work is needed to improve the accuracy of methods to detect 
characteristic points in the ECG signal and to assess actual 
stress level. 
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Abstract— Blockchain technology is having an ever-

increasing impact on distributed applications domain, since the 
adoption of Blockchain 2.0 led to the spread of smart contracts. 
In such context, Ethereum is the framework with the highest 
diffusion in terms of smart contract’s development, with a 
consequent rise of code vulnerabilities exploitations, some of 
which causing bad financial losses. This work focuses on the 
issues of Ethereum smart contracts implementation by 
analyzing known vulnerabilities and gives an overview to 
further perform a comparison among existing static tools for 
vulnerability detection. This analysis aims to select the less 
detected vulnerabilities that need deeper investigations to 
reduce their impact. 

Keywords— smart contracts, Ethereum, Solidity, 
vulnerabilities, tools. 

I. INTRODUCTION  
In the last years, Blockchain 2.0 and smart contracts 

exhibited the potential to have a disruptive impact in 
transforming some important industrial areas (e.g. medical-
care, supply chain), due to the capability of automatically 
executing computerized transactions. Several platforms had 
a rapid and considerable diffusion. Among these, Ethereum 
is the most used framework to develop smart contracts and 
Dapps (decentralized applications), having a really active 
community and counting the highest number of deployed 
smart contract, developed in the language Solidity. Security 
issues related to the development of contracts in Solidity are 
particularly severe, considering that a smart contract, once 
deployed, cannot be patched: this can lead to funds stealing, 
and even to bad financial losses as happened in some well-
known attacks [14], [15]. 

Therefore, in order to have a global view of the topic, we 
focused on studying code-related vulnerabilities, in 
particular examining several papers that analyze 
vulnerabilities, common patterns and countermeasures [1], 
[2], [3], [4], exploits [14], [15] and some analysis tools for 
vulnerability detection including [6], [7], [8]. 

Considering previous studies we noticed a lack in 
agreement in the number of vulnerabilities and in their 
categorization; the missing agreement could lead to user-
confusion and to vulnerabilities proliferation as well as a 
difficulty for researchers to compare weaknesses with 
different platforms. Moreover, analysis tools for 
vulnerability detection that have been developed provide 
only a partial discovery of the comprehensive known 
vulnerabilities, and we noticed a lack in researches on 
benchmarking the existing tools, comparing performances 
and results. Our aim is to provide a Solidity-specific 
vulnerabilities analysis, categorizing each vulnerability with 
classes that are based on a general-purpose (not language-
specific) classification, since we believe that this work may 

help software developers in limiting weaknesses explosion 
and researcher in comparing other platforms vulnerabilities. 
In order to do that, we first studied the Common Weakness 
Enumerator (CWE) [13] classification that provided us with 
an abstract point of view to systematize the vulnerabilities. 
After this work, we aim at performing a benchmark on the 
existing static analyzers for Solidity vulnerability detection, 
since we believe that it may be useful to understand firstly 
which tools are the most effective and performing, and 
secondly which vulnerabilities are the most difficult to be 
detected, and thus require a deeper analysis. 

Our Contribution: 
• A comprehensive list of Ethereum smart contracts 

vulnerabilities, grouped following CWE categories. 
• A short description of further steps aiming at 

performing a benchmark among static analysers for 
vulnerability detection. 

The paper is organized as follows. Section II shortly 
describes the CWE hierarchical representation. Section III 
presents a systematization of the vulnerabilities. Section IV 
describes further steps of our work and Section V concludes 
the work. 

II. CWE HIERARCHICAL REPRESENTATION 
The CWE (Common Weakness Enumeration) is a list of 

community-developed security software weaknesses, used in 
multiple contexts (e.g. industries, academia, and standards). 
Considering that a vulnerability is a weakness that has been 
exploited (according to the Common Attack Pattern 
Enumeration and classification - CAPEC) [17], we decided 
to use CWE categories for our classification, abstracting 
from the language Solidity. CWE is organized in three 
different representations, corresponding to three different 
points of view; among these, we chose the one that is 
focused on software behaviours. Each representation is 
structured in a hierarchical way, that is a tree where the root 
contains the most generic category, and the leaves contain 
the most specific ones (mostly language-dependent). For our 
purposes, we chose the categories that allowed us to obtain 
groups of vulnerabilities having common characteristics, 
abstracting from Solidity. 

III. VULNERABILITIES ANALYSIS 
In our work, we studied research publications of the last 

years, using keywords as ‘Vulnerabilities, ‘Solidity’, 
‘Known attacks’, ‘Smart contract’ ‘Survey’, ‘Common 
patterns’. We also consulted the official Solidity 
documentation [16],  the Smart Contract Weakness 
Classification (SWC) [12], the National Vulnerable 
Database (NVD) [18] and web pages related to 
recommendations, best practices and known attacks. In 
order to define our set of vulnerabilities, at first we built a 
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comprehensive list of weaknesses; then we considered only 
the vulnerabilities (weaknesses that have been exploited at 
least once), and finally we choose the ones that are 
mentioned at least twice crossing all the analyzed resources. 

Below, we shortly describe the CWE classes used to 
systematize the collected vulnerabilities; moreover, for each 
of them, we indicate the most referenced vulnerabilities 
belonging to it, providing a short description and a reason 
for the chosen categorization. Please refer to TABLE I for a 
comprehensive list of vulnerabilities, each associated to its 
CWE class, to a short description and to the main reference. 

TABLE I.  VULNERABILITIES AND THEIR CLASSES 

Class 
Vulnerabilities Features and References 

Vulnerabilities Features and References 

CWE-20 Ether Lost in 
Transfer 

If the address of money transfer is 
orphan, the money will be lost [2].  

CWE-20 Short 
Addresses 

If the address length is not checked in a 
contract invocation, an attacker could 
gain funds [1], [11]. 

CWE-20 Requirement 
Violation 

It results from a violation of an external 
function input validation [11]. 

CWE-20 Malicious 
Libraries 

Caused by the use of a library from 
untrusted sources [8]. 

CWE-284 Tx.origin 
When a contract uses tx.origin for 
authorization, it can be compromised by 
a phishing attack [12]. 

CWE-284 
Visibility of 
Exposed 
Functions 

When a function is defined with a wrong 
access policy, an attacker could execute it 
arbitrarily [1]. 

CWE-284 Unprotected 
Selfdestruct 

The vulnerability results from the use of 
selfdestruct primitive, without a proper 
authorization check [12]. 

CWE-284 
Unprotected 
Ether 
Withdrawal 

Due to a missing or extraneous access 
control, an attacker can drain funds from 
a contract [12]. 

CWE-330 Bad 
Randomness 

The use of variables as a seed to generate 
pseudo-random values may allow an 
attacker to nullify the randomness [2], 
[9], [12]. 

CWE-400 
DoS costly 
Patterns and 
Loops 

When the code contains unbounded 
operations, the gas needed to complete an 
execution may exceed the gas limit 
resources [6]. 

CWE-400 Call stack 
Depth Value 

An attacker may force to exceed the stack 
limit size (1024 frames): if the exception 
is not correctly managed, the attack may 
succeed [16]. 

CWE-400 Gasless send 
An out-of-gas exception occurs when an 
operation execution exceeds the expected 
amount of gas [2]. 

CWE-400 Under-priced 
Opcode 

Excessive resources consumption at a 
low price could lead to resources 
exhaustion [1]. 

CWE-682 
Integer 
Overflow/Und
erflow 

Missing/wrong/extraneous control in 
mathematical operation could lead to an 
overflow/underflow [1]. 

CWE-691 Unpredictable 
State 

If the order in which transactions are 
executed is crucial for a contract, it may 
reach an unpredictable state [1]. 

CWE-691 Reentrancy 
When a callee calls the calling function 
back before its completion, an attacker 
may drain funds from a contract [9]. 

CWE-691 Freezing 
Ethers 

It happens when, due to the wrong 
control flow, it is no more possible to 
transfer funds [6]. 

CWE-703 
Unchecked 
Call Return 
Values 

It is caused by a missing check in the 
return value results [8]. 

CWE-703 Unchecked 
Send 

It is caused by a missing check in the 
return value of send primitive [8]. 

CWE-703 Exceptions 
Disorder 

It is due to the inconsistency of 
exceptions propagation in Solidity [2]. 

CWE-668 Secrecy 
Failure 

Using a variable (even private) for secret 
information may allow an attacker to 
discover them [2]. 

Class 
Vulnerabilities Features and References 

Vulnerabilities Features and References 

CWE-668 
Lack of 
Transactional 
Privacy 

Normally, the privacy of data 
transactions is not guaranteed [4]. 

CWE-668 Blockhash 
Usage 

The blockhash global variable value 
should not be used in critical operations, 
because a malicious miner can 
manipulate it [5]. 

CWE-668 Timestamp 
Dependency 

A timestamp global variable value should 
not be used in a critical operation, 
because a malicious miner can 
manipulate it [5]. 

CWE-345 

Missing 
Protection 
against 
Signature 
Attack 

In case of insufficient signature 
verification, an attacker could perform a 
replay attack [12]. 

CWE-345 Typecast 

An attacker can execute arbitrary code, 
simply passing a malicious contract as a 
parameter in a contract function call that 
calls it back [2]. 

CWE-669 Call to the 
Unknown 

Solidity primitives may invoke the 
fallback function of the callee, allowing 
some external portion of code to be 
executed [2]. 

CWE-669 
Delegatecall to 
Untrusted 
Calle 

The delegatecall primitive executes the 
code in the context of the called contract 
[7]. 

CWE-669 
DoS by 
External 
Contract 

External calls that depend on conditional 
statements may lead to a DoS situations 
[8]. 

A. CWE-20 Improper Input Validation  
An attacker can be able to execute arbitrary operations 

and steal funds in case of an improper input validation. The 
exploitation of this group of vulnerabilities may lead to the 
excessive consumption of resources in the availability 
scope, to the reading of confidential data or to the alteration 
of the flow control (including arbitrary code execution). 

1) The vulnerability Short Addresses is due to a 
missing check of an address validity. An attacker can 
perform a call with an address that is shorter than expected, 
causing the left shift of the following function parameter: if 
this represents an amount of funds, it may allow the 
adversary to gain money improperly [1], [11]. 

2) Other vulnerabilities that belong to this category are 
Ether Lost in Transfer [2], Requirement Violation [11] and 
Malicious Libraries [8]. 

B. CWE-284 Improper Access Control  
There is a missed or improper restriction in accessing a 

resource. Improper authentication, incorrect and missing 
authorization are some of the mechanisms that characterize 
this class. An attack may lead to read or modify sensitive 
data, to gain unintended privileges or to allow an attacker to 
execute arbitrary code. 

1) An improper definition of the access control of a 
function may lead to a Visibility of Exposed Functions: an 
unintended adversary may be able to execute the function 
for arbitrary reasons. In practice, the use of a wrong 
modifier may allow unauthorized execution, with various 
possible effects [1]. 

2) Due to an Improper Access Control a Tx.origin 
[12], an Unprotected Selfestruct [12] and an Unprotected 
Ether Withdrawal [12] could be generated and exploited. 
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C. CWE-330 Use of Insufficiently Random Values  
The software uses insufficient entropy generators when 

an operation depends on unpredictable numbers. This may 
lead to bypass protection mechanisms, allowing improper 
access to protected resources or restricted functionalities. 

1)  Considering that the execution of the bytecode is 
deterministic, generating pseudo-random numbers using 
block-based values (i.e. blockchain global variables) can 
cause Bad Randomness. Since miners control blocks, a 
malicious one may bias specific values; moreover, even 
private variables can be read easily due to the public nature 
of the blockchain [2], [9], [12]: thus an attacker can guess 
random values and manipulate events. A possible 
countermeasure is using external sources via oracles. 

D. CWE-400 Uncontrolled Resource Consumption  
Resources are consumed without any software control: 

this may lead to their exhaustion. Some consequences could 
be a DoS situation or an impairment of software status.  

1) In case in which loops or useless code [6] are used 
in a Solidity smart contract, a DoS Costly Pattern and Loops 
vulnerability may occur. This may lead to a DoS situation if 
the gas needed to execute an operation exceeds the gas limit.  

2) Other vulnerabilities that may be generated in case of 
resource exhaustion are the Call-stack DepthValue [16] and 
the Gasless send [2]. 

E. CWE-682 Incorrect Calculation  
This class includes vulnerabilities in which the software 

performs calculations that generate unintended results [19]. 
After an incorrect calculation, a program may move in an 
incorrect state, causing unintended resources consumption, 
compromising protection mechanisms and giving access to 
sensitive resources. 

1) Arithmetic operations that are performed without any 
check may lead to an Integer overflow/underflow 
vulnerability: this can cause some different effects 
depending on the way in which the result is used (e.g. 
managing resources, controlling the execution flow). 

F. CWE-691 Insufficient Control Flow Management  
Unexpected computations are caused by an incorrect 

control of the execution flow; a common consequence is an 
alteration of the execution logic of the program. 

1) Rentrancy is a vulnerability that has been exploited 
in the famous The DAO Attack [14]. When a callee calls the 
calling function back before its completion, this function 
may be executed repeatedly [9], [10], [12]. In the function is 
meant to execute only once, the attacker can drain all the 
funds of the contract. This is easily achievable due to the 
implementation of some Solidity primitives, mainly for 
sending Ethers, since the fallback function of the callee is 
executed. 

2) If a software relies on the order of the execution of 
transactions an Unpredictable State [1] or a Freezing Ether 
[6] vulnerability may be generated. 

G. CWE 703 - Improper Check or Handling of Exceptional 
Conditions  
Exceptional conditions that happen at run-time are not 

properly handled; possible consequences are improper 
reading of application data, unexpected states or DoS 
situations. 

1) A missing or wrong check on a Solidity function 
return value, mainly in case of transferring Ethers, may lead 
to the Unchecked Call Return Values vulnerability, in case 
of failure without raising an exception [8] and its subset 
Unchecked send [8]. 

2) The inconsistency in Solidity exceptions 
propagation in functions for transferring Ethers may lead to 
the Exceptions Disorder vulnerability [2].  

H. CWE-668 Exposure of Resource to Wrong Sphere  
Unintended actors can inappropriately access to 

resources, due to an improper resources exposition (e.g. 
insecure permissions). 

1) Since all variables values are published onto the 
Ethereum blockchain, declaring a private variable does not 
guarantee its secrecy, generating a Secrecy Failure 
vulnerability: in fact, anyone can inspect published private 
values [2]. The improper exposure of transactions leads to 
Lack of transactional privacy [4]. 

2) When blockhash or timestamp global variables (that 
can be manipulated by a malicious miner) are used for 
critical operations, they can cause Blockhash Usage [5] and 
Timestamp Dependency [2] respectively. 

I. CWE-345 Insufficient Verification of Data Authenticity 
The software accepts invalid data, not sufficiently 

verifying their authenticity. This has various consequences, 
mostly related to data integrity.  

1) Protection against the Signature Replay Attack is 
missing in operations that need a signature verification: the 
contract may be vulnerable having a Missing Protection 
against Signature Replay Attack [12].  

2) Solidity type checker does not properly verify the 
correctness of contracts types; thus receiving a contract as a 
function argument and invoking its functions with 
insufficient verification leads to a Typecast vulnerability: an 
attacker may pass a malicious contract, having a function 
with the same name of an invoked one, achieving the 
execution of arbitrary code [2]. 

J. CWE-669 Incorrect Resource Transfer Between Spheres  
An unintended control over the resource is allowed, due 

to an improper transfer/import management of a resource 
to/from another sphere. The most critical consequences are 
unexpected states or the possibility to read/modify data. 

1) Using some primitives for functions invocation and 
for Ethers transfer may lead to unexpected behaviours, 
because of their adverse effect to invoke the fallback 
function of the callees. This is known as Call to the 
Unknown [2], [10].   

2) The Incorrect Resource Transfer Between Spheres 
category also includes the Delegatecall to Untrusted Callee 
and the DoS by External Contracts vulnerabilities [8]. 
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IV. FURTHER STEPS  
In this section, we summarize the steps of our future 

work that aims at providing a comparison among static 
analyzers for vulnerability detection in Solidity code. Our 
final goal is to make a benchmark on these tools and to 
discover consequently which vulnerabilities are the most 
difficult to detect. 

 
Fig. 1 Further steps: methodology proposal 

 Fig. 1 illustrates a conceptual overview of this work, 
highlighting the single mid-term steps that we will follow. 
We now provide a brief description of the whole process. 
Starting from the comprehensive list of categorized 
vulnerabilities that we provided, we should individuate the 
common patterns of their occurrence forms in Solidity code 
(e.g. missing check, wrong check, usage of unsafe 
constructs), in order to use them in the further steps; 
moreover, we should investigate actual occurrences in 
deployed smart contracts, such as those reported by NIST, in 
order to understand if some of them are more critical, in 
terms of detrimental effects. After the identification of the 
vulnerabilities occurrences, we should define an automatic 
procedure to inject the corresponding vulnerabilities patterns 
in actual smart contracts, in order to generate a set of 
vulnerable contracts. Therefore, it is necessary to define a set 
of contracts (several of them have already been retrieved 
from etherscan.io) to perform the injection, that should be 
carried out through a software mutation mechanism. By 
producing different combinations of vulnerabilities patterns 
and by injecting them into smart contracts code, we should 
obtain a set of vulnerable contracts that will be used to 
execute a set of static analyzers for vulnerability detection on 
them. Thus, another crucial step is the selection of a set of 
static tools that will be the object of our analysis: after a 
preliminary investigation on the state of art of static 
analyzers for Solidity vulnerability detection, we should 
individuate which among them are publicly available; 
starting from these, we should then obtain a final set, by 
selecting the most referenced ones. Moreover, in order to 
collect the results of the tools and analyze them in a 
meaningful way, we should generate a homogeneous 
representation of the identified values of interest. In 
particular, we should inspect the different tools outcomes 
stating the detection of each vulnerability, possibly 
investigating true/false positive, and true/false negative 
cases. The main steps of the whole process can be 
summarized in the following: the injection of vulnerabilities 
into the selected smart contracts code; the experimental 
phase, that is the execution of each selected tool on the 
obtained vulnerable contracts, alongside the results 
gathering in a meaningful and homogeneous way; and 
finally the analysis of the results. This analysis will focus on 
the comparison of the effectiveness and efficiency of the 
chosen set of tools. Moreover, this analysis will allow the 
identification of the vulnerabilities that are most difficult to 
be discovered, and that will require a deeper investigation. 

V. CONCLUSION 
Because of the spreading of Ethereum smart contracts, we 
focused on the analysis of software vulnerabilities related to 
the programming language Solidity. This work presented a 
systematization of such vulnerabilities, furthermore 
categorized using CWE classes, in order to help researchers, 
through an abstract view, to compare them with those in 
different environments. Starting from a better understanding 
of vulnerabilities behaviours, we proposed a roadmap 
defining the steps to carry out a benchmark on existing static 
tools for the detection of smart contracts vulnerabilities, 
with the aim of allowing to identify the most undetected 
vulnerabilities, which further require a deeper study. 
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Abstract—Communication protocols are often designed on
the basis of state-based models. During protocol design, the
use of formal verification is indispensable, as concurrent be-
havior is notorious for hidden and sophisticated bugs. This
paper presents a formal verification approach to verify an
industrial communication protocol using the Gamma Statechart
Composition Framework. Gamma is a modeling toolset for the
design and analysis of reactive systems. It supports a family of
modeling languages with formal semantics for the component-
based definition of state-based behavior. It also supports formal
verification by automatically mapping the defined models to the
input formalisms of verification backends and back-annotating
the results. The verification approach is presented in the context
of the Orion industrial communication protocol. The verification
approach supports the introduction of channel models with
different message transmission characteristics and failure modes.
Different execution modes of the components are also analyzed.

I. INTRODUCTION

Communication protocols are inherently event-driven and
are frequently designed using state-based models, e.g., state-
charts [1]. Furthermore, communication protocols are often
used in safety-critical systems where correct behavior is
crucial, which makes formal modeling languages as well as
sophisticated verification and validation (V&V) techniques,
e.g., formal verification, necessary during the design process.

As communication protocols have multiple participants, the
modeling language must support composition functionalities
in addition to supporting individual component design. Also,
to make formal verification feasible, the modeling language
must have a formal semantics both at component and system
level, defining how a standalone component is executed, and
describing the execution and communication of contained
components. Such a language can be supported by a modeling
and analysis tool, which can facilitate the design and V&V of
communication protocols.

The Gamma Statechart Composition Framework is such a
tool, providing a language for composing individual statechart
components (possibly created in other tools) while supporting
verification and validation (V&V) capabilities. In this paper
we propose a formal verification approach for communication
protocols using the Gamma framework, which includes 1) the
construction of protocol participant models as well as channel
models with different failure modes, 2) the composition of pro-
tocol participant and channel models to form system models

and 3) model checking on the system models with automatic
back-annotation of the results. The process is presented in
the context of Orion, a master-slave communication protocol
under design targeted to be used in the railway industry.

II. GAMMA STATECHART COMPOSITION FRAMEWORK

The Gamma Statechart Composition Framework [2] is an
open-source, integrated modeling toolset to support the seman-
tically sound composition of heterogeneous statechart compo-
nents. The framework reuses statechart models of third-party
tools and their code generators for separate components, e.g.,
Yakindu1 and MagicDraw2, thus UML/SysML state machine
models are supported. The mapping of these external models
to the internal statechart representation of Gamma (Gamma
Statechart Language – GSL) is supported by automatic model
transformations. The framework provides the Gamma Compo-
sition Language (GCL), which supports the interconnection of
components according to different composition modes based
on precise semantics. Furthermore, Gamma provides code
generators for deriving implementation from defined models
as well as test case generators for the analysis of compo-
nent interactions. Gamma also supports system-level formal
verification and validation (V&V) functionalities by mapping
statechart and composition models into formal automata of
the UPPAAL [3] model checker. Also, the automatic back-
annotation of the verification results is supported.

GCL supports three composition modes, namely syn-
chronous, cascade and asynchronous, which fundamentally
determine the execution of the resulting composite models.
The detailed introduction of these composition modes can be
found in [4], here we include a summary of their properties.

Synchronous A synchronous model represents a coherent
unit consisting of strongly coupled but concurrent components,
which are executed in a lock-step fashion and communicate
in a synchronous manner using signals.

Cascade Cascade models are special synchronous models
whose components are executed in a sequential manner. Con-
tained components can be considered as a set of filters applied
sequentially to derive an output from an input.

1https://www.itemis.com/en/yakindu/state-machine/
2https://www.nomagic.com/products/magicdraw
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Asynchronous Asynchronous models represent indepen-
dently running components. There is no guarantee on the
execution time or the execution frequency of such components,
thus, they communicate with queued (persistent) messages.

III. MODELING OF THE COMMUNICATION PROTOCOL

This section introduces the modeling process of our pro-
posed verification approach in the context of Orion.

A. Protocol Participants

Orion is a master-slave communication protocol, where the
establishment of a connection between two participants is
always initiated by a master and the connection request is
either accepted or rejected by a slave. Both the master and the
slave participants were designed on the basis of statecharts
in MagicDraw and have the same events (commands and
messages) that can be classified into two groups:

• Connect and Disconnect events come from the environ-
ment and can be used as external commands to initiate
a connection or break down an established connection.
Invalid event is also an external event indicating an
invalid status in the environment of the system.

• Events of the Orion protocol are transmitted between
protocol participants and can be used to establish (Orion-
ConnReq, OrionConnResp and OrionConnConf ) or break
down a connection (OrionDisconnCause), send data in
established connections (OrionAppData) or keep estab-
lished connection alive in the absence of transmittable
data (OrionKeepAlive).

The initial state of the master statechart (depicted in Fig. 1)
is Closed. Upon receiving a Connect event or after a specified
timeout (TReconn: 5 seconds in the example), it goes to
state Connecting while sending an OrionConnReq event to the
slave. If it receives an OrionConnResp event within a specified
time interval, it goes to state Connected while sending an
OrionConnConf event to the slave. If in state Connecting it
receives any other events, or does not receive any events in a
specified time interval (TConn: 5 sec), it goes back to state
Closed and sends an OrionDisconn event when necessary, that
is, if the received event was not OrionDisconnCause. In state
Connected, application specific data, or in the absence of data
for a specified time interval (TKeepAlive: 4 sec) an Orion-
KeepAlive event are sent (child state KeepAliveSendTimeout).
Also in state Connected, data as well as OrionKeepAlive
events are received (child state KeepAliveReceiveTimeout).
However, if any other event is received or no events are
received in a specified time interval (TInactive: 5 sec), the
master goes back to state Closed and sends an OrionDisconn
event if necessary.

The slave statechart (see Fig. 2) is similar to the master.
The models can be automatically transformed to the GSL

using the model transformers of Gamma, in which they
can be validated based on statechart-related well-formedness
rules [5]. According to the validators of Gamma, the presented
statechart models are well-formed.

Fig. 1. The statechart model describing the behavior of the master component.

Fig. 2. The statechart model describing the behavior of the slave component.

B. Channel Models

Several failure modes of event transmission between proto-
col participants can be considered [6]. In this work we focus
on loss of events and delay of events failure modes, as

• the duplication of events can be filtered using sequence
numbering, this failure does not reach the protocol level,

• the reordering of events can be detected using sequence
numbering, on protocol level this failure is mapped to the
loss of these events, and

• the alteration of event content can be detected using
integrity checking, on protocol level this failure is also
mapped to the loss of these events.

Therefore, by focusing on loss of events and delay of events,
we cover all relevant failure modes of [6].

In this work we defined five atomic channel models in
Yakindu: one ideal channel, three models describing loss of
events failure modes (bursty message losing channel, arbitrary
message losing channel and timed message losing channel)
and one model related to delay of events failure mode (delay
channel). The following paragraphs present these models using
graphical statechart representations. Note that these represen-
tations are simplified versions of the real models and include
behavior only for a single event (OrionConnReq), however,
additional events in the real models are handled analogously.

Fig. 3 depicts the ideal channel model. When it receives a
certain event on its input, it forwards the event to its output,
events are not lost or delayed.

Fig. 4 depicts the bursty message losing channel model,
which models a channel that can lose a given amount
(LOST MESSAGE MAX ) of subsequent incoming events. It
has two states, Operating (initial state) and MessageLosing. If
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Fig. 3. The statechart model of the ideal channel.

the model receives a certain event in state Operating it either
forwards the event to its output, or (if there has been no failure
before) goes to state MessageLosing without forwarding the
event. In state MessageLosing, the specified amount of events
are absorbed before going back to state Operating. Note the
nondeterministic nature of this model: the loss of subsequent
events can start on any incoming event.

Fig. 4. The statechart model of the bursty message losing channel.

Fig. 5 depicts the arbitrary message losing channel model.
It overapproximates the behavior of the bursty message losing
channel model, as it supports the loss of events regardless of
their order, that is, a given amount of events can be lost but
these losses can occur any time, the lost events do not have
to be necessarily subsequent.

Fig. 5. The statechart model of the arbitrary message losing channel.

Fig. 6 depicts the timed message losing channel model,
which loses messages that are received in a specified time
interval. It has two states, Operating (initial state) and Mes-
sageLosing. In state Operating, incoming events are forwarded
to the output. After a certain time (S sec), if the model has not
failed before, it goes to state MessageLosing, where incoming
events are absorbed. It goes back to state Operating after a
specified time (E sec) and remains there.

Fig. 6. The statechart model of the timed message losing channel.

Fig. 7 depicts the delay channel model, which delays the
transmission of events with a given time. In this model each
event type is handled in an orthogonal region. A region has
two states, Idle (initial state) where there is no event in the

channel, and Forwarding where the transmission of events
of a certain type is delayed. If an event is received in state
Idle, the model goes to state Forwarding where additional
incoming events are queued (variable messageCount). After
a specified time (T sec), the delayed event is forwarded. If
there is no additional queued event, the model goes to state
Idle, otherwise, it goes back to state Forwarding.

Fig. 7. The statechart model of the delay channel.

C. System Models

We analyzed the behavior of the Orion protocol considering
different channel failure modes and different execution modes
of the participants. Therefore, for each channel model we
defined cascade, synchronous and asynchronous composite
Gamma models, which differ only in the execution mode, the
components and their connections are the same. In this work
we focused on the time-driven behavior and the events of the
Orion protocol in the master and slave components and did not
consider the external events and commands that may directly
close the connection.

Fig. 8 describes the GCL model the variations of which were
used with different channel models and execution modes. It
consists of a master component, a slave component, and two
channel components that connect the output and input ports
of the protocol participants. The concrete models differ only
in the first keyword that can be either sync, cascade or async.
All in all, fifteen composite system models were defined, five
(as there are five channel models) for each composition mode.
In the asynchronous composite models message queues with
capacity 2 were used.

� �
[ sync | cascade | async ] Or ionSys tem [ ] {

/ / D e c l a r a t i o n o f components
component m a s t e r : Or io nMas t e r
component m2S : Channel
component s l a v e : O r i o n S l a v e
component s2M : Channel
/ / C o n n e c t i n g component p o r t s v i a c h a n n e l s
channel [ m a s t e r . SendOrion ] −o )− [m2S . I n p u t ]
channel [ m2S . Outpu t ] −o )− [ s l a v e . R e c e i v e O r i o n ]
channel [ s l a v e . SendOrion ] −o )− [ s2M . I n p u t ]
channel [ s2M . Outpu t ] −o )− [ m a s t e r . R e c e i v e O r i o n ]

}� �
Fig. 8. The GCL model of protocol participants and channel models.

IV. ANALYSIS OF THE COMMUNICATION PROTOCOL

We analyzed liveness properties of the system models
introduced in Section III-C, that is, the reachability of system
states using different channel models and execution modes.
The analyzed properties (formalized in CTL) are the following.
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P1 The system can reach a state in which both the
master and the slave are in state Connected : EF
master.Connected && slave.Connected.

P2 The system must eventually reach a state in which both
the master and the slave are in state Connected : AF
master.Connected && slave.Connected.

P1 means the models do not contain fundamental faults. P2,
as a robustness property means the protocol is always able to
recover despite the specified failure mode of the channel.

According to the verification executed in Gamma, P1 holds
in the case of every system model introduced in Section III-C.
The analysis results for P2 are shown in the following sections.

A. Synchronous Composition Mode

As the protocol has real-time timeouts, the fulfillment of the
property depends on the execution frequency (indicated by f )
of the system components in the case of each channel model.

In the case of the ideal channel model, f has to be higher
than 4/TConn for the property to hold due to the lock-
step execution mode of the components: event transmission
between the master and the slave is delayed as events are
transmitted through separate channel components (the value
in the nominator refers to the number of components in the
composite model). The timeout in state Connecting (both for
the master and the slave) is TConn sec. Therefore, event
OrionConnResp in response to OrionConnReq in the case
of the master, and event OrionConnConf in response to
OrionConnReq in the case of the slave have to be received
in lesser time to enable the reaching of state Connected.

The property holds in cases of both the bursty
and arbitrary message losing channel models for all
LOST MESSAGE MAX values between 1 and 9, if f is
higher than 4/TConn.

In the case of the timed message losing channel model, the
property was checked for the following S and E values: 4 and
9, 4 and 14, 4 and 19, 9 and 14, 9 and 19, 14 and 19 (so that
multiples of parameters TReconn and TConn in the master
and slave models fall into these intervals). If f is higher than
4/TConn, the property holds.

In the case of the delay message losing channel model, f,
the T parameter of the channel and the TConn parameter in
the master and slave have to satisfy the following constraint:
2/f + T < TConn/2. If this constraint is not satisfied, an
execution of the components can exist where the master and
slave get desynchronized due to the late arrival of messages
and the Connected states are never reached at the same time.

B. Cascade Composition Mode

The cascade composition mode defines a sequential exe-
cution semantics. Similarly to the synchronous composition
mode, the fulfillment of the analyzed property depends on
the execution frequency of components. The property can
be fulfilled in the case of every channel model, and in this
composition mode the execution frequencies can be lower.

In the case of the ideal channel, bursty-, arbitrary- and
timed message losing channel models, f has to be higher than

1/TConn for the property to hold, as components are executed
in the following order: master, m2S, slave, s2M. Therefore,
events from the master to the slave and from the slave to the
master can be transmitted in a single execution cycle.

In the case of the delay message losing channel model, f,
the T and the TConn parameters have to satisfy the following
constraint: 1/f + T < TConn/2.

C. Asynchronous Composition Mode
In the case of the asynchronous composition mode, there is

no guarantee on the execution frequency of the components
of the composite model. Therefore, in the case of any channel
model, it is possible to delay the execution of either the master
or slave component in state Connecting until the timeout
is reached (TConn sec). Thus, the property does not hold
regardless of the defined channel models. To examine this
problem, we introduced constraints on the execution frequency
of the components in the formal models. We observed that if
the execution frequencies of the components are in the order
f(master) < f(m2S) < f(slave) < f(s2M), and are higher
than 4/TConn in the cases of the first four channel models,
or the 2/f + T < TConn/2 constraint holds in the case of the
delay channel model, the property holds.

V. CONCLUSION

We proposed a verification approach for communication
protocols using Gamma in the context of Orion, an industrial
master-slave communication protocol. We defined multiple
channel models describing loss of events and delay of events
failure modes. Using model checking, we verified whether the
system 1) might eventually and 2) must eventually reach a state
in which both the master and slave are in state Connected.

In the future we plan to investigate the composition of chan-
nel models in a single GCL component where the operating
channel model is selected by a selector component. This way,
both the model construction and the analysis phases could be
simplified as the number of resulting system models would
decrease to three. We also aim to introduce full support for
execution frequency constraints in asynchronous components.
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and M. Hendriks, “Uppaal 4.0,” 2006.

[4] B. Graics and V. Molnár, “Mix-and-match composition in the Gamma
Framework,” in 25th Minisymposium, Department of Measurement and
Information Systems, Budapest, Hungary, January 2018.

[5] B. Graics, “Documentation of the Gamma Statechart Composition
Framework,” Budapest Univ. of Technology and Economics, Dept. of
Measurement and Information Systems, Tech. Rep., 2016. [Online].
Available: https://inf.mit.bme.hu/en/gamma/

[6] S. Procter and P. Feiler, “The AADL error library: An operationalized
taxonomy of system errors,” Ada Lett., vol. 39, no. 1, p. 6370, Jan.
2020. [Online]. Available: https://doi.org/10.1145/3379106.3379113

28



Abstraction-Based Model Checking
of Linear Temporal Properties

Milán Mondok, András Vörös
Budapest University of Technology and Economics

Department of Measurement and Information Systems
Email: mondokm@edu.bme.hu, vori@mit.bme.hu

Abstract—Even though the expressiveness of linear temporal
logic (LTL) supports engineering application, model checking
of such properties is a computationally complex task and state
space explosion often hinders successful verification. LTL model
checking consists of constructing automata from the property
and the system, generating the synchronous product of the two
automata and checking its language emptiness. We propose a
novel LTL model checking algorithm that uses abstraction to
tackle the challenge of state space explosion. This algorithm
combines the advantages of two commonly used model checking
approaches, counterexample-guided abstraction refinement and
automata theoretic LTL model checking. The main challenge in
combining these is the refinement of ”lasso”-shaped counterex-
amples, for which task we propose a novel refinement strategy
based on interpolation.

I. INTRODUCTION

Linear temporal logic (LTL) specifications are particularly
expressive and thus easy to use for engineers, but LTL model
checking is a computationally expensive task. An efficient and
commonly used linear temporal logic verification algorithm is
based on automata theory. It consists of constructing automata
from the property and the system, generating the synchronous
product of the two automata and checking its language empti-
ness. This reduces the LTL model checking task to product
calculation and language emptiness checking, which can be
efficiently computed on Büchi automata, but the problem of
state space explosion still hinders verification.

As the number of state variables in a system increases,
the system’s state space grows at least exponentially, which
makes the exploration resource-intensive. Several approaches
were developed to tackle the challenge of state space explo-
sion. Counterexample-guided abstraction refinement checks a
simplified model instead of the original problem, iteratively
adding more detail until the verification task can be decided.
Abstraction-based solutions proved efficient in reachability
analysis, but have not been elaborated in the domain of LTL
model checking yet.

We propose a novel LTL model checking algorithm that
performs automata theoretic model checking on an iteratively
refined abstract model. The abstraction is refined using a novel
algorithm based on interpolation.

Our approach is similar to the one described by Zhao Duan
et al. in [4]. As an optimization, they limit the scope of the ver-
ification to terminable programs and define an alternate version
of LTL that is interpreted over finite paths. These alternate LTL

formulas can be expressed using deterministic finite automata,
which makes their verification computationally less demanding
than regular LTL model checking.

II. BACKGROUND

We use the following notation [6] from first-order logic
(FOL) throughout our paper. Given a set of variables V =

{v1, v2, ...} let V ′ = {v′1, v′2, ...} and V 〈i〉 = {v〈i〉1 , v
〈i〉
2 , ...}

represent the primed and indexed version of the variables. We
use V ′ to refer to successor states and V 〈i〉 for paths. Given
an expression ϕ over V ∪ V ′, let ϕ〈i〉 denote the indexed
expression obtained by replacing V and V ′ with V 〈i〉 and
V 〈i+1〉 respectively in ϕ.

A. Control flow automata

In our work we describe programs using Control flow
automata (CFA) [6]. We define a Control flow automaton as
a 4-tuple 〈V,L, l0, E〉, where:
• V = {v1, v2, ..., vk} is the set of variables. Each variable
vi has an associated domain Dvi ;

• L is the set of control locations, which model the program
counter;

• l0 ∈ L is the initial location;
• E ⊆ L × Ops × L, where op ∈ Ops are FOL formulas

over V and V ′, is a set of directed edges representing the
operations that are executed when control flows from the
source location to the target.

A concrete state (l, c) is a pair of a location l ∈ L
and an interpretation c ∈ Dv0 × ... × Dvn that assigns a
value c(v) = d ∈ Dv to each variable v ∈ V of its
domain Dv . The set of initial states is {(l, c)|l = l0} and
a transition exists between states (l, c) and (l′, c′) if an edge
(l, op, l′) ∈ E exists with (c, c′) |= op. A concrete path is a
finite, alternating sequence of concrete states and operations
σ = ((l1, c1), op1, ..., opn−1, (ln, cn)) if (li, opi, li+1) ∈ E for
every 1 ≤ i < n and (c

〈1〉
1 , c

〈2〉
2 , ..., c

〈n〉
n ) |= ∧

1≤i<n op
〈i〉
i , i.e.,

there is a sequence of edges starting from the initial location
and the interpretations satisfy the semantics of the operations.

B. Counterexample-guided abstraction refinement

Counterexample-guided abstraction refinement (CEGAR)
[2] [6] aims to tackle the problem of state space explosion by
performing the verification task on a simpler, abstract model.
The abstract model is an overapproximation of the concrete
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model: it contains all behaviours of the concrete model, but
can contain additional behaviour as well. Such models are
sufficient to prove the absence of counterexamples but can
contain false positives, meaning that the counterexamples in
the abstract models have to undergo further analysis.

The core of the CEGAR algorithm is the CEGAR-loop,
which consists of two components, the abstractor and the
refiner. The task of the abstractor is to calculate the abstract
state space based on the current precision and to search for
counterexamples, while the task of the refiner is to verify
the concretizability of the abstract counterexample and refine
the precision accordingly. The loop can only be left in two
scenarios, either if the abstractor finds no counterexamples, or
if the refiner finds that an abstract counterexample is feasible.

In Boolean predicate abstraction [6], an abstract state s ∈ S
in the set of abstract states is a Boolean combination of FOL
predicates. A precision π ∈ Π is a set of FOL predicates
that are currently tracked by the algorithm. For example, if
the current precision π contains two predicates, (x < 0) and
(x < 1), then true, x < 0 or !(x < 0) ∧ x < 1 are examples
of possible abstract states.

The result of the transfer function [6] T (s, op, π) is the
strongest Boolean combination of predicates in the precision
that is entailed by the source state s and the operation op.
This can be calculated by assigning a fresh propositional
variable vi to each predicate pi ∈ π and enumerating all
satisfying assignments of the variables vi in the formula
s∧ op∧∧pi∈π(vi ↔ p′i). For each assignment, a conjunction
of predicates is formed by taking predicates with positive vari-
ables and the negations of predicates with negative variables.
The disjunction of all such conjunctions is the successor state
s′.

Locations of the CFA are tracked explicitly. Abstract states
SL = L × S are pairs of a location l ∈ L and a state
s ∈ S. The transfer function extended with locations is
TL((l, s), π) = {(l′, s′)|(l, op, l′) ∈ E, s′ ∈ T (s, op, π)}, i.e.,
(l′, s′) is a successor of (l, s) if there is an edge between l
and l′ with op and s′ is a successor of s with respect to the
inner transfer function T .

An abstract path σ = ((l1, s1), op1, ..., opn−1, (ln, sn))
is an alternating sequence of abstract states and operations.
An abstract path is feasible if a corresponding concrete
path ((l1, c1), op1, ..., opn−1, (ln, cn)) exists, where each ci is
mapped to si.

The abstractor explores the abstract state space using a
search strategy (such as DFS of BFS) looking for counterex-
amples, i.e., abstract paths that start in the initial state and
end in an error state. The exploration starts in the abstract state
(l0, true). When visiting a state, all of its unvisited successors
with respect to the transfer function TL are visited by the
search. The search can be optimized by not visiting covered
successors, i.e. abstract states (lc, sc), for which an already
visited (lv, sv) exists such that lc = lv and (sc ⇒ sv). If
all reachable states were visited and no counterexample was
found, then the model is safe, however, if a counterexample
was found the refiner needs to check its validity.

The refinement [6] happens as follows. The input is a
path σ = ((l1, s1), op1, (l2, s2), op2, ..., opn−1, (ln, sn)) and
the current precision π. First, the feasibility of the path
is decided by querying an SMT solver with the formula
s
〈1〉
1 ∧ op〈1〉1 ∧ s〈2〉2 ∧ op〈2〉2 ∧ ... ∧ op〈n−1〉n−1 ∧ s〈n〉n . If this

formula is satisfiable, then the model is unsafe and a satisfying
assignment to this formula is returned as the counterexample.
Otherwise, an interpolant is calculated from the infeasible path
σ that holds information for the further steps of refinement.

A Craig interpolant [7] for a mutually inconsistent pair
of formulas (A,B) is a formula that is (1) implied by A,
(2) inconsistent with B, and (3) expressed over the common
variables of A and B.

A binary interpolant for an infeasible path σ can be calcu-
lated by defining A ≡ s

〈1〉
1 ∧ op〈1〉1 ∧ ... ∧ op〈i−1〉i−1 ∧ s〈i〉i and

B ≡ op〈i〉i ∧ s
〈i+1〉
i+1 , where i corresponds to the longest prefix

of σ that is still feasible. The refined precision returned is the
union of π and the new predicate that is obtained by replacing
the variables V 〈i〉 with V in this interpolant.

C. Automata theoretic LTL model checking

Kripke structures, LTL expressions and Büchi automata can
all be used to characterize ω-regular languages [10]. As LTL
expressions can only characterize a strict subset of ω-regular
languages, while every ω-regular language can be recognized
by a Büchi automaton, all LTL-expressions can be transformed
to equivalent Büchi automata, for example using the algorithm
of Gerth et al [5].

We regard the state space of the model as a Kripke structure
M . Given an LTL-formula ϕ let L(M) and L(ϕ) denote
the language that the Kripke structure can produce and the
language that the LTL-formula specifies. The LTL model
checking problem [3] can now be restated as follows: is the
set of provided behaviours a subset of the valid behaviours,
i.e., does L(M) ⊆ L(ϕ) hold?

An equivalent formalization is L(M) ∩ L(ϕ)
?
= ∅, where

L(ϕ) is the complement of the language L(ϕ). Complemen-
tation is computationally hard, but it can avoided in case of
LTL model checking by utilizing that the complement of the
language of an LTL-formula is the language of the negated
formula: L(ϕ) ≡ L(¬ϕ). This allows the model checking
problem to be reduced to language intersection and language
emptiness, both of which can be efficiently computed on Büchi
automata.

A possible way of checking the language emptiness of a
Büchi automaton is checking whether at least one strongly
connected component (SCC) that contains an accepting state
is reachable from the initial state. If such an SCC is reachable,
then the Büchi automaton contains at least one run that
contains an accepting state infinitely many times, fulfilling the
acceptance condition of Büchi automata. Tarjan’s algorithm [9]
identifies SCCs using a single depth-first search (DFS) and
clever indexing. Algorithms based on Nested DFS [8] offer
a different approach. These algorithms usually conduct two
depth-first searches, the former one to find and sort accepting
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states, and the latter one to find cycles that contain accepting
states.

III. OVERVIEW OF THE APPROACH

LTL model checkers have always struggled with perfor-
mance. We propose to use counterexample-guided abstraction
refinement in LTL model checking. The key idea of our ap-
proach (Fig. 1) is that we conduct the automata theoretic LTL
model checking on abstract models that we iteratively refine
to the required precision using the the CEGAR algorithm.

The algorithm can work with various abstract domains, such
as explicit value abstraction [1], predicate abstraction, or even
a mix of the two. The appropriate abstraction method can only
be selected based on the desired application domain. In this
paper, we present the algorithm using predicate abstraction, a
variant more suited for reactive systems as variables in such
systems usually only get assigned a relatively small subset of
their domains as values.

The algorithm has the following steps:
1) The requirement specification is given in the form of an

LTL-formula ϕ. Negate this formula and transform it to
an equivalent Büchi automaton S;

2) Apply abstraction to the concrete model with the current
precision, calculate the abstract state space and represent
it with an automaton M ;

3) Calculate the synchronous product of the two automata
S × M . During each step of the product the model
automaton steps first, then the specification automaton
steps based on the target state of the model automaton.

4) Check the language emptiness of the product automaton
S ×M ;
• If the language of the product is empty, then the

model meets the correctness specification as no
counterexamples were found;

• If a counterexample is found in the abstract state
space, then verify whether it is feasible in the
concrete state space as well;
– A feasible counterexample means that the model

does not meet the correctness specification (i.e.
is unsafe), as we found a contradicting trace;

– If the counterexample isn’t feasible in the con-
crete system (i.e. spurious), then refine the pre-
cision and jump to step 2.

When using a suitable language emptiness checking al-
gorithm such as Nested DFS [8], the tasks of state space
generation, calculation of the product automaton and language
emptiness checking can be conducted together, which can
result in a significant increase in performance. If these three
tasks are carried out at the same time, then the model checking
is said to happen ”on-the-fly”.

IV. REFINEMENT

In this section we present a novel refinement method for
predicate abstraction. The algorithm searches for counterex-
amples that have a ”lasso”-like form. The first part of the

LTL	to	BA
¬φ

Abstractor

S	×	M

M

S

concrete	model

L(S	×	M)	?=	∅

Refiner

✓
true

abstract
counterexample

concrete
counterexample

refined
precision

Xinitial	precision

Fig. 1. Overview of CEGAR-based LTL model checking.

counterexample is a path leading to an accepting state and the
second part is a cycle which starts and ends in said accepting
state. If such a counterexample is found, then an accepting
run is possible, because by repeatedly traversing the cycle, an
accepting state can be explored infinitely many times, fulfilling
the Büchi acceptance condition.

The CEGAR algorithm is usually used for reachability
checking, where counterexamples are abstract paths leading
from the initial state to an error state. When verifying these
counterexamples the only thing that needs to be checked is
whether such a path exists in the concrete model, whose states
and transitions all correspond to the states and transitions of
the abstract path. However, the fulfillment of this condition is
required, but not enough, when analysing a cycle. A path that
is not a cycle in the concrete model might appear as one in
the abstract model.

We developed a novel counterexample refinement
strategy that is capable of handling ”lasso”-like
counterexamples. The input is an abstract path
σ = ((l1, s1), op1, (l2, s2), op2, ..., opn−1, (ln, sn)) and
an integer 1 ≤ cycle ≤ n that is the index of the initial state
of the cycle, i.e. the recurrent accepting state (scycle = sn).
The path is first fed to the traditional CEGAR refinement
algorithm presented in Section II-B. Based on the result of
this algorithm, we have two options. If the algorithm finds
that the path isn’t traversable and returns a refined precision,
then we simply return this refined precision. However, if the
algorithm finds that the path is traversable, then we conduct
further analysis to decide whether it is traversable in such
a way that the initial and the end state of the cycle are the
same concrete states.

Control locations are tracked explicitly during state space
exploration, thus deciding whether two concrete states that
belong to the same abstract state are identical can be done
by comparing their data values (i.e. the values assigned
to the variables in them). We construct a constraint B ≡∧
v∈V v

〈cycle〉 = v〈n〉, which expresses that each variable
has the same value in the initial and end state of the cycle,
i.e. they are the same concrete states. We also construct
the same formula that the refinement algorithm in II-B used
to verify traversability, A ≡ s

〈1〉
1 ∧ op〈1〉1 ∧ ... ∧ s〈cycle〉cycle ∧

op
〈cycle〉
cycle ∧ ... ∧ op

〈n−1〉
n−1 ∧ s〈n〉n . By querying an SMT solver

with the conjuntion of these two formulas, i.e., A ∧ B, we
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Fig. 2. Example of an abstract counterexample.

verify whether the counterexample is feasible. If this formula
is satisfiable then the model does not meet the requirement
specification (i.e. is unsafe) and a satisfying assignment is
returned as counterexample. If the formula isn’t satisfiable (i.e.
is spurious), then we refine the precision by calculating an
interpolant based on this formula.

Algorithm 1 Lasso refinement
Input: σ: abstract path, cycle: initial index of cycle
Output: (unsafe or spurious , π′)

1: procedure lasso refine(σ, cycle)
2: res := refine(σ)
3: if res is spurious then return res
4: else
5: A ≡ s〈1〉1 ∧ op

〈1〉
1 ∧ ... ∧ op

〈n−1〉
n−1 ∧ s

〈n〉
n

6: B ≡ ∧
v∈V v

〈cycle〉 = v〈n〉

7: if A ∧B is feasible then return (unsafe, π)
8: else
9: I ← get interpolant for (A, B)

10: η ← get satisfying assignment for A
11: π′ ← create predicate from I:
12: replace all v〈n〉 ∈ I with v
13: replace all v〈cycle〉 ∈ I with η(v〈cycle〉)
14: return (spurious, π ∪ π′)

To refine the precision we obtain an interpolant I for A
and B. This interpolant is interpreted over V 〈cycle〉 and V 〈n〉,
let’s denote this with I(v

〈cycle〉
1 , ..., v

〈cycle〉
k , v

〈n〉
1 , ..., v

〈n〉
k ). We

also query the SMT solver for a satisfying assignment η
to the formula A, which describes a concrete path σ =
((l1, c1), op1, ..., opn−1, (ln, cn)), where ccycle 6= cn. To en-
sure that the spurious counterexample described by η isn’t
found again during later explorations of the abstract state
space, we need to extend our precision with a new predicate
π′(v1, ..., vk) that evaluates to false in ccycle and to true in
cn (or vice versa), so that ccycle and cn get mapped to differ-
ent abstract states. Formally, π′(η(v

〈cycle〉
1 ), ..., η(v

〈cycle〉
k )) =

false and π′(η(v
〈n〉
1 ), ..., η(v

〈n〉
k )) = true. To construct

the predicate π′ from the interpolant I , we replace the
variables V 〈n〉 with V , and V 〈cycle〉 with values that
are assigned to them by η. Formally, π′(v1, ..., vk) :=

I(η(v
〈cycle〉
1 ), ..., η(v

〈cycle〉
k ), v1, ..., vk).

If we evaluate π′(η(v
〈n〉
1 ), ..., η(v

〈n〉
k )), i.e. π′ in cn, we

get I(η(v
〈cycle〉
1 ), ..., η(v

〈cycle〉
k ), η(v

〈n〉
1 ), ..., η(v

〈n〉
k )), which is

true, because of the first property of Craig interpolants
(A → I), from which it follows that if an assignment η
satisfies A, then it also satisfies I .

Evaluating π′ in ccycle however, results in
I(η(v

〈cycle〉
1 ), ..., η(v

〈cycle〉
k ), η(v

〈cycle〉
1 ), ..., η(v

〈cycle〉
k )),

which is false. In this case the variables V 〈cycle〉 are
assigned the same values as their counterparts V 〈n〉, which
means that B is true. It follows that I in this case is false,
because of the second property of Craig interpolants (I ∧ B
is unsatisfiable),

We demonstrate the refinement process on the abstract coun-
terexample in Fig. 2. The white rectangles represent abstract
states with the applying predicates displayed inside them, the
arrows represent transitions, the precision only contains one
predicate, (x ≤ 0). The value of cycle and n is 2 and 4,
respectively. We construct the following formulas based on
this path:

A ≡ true ∧ x〈2〉=1 ∧ !(x〈2〉≤0) ∧ x〈2〉<5∧x〈3〉=x〈2〉 ∧
!(x〈3〉≤0) ∧ x〈4〉=x〈3〉+1 ∧ !(x〈4〉≤0)

B ≡ x〈2〉=x〈4〉

By querying an SMT solver with the formula A∧B we find
that the counterexample in spurious, as A∧B isn’t satisfiable.
The solver returns the interpolant I ≡ x〈2〉 < x〈4〉 (note that
this is only one of the possible interpolants). We request a
satisfying assignment for A from the solver, and construct a
predicate from I by replacing x〈4〉 with x and x〈2〉 with 1
(the value that is assigned to it in the satisfying assignment).
Finally, we return that the counterexample is spurious, accom-
panied by the refined precision (x ≤ 0), (1 < x).

V. CONCLUSION

In our paper we examined LTL model checking and pro-
posed a novel algorithm, which combines the advantages of
counterexample-guided abstraction refinement and automata
theoretic LTL model checking. We also proposed a novel
refinement method for predicate abstraction. We implemented
our algorithm in the Theta framework [11], but chose to omit
experimental evaluation from this paper due to the lack of
space.
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Abstract—With the increasing amount of densely connected
data sets, graph analysis has become an integral part of data
processing pipelines. Therefore, the last decade saw the emer-
gence of numerous dedicated graph analytical systems along with
specialized graph database management systems. Traditionally,
graph analytical tools targeted global fixed-point computations,
while graph databases focused on simpler transactional read
operations such as retrieving the neighbours of a node. However,
recent applications of graph processing (such as financial fraud
detection and serving personalized recommendations) often ne-
cessitate a mix of the two workload profiles. Following this trend,
the 2018 Transformation Tool Contest (an annual competition
for graph transformation tools) presented a case study that
requires participants to compute complex graph queries defined
on a continuously changing social network graph. The solutions
are assessed based on their scalability and query reevaluation
time, therefore, solutions are encouraged to incrementalize their
implementations. This paper demonstrates a solution in the
popular Neo4j graph database using several incrementalization
techniques and compares them against the reference implemen-
tation of the case study.

Fig. 1: Graph schema of the case study.

I. INTRODUCTION

We start by describing the “Social Media” case study of
the 2018 Transformation Tool Contest [5]. This case study is
defined using a familiar social network-like data model (Fig. 1)
consisting of Users and their Submissions. These submissions
form a tree where the root node is a Post and the rest of
the nodes are Comments. Users can like Comments and form
friends relations with each other. Additionally, Comments have
a direct pointer rootPost to the root Post to allow quick
lookups. Fig. 2a shows an example graph with two Posts (p1,
p2), three Comments (c1, c2, c3) and four Users (u1, . . . ,
u4). Solutions are required to compute two queries:
Q1: influential posts. Assign a score to each Post, defined
as 10 times the number of their (direct or indirect) Comments

(a) Initial graph and scores. Comment c2 has two components: c2/a
consists of User u1, while c2/b consists of Users u3 and u4. Its
total score is the sum of the component sizes, i.e. 12 + 22 = 5.

(b) Graph after performing an update that inserted six entities: (1) a
friends edge between Users u1 and u4, (2) a likes edge from
User u2 to Comment c2, (3) a Comment node c4 with (4) an
outgoing rootPost edge to Post p1, (5) an outgoing commented
edge to Comment c1, and (6) an incoming likes edge from User
u4. The changes have increased the score of Post p1 and resulted
in Comment c2 having a single component of size 4, therefore
receiving a score of 42 = 16. Comment c4 getting a score of 12 = 1.

Fig. 2: Example graphs: initial and updated versions.

plus the number of Users liking those Comments. Return the
top 3 Posts according to their score.
Q2: influential comments. Assign a score to each Comment,
based on the friendships of the Users who like that Comment.
Based on the graph formed by the User nodes and their friends
edges, for every comment we define an induced subgraph
which contains the Users who like the Comment and their
friends edges. The subgraph contains connected components,
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EnumPaths EnumPaths Reachability MatComp MatComp GraphAlgo GraphAlgo MatComp
Subgraph Subgraph FixedPoint PathOp EdgeFilter GraphAlgo

(very slow) (incompatible) ●

in
iti

al
ev

al
ua

tio
n enumerate paths    

materialize subgraph (edges/labels)  E   
reachability (shortestPath) E
reachability+dynamic labels (APOC lib.)  
fixed-point calculation (APOC library)  
materialize subgraph components    
Graph Algorithms library    

up
da

te reevaluation
n/a n/a

  
maintain component    
dirty flag for Comments  

TABLE I: Comparison of strategies for Q2 regarding the techniques (language features and libraries) used in each strategy.
Strategies in bold are described in more detail. Notation –  : the technique is used by the strategy, E: incompatible strategies.
“MatComp” strategies are denoted with ◻, while “GraphAlgo” strategies are denoted with ×.

i.e. groups of users who know each other directly or via
friends. The score is defined as the sum of squared component
sizes. Finally, the top 3 Comments should be returned.
Updating the graph. After the query execution on the initial
graph the case study requires solutions to perform a number
of updates on the graph while maintaining the results of the
queries. Fig. 2 shows the initial graph and the updated graph
with the scores for Q1 and Q2.
Neo4j. Neo4j is a graph database management system using
the property graph data model. Such graphs consist of la-
belled entities, i.e. nodes and edges, which can be described
with properties encoded as key-value pairs. Neo4j uses the
Cypher query language [2] which offers both read and update
constructs [3]. While the main focus of Neo4j is to run graph
queries, it also supports graph analytical algorithms with the
recently released Graph Algorithms library [7].

II. APPROACH

Q1 Batch. Q1 can be expressed with the Cypher query in
Listing 1. The Cypher language uses node labels (e.g. Post,
Comment, User), edge types (e.g. ROOT POST, LIKES),
node and edges properties to express graph patterns. The
query matches every node with label Post, then all its com-
ments via the rootPost edges, then the Users via the likes
edges. OPTIONAL MATCH denotes an optional pattern, where
variables are filled with NULL values if there is no match.
RETURN can be also used to group and aggregate. The results
are grouped by the id and timestamp properties of the Posts,
aggregated, then the top 3 scores are returned. The aggregation
counts the likes using the number of Users (a User can
like more Comments), and counts the number of Comments
(DISTINCT is used to remove duplicate Comments).

1 MATCH (p:Post)
2 OPTIONAL MATCH (p)<-[:ROOT_POST]-(c:Comment)
3 OPTIONAL MATCH (c)<-[:LIKES]-(u:User)
4 RETURN p.id AS id,
5 10*count(DISTINCT c)+count(u) AS score,
6 p.timestamp AS timestamp
7 ORDER BY score DESC, timestamp DESC LIMIT 3

Listing 1: Q1 Batch.

Q1 Incremental. To incrementally evaluate Q1, we initially
compute the score for each Post as previously and store it in

score property (Listing 2). Based on this property the current
top 3 scores can be computed using Listing 3. The score
property is indexed to improve lookup times.

For every batch of updates Alg. 1 is executed to insert new
elements and update the score property, then Listing 3 is used
to get the top 3.

1 MATCH (p:Post)
2 OPTIONAL MATCH (p)<-[:ROOT_POST]-(c:Comment)
3 OPTIONAL MATCH (c)<-[:LIKES]-(u:User)
4 WITH p, 10*count(DISTINCT c)+count(u) AS score
5 SET p.score = score

Listing 2: Q1 Incremental – initial evaluation.

1 MATCH (p:Post)
2 WHERE p.score >= 0 // query hint to use index
3 RETURN p.id AS id, p.score AS score,
4 p.timestamp AS timestamp
5 ORDER BY score DESC, timestamp DESC LIMIT 3

Listing 3: Q1 Incremental – get top 3 results.

Algorithm 1 Maintaining scores for Q1
1: procedure UPDATEQ1(updates)
2: for all update ∈ updates do
3: ADDNEWELEMENT(update) ▷ insert into the graph
4: if update isPost then
5: update.score← 0 ▷ init score for new Post
6: else if update is ⟨Comment,Post⟩ then ▷ new Comment node
7: ⟨ , rp⟩← update ▷ get the root Post
8: rp.score← rp.score + 10 ▷ update score
9: else if update is ⟨User,Comment⟩ then ▷ new likes edge

10: ⟨ , c⟩← update ▷ get Comment vertex of new edge
11: rp ← ROOTPOST(c) ▷ navigate via rootPost
12: rp.score← rp.score + 1 ▷ update score
13: end if
14: end for
15: end procedure

Q2 Strategies. Table I compares the different strategies used
for Q2 to find connected components in a subgraph and handle
updates. Fig. 3 shows a comparison of their runtime during
the initial evaluation and after the updates. The EnumPaths
strategy finds the connected components by enumerating all
paths of friends edges between Users who like a comment
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and filtering to ensure that every User on the path also likes
the Comment. The complexity of this operation is intractable,
therefore this strategy is not feasible on larger graphs. To
only enumerate valid paths in the subgraph, the edges of the
subgraph can be materialized for each subgraph, i.e. for each
Comment (stored as an edge property). The combination of
these techniques (EnumPaths Subgraph ) also exhibits poor
scalability (later measurements show that it reaches the time
limit after graph size 8). This limitation could be resolved
by using a Cypher reachability query, but unfortunately such
queries cannot perform filtering on properties (which is nec-
essary to ensure we only enumerate valid paths).

To use reachability queries and avoid the costly enumeration
of paths, MatComp FixedPoint strategy uses Neo4j’s APOC
library1. It materializes subgraph components by converting◯ likesÐÐ→◯User Comment edges to ◯componentÐÐÐÐÐ→◯Comment Component and

◯userÐÐ→◯Component User edges where the Component node con-
nects every User who knows each other directly or via friends.
The conversion is executed for each component one by one
using the fixed-point query execution mechanism of APOC.
This strategy has the best performance, which is caused by
the use of reachability function and incremental maintenance
after updates. Component materialization can be expressed
with pure Cypher queries using path operations (MatComp
PathOp , which also has limited scalability due to the use of
path enumeration.

GraphAlgo strategies (×) use functions provided by the
Neo4j Graph Algorithms library2 [7] to find connected com-
ponents in a subgraph conveniently. The library loads the sub-
graph into an in-memory projected subgraph before running
the computations. The initial runtimes of these solutions are
worse than the runtime of MatComp FixedPoint. This can be
attributed to the load phase, which is run for every subgraph,
i.e. for every Comment.

Strategies can differ in the way they handle the updates: they
can fully reevaluate the queries or incrementally maintain the
results depending on the update. Repeated reevaluations take
a significant amount of time, which causes the execution to
time out. EnumPaths Subgraph strategy uses Comment-
level incrementalization with dirty flags, but using path enu-
merations limits its scalability. The incremental evaluation of
materialized components (◻) is implemented by merging the
components and maintaining their sizes and the scores. These
updates have the best performance. (The MatComp strategies
with worse initial runtime reaches the time limit.)
Q2 Batch. Listing 4 shows the GraphAlgo solution
for Q2 using Neo4j Graph Algorithms library. The
algo.unionFind.stream function is used to find con-
nected components of the subgraph given by the node labels
and edge types or Cypher queries. For each Comment, the
first Cypher query in Lines 3–7 select Users who like the
Comment, the second query selects all friend edges as pairs

1https://neo4j.com/labs/apoc/
2https://neo4j.com/docs/graph-algorithms/

1 MATCH (c:Comment)
2 CALL algo.unionFind.stream(
3 'MATCH (c:Comment)<-[:LIKES]-(u:User)
4 WHERE id(c)=' + id(c) + '
5 RETURN id(u) as id',
6 'MATCH (u1:User)-[:FRIEND]->(u2:User)
7 RETURN id(u1) as source, id(u2) as target',
8 {graph: 'cypher'})
9 YIELD setId

10 WITH c, setId, count(setId) AS cSize
11 WITH c, cSize * cSize AS cSize_2
12 RETURN c.id AS id, sum(cSize_2) AS score, c.

timestamp
13 ORDER BY score DESC, c.timestamp DESC LIMIT 3
14 UNION ALL
15 MATCH (c:Comment)
16 WHERE NOT (c)<-[:LIKES]-(:User)
17 RETURN c.id AS id, 0 AS score, c.timestamp
18 ORDER BY c.timestamp DESC LIMIT 3

Listing 4: Q2 batch using the Neo4j Graph Algorithms library.

●
●

●
●

●
●

●

●

Initial Update

Q
2

1 2 4 8 16 32 64 128 256 512 1024 1 2 4 8 16 32 64 128 256 512 1024

0.1

1

10

100

1000

Graph size

E
xe

cu
tio

n 
tim

e 
[s

]

Technique

●

Enumerate paths on subgraph

Graph Algorithms + edge filter (batch)

Graph Algorithms library (batch)

Materialize components by fixed−point calculation

Materialize components by Graph Algorithms library

Materialize components by path operations

Fig. 3: Performance comparison of Q2 strategies. The symbols
denoting techniques correspond to those shown in Table I.

of Users. The function returns the ID of the component
containing the User node. Lines 10–14 calculate the squared
sum of the component sizes and selects the top 3 scores. The
function is invoked only for Comments with likes. The top 3
Comments without likes are enumerated by Lines 16–20.
Q2 Incremental. The incremental solution in this section
(MatComp FixedPoint) materializes the components of the
subgraph using fixed-point query execution of APOC library.
To achieve this, the solution materializes subgraph edges as
dynamically named labels (Listing 5) and finds reachable
nodes using the APOC library (Listing 6). The incremental
evaluation is performed by merging the components and
maintaining their sizes and the scores (Listing 7).

III. EVALUATION

To evaluate the performance and scalability of our solution,
we have used the benchmark framework of the case study [5].
This executes the queries on graphs of increasing sizes as
shown in Table II, then adds new elements to the graph, and
maintains the result using the queries. (Similar queries can be
formulated for element removal.) As a performance baseline,
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1 MATCH (c)<-[:LIKES]-(u:User)
2 WITH c, collect(u) AS users
3 CALL apoc.create.addLabels(users, ['Likes_' + c.id])

YIELD node
4 RETURN count(*)

Listing 5: Q2 – materializing subgraph by dynamic labelling
of users liking the comment.

1 CALL apoc.periodic.commit("
2 MATCH (c:Comment)<-[:LIKES]-(u1:User)
3 WITH c, min(u1) AS u1
4 CREATE (c)-[:COMPONENT]->(comp:Component)
5 WITH c, u1, comp
6 CALL apoc.path.subgraphNodes(u1,
7 labelFilter: 'Likes_' + c.id,
8 relationshipFilter: 'FRIEND'}) YIELD node AS u2
9 CREATE (comp)-[:USER]->(u2)

10 WITH c, comp, u2
11 MATCH (c)<-[l:LIKES]-(u2)
12 DELETE l
13 WITH c, comp, count(*) AS componentSize
14 SET comp.size = componentSize
15 RETURN count(*)")

Listing 6: Q2 – grouping components by selecting a single
user (u1) per comment and their reachable friends (u2) in the
subgraph, then replacing LIKES edges with a Component node
and COMPONENT and USER edges until reaching a fixed
point where all LIKES edges are replaced.

1 WITH $friendEdge AS friendEdge
2 MATCH (cp1:Component)-[:USER]->(u1:User)
3 -[friendEdge]->(u2:User)<-[:USER]-(cp2:Component)
4 <-[:COMPONENT]-(c:Comment)-[:COMPONENT]->(cp1)
5 WITH c, cp1, cp2,
6 cp1.size AS cp1Size, cp2.size AS cp2Size,
7 cp1.size + cp2.size AS newCompSize
8 CALL apoc.refactor.mergeNodes([cp1, cp2],
9 {mergeRels: true}) YIELD node AS newComp

10 SET newComp.size = newCompSize,
11 c.score = c.score - cp1Size*cp1Size
12 - cp2Size*cp2Size + newCompSize*newCompSize

Listing 7: Q2 – for every FRIEND edge inserted where the two
users belonged to separate components, merge the components
and maintain the size and scores accordingly. (A similar query
exists for new LIKES edges.)

we used the reference implementation of the case study,
written in the .NET Modeling Framework [4] (NMF Batch)
and its incremental version (NMF Incremental). We executed
the benchmark on a cloud machine with a 24-core Intel®

Xeon® Platinum 8167M CPU with Hyper Threading at 2.00
GHz, 320 GB RAM, and HDD storage. The execution times
are shown in Fig. 4. The results show that the batch variant
does not scale, as it takes more than 20 minutes for graph
size 8. However, the incremental Neo4j variant is able to scale
for all graph sizes. Neither of them is competitive against
the incremental NMF solution which achieves sub-second
reevaluation times for both queries.

IV. CONCLUSION AND FUTURE WORK

This paper presented a Neo4j-based solution for the “Social
Media” case study of the 2018 Transformation Tool Contest.
We discussed a number of techniques that allow incremental
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Fig. 4: Execution times of the queries with respect to the graph
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1 2 4 8 16 32 64 128 256 512 1024

#nodes 1274 2071 4350 7530 15k 30k 58k 115k 225k 443k 859k
#edges 2533 4207 9118 18k 35k 71k 143k 287k 568k 1.1M 2.3M

TABLE II: Graph sizes w.r.t. to the scale factor.

evaluation during updates. Initial results show that incremen-
talization techniques provide significant performance benefits
and allow the solution to scale for graph sizes orders of
magnitude larger than batch solutions. In the future, we plan
to perform a detailed performance evaluation of our solution
against other query and transformation tools, including tradi-
tional relational databases (such as PostgreSQL), EMF-based
model query engines (such as VIATRA [8]), and differential
dataflow engines [6]. Our Neo4j solution is also subject to
further optimizations such as using an incremental connected
components algorithm [1].
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Abstract—Real-world time series are usually sporadically ob-
served when collected outside of rigorous scientific experiments.
The sampling is irregular across time and across dimensions,
which breaks the typical assumption of most recurrent networks
and dynamical process models. In this work, we propose to use
our GRU-ODE-Bayes [1], a recently proposed model that posits a
continuous latent process whose dynamics are driven by an ordi-
nary differential equation parametrized with neural networks [2].
We apply this framework in the estimation of reaction dynamics
from observational data. In particular, we show that our method
is able to learn unstable autocatalytic chemical reactions within
the large class of reactions driven by the Brusselator dynamical
model [3], such as the Belousov–Zhabotinsky reaction in the
presence of very few sporadic observation points.

Index Terms—Neural Networks, Time Series, ODE, Chemical
Reactions Dynamics

I. INTRODUCTION AND MOTIVATION

Scientific research produces large quantity of time series
data from various domains such as chemistry, astronomy,
healthcare or climate science. Even though most statistical
methods for analyzing this type of data assumes that signals
are measured systematically at fixed constant time intervals,
this assumption is often not hold in practice.

Indeed, due to some practical contingencies, much real-
world data is sporadic (i.e., the signals are sampled irregularly
and not all signals are measured each time). A typical example
is patient measurements, which are taken when the patient
comes for a visit (e.g., sometimes skipping an appointment)
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and where not every measurement is taken at every visit.
Another example would be running lab experiments spread
over several days when sensor errors can occur.

Modeling then becomes challenging as such data violates
the main assumptions underlying traditional machine learn-
ing methods (such as recurrent neural networks). The most
straightforward way to address this issue is to perform impu-
tation, but this is often unsatisfactory as it results in biased
estimates.

Recently, the GRU-ODE-Bayes model [1] proposed a novel
way to address this type of sporadic time series for forecasting
and classification. Based on the seminal Neural-ODE idea
[2], it proposes a filtering approach that posits a continuous
latent process that generates the observations. By framing
the dynamics as an ordinary differential equation (ODE)
parametrized by neural networks, the model is able to model
complex dynamics and integrate it over arbitrary time inter-
vals, therefore addressing the sporadicity issue in a natural
way. Furthermore, it was shown that the continuity prior was
providing extra performance when the continuity assumption is
verified in practice, such as in patients clinical data prediction
or weather forecasting.

This continuity assumption is also valid in chemical reaction
dynamics. Indeed, chemical reactions are intrinsically contin-
uous and can most of the time be expressed analytically as
ODEs. However, reactions in multiple component mixtures
are very complex and the true dynamic is often unknown.
In this case, chemists try to approximate the true dynamic
of the process by running some temporal experiments and
learning the underlying dynamics of the reaction. What is
more, as mentioned above, scientific practice sometimes lead
to sporadic time series, as some concentration or variables are
not measured continuously.

In this work, we propose to use GRU-ODE-Bayes to learn
complex chemical reactions dynamics from sporadic data. We
show that using very few data points, our model is able to learn
the true chemical dynamics with high accuracy. The rest of
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the paper is organized as follows. In section II, we review the
related works relevant to ours. Section III presents succinctly
the GRU-ODE-Bayes method and the main assumptions be-
hind the model. Finally, results of our method on the broad
class of Brusselator reactions are shown in Section IV.

II. RELATED WORKS

Our work naturally builds upon the machine learning and
statistics literature on (sporadic) time series and on the learning
of dynamical systems in chemistry and life sciences in general.

A. Temporal modelling of sporadic time series

The most straightforward approach to handle sporadic time
series consists in data imputation. One then feed the obser-
vation mask and times of observations jointly to the recurrent
network [4]–[6]. Despite some promising experimental results,
this approach relies too much on the ability of the model to
distinguish imputed and true data points. Some works have
tried to address this limitation by introducing more meaningful
data representation for sporadic time series [7], [8], like
tensors [9], [10].

Gaussian processes (GP) are the most popular generative
approach to deal with sporadic observations. They have been
used for smart imputation before a RNN or CNN architecture
[11], [12], or to derive informative representations of time
series [8]. However, they usually suffer from high uncertainty
outside the observation support, are computationally intensive,
and learning the optimal kernel is tricky.

Most recently, the seminal work of Neural ODEs [2],
[13] suggested a continuous version of neural networks that
overcomes the limits imposed by discrete-time recurrent neural
networks. Coupled with a variational auto-encoder (VAE)
architecture, it proposed a natural way of generating irregularly
sampled data. However, the VAE nature of the limits its
expressivity when it comes to forecasting.

Our method also has connections to the Extended Kalman
Filter (EKF) that models the dynamics of the distribution of
processes in continuous time. However, the practical applica-
bility of the EKF is limited because of the linearization of
the state update and the difficulties involved in identifying its
parameters.

B. Learning dynamics in chemistry and life sciences

Mathematical modeling with ordinary differential equations
(ODEs) has a very long tradition in biology and ecology.
Efforts to apply ODEs to understand population dynamics
started already in the 18th century (see, e.g., Malthus’s growth
model) [14]. More recently, several optimization methods have
been proposed to fit ODE models to observational data in
domains such as metabolic models and more general biological
pathways [15]–[17]. However, those methods require a heavily
parametrized formulation of the ODE, motivated by a lot
of prior assumptions and expert knowledge. In contrast, the
method we propose here allows very flexible representation
of the ODE, which alleviates the risk of misparametrization,
at the expense of more data samples required for training

the model. To the best of our knowledge, this is the first
attempt to use ODE parametrized by neural networks to fit
biological/chemical processes from observational data.

III. METHODS

In this work we are interested in uncovering the dynamics
of a D dimensional process Y(t) ∈ RD driven by an unknown
(stochastic) differential equation (SDE) which is observed
sporadically :

dY(t) = µ(Y(t))dt+ σ(Y(t))dW(t), (1)

where dW(t) is a Wiener process. The distribution of Y(t)
then evolves according to the Fokker-Planck equation. We
refer to the mean and covariance parameters of its probability
density function (PDF) as µY(t) and ΣY(t). Our goal is
to estimate those time evolving parameters conditioned on
previous observations.

In practice we have access to N realizations of the SDE but
the parameters of the SDE can change from one realization
to another. Furthermore, for each realization Y(t)i with (i =
0, ..., N − 1), we only observed sporadic measurements. That
is, we have a vector t∗i ∈ RTi of times where the process is
observed along with a mask m ∈ {0, 1}Ti×D that indicates
which dimension is observed at each observation time. We then
have missingness both across time and across dimensions.

A. GRU-ODE-Bayes

GRU-ODE-Bayes [1] was recently proposed as a new
filtering method to deal with sporadic time series. It assumes a
continuous latent process h(t) that generates the observations
Y(t) through some mapping Y(t) ∼ fobs(h(t)).

It consists of two modules: GRU-ODE, responsible for
learning the continuous dynamics of the latent process that
generates the observations and GRU-Bayes, responsible for
dealing with incoming observations and update the conditional
current estimate of the latent process.

1) GRU-ODE: The GRU-ODE module parametrizes the
dynamics of the latent process h(t) with an Neural-ODE
inspired from the classical GRU module. We use the following
parametric ODE:

dh(t)

dt
= (1− z(t))� (g(t)− h(t)), (2)

Where z(t) and g(t) are given as in the GRU equations :

rt = σ(Wrxt + Urht−1 + br)

zt = σ(Wzxt + Uzht−1 + bz) (3)
gt = tanh(Whxt + Uh(rt � ht−1) + bh),
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Fig. 1. GRU-ODE-Bayes uses GRU-ODE to evolve the hidden state between
two observation times t[k] and t[k+1]. GRU-Bayes processes the observations
and updates the hidden vector h in a discrete fashion, reflecting the additional
information brought in by the observed data.

2) GRU-Bayes: GRU-Bayes module is responsible for the
update of the hidden state when new measurements are ob-
served. As data comes in in packets, we allow the hidden
process to jump to a new point in hidden space where it reflects
more the newly observed data point as shown on Figure 1.

This update is performed by using a GRU cell that takes
as input the previous hidden state and the current observation
and then mimics a Bayesian update to set the hidden to a new
value that matches the current observations :

h(t+) = GRU(h(t−), fprep(y[k],m[k],h(t−))), (4)

3) End-to-end: At test time, the model performs predictions
as suggested on Figure 1. We integrate the hidden process
according to the GRU-ODE dynamics until the next observa-
tion (done with numerical integration). When an observation
is reached, we process it with GRU-Bayes and update the
hidden state. We then resume to GRU-ODE integration from
the new initial point and continue until a next observation is
reached. At each point in time, we can use fobs(.) to predict
the distribution of the measurements.

B. The Brusselator

In order to demonstrate the capabilities of our approach, we
choose to learn the dynamics of a range of reactions that can be
modelled by the Brusselator. The Brusselator is a theoretical
model for a type of autocatalytic chemical reactions. The type
of chemical reactions it’s modeling consists of two initial
reactants A and B whose products X and Y are also catalysts
of coupled reactions as shown below:

A −−→ X

2 X + Y −−→ 3 X

B + X −−→ Y + D

X −−→ E

In the case of A and B being in large excess compared
to products of above reactions, their concentration can be

assumed constant in the solution and the following dynamics
are obtained :

d

dt
[X] = [A] + [X]2[Y ]− [B][X]− [Y ] (5)

d

dt
[Y ] = [B][X]− [X]2[Y ] (6)

where the brackets stand for the concentration of the given
chemical in the solution (e.g. in moles/l).

Equations 5 and 6 suggest that a fixed point is located at
[X] = A and [Y ] = [B]/[A]. Importantly, this fixed point
becomes unstable when:

Unstability condition :

B > 1 +A2 (7)

When the instability condition is satisfied, the concentra-
tions X and Y start oscillating over time. An example of such
oscillation is shown on figure 2.
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Fig. 2. Example of an unstable dynamic evolution of concentrations of
products X and Y over time when A = 0.7 and B = 1.7.

The most well known example of this type of unstable
autocatalytic reactions is the Belousov-Zhabotinsky reaction
which can be created using a reducing agent (malonic acid)
an oxidiser (bromate), and appropriate redox catalyst (eg.:
manganese ion, cerium ion, or ferroin).

C. Dataset Generation

Because there is usually some measurement error and
because of the uncertainty about the true nature of the hidden
driving ODE, we generate trajectories of concentrations [X]
and [Y ] from a modified stochastic differential equation:

dx

dt
= 1 + (b+ 1)x+ ax2y + σdW1(t)

dy

dt
= bx− ax2y + σdW2(t)

(8)

Where dW1(t) and dW2(t) are correlated Brownian motions
with correlation coefficient ρ. We simulate 1,000 trajectories
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driven by the dynamics given in Eq. 8 with parameters a = 0.3
and b = 1.4 such that the ODE is unstable.

We simulate those trajectories over a time period of 50
seconds from which we sample sporadically Nsamp observa-
tions with Nsamp ∼ Uniform(0.38, 0.42) ∗ T and T = 50.
For each of those observations, we then randomly sample
across dimensions to generate missing value dimension wise.
We select both dimensions with probability 0.8 and only one
of them with probability 0.2. The resulting dataset is then a
sporadic time series of the the generative SDE process from
Equation 8.

IV. RESULTS

We train the GRU-ODE-Bayes model on the data described
in Section III. We use 700 trajectories for training, 200 for
validation and leave 100 out for testing. We used DOPRI-5
for the numerical integration of the ODE. Prediction of our
model on a test trajectory is displayed on Figure 3.

We observe that at the start of the trajectory, as no measure-
ment is observed, the model is uncertain about the future of
the trajectory, which is illustrated by the very large confidence
intervals before the first observations (shaded areas). However,
as soon as an observation is reached, the model can update its
latent state more accurately. The uncertainty remains high until
more observations are reached, when the model can condition
the expected trajectory on more information. Furthermore, we
observe that the model is able to capture correlations between
both dimensions of the process as indicated by the red arrow
on the figure, where dimension 2 is updated even if only
information about dimension 1 is gathered.

Fig. 3. Predictions of GRU-ODE-Bayes on an unknown realization of
the BXLator process of Equation 8. Green and Blue are the two different
concentrations we try to model over time. Solid lines represent the predicted
means, shaded areas are the confidence intervals (1.96 standard deviations).
Red arrow points out the update of dimension 2 when only dimension 1 is
observed, showing that the model is able to detect meaningful correlation
between both dimensions.

Table I further displays mean square errors (MSE) and
negative log-likelihoods obtained on the test sets. They are
computed by using the first 35 seconds of the processes as

observable data and predictions are made on the remaining
hidden observations between t = 35 and t = 50. We compare
it with the Neural-ODE model as well as a Gaussian Process.
We observe that our method clearly outperforms the competi-
tors both in terms of MSE and log-likelihood. We motivate
this performance by 1) the information bottleneck imposed
in the Neural-ODE and 2) the lack of strong extrapolation
capabilities in Gaussian processes. Furthermore, compared to
a Gaussian process approach that would scale quadratically
with the number of observations and dimensions, our model
is much more efficient and scales linearly with the number of
observations.

TABLE I
TEST PERFORMANCE RESULTS

Model MSE Neg-Loglik
GRU-ODE-Bayes 0.11 −0.62

Neural-ODE 0.28 0.91
Gaussian Process 0.33 1.09

V. CONCLUSION

In this paper, we showed the fitness of the GRU-ODE-Bayes
method to assess complex chemical reactions dynamics from
sporadic observational data. We showed that our method was
able to accurately learn the dynamics of the broad range of
reaction dynamics modeled by the Brusselator equation. In
order to make the problem more realistic, we added Browian
motion noise to the dynamics, making every realization of the
temporal process different from one another. Our approach
outperformed a selected subset of baselines and seem to be
suited for long term prediction of the concentrations (see
Figure 3).

Those encouraging results motivate us to make this method
more useful for the chemical community. In particular, an
interesting application would be to be able to predict the
constants a and b from a single experiment time series,
allowing the chemist to infer the concentration of reactants
A and B from the temporal measurements of X and Y .
From preliminary experiments we expect that more time series
realizations would be required to learn this task accurately.
This is left for future work.
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