
PROCEEDINGS OF THE
26TH MINISYMPOSIUM

OF THE

DEPARTMENT OF MEASUREMENT AND INFORMATION SYSTEMS
BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS

(MINISY@DMIS 2019)

JANUARY 24, 2019
BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS

BUILDING I

BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS

DEPARTMENT OF MEASUREMENT AND INFORMATION SYSTEMS

c© 2019 Department of Measurement and Information Systems,
Budapest University of Technology and Economics.

For personal use only – unauthorized copying is prohibited.

Head of the Department: Tamás Dabóczi

Conference chairman:
Béla Pataki

Organizers:
Rebeka Farkas

Ákos Hajdu
Attila Klenik

Homepage of the Conference:
http://minisy.mit.bme.hu/

Sponsored by:

Schnell László Foundation

http://minisy.mit.bme.hu/

FOREWORD

This proceedings is a collection of the papers of the 26th Minisymposium taking place at the De-
partment of Measurement and Information Systems of the Budapest University of Technology and
Economics. At the beginning the main purpose of these symposia was to give an opportunity to the
PhD students of our department to present a summary of their research results in the preceding year.
As an interesting additional benefit, the students also got experience in organizing scientific events.
Beyond the original goal, it turned out that the proceedings of our symposia give an interesting over-
view of the research in our department. A few years ago the scope of the Minisymposium had been
widened; some of the best BSc/MSc students involved in research also participate.

The lectures reflect an important part of the scientific fields and work of our department. Traditionally
the symposium was focused on measurement and instrumentation. The area has slowly changed and
widened during the last few years. New areas mainly connected to embedded information systems,
dependability and security, artificial intelligence, and cyber-physical systems are now in our scope of
interest as well. The papers cover both theoretical and practical aspects..

The proceedings will not be published in printed form, it has turned out that nowadays the web publica-
tion of symposium lectures is enough. This new form has some advantages, but it has some challenges
as well. We hope that the advantages will dominate.

During this twenty-six-year period there have been shorter or longer cooperation projects, research
visits and internships between our department and some universities, research institutes, organizations
and firms. Some of our research benefited substantially from these connections/collaborations. In the
last year the cooperation was especially fruitful with the Software Competence Center Hagenberg
(SCCH), Austria; University of Zagreb, Croatia; SRI International, New York, USA.

We hope that similarly to the previous years, this Minisymposium will also be useful for the lecturers,
for the audience and for all who read the proceedings.

Budapest, January, 2019

Béla Pataki
Chairman of the
Minisymposium

2

PAPERS OF THE MINISYMPOSIUM

Author Title Page

Bajkai, Viktória Dorina
and Hajdu, Ákos

Software Model Checking with a Combination of Explicit
Values and Predicates

4

Bruncsics, Bence and
Antal, Péter

Network-based Analysis of Genetics in Multimorbidities *

Burján, Dezső and Gönczy,
László

Data Quality and Usability Requirement Analysis with
Visualization Techniques and Domain-specific
Constraints

8

Dobos-Kovács, Mihály and
Vörös, András

Model Checking and Test Generation: Towards a
Combined Approach to Software Verification

12

Farkas, Rebeka and
Bergmann, Gábor

Adaptive Step Size Control for the Simulation of
Cyber-Physical Systems

*

Földvári, András and
Pataricza, András

Design for Dependability of Cyber-Physical Systems 16

Hajdu, Ákos and Micskei,
Zoltán

Efficient Strategies for CEGAR-based Model Checking *

Klenik, Attila and
Pataricza, András

Towards the Simulation-based Performance Analysis of
Hyperledger Fabric

*

Marussy, Kristóf and
Majzik, István

Architecture-based Dependability Analysis of
Reconfigurable and Adaptive Systems

*

Nagy, Péter and Jobbágy,
Ákos

Increasing the Accuracy of Measuring Heart Rate
Variability and Pulse Wave Transit Time

20

Szántó, Tamás and
Micskei, Zoltán

Measuring Quality of Datasets Using Prediction
Explanation

24

Varga, Balázs and Orosz,
György

Analysis of Distributed Multi-Channel Active Noise
Cancelling Algorithms

28

The research reports indicated by * are not published in this volume. To gain access, please contact the
organizers or the authors.

3

Software Model Checking with a Combination of
Explicit Values and Predicates

Viktória Dorina Bajkai1, Ákos Hajdu1,2
1Budapest University of Technology and Economics, Department of Measurement and Information Systems

2MTA-BME Lendület Cyber-Physical Systems Research Group
Email: hajdua@mit.bme.hu

Abstract—Formal verification techniques can both reveal bugs
or prove their absence in programs with a sound mathematical
basis. However, their high computational complexity often pre-
vents their application on real-world software. Counterexample-
guided abstraction refinement (CEGAR) aims to improve effi-
ciency by automatically constructing and refining abstractions for
the program. There are several existing abstract domains, such
as explicit-values and predicates, but different abstract domains
are suitable for different kinds of software. Therefore, product
domains have also emerged, which combine different kinds of
abstractions in a single algorithm. In this paper, we present a
new variant of the CEGAR algorithm, which is a combination
of explicit-value analysis and predicate abstraction. We perform
an experiment with a wide range of software systems and we
compare the results to the existing methods. Measurements show
that our new algorithm can efficiently combine the advantages
of the different domains.

I. INTRODUCTION

Formal verification techniques (e.g. model checking) pro-
vide a sound mathematical basis to prove the correct operation
of a program by exhaustively analyzing all possible states and
transitions. This is also the downside of such methods, making
them too expensive computationally. Counterexample-guided
abstraction refinement (CEGAR) [1] is a widely used approach
to overcome this limitation. CEGAR applies abstraction to
hide certain details and to over-approximate the set of possible
behaviors of the program. However, this does not only yield
a smaller state space, but can also lead to spurious counterex-
amples. In such cases, the algorithm automatically refines the
abstraction and repeats this process until a sufficient precision
is found. CEGAR can work with different abstract domains,
such as explicit values and predicates. The former works by
tracking only a subset of the program variables, while the latter
stores certain relationships and facts about them.

Product abstractions [3], [4], which combine multiple ab-
stract domains also emerged, since different abstract domains
turned out to be suitable for different kinds of software. In
this paper we present a product abstraction algorithm, which
combines explicit values [8] and predicate abstraction [7],
exploiting the advantages of each domain. The key idea of
our approach is that we always start with explicit values to
avoid handling formulas, but switch to predicates if there are
too many values for a variable.

Partially supported by Nemzeti Tehetség Program, Nemzet Fiatal
Tehetségeiért Ösztöndı́j 2018 (NTP-NFTÖ-18).

We implemented this algorithm in Theta [2], an open source
verification framework, which already includes a generic CE-
GAR loop and some basic abstract domains. We evaluate our
new approach and the existing methods on several programs
from different problem domains, including PLC models form
CERN [11] and C programs from the Competition on Soft-
ware Verification (SV-Comp) [12]. Our results show that the
new product abstraction algorithm successfully combines the
advantages of two existing domains.

Related work: The dynamic precision adjustment ap-
proach [3] combines predicates and explicit values. The main
difference is that it switches to predicates based on the whole
state space, whereas we only consider the successors of a
single state. Moreover, we allow successors to be enumerated
if an expression cannot be evaluated, as opposed to the
unknown values in dynamic precision adjustment.

Refinement selection [4] chooses between the explicit and
predicate domains based on various metrics for the refinement
quality. Our approach always tries the explicit domain first, but
switches to predicates if there are too many different values.

II. BACKGROUND

A. Control Flow Automata

In our work, we use control flow automata (CFA) [5] to
model programs. A CFA is a tuple (V,L, l0, E) where
• V = {v1, v2, . . . , vn} is a set of program variables with

domains D1, D2, . . . , Dn,
• L = {l1, l2, . . . , lk} is a set of program locations repre-

senting the program counter,
• l0 ∈ L is the initial location, i.e., the entry point of the

program,
• E ⊆ L × Ops × L is a set of directed edges between

locations, representing the operations that get executed
when going from the source location to the target.

A concrete state c = (l, d1, . . . , dn) of the CFA consists of
a location l ∈ L and a value di ∈ Di for each variable vi from
its domain. A transition c

op−→ c′ exists between two states, if
there is an edge (l, op, l′) ∈ E between their locations and the
semantics of op matches the variables. Operations op ∈ Ops
can be assumptions, assignments or havocs. Assumptions are
first order logic (FOL) [6] predicates denoted by [ϕ], which
must hold at the source state. Assignments are in the form of
vi := ψ, where ψ is a FOL expression with domain Di that

4

updates the variable vi in the target state. Havocs have the form
havoc vi, where vi is assigned a non-deterministic value in the
target state. A concrete path c1

op1−−→ c2
op2−−→ ...

opn−1−−−−→ cn is
a sequence of concrete states and operations, where c1 has the
initial location l0.

A verification task consists of a CFA and a dedicated error
location le ∈ L. A CFA is safe if no concrete path exists to a
state which contains the error location le.

As an example, consider the CFA in Figure 1a. It represents
a program, which first examines whether its single variable x
is not 1 and then if it is 1, leading to the error location le.
Otherwise, the program ends in the final location lf . It is clear
that no concrete path can reach le, thus the CFA is safe.

B. Counterexample-Guided Abstraction Refinement

In this section, we define the abstract CEGAR framework,
which will be instantiated in the next paragraphs. CEGAR can
work with different abstract domains [5]. An abstract domain
is a structure (S,v,Π, T) where
• S = {s1, s2, . . . , sn} is a set of abstract states,
• s v s′ is a coverage relation, which holds for two abstract

states, if s′ represents all the states that s does,
• Π is a set of precisions, which controls granularity of the

abstraction,
• T is the transfer function, defining the successor relation

between abstract states.
In this work we combine two different domains: explicit-value
analysis [8] and predicate abstraction [7].

The first step of CEGAR is to build an abstract reachability
graph (ARG) from the original model, with an initial, usually
coarse precision π ∈ Π. ARG generation maintains a queue
Q for the unprocessed states, starting with the initial abstract
state s0 ∈ S, corresponding to l0. As long as the queue is not
empty, it picks a state s ∈ Q and checks if it can be covered
with some already explored state s′, i.e., s v s′. If not, the
successors of s are added to the queue for each operation op
on the outgoing edges using the transfer function T (s, op, π).
Abstraction stops if the queue Q is empty or a state with the
error location le is reached. Since the abstraction we use over-
approximates the program, if we cannot reach le, the original
program is also safe. Otherwise, an abstract counterexample
exists, which is a path in the ARG leading to a state with le.

The second step is to examine the abstract counterexample.
This is done by the refiner R, which checks whether the
counterexample is feasible in the original program. If it is, the
original program is unsafe. Otherwise, the counterexample is
spurious and the abstraction is refined. The refiner R typically
returns a new precision π′ that should be joined to the previous
(π ∪ π′), so that the spurious counterexample is eliminated
from the next iteration. The process repeats until there are no
counterexamples or a feasible one is found.

C. Explicit-Value Analysis

Explicit-value analysis [8] works by tracking only a subset
of the program variables. A precision πe ∈ Πe defines the
subset of the variables πe ⊆ V , which are currently tracked.

If a variable is not tracked, its value is represented by a special
top element >, which means that it can take any value from
its domain. Abstract states se = (l, d1, . . . , dn) in explicit-
value analysis therefore, consist of a location l and values
di ∈ Di ∪ {>} for each variable vi. The coverage relation
s v s′ holds between two states, if their locations are equal
and each value in s′ is either > or the same as in s. The
transfer function Te works in the following way for a given
state se, operation op and precision πe. If op is an assumption
and evaluates to true or cannot be evaluated (due to > values),
a successor state is created where the value of the tracked
variables will not change. If op is an assignment, the value
of the assigned variable in the successor will be the result
of evaluating the expression, or > if it cannot be evaluated
or the assigned variable is not tracked. If op is a havoc, the
value of the havocked variable becomes >. Abstraction usually
starts with an empty precision πe = ∅ and refinement Re

is performed by iteratively extending the precision πe with
additional variables. The new variables to be tracked can be
inferred by different interpolation techniques [8], [9].

As an example, consider the ARG in Figure 1b (for the CFA
in Figure 1a) created with explicit-value analysis. The value
of x is not known initially and also remains > after [x 6= 1].
However, after [x = 1] we know that x is 1.

D. Predicate Abstraction

In predicate abstraction [7], the concrete values of variables
are not tracked explicitly. Instead, certain facts and relation-
ships are tracked through a set of FOL formulas over V , called
the predicates. The precision πp ∈ Πp is therefore, a set of
predicates. Abstract states sp = (l, p1, . . . , pk) contain the
location and the ponated or negated version of the predicates
pi in πp. It is also possible that a predicate does not occur in an
abstract state, if it can both hold or not. The coverage relation
s v s′ holds between two states if their locations are equal
and the predicates of s imply the predicates of s′. The transfer
function Tp works in the following way for a given state sp,
operation op and precision πp. If op is an assumption, we
check whether the conjunction of the predicates of the source
state and the assumption is satisfiable. If yes, a successor
state is created, including the predicates from πp (or their
negated form) that are implied by the source state and the
assumption. If op is an assignment, we create a successor
that includes the predicates or their negated form that are
implied by the source state and the assignment. If the operation
is a havoc, a successor state is created, where predicates
including the havocked variable are excluded. Abstraction
usually starts with an empty precision πp = ∅ and refinement
Rp is performed by iteratively extending the precision πp with
additional predicates. Similarly to explicit values, the new
predicates can be inferred by interpolation [9].

As an example, consider the ARG in Figure 2b (for the
CFA in Figure 1a) with tracking the predicate x = 1. The
assumption [x 6= 1] ensures that l1 is labeled with the negation
of the predicate, and thus the error location will not be
reachable in the ARG.

5

E. Product Abstraction

Product abstractions [3], [4] combine different abstract
domains. In our work we combine explicit-value analysis and
predicate abstraction by tracking both explicit values and pred-
icates simultaneously. Therefore the precision is Π = Πe×Πp

and an abstract state s = (l, d1, . . . , dn, p1, . . . , pk) consists
of a location, values and predicates. A state s is covered by
another state s′ if their locations are equal and both com-
ponents are covered. The transfer function T gets a product
state s = (l, se, ss), an operation op, a precision π = (πe, πp)
and calculates Te((l, se), op, πe) × Tp((l, sp), op, πp), that is
the Cartesian product of the successor explicit and predicate
states. Abstraction usually starts with an empty precision
π = (∅, ∅) for both components. In product abstraction, the
main decision regarding the new precision should be made
during refinement R. The component refiners Re and Rp will
return new variables π′e and predicates π′p to be tracked and
the algorithm has to decide which of them to use. In the next
section we propose a new strategy to choose between explicit
values and predicates.

III. PRODUCT STRATEGY WITH LIMITED ENUMERATION

The key idea of our approach is that we always extend
the set of explicitly tracked values (πe) first, since handling
predicate formulas is more expensive computationally (e.g.,
checking implications). However, a downside of explicit-value
analysis is that some problems are not decidable due to
expressions with unknown values (>) that cannot be evaluated.

l0

l1 lf

le

[x 6= 1]

[x = 1]

[x 6= 1]
[x = 1]

(a) A simple CFA.

l0,>

l1,> lf ,>

le, 1

lf , 1

(b) ARG with πe = {x}. Nodes are labeled
with a location and the value of x.

Fig. 1: Example CFA and ARG with explicit-value analysis.

Recall the example CFA in Figure 1a, which first checks if
x 6= 1 and then if x = 1 (which obviously cannot be possible).
If no variables are tracked initially, the error location is trivially
reachable and the refiner extends the precision with the only
variable x. Figure 1b shows the corresponding ARG with
πe = {x}. Since x is not initialized, the initial state is (l0,>).
Then we check the condition x 6= 1. Since x is unknown,
the condition can both hold and not. If it does not hold, the
program terminates in the final location (lf , 1). However, if it
holds we proceed to l1, where x is still >, since we cannot
represent the fact that x 6= 1 in explicit value analysis. Then
we check the condition [x = 1], which can again hold or not,
due to x being unknown. This way, the program can still reach
the error location (le, 1), which is a spurious counterexample.
Since there are no more variables to be tracked, the program
cannot be verified (with explicit-value analysis).

To address such limitations, we propose a modified version
of the explicit transfer function Te, where we start to list all
possible values instead of using a > value if an expression
cannot be evaluated. This can already solve the problem for
some cases, e.g., an assumption [0 < x < 5] would yield 4
successors with 4 values for x (instead of a single successor
where x = >). However, this can also easily lead to state
space explosion. As an example, consider the CFA in Figure 1a
again, where x was already added to the set of explicitly
tracked variables as previously (πe = {x}). The corresponding
ARG for this precision can be seen in Figure 2a. The program
starts at state (l0,>), from where it can go in two different
directions. Taking the assumption [x = 1], it arrives at state
(lf , 1) since x = 1 is the only possible value satisfying the
formula. Otherwise, the program moves to l1, where it starts
to list the possible values for [x 6= 1], which obviously leads
to a state space explosion.

To overcome this issue, we also introduce a limit k. During
enumeration in Te, we count the different values for each
explicitly tracked variable (in πe). If the number of different
values of a variable vi in the successor states exceeds k, we
remove it from the explicit precision (πe := πe \ {vi}) and
also mark it with a flag, so that the refiner will not include it
again. Since the precision changed, we restart the enumeration
in Te, but now with a new precision πe. We repeat this process
until there are no more successor states to be enumerated and
no variable was excluded.

l0,> lf , 1

l1, 0 l1, 2 l1, 3 . . .

(a) ARG created with πe =
{x} and enumeration.

l0

l1,¬(x = 1)

lf , x = 1

lf ,¬(x = 1)

(b) ARG created with
πp = {(x = 1)}.

Fig. 2: Examples for the new product abstraction algorithm.

During refinement R we use both the explicit refiner Re

and the predicate refiner Rp to obtain new variables π′e and
predicates π′p to be tracked. We loop through the new variables
vi ∈ π′e and check if they are marked with the flag. If they
are, we do not include them, but rather extend the predicate
precision πp with those predicates in π′p that contain vi.
Otherwise, we extend the explicit precision πe with vi.

Recall the ARG in Figure 2a again. Our new transfer
function Te stops enumerating values for x after a finite k,
removes x from the set of explicitly tracked variables πe
and restarts the enumeration. However, now x is not tracked
anymore, so we trivially reach the error location (similarly to
Figure 1b but we reach (le,>), since x is not tracked). The
product refiner R will not add x again, since it is flagged.
Instead, it uses Rp to add some predicate, e.g., x = 1 to
the precision πp. Figure 2b shows the ARG created with the
new precision. From l0, the program can arrive to the final
location (lf , x = 1) where the predicate is true, or move
to (l1,¬(x = 1)) where the negation of the predicate holds.

6

At this point, the predicates keep track that x 6= 1, so the
algorithm can only proceed to (lf ,¬(x = 1)). Since there are
no more states to explore and the algorithm did not reach the
error location, the program is safe. For this example, product
abstraction first used x, then discarded it and used a predicate
instead. However, in general it is possible that some variables
remain explicitly tracked, while others have predicates.

IV. EVALUATION

We implemented the algorithm in the open source Theta
framework [2], which already includes the explicit and predi-
cate domains, and the Z3 SMT solver [10]. We implemented a
modified transfer function for the explicit domain and a refine-
ment procedure for product abstraction. We ran measurements
on 90 PLC (programmable logic controller) programs from
CERN [11] and 340 C programs from the Competition on
Software Verification (SV-Comp) [12], containing large event-
driven systems (eca), small locking mechanisms (locks) and
large server-client systems (ssh). We evaluated these programs
with eight different configurations: explicit-value analysis
(EXPL), predicate abstraction (PRED) and our new product
strategy (PROD) with six different limits (k = 1, 2, 4, 8, 16, 32).
We ran the measurements on a 64 bit Ubuntu 16.04 OS
using the RunExec tool from the BenchExec suite [13], which
ensures highly accurate results. We enforced a time limit of
180 seconds and a memory limit of 4 GB.

124/180 143/143 30/90 15/17

94/180 143/143 80/90 8/17

121/180 143/143 81/90 9/17

121/180 143/143 66/90 9/17

121/180 143/143 66/90 9/17

119/180 143/143 66/90 9/17

120/180 143/143 66/90 9/17

120/180 143/143 66/90 9/17

312/430

325/430

354/430

339/430

339/430

337/430

338/430

338/430

2197s 197s 59s 347s

6434s 195s 534s 116s

2761s 218s 672s 202s

2737s 218s 409s 201s

2788s 222s 418s 201s

3156s 220s 406s 202s

3351s 227s 421s 204s

3332s 232s 411s 203s

2800s

7280s

3852s

3564s

3629s

3983s

4203s

4178s

EXPL

PRED

PROD_01

PROD_02

PROD_04

PROD_08

PROD_16

PROD_32

eca locks plc ssh TOTAL

Category

C
on

fig
ur

at
io

n

0%

25%

50%

75%

100%

Success
rate

Success rate and total time

Fig. 3: Heatmap of the results for each configuration in each
category. Cells include the number of verified models among
the total and the required time for the successful executions.

The heatmap in Figure 3 shows the results of our evalua-
tion. Rows correspond to the configurations, while columns
represent categories. The last column is a summary of all
categories. Each cell contains the number of successfully
verified models and the total number in that category. We
also included the execution time (in seconds) required for
the successful runs. We can see, that the product abstraction
strategies have better overall performance than explicit values
and predicates. Furthermore, product abstraction with k = 1
has the best overall performance, verifying a total number of
354 models.

In category plc, PRED is successful but EXPL is not, and
the eca category is the other way around. However, the PROD
strategies (especially with k = 1) provide a good performance
in both categories, combining the advantages of the two base
domains. The locks category was easy for each configuration.
The ssh category is interesting, because EXPL performs well,
but the PROD strategies are closer to PRED with a rather poor
result. This would require further investigation.

In general, the overall results confirm that our product
abstraction strategy can successfully combine the strengths of
explicit-value analysis and predicate abstraction.

V. CONCLUSIONS

In our paper we investigated CEGAR-based software model
checking and presented a new product abstraction strategy,
which combines explicit values, enumeration and predicate
abstraction. We implemented the new algorithm in the Theta
verification framework, ran measurements on various input
programs and compared it to existing domains. Our experiment
shows that the new algorithm can successfully combine the
advantages of explicit-value analysis and predicate abstraction,
yielding a more efficient model checking strategy.

REFERENCES

[1] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-
guided abstraction refinement for symbolic model checking,” Journal of
the ACM, vol. 50, no. 5, pp. 752–794, 2003.

[2] T. Tóth, A. Hajdu, A. Vörös, Z. Micskei, and I. Majzik, “Theta: a
framework for abstraction refinement-based model checking,” in Proc.
17th Conf. on Formal Methods in Computer-Aided Design. FMCAD
inc., 2017, pp. 176–179.

[3] D. Beyer, T. A. Henzinger, and G. Theoduloz, “Program analysis
with dynamic precision adjustment,” in Proceedings of the 2008 23rd
IEEE/ACM International Conference on Automated Software Engineer-
ing. IEEE, 2008, pp. 29–38.

[4] D. Beyer, S. Löwe, and P. Wendler, “Refinement selection,” in Model
Checking Software, ser. LNCS. Springer, 2015, vol. 9232, pp. 20–38.

[5] D. Beyer, T. A. Henzinger, and G. Théoduloz, “Configurable software
verification: Concretizing the convergence of model checking and pro-
gram analysis,” in Computer Aided Verification, ser. LNCS. Springer,
2007, vol. 4590, pp. 504–518.

[6] A. R. Bradley and Z. Manna, The calculus of computation: Decision
procedures with applications to verification. Springer, 2007.

[7] S. Graf and H. Saidi, “Construction of abstract state graphs with PVS,”
in Computer Aided Verification, ser. LNCS. Springer, 1997, vol. 1254,
pp. 72–83.

[8] D. Beyer and S. Löwe, “Explicit-state software model checking based
on CEGAR and interpolation,” in Fundamental Approaches to Software
Engineering, ser. LNCS. Springer, 2013, vol. 7793, pp. 146–162.

[9] Á. Hajdu, T. Tóth, A. Vörös, and I. Majzik, “A configurable CEGAR
framework with interpolation-based refinements,” in Formal Techniques
for Distributed Objects, Components and Systems, ser. LNCS. Springer,
2016, vol. 9688, pp. 158–174.

[10] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools and
Algorithms for the Construction and Analysis of Systems, ser. Lecture
Notes in Computer Science. Springer, 2008, vol. 4963, pp. 337–340.

[11] B. Fernández Adiego, D. Darvas, E. Blanco Viñuela, J.-C. Tournier,
S. Bliudze, J. O. Blech, and V. M. González Suárez, “Applying model
checking to industrial-sized PLC programs,” IEEE Trans. on Industrial
Informatics, vol. 11, no. 6, pp. 1400–1410, 2015.

[12] D. Beyer, “Software verification with validation of results,” in Tools and
Algorithms for the Construction and Analysis of Systems, ser. Lecture
Notes in Computer Science. Springer, 2017, vol. 10206, pp. 331–349.

[13] D. Beyer, S. Löwe, and P. Wendler, “Reliable benchmarking: require-
ments and solutions,” International Journal on Software Tools for
Technology Transfer, 2017, online first.

7

Data quality and usability requirement analysis with
visualization techniques and domain-specific

constraints
Dezső Burján, László Gönczy

Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest, Hungary
Email: burjan.dezso.bme@gmail.com, gonczy@mit.bme.hu

Abstract—Nowadays numerous problems can be solved with
data analysis which needs proper data collecting and storing
mechanisms. Data has to be verified and validated according to
requirements of quality and usability.
In our paper, we propose a method following the ISO 8000
standards and a supporting tool based on modern visualization
techniques. The data quality process is greatly supported by
proper visualization plots and vital questions can be answered
with visualization methods and domain-specific constraints, such
as the usability of the gathered data or the samples sufficiency.

Index Terms—data quality, data usability, visualization,
domain-specific constraints, data requirement analysis

I. INTRODUCTION

Data analysis is important, but to get the right results we
need usable datasets which have good quality. In our study,
we work on datasets which have data frame formats.
The structure of the document is as follows. Section II presents
all the work which are related to our study. Section III shows
the different characteristics of the requirements for data quality
and usability. Section IV presents our method’s meta-rules and
visualization techniques, which can be used for verifying the
requirements of a dataset. Section V shows an example of
how to use our method on a Cloud-based distributed service.
Section VI summarizes our work and also writes about the
further development we plan to make.

II. RELATED WORK

There are numerous studies related to our work; we high-
light the two which we relied on in our work, both write about
data quality and usability requirements. ISO 8000 standard
[1], lays down the foundations. Reference [2], uses the first
study and also gives a method called Data Quality Assessment
Framework (DQAF) which can be used for checking that
if the validity of the requirements for a dataset. Reference
[8] provides and [9] defines a tool. Reference [7] gives a
model-driven development based approach for resilient cyber-
physical system and a method for verifying CPS components.
Reference [6], shows how different visualization methods can
be used to preserve the resilience of a system. There are studies
[12], [13], [14], [15], [16], [17] about typical data cleaning

techniques, but here the meta-rules we used in our work isn’t
presented.

III. REQUIREMENT CHARACTERISTICS FOR DATA QUALITY
AND USABILITY

If we apply ISO 9000:2015 [3] definition of quality, data
quality can be defined as the degree to which a set of character-
istics of data fulfills requirements. Reference [2] descriptions
of the characteristics can be found on the table below.

Characteristics Description and Validation
Completeness Completeness implies having all the necessary or

appropriate parts; being entire, finished, total.

Validation: Compare summarized data in amount
field to summarized amount provided in a control
record.

Timeliness Timeliness is associated with data delivery,
availability, and processing.

Validation: Compare actual time of data delivery to
scheduled data delivery.

Validity Validity is differentiated from both accuracy and
correctness.

Validation: Compare values on incoming data to
valid values in a defined domain (reference table,
range or mathematical rule).

Consistency Consistency is the degree to which data conform to
an equivalent set of data, usually, a set produced
under similar conditions or a set produced by the
same process over time.

Validation: Compare record count distribution of
values (column profile) to past instances of data
populating the same field.

Integrity Integrity refers to the state of being whole and
undivided or the condition of being unified.

Validation: Confirm record level (parent/child) ref-
erential integrity between tables to identify parentless
child records (i.e., ”orphans records”).

A dataset can be considered usable if it fulfills the require-
ments and it is accurate and reasonable.

8

Fig. 1. The model of the requirement checking engine.

IV. REQUIREMENT ANALYSIS

In this section, we will present our method, which can
determine the validity of the requirements on a dataset.
The Requirement checker engine has three parameters:

1) Rules, which derived from the requirements using the
meta-rules presented in this paper.

2) Dataset under validation.
3) Index Variable, a column from the dataset and this also

the parameter for the plots.

A. Meta-rules

Our method extends the DQAF method with meta-rules,
which validity on a dataset can be checked using our Rule
checker component. We represent the meta-rules with the
grammar presented in the future. The operators in our meta-
rules are the following:

• SingleBound: Numeric values of variable X must be
below/above value Y.

• MultipleBound: Numeric values of variable X must be
between/outside of values Y and Z.

• SingleValue: Values of variable X must (not) be Y.
• Derivation: Values of variable X can be calculated from
Y1, ..., YN .

• Classification: Qualitative values of variable X must be
in the proper Y class.

The operands in our meta-rules are the following:
• TypeBounding: Type of variable X must be Y.
• Environment: Next or previous values can be used rather

than current.
• TimeRanges: For datasets which contain timestamps, we

can add time intervals.

• Variables: Instead of constants, column values can be
used (e.g., values of Y variable).

• Quantified: For quantized variables, an order can be
defined (e.g., GREEN < YELLOW < RED). Using this
the category with the highest or lowest importance can
be specified.

• Aggregators: Aggregator functions can be used.
• LogicalOperands: The above rules can be combined

with NOT/AND/OR logical operators.
With our rules above every data quality requirement can

be described, which belongs to the mentioned characteristics.
And with boolean logic, the validity of a rule can be checked
on a dataset.

B. Visualization techniques

We added plot types for representing the rules as a vi-
sualization problem, which is made by the Rule Visualizer
component:

• SingleBoundChecker: Y-axis is variable A, X-axis is
Index variable, the horizontal line is the THRESHOLD
(maximum or minimum).

• MultipleBoundChecker: Y-axis is variable A, X-axis is
Index variable, the horizontal line 1 is THRESHOLD1

(lower) and horizontal line 2 is THRESHOLD2 (up-
per).

• SingleValueChecker: Y-axis is variable A, X-axis is
Index variable, the horizontal line is VALUE (equal or
not equal).

• NullValueChecker: Y-axis is variable A, X-axis is Index
variable, if there is a gap in the plot, then there is a
NULL value in that column.

• ComparingCategorials: Mosaic plot for comparing two
categorical variables.

• Multiple horizontal lines can be in a graph, based on the
AND/OR logical statements.

• The horizontal lines can start from a specific X point and
also can end in one for representing time intervals.

• If a column is categorical, then we can represent it as
integer 1, 2, ..., N-1, N, where N is the number of
categories.

Using this visualization method makes it easier to understand
the rules and the result of the validation process can also be
checked manually.
Assuming that requirements are defined in the rule language
proposed in the current paper, the tool offers automated
evaluation support. The plots generated automatically by the
scripts, which we made.
Using the R [5] programming language, we have created a
script for which the user can specify requirements based on
the meta-rules, a data set and a column that is responsible
for indexing, the program then draws the appropriate graph
using the ggplot2 [4] package in R, and lastly, it verifies that
the data satisfies the specified rule.

9

Fig. 2. The connections between the main aspects of our method.

V. CASE STUDY

The case study is based on measurements performed on
a cloud-based distributed service [10] [11] which provides
IP-based multimedia communication. The measurements were
benchmarking the performance and performability of this
service with multiple server-side configurations and workload
characteristics. The aim of the measurements was to find
early predictors for Service-level Agreement violations. The
dataset was created during performance measurement and has
946 rows and 215 columns.

Fig. 3. The architecture of the distributed service.

In the following, we define sample requirements in the
dataset containing performance measurement data.

Characteristics Requirement
Completeness The TIMESTAMP column must not contain NULL

value.
Timeliness The State value must be calculated before the next

granularity period.
Validity The CPUUtil nice Sprout columns must contain

only numeric values.
Consistency The values of State Next must be equal with the next

value of the State variable.
Integrity The M ID values must be the same for a single

measurement data.

The following table summarizes rules corresponding to the
above requirements.

Characteristics Rule
Completeness Values of variable TIMESTAMP must not be NULL.

Validity Type of variable CPUUtil nice Sprout must be dou-
ble.

Consistency Values of variable State Next must be the next values
of State variable.

Integrity Values of variable M ID must not be 2022.

Fig.4,5 and 6 shot plots created by Rule Visualizer compo-
nent during data validation.

Fig. 4. The rule for Validity characteristic is fulfilled because the black line
is continuous.

10

Fig. 5. The rule for Integrity characteristic not fulfilled, because the black
line is in a different position from the blue one.

Fig. 6. The rule for Consistency characteristic not fulfilled, because there are
red rectangles in the mosaic plot.

Fig. 7. The result of the Rule Checker component.

VI. CONCLUSION AND FUTURE WORK

During our work, we extended the DQAF method with
different meta-rules, which allow formulating requirements
with different characteristics for a data set. Also, we have
created different types of plots that visually support the
verifiability of the requirements.
In the future we will want to extend the script so more
visualization methods can be used, which could be better for

understanding the requirement analysis.

We consider using Context-aware Timed Propositional Lin-
ear Temporal Logic for representing the meta-rules as logical
formulas. We plan to add syntax and grammar checking
subsystems for our program.
Another important question is runtime correction, to extend
the method not only to check the fulfillment of a rule, and
also to fix the rule violations if possible.
Currently, our work only uses logical and arithmetic formulas,
in the future, we plan to support more complex requirements,
e.g., checking relations among multiple variables or distribu-
tion of a single variable.
We also plan to add report generation functionality to our tool,
which can present the problematic rows and columns and the
user can view it whenever he likes.

VII. ACKNOWLEDGEMENTS

The project was funded by the European Union, co-financed
by the European Social Fund (EFOP-3.6.2-16-2017-00013).

REFERENCES

[1] ISO/TS 8000 Standard, “Data Quality and Enterprise Master Data”.
https://www.iso.org/committee/54158/x/catalogue/

[2] L. Sebastian-Coleman, Measuring Data Quality for Ongoing Improve-
ment: A Data Quality Assessment Framework, 1st ed., 2013.

[3] ISO 9000 Standard, “Quality Management Principles”.
https://www.iso.org/standard/45481.html

[4] W. Hadley: ggplot2: Elegant Graphics for Data Analysis. Springer
(2010).

[5] R Core Team: R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria (2013).
https://www.r-project.org/

[6] A. Pataricza, I. Kocsis, Á. Salánki, L. Gönczy (2013) Empirical Assess-
ment of Resilience. In: Gorbenko A., Romanovsky A., Kharchenko V.
(eds) Software Engineering for Resilient Systems. SERENE 2013. Lec-
ture Notes in Computer Science, vol 8166. Springer, Berlin, Heidelberg

[7] L. Gönczy, I. Majzik, Sz. Bozóki, and A. Pataricza. MDD-based design,
configuration, and monitoring of resilient cyber-physical systems. Trust-
worthy Cyber-Physical Systems Engineering, pages 395–420, 2016.

[8] P. Oliveira, F. Rodrigues and P. Henriques (2005). A Formal Defini-
tion of Data Quality Problems.. Proceedings of the 2005 International
Conference on Information Quality, ICIQ 2005.

[9] P. Oliveira, F. Rodrigues and P. Henriques ”SmartClean: An Incremental
Data Cleaning Tool,” 2009 Ninth International Conference on Quality
Software, Jeju, 2009, pp. 452-457. doi: 10.1109/QSIC.2009.67

[10] I. Kocsis, Á. Salánki, A. Pataricza. ”Measurement-Based Identification
of Infrastructures for Trustworthy Cyber-Physical Systems.” Trustworthy
Cyber-Physical Systems Engineering (2016): 369.

[11] D. Burján (2018) ”Application of decision support methods in perfor-
mance model synthesis” (BSc Thesis, BME VIK MIT)

[12] ISO/IEC 25012 x ISO/IEC 25012 Software-Engineering - Software
product Quality Requirements and Evaluation (SQuaRE) - Data quality
model. https://www.iso.org/standard/35736.html

[13] Rafique, I., Lew, P., & Abbasi, M.Q. (2012). Information Quality
Evaluation Framework : Extending ISO 25012 Data Quality Model.

[14] E. Rahm & H. D. Hong (2000). Data Cleaning: Problems and Current
Approaches. IEEE Data Eng. Bull.. 23. 3-13.

[15] Van den Broeck J, Argeseanu Cunningham S, Eeckels R,
Herbst K (2005) Data Cleaning: Detecting, Diagnosing,
and Editing Data Abnormalities. PLoS Med 2(10): e267.
https://doi.org/10.1371/journal.pmed.0020267

[16] W. Hadley (2014). Tidy Data. Journal of Statistical Software, 59(10), 1
- 23. doi:http://dx.doi.org/10.18637/jss.v059.i10

[17] N. Szilvásy, B. Urbán (2015) ”Adatelemzési folyamatok diagnosztikája
és adatminőségérzékenység-elemzése” (TDK-dolgozat, BME VIK MIT)

11

Model checking and test generation: towards a
combined approach to software verification

Mihály Dobos-Kovács∗, András Vörös∗†
∗Budapest University of Technology and Economics,
Department of Measurement and Information Systems,

†MTA-BME Lendület Research Group on Cyber-Physical Systems

Abstract—Ensuring the correctness of safety-critical systems is
a key aspect of the development process. Various approaches exist
to find software bugs: (1) model checking examines the mathe-
matical model of the software and proves the logical correctness,
while (2) testing is an efficient and practical technique to find
bugs. Model checking is a computationally expensive task, as it
explores all the possible states of the software, and despite the
technological advances of the last decade, software that cannot
be formally verified still exists. On the other hand, testing is
computationally cheaper than model checking, and widely used
by the industry, but providing an efficient test suite for a given
program is still under heavy research.

The goal of my work is to combine model checking and testing
to exploit the advantages of both approaches. I introduce a
new algorithm that uses an abstraction-based model checking
technique to explore the behavior of the software. In case the
model checking algorithm proves the properties of the software,
the procedure terminates. If the algorithm can not reach a
conclusion, test generation is applied, exploiting the information
gathered during state space traversal of model checking.

I. INTRODUCTION

Ensuring the correct behaviour of safety-critical systems
is an important task during system development. Various ap-
proaches exist to find software bugs with their own advantages
and disadvantages.

Model checking is one of such approaches that examines the
mathematical model of the software and proves the absence
of bugs, or provides a counterexample to correctness. Model
checking is a computationally expensive task, as it usually
explores all the possible states of the program. Despite the
technological advances of the last decade, we are still unable
to formally verify industrial software systems. There are two
barriers: on the one hand, software model checking is an
algorithmically undecidable task. On the other hand, when the
analysis is restricted to programs with finite memory and finite
data structures, state space explosion still prevents successful
verification.

Testing [8] is an effective technique to find the flaws in the
source code of software systems. Testing is a standard step in
every development process, and it is also prescribed by certain
standards. The challenge of testing is usually finding a proper
test suite, that covers the behavior of the program while still
having a feasible size. In the literature, several approaches
were published that increased the efficiency of test suits [9]
[10] [11] [12].

The goal of this work is to combine model checking with
testing to exploit the advantages of both approaches. Model
checking explores the state space to find errors or prove the
correctness of the software. However, when the verification
algorithm reaches a resource limitation, our new approach tries
to use up the information gathered during the verification and
generate a test set targeting the unexplored part of the program.
The approach can focus testing to the critical parts of the
program, and we hope that fewer test cases will lead to the
more rigorous testing of software systems.

II. BACKGROUND

Model checking is a common name of algorithms based
on the rigor of mathematics. Model checking takes a for-
mal model and a formal requirement, and verifies if the
requirement holds on the model. To utilize model checking
on computer programs, they need to be formalized. One of
these formalizations is Control Flow Automata (CFA) [2],
that consists of control locations and operations represented
as edges.

One of the model checking algorithms is the so-called
CounterExample-Guided Abstraction Refinement (or CEGAR
for short) [2] [3] [4], that is used in our framework for
exploring the behaviour of the software under analysis. The
input of the CEGAR algorithm is a formal model (CFA in the
case) and a formal requirement. The algorithm either proves
that the given requirement holds on the given model, or proves
otherwise, by giving a counterexample. Certain locations of
the CFA are marked as error locations, and the given formal
requirement is that a given error location is unreachable. Such
error locations can be created from assertions in the program.

The state space of even a simple program can be huge if
not infinite. To tackle this problem, CEGAR uses abstraction,
such as explicit value abstraction [2] or predicate abstraction
[5] [6]. In our framework, we chose predicate abstraction that
follows a set of predicates (Boolean formulas over the set
of program variables) instead of the concrete values of the
variables. Henceforth an abstract state of a program is a set
of (concrete) states that share the same control locations, and
a set of predicates describing them.

The core of the algorithm is the so-called CEGAR-loop
that consists of two distinct phases: (1) the abstraction and
(2) the refinement phase. The task of the abstraction is to
build the state space in the form of an abstract reachability

12

tree with the given set of predicates. If an erroneous state is
encountered during the building phase, it is the task of the
refinement to determine whether that state is reachable in the
concrete state space as well. If an error location is reachable,
then the program is unsafe, if it is not then more predicates
need to be used [7], and the abstraction continues to build
the state space. If the abstract state space contains no error
locations, then the concrete state space does not either, as the
abstract state space is an over-approximation of the possible
state space of the program, so the program is safe.

III. OVERVIEW OF APPROACH

In our work, we aim to combine model checking and testing
to analyze the safety of software (illustrated on Fig. 1). As
a result of limited resources (time, memory, etc.), formal
verification cannot always succeed. Should that happen, the
verification task needs to be terminated, and test generation is
applied. The test generation method can use the output of the
model checking procedure: the Abstract Reachability Tree. The
role of applying model checking is to decide the correctness
of the software (safe depicted as a tick, unsafe depicted as a
cross). However, when verification fails to reach a conclusion,
then test running can still find bugs. If testing finds no errors
either, then the safety of the program is undecided with the
given resources (depicted as a question mark).

Fig. 1. Combining model checking and testing

Once the CEGAR algorithm terminates, the information
gained during the traversal needs to be extracted. The algo-
rithm stores this information in the so-called Abstract Reachi-
bility Tree. Each node in the tree corresponds to an abstract
state, while the children of the node denote the abstract states
reachable via an operation from the parent node. Each node
of the tree has one of the following four types:

• Unreachable: Nodes whose abstract state is part of the
state space, but no input exists that drives the program to
these states. These nodes can be removed from the tree.

• Covered: If a node A in the tree shares the same control
location as a node B, and the predicates of A imply the
predicates of B , then B is covered (by A).

• Expanded: A node is expanded if the tree contains the
nodes that are reachable from that node via an operation.

• Incomplete: All nodes that are not unreachable, covered
or expanded are incomplete.

Incomplete nodes represent the ”doorway” to the untra-
versed part of the state space, as all the possibly reachable
states are reachable through them. (All the error states that are
reachable from a covered node are reachable from the node
that covers it, while all the error states that are reachable from
an expanded node are reachable from one of its children.) The
goal of test generation is to guide the program through these
doorways, which can be achieved by creating an SMT problem
[1] from the operations and guards on the path from the root
to the incomplete node, and solving the problem for the input
variable (note, that this method does not provide any coverage
guarantee). This procedure will be detailed in the followings.

For example, a part of an Abstract Reachability Tree is
depicted on Fig. 2. The node with l3 is unavailable as no
such x exists that satisfies 3 ≤ x < 3. The node with l1 in the
bottom left corner is covered by the node labelled l1 in the
center. The node with l1 in the center and the node with l0
are expanded, while the node labelled l2 is incomplete.

Fig. 2. (Part of an) Abstract Reachibility Tree.

IV. GENERATING TEST CASES

Using the information extracted from CEGAR, test cases
can be generated utilizing more approaches.

A. Boundary value analysis of input variables

Boundary value analysis is a black box testing technique,
that assumes, that errors happen more frequently at the ex-
treme/boundary values of variables. It is similar to testing
based on equivalence partitioning, however, it focuses rather
on the corner cases (and does not build equivalence classes
explicitly). In our setting, we do local boundary analysis, that
is motivated by traditional boundary analysis techniques, but
focuses the boundary values by the unexplored part of the state
space.

To do boundary value analysis, for each input variable the
possible maximum and minimum values should be found.
As mentioned earlier, an SMT problem can be constructed
out of the operations on the path to an incomplete node.

13

Solving this problem gives one possible combination of many
for the input variables. By giving the solver an optimization
constraint, such as the value of one of the variables should
be minimal/maximal, such a solution can be found, where the
given variable is on one of its boundary values. Some solvers
can solve the optimization problem [13].

The solution of the optimization problem is a combination
of input values that guides the execution to the given incom-
plete node, while one of the input values is minimal/maximal.
This minimal/maximal value can differ for the same variable
if an other incomplete node is reached. These minimal or
maximal values are local: the program can accept lower/higher
input values than these boundary values, but on the given
path, and on the state space that is reachable from the given
incomplete node, these are the local minimal/maximal values.
The computed values focus onto the unexplored part of the
software.

To apply boundary value analysis systematically, the SMT
problem should be solved twice for each input variable: for
the first time the optimization constraint should be to minimize
the current variable, for the second time to maximize it. Out of
each solution of the SMT problem, a test case can be generated
that tests the software for the minimal/maximal value of one
input variable.

B. Robustness testing

The philosophy behind robustness testing is similar to
boundary value analysis. The difference is that by robustness
testing the errors are assumed to happen on the extremes of
arithmetic conditional expressions.

The process of finding the necessary input values is similar
to the method described in the previous subsection. The SMT
problem with an optimization constraint needs to be solved,
and using the solution, a test case can be generated. However
the optimization constraint is not to minimize/maximize one
of the input variables rather to minimize/maximize one of the
variables that happen to be a result of an arithmetic expression.

For example, let us assume that (z ≤ 5) arithmetic condi-
tional expression is given in a guard, where z is a positive
integer. According to robustness testing the errors are more
frequent on the extremes, so the possible minimal and maximal
value of variable z should be determined, and used in the test
cases. As the value of z might depend on the value of other
variables, an SMT problem needs to be constructed and solved,
as described earlier.

To apply robustness testing systematically, again the SMT
problem should be solved twice for each variable in an arith-
metic expression: for the first time the optimization constraint
should be the minimization of the variable, for the second time
the maximization. These test cases test the software for errors
that happen in arithmetic conditions, for an input or computed
variables on boundary values.

C. Finding number representation errors

In a computer program, every variable is stored on a finite
number of bits. As a result, the range of every variable is a

finite set (all the integer have a minimal and a maximal value,
the floating-point variables are stored using the exponent and
mantissa, etc.). A number representation error occurs when
such a value is reached during the running of the software,
that cannot be represented using the type of the variable.

For example. Let x, y, z be 4 bit unsigned integers (meaning,
that the finite range of these variables is {0, 1, ..., 15}. Let
x = 8 and y = 8 hold. If z = x + y, then z should be 16,
which is not part of the domain of the variable, so it cannot
be represented. This kind of error is called overflow/underflow,
and a common problem in embedded systems.

Formal methods should take into consideration these char-
acteristics of real-life program variables. Model checking does
logical analysis (in our specific use-case; other model checkers
can do bit-precise verification as well), so the range of every
integer variable is the set of integers (Z), while the range of
every floating point variables is the set of real numbers (R).
As a result, formal methods may miss some software bugs that
are related to the representation of numbers.

Finding these kinds of errors is different from the earlier
methods: as it does not aim the untraversed part of the state
space, rather the traversed one. The aim is to find errors, that
model checking might have missed. To identify these errors,
those variables should be found first, whose value might be
unrepresentable. These variables are those that store the result
of an arithmetic operation (such as adding, multiplying, etc.
variables). This information can be extracted from the source
code.

Fig. 3. A C code, and the corresponding ART (fraction)

14

Numerous SMT problems can be constructed from the
operations and guard expressions on the path to the leafs of
the ART. However, new constrains must be added, that state
the possible range of each input variable. The optimization
constraint should be the minimization/maximization of the
variables under analysis (whose value might be unrepre-
sentable). If in the solution of the SMT problem the value
of the variable is outside the representable range, then an
overflow/underflow occurred. Again, using the solution a test
case can be generated that reproduces the error.

There are other kinds of number representation errors as
well, but they are not discussed here.

V. CASE STUDY

On Fig. 3 a simple C program is depicted, that receives two
input numbers and behaves differently based on their sum. A
part of the source code is depicted below, with a fraction of
the abstract reachability tree corresponding to the code. The
root of the fraction is l0 while the incomplete nodes are l2
and l3. The three methods described earlier will be presented
using the paths from l0 to l2 and l3. Furthermore let us assume
that all variables are unsigned integers.

To apply boundary value analysis on the left hand side
(from l0 to l2), the input variables should be found first. These
variables are x and y. Therefore the optimization constraints
and the solutions of the SMT problem will be the following:

• max(x): {(x = 5), (y = 0)}
• min(x): {(x = 0), (y = 0)}*

• max(y): {(x = 0), (y = 5)}
• min(y): {(x = 0), (y = 0)}*

To apply robustness testing on the left hand side (from l0
to l2), the variables in arithmetic conditions should be found
first. The only variable is z, because of the [z ≤ 5] condition.
Therefore the optimization constraints and the solutions of the
SMT problem will be the following:

• max(z): {(x = 5), (y = 0)}*

• min(z): {(x = 0), (y = 0)}
To find errors of number representations on the right hand

side (from l0 to l3), the variables that can overflow/underflow
need to be identified first. The only variable is z, because the
it is the only variable that stores the result of an arithmetic
operation (x + y). Let us assume, that the range of x, y, z is
the integers between 0 and 15 (4 bit unsigned integer). The
optimization constraints and the solutions of the SMT problem
will be the following:

• max(z): {(x = 15), (y = 15)}*

• min(z): {(x = 3), (y = 3)}*

The first case, when both x and y are 15, the value of z is 30,
so an overflow occurred.

VI. CONCLUSION

Ensuring correctness is a key aspect of the development
process in the safety-critical domain. However, it is not a trivial

*One out of many possibilities

task. Existing approaches, such as model checking and testing
both have their advantages and disadvantages: model checking
can prove the correctness for the price of heavy computations,
while testing can efficiently find bugs in software.

By combining them, it is possible to exploit the advantages
of both worlds. If the verification has enough resources to
complete the task, then the correctness can be decided. If it
is aborted as the resources are not sufficient, the information
gathered during the state space traversal can be used to
generate test cases focusing on the unverified part of the state
space.

The novelty of the presented approach is that by using the
information provided by the verification algorithm, the targeted
test suite can be generated that results in fewer test cases.

A. Future Work

There is much work left. In the following, we introduce
some important directions:

• In the future, further test generating methods (eg. based
on equivalence classes) need to be developed to cover a
greater part of the state space.

• More CEGAR abstraction methods are needed to be
analyzed to extend our method.

• A common pattern in software is input inside a cycle,
which often breaks abstraction. Methods need to be
devised to provide values for such inputs during test case
generation. That is the main weakness of our approach.

REFERENCES

[1] L. De Moura and N. Bjørner, ”Satisfiability modulo theories: introduc-
tion and applications,” Communications of the ACM, vol. 54, no. 9, pp.
69-77, 2011.

[2] D. Beyer and S. Löwe, Explicit-State Software Model Checking Based
on CEGAR and Interpolation, Lecture Notes in Computer Science, vol.
7793, pp. 146-162, 2013.

[3] E. Clarke, O. Grumberg, S. Jha, Y. Lu and H. Veith, Counterexample-
guided Abstraction Refinement for Symbolic Model Checking, J. ACM,
vol. 50, no. 5 pp. 752-794, 2003.

[4] Á. Hajdu, T. Tóth, A. Vörös and I. Majzik, A configurable CEGAR
framework with interpolation-based refinements, Lecture Notes in Com-
puter Science, vol. 9688, pp. 158-174, 2016.

[5] S. Graf s H. Saidi, Construction of abstract state graphs with PVS,
Lecture Notes in Computer Science, vol. 1254, pp. 72-83, 1997.

[6] D. Beyer and M. Dangl, SMT-based Software Model Checking: An Ex-
perimental Comparison of Four Algorithms, Lecture Notes in Computer
Science, vol. 9971, 2016.

[7] K. L. McMillan, Applications of Craig interpolants in model checking.,
Lecture Notes in Computer Science, vol. 3440, pp. 1-12, 2005.

[8] I. S. T. Q. Board, Certified Tester Foundation Level Syllabus, 2018.
[9] N. Tillmann, J. de Halleux and T. Xie, Pex for Fun: Engineering an

Automated Testing Tool for Serious Games in Computer Science, 2018.
[10] J. de Halleux and N. Tillmann, Moles: Tool-Assisted Environment

Isolation with Closures, Lecture Notes in Computer Science, vol. 6141,
pp. 253-270, 2010.

[11] C. Cadar, D. Dunbar and D. Engler, KLEE: unassisted and automatic
generation of high-coverage tests for complex systems programs, in
Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation, 2008.

[12] G. LiIndradeep, G. Sreeranga and P. Rajan, KLOVER: A Symbolic
Execution and Automatic Test Generation Tool for C++ Programs,
Lecture Notes in Computer Science, vol. 6806, pp. 609-615, 2011.

[13] L. M. d. Moura s N. Bjørner, Z3: An Efficient SMT Solver, TACAS,
2008.

15

Design for dependability
of cyber-physical systems

András Földvári
Budapest University of Technology and Economics

Department of Measurement and Information Systems
fandras95@gmail.com

András Pataricza
Budapest University of Technology and Economics

Department of Measurement and Information Systems
pataric@mit.bme.hu

Abstract—Cyber-Physical Systems (CPS) are smart frame-
works integrating the physical and the computational worlds.
CPS plays an increasingly important rule in a variety of appli-
cation domains.

Building and managing CPSs is a highly complex task. Integra-
tion of the required services and assurance of the dependability
necessitate the fulfillment of a variety of functional and extra-
functional requirements.

However, the assurance of the compliance of application-
dependent requirements remains a primary task for all over the
architecture design, component development, system integration
process. Formal proof of correctness is increasingly used for V&V
of critical systems.

The interaction between components of a complex CPS is the
primary source of faults in integration-based system composition.
Integration testing is mandatory, even if the components are
typically pretested. Dependability assurance in a dynamic CPS
necessitates the extension of the verification of the interoperability
from design-time to runtime.

Our research objective was the elaboration of a method
assuring the dependability aspects of the designated system both
at design and runtime by supporting the system integration by
reusing component tests for integration testing and runtime ver-
ification. Our method extends the Assume-Guarantee approach
elaborated by NASA in the ’90s for testing to a general-purpose
runtime verification paradigm.

Index Terms—assume-guarantee, cyber-physical systems, de-
pendability

I. INTRODUCTION

A. Objective

Cyber-Physical Systems (CPS) are smart frameworks inte-
grating the physical and the computational worlds [1].

The conceptual design of CPS (Fig. 1) shows a continuous
interaction between (sub)systems, components, physical envi-
ronment and users [2]. A proper interaction is a prerequisite
for supervisory and control functions carried out by a CPS.
Even in the case of occurrence of minor faults, the physical
environment can potentially amplify the impact of a them to
a catastrophic failure.

Dependability of a service delivered by a critical CPS
necessitates the fulfillment of a variety of functional and extra-
functional requirements.

The project was funded by the European Union, co-financed by the
European Social Fund (EFOP-3.6.2-16-2017-00013) and SCCH Hagenberg
by providing a grant for a summer internship.

The built-in features of modern CPS runtime platforms
like those implementing the OMG standard Data Distribution
Service (DDS) [13] or similar frameworks [11] provide ex-
tensive support for a variety of core QoS attributes like secu-
rity, scalability, maintainability, throughput, and timeliness in
hard real-time applications, etc. Moreover, modern platforms
support dynamic, operation time system reconfiguration for
adaptive systems, on-demand CPS application synthesis and
multi-purpose use of CPS infrastructures.

B. System integration and dependability assurance

The architecture composition paradigm of complex CPSs
is component integration supporting dynamic integration of
physical and computational resources and software compo-
nents in a service-oriented way, as well. Service orientation
causes here a strong correlation between the topology of the
system (components) and the flow of data (communication).

Our research objective was the elaboration of a formal proof
of correctness-based method assuring primarily the integrity,
safety, availability, and reliability of the designated system at
design and runtime.

The integration of third-party components and sub-services
is challenging as they are frequently known only at a black-
box level by their interface definition and specification (input-
output invariants).

Fig. 1. Conceptual Design of Cyber-Physical Systems [2]

However, acceptance and compliance tests of the component
are typically provided to or elaborated by the system inte-
grator. This provides a potentially valuable asset for assuring

16

dependability of the system by supporting system integration
and runtime verification.

The starting point of our method is a well-founded approach
for reusing component tests in the system integration test
phase. Test oracles implement the assumptions on the use of
the component (input invariants) and check compliance of their
output to the specification. NASA developed a methodology
called assume-guarantee (A-G) [3] [4]for reusing the com-
ponent tests together with their oracles for testing the system
integration. As a component and its environment have to fulfill
the same requirements after integration as during component
testing.

A-G upholds a ”divide-and-conquer” approach [4]. It checks
proper embedding of a component into the system by checking
a) the compliance of its inputs potentially generated by other
components to the input specification and b) checking the
individual component outputs against their respective speci-
fications c) checking the composite outputs of multiple com-
ponents with respect to system specification. This technique
has long held promise for modular verification of the system
integration [4] by successively applying it in a component by
component integration process.

Furthermore, our extension exploits the fact, that the oracles
can be reused for runtime verification by embedding them
into the target system as monitoring components. Continuous
execution of the same checks during runtime as during design
time promises the following benefits: a) even a perfectly tested
component may fail during runtime if temporal faults occur in
its runtime environment; b) errors originating in the physical
environment can be detected, and their propagation can be
blocked prior to causing failures; c) runtime verification may
compensate for the incomplete fault coverage of the design
time tests by detecting hidden design faults and preventing
catastrophic consequences. Finally in dynamic architectures
system integration becomes to a runtime functionality neces-
sitating a proper check.

Here the design of test oracles and monitoring components
relies on a formal specification of the component input and
output invariants by means of temporal logic expressions
formalized as state machines. Automated code generation im-
plements the oracles and monitoring components from formal
models.

C. Structure of the Paper

Section II presents a methodology for adapting the general
purpose model-driven design approach for dataflow oriented
architecture design. Section III introduces the A-G approach
and Section IV presents the novel runtime verification process
based on the A-G artifacts.

II. ADAPTATION OF MODEL-DRIVEN ENGINEERING

Component-based integration of complex systems necessi-
tates a clean architectural paradigm for component intercon-
nection, especially in dynamic system architectures.

Modern CPS platforms support a direct mapping of the
functional topology of component interactions to the imple-

mentation configuration of interconnection. This dataflow ori-
ented integration offers simple and general purpose interfaces
to the individual components, while a descriptor of the func-
tional interaction defines their interconnection. Implementation
and management of the interconnection fabric is an exclusive
task of the runtime middleware. For instance the publish-
subscribe principle (Fig. 2) provides a pure dataflow view for
the application integration. QoS is managed by the runtime
platform. Structural changes originating in dynamic applica-
tion composition can be managed similarly at the platform
level.

Fig. 2. Data Distribution Service

An additional benefit of using standardized interfaces for
interconnection is that any component can be extended by
checkers without changing the functional interfaces. Cascading
input checkers - functional component - output checkers
(Fig. 3) results in a ”self-checking component”. This way
runtime verification can be seamlessly integrated into the
functional topology and implementation architecture.

Fig. 3. Input checker - Functional component - Output checker

Model-driven engineering is a software and system design
paradigm for the development of component-based systems.
It structures the specification and the specification based
requirements in the form of models.

As dataflow oriented system implementation maps the plat-
form independent model (PIM) of the target application in
an unchanged form directly to the implementation, thus a
simplified adaption of the classic model-driven development
(MDD) [5] approach was used in this paper (Fig. 4).

The design workflow is confined to the high-level func-
tional architecture (e.g., dataflow diagram) complemented
with the specification of the extra-functional requirements.
For instance, SysML based design (the dominating MDD
design paradigm for CPS) can be carried out by using only
the diagrams defining the requirements and the functional
architecture of the target system by a dataflow diagram.

Usually, the functional decomposition of a system defines
both static and dynamic requirements. However, the major-
ity of the extra-functional requirements is static, like those

17

Fig. 4. Model-Driven Engineering

related to structure and platform are responsible for repre-
senting the structure (architecture, composition, components)
and platform (deployment, integration, throughput). Runtime
verification of the soundness should be integrated into the
reconfiguration process verifying the compliance of the des-
ignated new configuration with the requirements in a similar
way as configuration checking is executed during design time.

Dynamic requirements (e.g., resilience aspect, temporal)
will be checked by introducing input-output monitors around
the components in order to assure their self-checking.

In both cases, management of alerts after error detection
should happen at the system level.

III. ASSUME-GUARANTEE APPROACH

Originally, A-G reasoning targeted the stepwise develop-
ment of concurrent processes. Over time, A-G reasoning was
extended to cover the entire V-model of the development
process from the design-level verification [3] to testing [4].
The design-level A-G artifacts guide the implementation phase
and provide efficient reasoning at the implementation level.

Assumptions and properties originate in dynamic require-
ments. The A-G artifacts (components, assumptions, prop-
erties) are represented as labeled transition systems in this
section.

Usually, developers have behavioral information about the
interfaces. The environment (other components in the system)
of the component is capable of invoking operation sequences
at the component’s interface. Assumptions define and restrict
the behavior of the environment. Guarantee properties are the
acceptable and required operation of the component. If A is
an assumption and P is a guarantee property, then A → P
indicates that P works correctly in an environment restricted
by A.

A-G artifacts are interpreted in terms of testing as fol-
lows: assumptions are functions used on test sequences (pre-
invariants) to determine if the operational conditions of the
component under test are correct. Properties (post-invariants)
are criteria which the component should comply with during
operation. If the test sequences and the test results were both

correct (valid), the component guarantees its property and
integrates well into the system.

Finding proper assumptions is difficult. The assumption can
be more abstract (less permissive) than the actual implementa-
tion of component under evaluation, in order to avoid escaping
integration faults due to the use of overspecified components.

Assumption generation provides automated support for A-G
reasoning. Assumption Aw holds for the weakest assumption
[7] and characterizes all possible environments E under which
the assumption holds. Techniques were developed to generate
the weakest environment assumptions [6] that enable the
property to hold.

IV. RUNTIME VERIFICATION

A. Architectural Change Management

Numerous CPS architectures require dynamic reconfigura-
tion for the sake of fault-tolerance or demand-driven adap-
tation of the functionality. By principle, verification of the
integration is impossible during the design time. Moreover,
the usual limitations on the execution of the reconfiguration
prohibit the exhaustive testing of the new setup.

Changing a component (reconfiguration, extension) necessi-
tates an update of the related artifacts (assumptions, properties)
to perform the verification.

Dynamic CPS middlewares (e.g., DDS, OPC UA1) facili-
tate reconfiguration and automatic discovery of components
by standard services. Several gateways (e.g., DDS-OPC UA
gateway [9]) are available to interconnect the different mid-
dlewares.

B. Assume-Guarantee Runtime Verification

The A-G approach is reusable for runtime-verification. This
part presents the method and the architecture (Fig. 5) of the
approach developed by us for implementing this idea.

Fig. 5. Assume-Guarantee Runtime Verification

The main idea is the creation of self-checking components
(as illustrated before in Fig. 3) by adding input and output
monitors derived directly out of the requirements.

1OPC Unified Architecture (OPC UA) is a machine to machine communi-
cation protocol for industrial automation.

18

1) Verification Method: Assumptions and properties are
derived in the early phase of the design process from the
requirements and specifications. In traditional methodologies,
the oracles implemented for testing purposes [3] [4] remain
further unexploited byproducts after testing. The monitors used
for runtime verification are developed in a separate component
development phase.

Test oracles and monitors run in different setups (e.g.,
over a tester and the operating system), their implementations
cannot be directly reused. However, as checks for testing and
runtime verification share the identical set of assumptions
and properties, MDD provides an easy way to reuse the
implementation efforts. If the A-G pairs are formulated as
a platform independent model (PIM) sharing a single formal
model, automated code generation can produce the actual code
for testing and runtime verification respectively. In our case,
linear temporal logic (LTL) serves as a basis of the PIM A-G
artifacts.

The method uses statecharts to represent both the compo-
nent behaviors and the A-G pairs. The first step is to design
and generate statecharts models from high-level requirements.
The safety (assumptions and properties) LTL expressions also
translate into statecharts via automated model transformation
[10].

In our approach, the Gamma Statechart Composition Frame-
work [12] (a YAKINDU extension) serves to model both the
functional components and the runtime monitors. The DDS
extension for Gamma provides the interconnection between
the participants using DDS.

Fig. 6. System and monitors

The generated system code and the monitors are standard
DDS components (Fig. 6). As DDS supports distributed envi-
ronment, it is possible to deploy the code and the monitor over
independent resources thus avoiding the malicious impact of
correlated fault originating in shared resources.

2) Error handling: It is possible to identify malfunctions
(error detection) during runtime. After the identification of a
fault, the monitors can raise alerts (interrupts) to the affected
components. Error handling (e.g., fault-tolerant patterns) is the
responsibility of the system components.

3) Implementation details:
1) System models and LTL expressions: System models

were created with the MagicDraw modeling tool. The A-
G LTL expressions were created manually, based on the
behavioral models.

2) Statecharts: Yakindu Statechart Tools helped to model
both the system behavior models and the A-G monitors.

Gamma provided the interconnection of the individual
statechart components.

3) Code generation: Gamma offered a built-in code genera-
tor that generated DDS specific code from the statecharts
and interface specifications.

V. SUMMARY

The solution presented reuses pre-tested formal verification
engines as a byproduct of the original A-G based testing for
runtime verification. MDD is used for the efficient generation
of the test oracles and the runtime monitors. The method
extends the widely used A-G method to runtime verification
by combining the principle with modern implementation tech-
nologies and exploiting the architectural paradigms in modern
CPS middleware platforms.

A. Further work

The current implementation of the tooling supports static
architectures. The verification of static architecture-related
requirements is an ongoing effort by adopting the constraint
satisfaction programming based approach used in design time
for checking intended dynamic architectural changes [8].

VI. ACKNOWLEDGMENT

The authors acknowledge the professional guidance and
tutoring of Dr. Josef Pichler (SCCH Hagenberg, Austria).

REFERENCES

[1] A. Karmarkar and M. Buchheit, “The Industrial Internet of Things
Volume G8: Vocabulary,” tech. rep., Industrial Internet Consortium,
2017.

[2] E. Griffor, D. Wollman, and C. Greer, “Framework for cyber-physical
systems,” tech. rep., National Institute of Standards and Technology -
Cyber Physical Systems Public Working Group, 2016.

[3] D. Giannakopoulou, C. S. Pasareanu, and J. M. Cobleigh, “Assume-
guarantee verification of source code with design-level assumptions,” in
Proceedings of the 26th International Conference on Software Engineer-
ing, pp. 211–220, IEEE Computer Society, 2004.

[4] C. Blundell, D. Giannakopoulou, and C. S. Pǎsǎreanu, “Assume-
guarantee testing,” in ACM SIGSOFT Software Engineering Notes,
vol. 31, p. 1, ACM, 2005.

[5] E. Ovaska, A. Balogh, S. Campos, A. Noguero, A. Pataricza, K. Tien-
syrjä, and J. Vicedo, “Model and quality driven embedded systems
engineering,” Technical Research Centre of Finland, 2009.

[6] D. Giannakopoulou, C. S. Pasareanu, and H. Barringer, “Assumption
generation for software component verification,” in Automated Software
Engineering, 2002. Proceedings. ASE 2002. 17th IEEE Int. Conf. on,
pp. 3–12, IEEE, 2002.

[7] H. Mehrpouyan, D. Giannakopoulou, G. Brat, I. Y. Tumer, and C. Hoyle,
“Complex engineered systems design verification based on assume-
guarantee reasoning,” Systems Engineering, vol. 19, no. 6, pp. 461–476,
2016.

[8] A. Földvári, ”Design for dependability of cyber-physical systems”,
B.Sc. Thesis, Department of Measurement and Information Systems -
Budapest University of Technology and Economics, 2018.

[9] “OPC UA/DDS Gateway.” https://www.rti.com/blog/announcing-the-
opc-ua-dds-gateway-standard.

[10] G. Pintér and I. Majzik, “Runtime verification of statechart implemen-
tations,” in Architecting Dependable Systems III, pp. 148–172, Springer,
2005.

[11] “OPC Unified Architecture.” https://opcfoundation.org/.
[12] “Gamma statechart compostition framework.”

https://inf.mit.bme.hu/en/gamma.
[13] “Industrial Internet Reference Architecture.”

https://www.iiconsortium.org/IIRA.htm.

19

Increasing the accuracy of measuring heart rate

variability and pulse wave transit time

Péter Nagy, Ákos Jobbágy

Budapest University of Technology and Economics,

Department of Measurement and Information Systems,

Budapest, Hungary

Email: {nagy, jobbagy}@mit.bme.hu

Abstract— Blood pressure is strongly influenced by the stress

level of the individual. High level of emotional or physical stress

may lead to blood pressure values not correctly reflecting the

state of the cardiovascular system. Using ECG and

photoplethysmographic (PPG) sensors, heart rate variability and

pulse wave transit time can be measured and used to assess the

stress level of the individual prior to and in parallel with blood

pressure measurement. This paper investigates the effect of noise

on the accuracy of the calculated heart rate variability (HRV)

and pulse wave transit time (PWTT) values using simulated noisy

ECG and PPG signals. The effect of physical stress on PWTT

and HRV is also investigated. Results are illustrated by

simulations and real data from a measurement including physical

stress for the tested person.

Keywords—heart rate variability; pulse wave transit time; stress

level assessement; R-peak detection

I. INTRODUCTION

Blood pressure (BP) is one of the most important vital
signals providing information about the state of the
cardiovascular system. Accurate BP measurement is essential
for optimal diagnosis and treatment of cardiovascular diseases.
Autonomic, humoral, mechanical and myogenic factors as well
as environmental stimuli influence the momentary value of BP
[1]. Stress level of the examined person can have a large
impact on the measurement results and may induce incorrect
medical conclusions if high stress level remains undetected.
Commercially available automated blood pressure monitors
display the average heart rate as a measure of stress level. Our
goal is to provide a meaningful parameter better characterizing
the stress level of the tested person. We use ECG and PPG
sensors for the determination of heart rate variability (HRV)
and pulse wave transit time (PWTT). These parameters are
appropriate to determine whether the person – whose BP is
about to be measured – is at rest.

HRV is a commonly used measure to determine momentary
stress level. It characterizes the variation of the beat-to-beat
time intervals [2].

PWTT is the time while the pressure wave generated by the
heart propagates from the aortic valve to a peripheral part of
the body. PWTT is influenced by heart rate, blood pressure and
arterial stiffness therefore it is a potential indicator of the

complex cardiovascular response to physical and psychological
stress. Hey et al. [3] applied PWTT successfully to identify
stressful moments during the Trier Social Stress Test.
However, in relaxed sitting position, the effect of mental stress
on PWTT may be not significant [4] [5], therefore the analysis
of heart rate and HRV is advantageous even if PWTT is
registered.

II. MATERIALS AND METHODS

A. Characterizing HRV

Calculation of HRV using oscillometric pulses or
characteristic points in the PPG signal may be inaccurate,
because of the beat-to-beat variation of the propagation time of
the pulse wave from the heart to the cuff and to the PPG
sensor. Investigation of the differences in calculated beat-to-
beat time intervals based on PPG and ECG signals is described
in [6]. Accurate determination of HRV is possible using the
ECG signal if R-peaks are accurately detected.

HRV can be characterized by various measures both in time
domain and in frequency domain. For short time recordings,
time domain analysis is required to characterize HRV [6].
Here, usually the lengths of heart periods (tRR, NN (the time
interval between normal R-peaks)) are examined. We
investigated the distribution of NN intervals and the differences
in successive NN intervals.

B. Characterizing PWTT

PWTT can be calculated using ECG and PPG signals. We
measured PPG signals at the left index fingertip. PWTT was
defined as the time difference between the R-peak in the ECG
signal and the corresponding local minimum in the PPG signal.
The bigger the distance between the PPG measurement site and
the heart is, the less impact uncertainty of local minimum
designation has on the calculated PWTT values (the same
absolute error leads to a smaller relative error) [3].

C. Simulating Noisy ECG Signal

Accurate detection of R-peaks in the ECG signal is
essential for both HRV and PWTT determination. In order to
investigate the effect of noise on the accuracy of the R-peak
detection, a noisy ECG signal was simulated based on [7]. One
period of the noise-free ECG was obtained by averaging

20

periods of an ECG record with high signal-to-noise ratio. The
single period of the ECG was copied and appended to itself
repetitively in order to form 100 periods of the ECG with
approximately 78 s total duration. Beat-to-beat time interval
variation was added by extending each period to a randomly
selected length. Maximal increase of the beat-to-beat time
interval was 50 ms. Five types of noise artifacts were added to
the noise-free signal: power line interference; motion artifacts;
muscle contraction (electromyographic interference); baseline
drift and amplitude modulation with respiration.

D. Comparing Different Pre-Processing Steps of R-peak

Detection

Most QRS detection algorithms use a filter stage prior to
the actual detection in order to attenuate other signal
components and artifacts [8]. Elgendi et al. [9] investigated the
optimum bandpass frequency range for the detection of the
QRS complexes and recommended a bandpass frequency range
of 8-20 Hz for the best signal-to-noise ratio. For the accurate
calculation of PWTT and HRV, not only the QRS complexes
but also the R-peaks must be precisely detected. Therefore, we
investigated the effect of filtering on the signal shape in the
time domain. For this purpose, we used the simulated noisy
ECG signal where the noise-free signal, locations of the R-
peaks and the superimposed noise parameters are exactly
known. The Pan-Tompkins algorithm [10] was used to detect
QRS complexes in the simulated ECG signal. After detection
of QRS complexes, the unfiltered signal was re-filtered,
independently of the filtering in the Pan-Tompkins algorithm.
Notch filtering at 50 Hz and 100 Hz, and lowpass filtering at
50 Hz were used. The effect of median filtering was also
investigated. We also assessed the performance of using only
lowpass filtering at 25 Hz. R-peaks were detected in the re-
filtered signal as local maxima within the +/- 80 ms
neighboring intervals of the R peaks designated by the Pan-
Tompkins algorithm.

E. Examining the Effect of Filtering on Detection of Local

Minima in the PPG Signal

Filtering of the PPG signal is necessary for PWTT
calculation. Baseline wandering (mainly caused by breathing)
and motion artifacts have to be removed for the accurate
detection of local minima in the PPG signal. Elgendi et al. [11]
examined the spectrum of the PPG signal and suggested a
second-order Butterworth bandpass filter with cutoff
frequencies at 0.5 Hz and 10 Hz for PPG-based HRV analysis.
However, the distortion caused by filtering has a large effect on
the locations of local minima in the PPG signal. In order to
investigate this effect, we used a simulated noisy PPG signal
which was generated similarly to the simulated noisy ECG
signal. Power line interference, baseline drift and amplitude
modulation with respiration was added to the noise-free signal.
The simulated signal was filtered with different cutoff-
frequencies and the locations of detected local minima were
compared to the reference values.

F. Experimental Data

For confirmation of the simulated results, real data were
also analyzed from a measurement where short-term physical

stress was induced for the tested persons by running 3 floors
downstairs then 3 floors upstairs. Three persons (3 males), one
healthy senior adult and two healthy young adults participated
in the measurement. More than 20 measurements were
recorded for each tested person. Data were recorded before
(referred to as resting state) and after the physical stress.
Recording length was 120 seconds. Experimental data were
recorded by a custom-developed home health monitoring
device. The device measures ECG in Einthoven I lead and PPG
signal at the fingertip using a transmission-type PPG sensor.
The sampling frequency was 1 ksample/s.

III. RESULTS

A. R-peak Detection in the Simulated Noisy ECG Signal

In order to compare the effect of different filtering
techniques on the accuracy of R-peak detection, the mean
absolute time difference between the known R-peaks and the
R-peaks detected in the re-filtered signals was calculated as
described in the chapter Comparing Different Pre-Processing
Steps of R-peak Detection. Results are summarized in Table I.
For the lowpass and notch filters, the order 3 was chosen. For
the median filter, the order 10 yielded the best results. Clifford
et al. [12] concluded that an error above 1 ms in the location of
detected R-peaks can be considered to be significant for HRV
analysis. The best two results in Table I are below this limit.

TABLE I. COMPARISON OF DIFFERENT PRE-PROCESSING STEPS OF R-
PEAK DETECTION

Filter type
Mean absolute

error (ms)

Two notch filters, center frequencies at 50 and 100 Hz
and lowpass filter, cutoff-frequency at 50 Hz

0.67

Two notch filters, center frequencies at 50 and 100 Hz 1.94

Lowpass filter, cutoff-frequency at 25 Hz 0.76

Median filter 1.60

No filter 5.09

B. The Effect of Physical Stress on PWTT and HRV

Our goal was to compare the effect of physical stress on
average heart rate to the effect of physical stress on PWTT and
HRV. For this comparison, average heart rate and momentary
and average values of PWTT and HRV were calculated for the
measurements where short-term physical stress was induced
for the tested persons. Data were recorded in resting state and
after physical stress. Average values were calculated in a
sliding window containing 30 heart periods and the window
was stepped by 1 heart period. HRV was characterized by the
absolute value of differences in successive NN intervals
(dtRR), the ratio of differences exceeding 50 ms to the total
number of differences (pNN50), and the ratios of differences
between 0 and 20 ms as well as 20 and 50 ms to the total
number of differences (pNN0_20 and pNN20_50) [6]. For the
change in PWTT following physical stress, we found that even
the trend of change was not the same for the three tested
persons.

21

Fig. 1. Time functions of parameter values averaged in a sliding window

containing 30 heart periods: Blue: PWTT (ms); Red: tRR (10 ms); Black:
heart rate (1/min); Magenta: pNN20_50 (%); Green: absolute dtRR (ms).

Dotted lines represent the average value of parameters measured in resting

state.

In order to investigate the time course of the calculated
parameters in a longer period, we recorded measurements
following the same physical stress, but with a recording length
of 10 minutes. Figure 1 shows the time course of the parameter
values averaged in the sliding window containing 30 heart
periods, for a 10-minute-long measurement of the healthy
senior adult. Dotted lines represent the mean value of
parameters measured in resting state, prior to the physical
stress. Figure 1 demonstrates, that the parameters tRR and
heart rate reach their resting state value within less than 50
heartbeats (less than 1 minute) while PWTT and HRV
(absolute dtRR, and pNN20_50 (for healthy young adults,
pNN0_20 may be more representative, than pNN20_50))
parameters reach their resting state value in between 200-300
heartbeats (approximately 3-5 minutes). This means that the
PWTT and HRV parameters contain different information
about the stress level of the tested person than the average heart
rate alone.

C. The Effect of Inaccurate R-peak Detection on PWTT- and

HRV-Based Stress Level Estimation

As shown in Table I, inappropriate preprocessing in R-peak
detection can lead to a mean absolute error of approximately
0.5-5 ms, depending on the filter type used. This error can also
distort the time plots and averaged values of PWTT and HRV
parameters, but the effect is more severe if the distribution of
parameters is characterized. Figure 2 shows the histogram
(upper part) and the time function (lower part) of absolute
differences between the dtRR values calculated for the same
measurement with two different pre-processing methods. The
first method used two notch filters (center frequencies at 50
and 100 Hz) and a lowpass filter (cutoff-frequency at 50 Hz).
The second method used only a notch filter (center frequency
at 50 Hz). dtRR values were calculated for the last 300 heart
periods of the measurement illustrated in Figure 1. For other
HRV and PWTT parameters, filtering has similar effect.

Fig. 2. Histogram (upper part) and time function (lower part) of absolute
differences in the dtRR values for 300 heart periods with two different pre-

processing methods. First method: two notch filters (center frequencies at 50

and 100 Hz) and a lowpass filter (cutoff-frequency at 50 Hz) were applied.

Second method: a notch filter (center frequency at 50 Hz) was applied.

D. The Effect of Filtering of PPG on PWTT

The effect of filtering on detection of local minima in the
PPG signal was examined using the simulated noisy PPG
signal and real data. Results for the simulated signal showed
that decreasing the upper cutoff-frequency of the used
bandpass filter below 14 Hz introduces a shift of local minima
in negative direction (local minima appear earlier in time than
the reference locations). Increase of the upper cutoff-frequency
is limited by the level of noise. For the simulated PPG signal,
upper cutoff-frequencies between 14-16 Hz yielded the best
results. Manipulation of the lower cutoff-frequency caused no
shift of local minima. Figure 3 shows the time function of
differences in the calculated PWTT values after using two
different filters on the PPG signal for a real measurement. PPG
was filtered with two different bandpass filters (cutoff-
frequencies at 0.5 Hz and 16 Hz as well as at 0.5 Hz and 10
Hz). The figure demonstrates that the time difference of local
minima locations detected after the two different filtering is not
constant, and PWTT differences may reach large values.

22

Fig. 3. Time function of differences in the calculated PWTT values after
using two different filters on the PPG signal. PPG was filtered with two

different bandpass filters (cutoff-frequencies at 0.5 Hz and 16 Hz as well as at

0.5 Hz and 10 Hz).

IV. DISCUSSION

Both simulation and real data showed that the accuracy of
R-peak detection strongly depends on the filter type used in the
ECG pre-processing. In our investigation, notch filtering with
center frequencies at 50 and 100 Hz together with lowpass
filtering with cutoff-frequency at 50 Hz provided the best
results. Appropriate ECG pre-processing is especially
important if the distribution of PWTT or HRV parameters is
characterized (e.g. skewness or kurtosis), in those cases
inaccurate R-peak detection can strongly distort the calculated
values. The effect of filtering as part of the PPG signal pre-
processing on the accuracy of local minima detection in the
PPG signal was demonstrated, but not fully analyzed in the
present study. For accurate PWTT calculation, correct
detection of local minima in the PPG signal is also essential.
Therefore, we aim to further investigate different steps of PPG
signal pre-processing as well.

Measurement of ECG and PPG after short physical stress
revealed that tRR and heart rate parameters reach their resting
state value 4-6 times faster than PWTT and HRV. This means
that using ECG and PPG signals, extra information can be
provided about the stress level of the tested person compared to
the average heart rate. However, the parameter combination
characterizing low and high levels of stress is person specific.
Therefore prior to stress level estimation, a set of
measurements has to be recorded for each person, both in
resting state and with induced stress. The results of these
measurements can be used to define parameter ranges, where
the stress level of the tested person is low enough so that a
blood pressure measurement is suggested to be taken.

V. CONCLUSION

Stress level of the examined person can have a large impact
on the accuracy of blood pressure measurement. ECG and PPG
sensors provide a possibility to non-invasively measure PWTT

and HRV prior to blood pressure measurement. If signal
processing is appropriate and ECG R-peak detection as well as
PPG local minimum detection is accurate, this information can
improve stress level estimation.

The present study revealed an interesting difference in the
physiological regulation of heart rate, heart rate variability and
arterial stiffness. However, the measurement series, needed to
evaluate how this difference can be used for personalized stress
level estimation has not been completed yet. For the
explanation and physiological interpretation of the observed
phenomena and exact implementation of the proposed
parameters, we aim to organize a new measurement series with
more participants.

ACKNOWLEDGMENT

The research work was supported by the Croatian-

Hungarian project Home Health Monitoring (TÉT_16-1-2018-

0038) and by the European Regional Development Fund of the

European Union (EFOP-3.6.2-16-2017-00013).

REFERENCES

[1] J. S. Floran “Blood pressure variability: a novel and important risk
factor”, Canadian Journal of Cardiology, vol. 29, no. 5, 2013, pp. 557-
563.

[2] A. J. Camm, et al. ”Heart rate variability: standards of measurement,
physiological interpretation, and clinical use. Task Force of the
European Society of Cardiology and the North American Society of
Pacing and Electrophysiology”, Circulation, vol. 93, no. 5, 1996, pp.
1043–1065.

[3] S. Hey, A. Gharbi, B. von Haaren, B. Walter, K. Walter, N. König, L.
Löffler “Continuous noninvasive pulse transit time measurement for
psycho-physiological stress monitoring“, International Conference on
eHealth, Telemedicine, and Social Medicine, 2009. eTELEMED'09.
IEEE, 2009, pp. 113-116

[4] A. Szabo “The combined effects of orthostatic and mental stress on heart
rate, T-wave amplitude, and pulse transit time”, European journal of
applied physiology and occupational physiology, vol. 67, no. 6, 1993,
pp. 540-544.

[5] J. J. Furedy, A. Szabo, F. Peronnet “Effects of psychological and
physiological challenges on heart rate, T-wave amplitude, and pulse-
transit time”, International journal of psychophysiology, vol. 22, no. 3,
1996, pp. 173-183.

[6] Á. Jobbágy, M. Majnár, L. K. Tóth, P. Nagy “HRV-based stress level
assessment using very short recordings”, Periodica Polytechnica EECS,
vol. 61, no. 3, 2017, pp. 238-245.

[7] G. M. Friesen, T. C. Jannett, M. A. Jadallah, S. L. Yates, S. R. Quint, H.
T. Nagle ”A comparison of the noise sensitivity of nine QRS detection
algorithms“, IEEE Transactions on Biomedical Engineering, vol. 37, no.
1, 1990, pp. 85-98.

[8] B-U Kohler, C. Hennig, R. Orglmeister “The principles of software QRS
detection“, IEEE Engineering in Medicine and Biology Magazine, vol.
21, no. 1, 2002, pp. 42-57.

[9] M. Elgendi, M. Jonkman, F. DeBoer “Frequency bands effects on QRS
detection“, Pan, vol. 5, 2010, pp. 15Hz.

[10] J. Pan, W. J. Tompkins “A real-time QRS detection algorithm”, IEEE
Transactions on Biomedical Engineering, vol. 32, no. 3, 1985, pp. 230-
236.

[11] M. Elgendi, M. Jonkman, F. DeBoer “Heart rate variability and the
acceleration plethysmogram signals measured at rest“, In: International
Joint Conference on Biomedical Engineering Systems and Technologies,
Springer, Berlin, Heidelberg, 2010, pp. 266-277.

[12] G. D. Clifford, P. E. McSharry, “Method to filter ecgs and evaluate
clinical parameter distortion using realistic ECG model parameter
fitting“, Computers in Cardiology, 2005, pp. 715-718.

23

Measuring quality of datasets using prediction
explanation

Tamás Szántó∗, Zoltán Micskei†
Budapest University of Technologies and Economics, Department of Measurement and Information Systems, Hungary

Email: ∗tmas.szanto@gmail.com, †zoltan.micskei@mit.bme.hu

Abstract—Machine Learning (ML) techniques, especially Deep
Neural Networks are achieving compelling results in many
fields. However, the integration of ML solutions into critical
systems where trustworthiness, reliability, and safety are crucial
is an unsolved problem. The datasets have great importance
for Machine Learning algorithms since the achievable precision
during the training, and the accuracy of the final evaluation
rely both on the quality and quantity of the data. Our goal
was to improve the measurement of the quality of datasets. We
recommend to 1) use the requirements gathered during systems
design, and 2) generate metrics, which can provide information
about the representativeness of a dataset to determine which
are the problems that we can safely solve by using the data.
This paper describes a general method for dataset evaluation
using multiple measurement techniques, including prediction
explanations. The method is demonstrated by applying it to a
case study of categorising road signs.

I. INTRODUCTION

Machine Learning (ML) techniques are achieving great
results in many fields, usually outperforms the traditional
manually created algorithms. In general, the problem with
these methods is that the increase of the accuracy most of the
times means a decrease in the observability of the mechanism.
The ML techniques as becoming more independent from hard-
coded behaviours can reach better results. These methods are
extracting their knowledge from datasets during a training
period and later can use this knowledge to predict the outputs
of previously unexplored inputs. In one perspective this way
these techniques can learn more complex associations in the
data than it would be possible in a manual way. However,
they can handle only situations that relate somehow to the
training datasets. We can improve the achieved results by using
different ML techniques, but in the end, the dataset is a hard
limit of the possible precision.

The motivation of the research is the significant role of the
training and testing datasets in ML techniques. The training
data determines the overall extractable knowledge, and the
testing dataset is responsible for valid precision measurement.
ML methods require a trust towards the quality of the dataset,
especially if they are used in critical systems (e.g., auto-
motive, transportation). When designing and verifying such
systems, assurance of their compliance with the functional and
safety requirements is mandatory, that needs to be thoroughly
demonstrated. The ML method is used typically in one of the
system components (e.g., processing sensor data), therefore
it has to comply to the same requirements too. Determining
the representativeness of the dataset for the entire task is a

complex problem. However, most of the datasets provide only
essential diversity metrics like the number of elements or the
precision of the labelling. These parameters are relevant but
insufficiently detailed to establish a trust for in critical systems.

The goal of our research is to improve the measurements of
the quality of the datasets. The primary purpose of a dataset
is to represent a problem, a domain. The quality of the data
means how accurate is this representation. Our idea is to
provide a more detailed evaluation process based on 1) the
given requirements of the problem, and 2) metrics obtained
from various sources. We want to determine the use cases
where it is safe to use the dataset and to find the missing,
under and over represented scenarios.

We propose a method for improving the measurements
of the quality of datasets. Our evaluation is based on the
requirements representing the problem domain captured during
traditional systems design. The evaluation method has three
main parts: a general diversity, a static and dynamic analysis.
The method contains metrics like standard numeric data about
the structure of the dataset, summarised diversity metrics based
on generic processing methods and using prediction explana-
tions for more detailed analysis of the elements. The general
method does not contain any domain-specific assumptions, but
the metrics have to be mapped to the actual domain.

Gaining trust in ML techniques is hard but necessary to use
them in real-world applications, especially in safety-critical
systems [1]. The first step is to have metrics about the quality
of the training and validation datasets. This paper summarises
multiple existing quality measurement approaches (Sect. II)
and proposes a general method for a more detailed dataset
evaluation (Sect. III). We also demonstrate our method on a
case study, highlighting how it can uncover problems in the
quality of datasets (Sect. IV).

II. RELATED WORK

There are simple, essential numeric metrics about a dataset
like the number of its elements, classes and size. However,
richer ways were proposed to describe the collected data.

The ImageNet paper [2] describes an averaging method for
evaluating the diversity. The idea is to stack all of the images
from a selected class on top of each other and to generate a
new image by calculating the mean value for every pixel. In
theory, the created images should be completely grey, since
ideally each of the pixels contained all of the colours. [2] We
can identify some of the over-represented parts, and also can

24

compare the same classes from different datasets. Exporting
the generated images as JPGs, we can associate the grey areas
with the size of the files. The numeric representation of the
metric is vital during evaluating large datasets.

It is difficult to determine the representativeness of a dataset
alone accurately, but comparing multiple ones from the same
domain can reveal some of the defects. Torralba and Efros
[3] observed the biases in several datasets for general image
classification. The main troubling idea is if we play a guessing
game, where we randomly select an image from a dataset and
trying to pick its source we can achieve too good results. The
images are representing the same domain (the selected class)
and collected similarly from the internet. However, the datasets
have to have strong biases that allow us to identify them. Part
of the cases we can trace back the source of these to the
content of the images, like the age and environment of the
cars. The authors also used a cross-evaluation for identifying
the impact of these biases on the performance. The process
using the subject dataset of the evaluation for the training and
then running the tests on images from different datasets too,
almost every time the results are the drop of the accuracy of
the model on the other dataset compared to the original tests.

Prediction explanation [4] tools provide a glance inside the
working mechanism of a black box model. They can calculate
the relevance of the different parts of the input with one
specific prediction. We can use the generated explanations also
to examine the data, determine which features are well-, over-
or under-represented. One of the most general approaches for
prediction explanation is LIME [5]. It can interpret a prediction
of a wide variety of ML techniques. It builds a linear model
to approximate the examined method locally. The generated
evaluations are detailed and precise, but generating them for
a prediction is a computation-heavy, time-consuming task.
Another method is Grad-CAM [6], which can interpret any
CNN deep neural network. It has a more limited applicable
field than LIME, but it is still quite extensive. It based on the
sensitivity analysis of the layer, that represents the extracted
features the most (for example the last convolutional layer of a
convolutional network [6]). It can calculate de relevance of the
input parameters based on the gradient values of the neurons.
Its output explanation also less detailed than LIME’s, but its
main feature is that it does not have significant computational
requirements, and gives very little overhead to the entire
prediction process.

III. RECOMMENDED METHOD

Fig. 1 depicts how our approach combines systems engi-
neering and ML engineering to improve the evaluation of the
dataset’s quality. The Domain is the collection of the scenarios
that are part of the solvable problem. The possible inputs that
can appear in an actual use-case are part of it. Even with a not
too complex problem, we can get an enormous domain quite
easily. It is not possible to use or collect the entire domain.
Instead, a Dataset can represent the possible elements. Finding
the right dataset for the actual problem is a difficult task, we
can choose an existing one (or several ones) or can build it

from the ground. Regardless of which approach we use, the
selected dataset must represent the domain well. To be able
to evaluate this fact we must measure several parameters of
the dataset. Usually, most of the dataset comes (or we can
calculate it easily) with some General diversity metrics.

To improve the evaluation process, our first step starts from
the Requirements representing the domain. In the Static eval-
uation step, these requirements are compared to the dataset.
This step only uses the textual or graphical requirements and
the plain dataset with some helper analysis (like well-defined
image processing techniques). The Dynamic evaluation uses
knowledge about the actual content of the elements in the
dataset. We can estimate this knowledge with using the dataset
in a simple Model with a Prediction explanation tool.

Data Quality
Evaluation

 System Engineering

Domain

Functional and Safety
Requirements

Dataset Dataset Model

Prediction
explanation

Static
 evaluation

Dynamic
evaluation

ML engineering

General
diversity

measurement

Fig. 1. Overview of the recommended method

General diversity measurements: As mentioned above these
metrics usually come with the datasets, they are giving a min-
imal summary of the collected data. Typical examples are the
number of elements, classes, sizes of the classes, distribution
of the data points. Optionally they can reveal the source and
method of the data collection, the used labelling technique.
The purpose of these metrics is to provide a basic idea about
the usability and quality of the dataset. In some cases, we can
eliminate dataset candidates based on these numbers, but for
final selection, we need more detailed evaluations [7].

Static evaluation: The functional and safety requirements
provide a proper description of the scope of the problem. These
requirements can have multiple formats and levels. Typical
representations include textual (pattern-based), model-based
(UML or SysML) and formal language based solutions [8].
The requirements can identify the relevant scenarios and also
can determine if an element is part of or not part of the task. A
dataset is a representation of the domain but giving an accuracy
metric for the representation is a challenging problem. As a
metric for this, we can evaluate the defined requirements on the
dataset to verify its representativeness. The analysis method
depends on the nature of the requirements and data. In general,
in this step, we should find algorithmic methods that can
generate features for the elements and the dataset which are
usable for the evaluation of the requirements. For example, for
analysing image data, we usually can use aggregated metrics
based on the pixel values or some edge detection algorithms.

25

Dynamic evaluation: In this step, we run an example model
to extract further parameters of the dataset with the help of
a prediction explanation tool [4]. This tool can identify the
relevant and irrelevant parts of the input data, which can be
used for further analysis. These can help the evaluation of
the requirements by the categorisation of the input features
by relevance. The generated importance maps also can define
relevance patterns inside the dataset. For example, if an input
parameter is never used for the prediction, it can indicate that
it is not relevant for the problem or not represented well, i.e.,
there are not enough example for the possible scenarios.

The dynamic evaluation can contain cross-evaluation be-
tween multiple datasets. Since the datasets represent the same
domain, we expect that we should get similar results with
the tests, independently from the datasets that are used for the
training. Thus we can train multiple models (but with the same
architecture) on multiple datasets and after that, and we can
evaluate the trained models on each other’s test data [3].

IV. CASE STUDY

We created a case study to demonstrate the working mecha-
nism of the method and to show an example solution that can
work with almost any image classification problem.

Solvable problem: The task is to categorise the road signs
in Belgium1 and Germany2. Although there are several minor
differences in the legislation of the countries, in this case study
we assume they are the same domain (we can only use the
road signs which are the same in the two countries from the
datasets for the evaluation methods that requires comparisons).
The following requirements can define the domain and the
tasks of a hypothetical system that can use ML techniques
(the requirements of such existing systems are not public).

REQ1 The system shall identify the road sign in Belgium
or Germany. The classification shall handle all of
the possible sign types. However, finding the image
parts which are containing a sign is a task for another
system in the pipeline, this system only responsible
for the categorisation of the signs.

REQ2 The system shall handle images with different light-
ing conditions, such as dark, half-light, daylight,
harsh sunlight, shadows.

REQ3 The system shall perform the classification indepen-
dently from the environment of the sign, such as
buildings, countryside, trees, sky, street.

REQ4 The system shall identify the traffic signs from
different angles, and image quality too.

REQ5 The system shall identify the traffic signs even when
they are partly covered.

Note that our goal is to demonstrate the recommended
method, but a real scenario would require more detailed
refinements of these high-level requirements.

General diversity measurements: The German dataset is
almost ten times larger than the Belgian and has a more

1Belgium Traffic Sign Dataset: https://btsd.ethz.ch/shareddata/
2German Traffic Sign Recognition Benchmark: http://benchmark.ini.rub.de/

reasonable size. Some of the classes in the Belgian dataset
only contains around twenty images which are not enough
data in most of the cases.

Dataset Classes Training Tests
Belgian 62 4575 2520
German 43 39209 12569

TABLE I
GENERAL DIVERSITY OF THE DATASETS

As a general diversity metric, we can evaluate the averaging
image technique [2]. In the following figures, the leftmost
image is generated by stacking and averaging all of the images
in the given class. The stacked image should have a greyish
background if the class has enough diversity since this colour
is the result of mixing all the others.

Fig. 2. Stop and Cattle crossing sign stacked and example images (Belgian)

For example, the stacked image of the cattle crossing sign
has a green background (Fig. 2), which indicates that most of
the images were taken in a green environment. The problem is
that these signs not necessary has a green background (winter
or blue sky). However, with these images, it is a possibility
that the ML technique learns the background too.

Static evaluation: REQ1: The datasets only contain images
of road signs, they can be used to categorise signs, but not
to detect them. The first problem with both of the datasets is
that they do not contain all of the road sign categories. There
are around 150 road sign types [9], but the Belgian dataset
contains 63, the missing elements mostly highway, roadwork
and train related signs. The German dataset is less complete,
there are 43 classes, and 8 of them are just different speed
limits; crosswalk or parking signs are entirely missing.

REQ2: We can estimate the lighting conditions from the
overall brightness of the pictures which can be determined by
calculating the mean pixel value on the images. The diversity
of the lighting conditions is eligible in both of the datasets.

Fig. 3. RGB values in the STOP sign category in the Belgian dataset

REQ3: We can examine the diversity of the images with
calculating mean RGB values for the images (Fig.3). Mostly
the reds are dominating the pictures, but this is natural because
of the red parts of the signs. The differences between the

26

distribution of the RGB values can indicate the different
environments on the images.

REQ4 and REQ5: The stacked images almost clearly show
the signs in the centre of the images, which indicates that there
aren’t too many images that contain only parts of the signs
or partly covered ones. Also, we want to see a grey colour
in the background, but some of the classes have a coloured
background (mainly those that contain fewer examples).

Dynamic evaluation: This evaluation requires an actual
running model on the dataset. Our choice is a simple con-
volutional deep neural network [10]. It contains three convo-
lutional layers for the feature extraction and another three fully
connected layers for the classification. The input size of the
network is 32 by 32 as the rescaled images in the datasets.

We trained two models with the same (above described)
architecture on the training part of the two datasets. Both of
the training was only 80 epochs, at this point we have managed
to get decent enough results for the evaluation. First, we run
the inference with the datasets’ test data and then used the
other’s tests.

Train / Test Belgian German Bg. STOP Gm. STOP
Belgian 68.3% 26.8% 35.6% 12.5%
German 78.4% 94.2% 84.4% 95.4%

TABLE II
THE RESULTS OF THE CROSS-EVALUATIONS OF THE MODELS

In general, the model with the Belgian dataset has weaker
performance results, and its accuracy dropped more with
the tests from the other dataset than the one trained with
the German data. However, the German model loses 6% in
accuracy too, which is significant if we calculate that the
training contained more than ten times more images than the
Belgian dataset (for example there are 50 STOP signs in the
Belgian and 800 in the German dataset). The first part of the
table contains the results of the evaluation of the entire test sets
of the datasets and second half is an example for the STOP
sign category. With ideal conditions, the differences should be
far less between a class and the entire results, but we used a
simple model with a short training on unbalanced datasets.

Grad-CAM can provide prediction explanation for any
convolutional network so that it can interpret our model’s
predictions too. It generates the relevance maps for the inputs,
to help the further evaluation processes, there is an image with
the raw greyscaled mask and another with the coloured heat-
map on the top of the input image.

The prediction explanation can help the evaluation by high-
lighting the main parts of the images. These parts are relevant
for the predictions we want them to be diverse enough.

The grey-scaled images are the raw relevance masks, which
are more usable with algorithms to recognise patterns (for
example selecting the images with less white areas from the
entire dataset). The coloured heatmaps on top of the original
images are more usable for manual evaluation. The whites
and reds are the most relevant areas. As the first example
shows too, most of the signs are clear and in the centre. The
second example is more complicated (it shows a partly covered

sign) than the more general first. These scenarios are harder
to handle, it is essential to have enough data from these. In
both of the datasets, the scenarios with the partly covered sign
are under-represented. The generated masks also can help the
static evaluation for selecting the subject on the images.

Fig. 4. Example for the dynamic evaluation (Belgian)

Summary: the evaluation process generated valuable, usable
metrics, managed to cover all of the requirements at least
by one measurement. However, we discovered some severe
deficiencies with both of the datasets, which eliminates the
possible use of them for the defined recognition task. Also,
our method identified several possible improvements of the
datasets to be complete and usable.

V. CONCLUSION

We managed to generate a meaningful evaluation for the
case study based on the proposed general method. The re-
quirement analysis part of the process and selecting the
relevant evaluation methods for checking the rules with almost
every system needs some level of manual work. However,
we can automate most of the evaluations independently from
any domain. Overall our approach even if it requires further
specifications of the evaluation methods can be used efficiently
for gaining more trust towards ML techniques applicability in
critical systems.

Acknowledgement The research reported in this paper was
supported by the BME Artificial Intelligence FIKP grant of
EMMI (BME FIKP-MI/SC)

REFERENCES

[1] Waymo LLC., “Waymo safety report – on the road to fully self-driving,”
2017, https://storage.googleapis.com/sdc-prod/v1/safety-report/waymo-
safety-report-2017.pdf.

[2] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Computer Vision and
Pattern Recognition. IEEE, 2009, pp. 248–255.

[3] A. Torralba and A. A. Efros, “Unbiased look at dataset bias,” in
Computer Vision and Pattern Recognition. IEEE, 2011, pp. 1521–1528.

[4] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” in Advances in Neural Information Processing Systems,
2017, pp. 4765–4774.

[5] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should I trust you?:
Explaining the predictions of any classifier,” in Int. Conf. on Knowledge
Discovery and Data Mining. ACM, 2016, pp. 1135–1144.

[6] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-CAM: Visual explanations from deep networks via
gradient-based localization,” in ICCV, 2017, pp. 618–626.

[7] M. A. Mazurowski, P. A. Habas, J. M. Zurada, J. Y. Lo, J. A. Baker,
and G. D. Tourassi, “Training neural network classifiers for medical
decision making: The effects of imbalanced datasets on classification
performance,” Neural networks, vol. 21, no. 2-3, pp. 427–436, 2008.

[8] K. Pohl, Requirements Engineering: Fundamentals, Principles, and
Techniques, 1st ed. Springer Publishing Company, Incorporated, 2010.

[9] UNECE, “Vienna convention on road signs and signals,”
2007, https://www.unece.org/fileadmin/DAM/trans/conventn
/Conv road signs 2006v EN.pdf.

[10] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

27

Analysis of Distributed Multi-Channel Active Noise
Cancelling Algorithms

Balázs Varga, György Orosz
Budapest University of Technology and Economics

Department of Measurement and Information Systems
Budapest, Hungary

Email: bvarga92@gmail.com, orosz@mit.bme.hu

Abstract—Multi-channel active noise cancellation is typically
achieved by using computationally expensive signal processing
algorithms. A centralized architecture, in which all computation
is carried out by a single processing unit, is therefore often
costly and poorly scalable. Noise cancelling systems designed in a
distributed fashion can be more efficient. In this article, the au-
thors propose and compare a number of different implementation
schemes of distributed active noise cancellation, with emphasis
on computational complexity and settling time.

Index Terms—active noise cancellation, FxLMS, distributed
signal processing

I. INTRODUCTION

Noise control refers to a means of reducing acoustic emis-
sions in order to improve personal comfort, comply with
legal requirements or to reduce environmental noise pollution.
Noise control methods can be divided into two major cate-
gories: passive and active. Conventional passive noise control
measures use physical barriers and isolating materials such
as soundproofing insulation and sound-absorbing wall panels.
However, these methods lack flexibility and they generally
do not work well at low frequencies, where the acoustic
wavelengths become large compared to the thickness of a
typical acoustic absorber [1].

In active noise control (also commonly referred to as
active noise cancellation, ANC), noise suppression is achieved
by using a speaker to generate an anti-noise, which causes
destructive interference in the desired protection zone – as
illustrated in Fig. 1. As opposed to passive methods, active
noise cancelling offers higher flexibility and portability, as
well as better low-frequency performance. However, they are
not without drawbacks either. Active methods require the
constant availability of a power source, and the zone of noise
suppression is smaller – especially at higher frequencies, as
it is inherently comparable in size to the wavelength of the
sound. Furthermore, an active noise cancellation system may
create areas outside the protection zone where the noise is
not cancelled but amplified. Important practical applications
of ANC include enhancing vehicle comfort (e.g. suppression
of engine, propeller or rotor noise in car interiors and aircraft
cabins), noise-cancelling headphones, electronic stethoscopes
and sleep aid devices [2].

Due to their relatively small size, usually multiple pro-
tection zones are necessary in practical applications (e.g.

NOISE SOURCE

ANTI-NOISE

RESIDUAL

Fig. 1. Active noise cancellation.

multiple seats of a car, two ears of a person). As we will
see in Section II, this requirement can greatly increase the
computational complexity of digital active noise cancellation
algorithms. Therefore, ANC systems implemented in a cen-
tralized architecture – i.e. a single processing unit is used
to carry out all of the necessary computation – often use
expensive high-performance DSP (digital signal processor)
or FPGA (field-programmable gate array) circuits. However,
performance limits are still easily reached with the addition of
more protection zones.

Cost and scalability can be improved by distributing the
computational load among multiple processing units which
are interconnected via a common communication network.
As an additional benefit, a distributed architecture creates the
potential for improved fault tolerance. However, decomposing
the algorithm into separately executable sections is not a trivial
problem, and several different approaches exist. Therefore,
when designing a distributed active noise cancelling system,
factors such as the available computational performance, net-
work bandwidth, and the achievable settling time must be
taken into careful consideration.

This paper is structured as follows. Section II describes
an algorithm widely used in digital active noise cancelling
systems, as well as three implementation architectures with
varying degrees of centralization. In Section III, results of
numerical simulations are presented for each of these architec-
tures, allowing for comparison. Finally, Section IV concludes
the paper.

28

II. ALGORITHMS AND ARCHITECTURES

A. The FxLMS Algorithm

One of the most frequently used algorithms in active noise
cancelling is the Filtered-x Least Mean Squares (FxLMS),
proposed by Widrow et al. in 1981 [3]. The algorithm is
illustrated in Fig. 2 for the case of single-channel noise
cancellation.

LMS

W (z)

P (z)
d(n)

y(n)

e(n)

x(n)

-

+S(z)

P (z)

Ŝ(z)

S(z)

r(n)

Fig. 2. Diagram of the FxLMS algorithm.

The reference signal x(n) is measured at the noise source,
and propagates to the point of suppression through the primary
acoustic path modeled by the discrete-time transfer function
P (z). The resulting disturbance signal d(n) is the noise we
aim to suppress. The speaker outputs the anti-noise y(n) which
propagates through the secondary acoustic path S(z). The two
signals get added1 together at the point of suppression, and the
resulting error signal e(n) is picked up by the microphone.
The reference signal is supplied to the algorithm and is
filtered with the transfer function Ŝ(z). Ideally, Ŝ(z) = S(z),
however, the transfer function of the secondary path is usually
not known analytically. Therefore, Ŝ(z) is the result of a
system identification performed prior to starting the normal
noise-cancelling operation. The transfer function W (z) is a
finite impulse response (FIR) filter of order L − 1 that is
initialized to zero and is updated in each step according to
the LMS rule:

w(n+ 1) = w(n) + 2µe(n)r(n) (1)

where w(n) is a vector of the filter coefficients, r(n) is
a vector containing the previous L samples of the filtered
reference signal r(n), and µ is the step size parameter which
influences stability and settling time.

If the algorithm has achieved convergence, W (z) ≈ P (z)
S(z) ,

resulting in e(n) ≈ 0, i.e. the disturbance is being actively
cancelled.

B. Completely Centralized Architecture

For the following sections, we restrict our analysis to the
special case of multiple channel noise cancellation, where
the number of microphones (protection zones) is equal to
the number of speakers – let this number be N . In this
case, Pm(z) is the primary path from the noise source to
the mth microphone, Ss,m(z) is the secondary path from
the sth speaker to the mth microphone, and rs,m(n) is the

1For historical reasons, the error signal is written as the difference between
the disturbance and the anti-noise. This is merely a sign convention; in a
practical application the computed anti-noise is multiplied by −1.

reference

.

.

.

.

.

.

PROCESSING

Fig. 3. Completely centralized architecture.

reference filtered with Ŝs,m(z), where s,m = 1 . . . N . Each
microphone has its own error signal em(n), and each speaker
has its own filter Ws(z) and output ys(n). The adaptation rule
now becomes:

ws(n+ 1) = ws(n) + 2µ
N∑

m=1

em(n)rs,m(n) (2)

Fig. 3 shows an architecture in which a single processing
unit is responsible for sampling the microphones, driving the
speakers, as well as executing the FxLMS algorithm for all
channels, which requires N(N+1) FIR filtering and N2 vector
addition operations.

C. Partially Distributed Architecture

An example of a partially distributed architecture is shown
in Fig. 4. In this case the majority of the computation is
still carried out by a high-performance central processing
unit, however, the sampling of the error signals is done by
individual sensor nodes (also known as motes), which are
connected to the central unit via a communication network

reference

.

.

.

.

.

.

MOTE 1

MOTE 2

MOTE N

GATEWAY

CENTRAL

PROCESSING

Fig. 4. Architecture with distributed data acquisition.

29

such as ZigBee or Ethernet. Since the motes are already
equipped with a simple processing unit (typically a low-
power microcontroller), some rudimentary preprocessing may
be done by the motes themselves (e.g. data compression).

In the typical operation of such an architecture, the motes
buffer their error signals and periodically send their buffer
contents to the central unit. Mathematically, this can be
modeled by introducing a delay in the secondary paths:

S′s,m(z) = Ss,m(z)z−∆ (3)

where ∆ is the send period (expressed in the number of
samples). Assuming simultaneous transmission, the required
communication bandwidth is BfsN , where B denotes the
number of bits used to represent a signal sample, and fs is
the sampling frequency.

D. Completely Distributed Architecture

reference

.

.

.

MOTE 1

MOTE 2

MOTE N

C

O

M

M

U

N

I

C

A

T

I

O

N

Fig. 5. Completely distributed architecture.

The architecture shown in Fig. 5 lacks a designated central
processing unit; the computations of the FxLMS algorithm
are carried out entirely by the motes in an evenly distributed
fashion. The operations executed by the kth mote can be
summarized as follows:

In every step:
For all j = 1 . . . N :

rj,k(n) ← xT(n)̂sj,k

δwj,k ← δwj,k + 2µek(n)rj,k(n)
wk ←wk + δwk,k

δwk,k ← 0

yk(n) ←xT(n)wk

If it is time to send δwj,k to mote j:
Sendj(δwj,k)
δwj,k ← 0

If δwk,j was received from mote j:
wk ←wk + δwk,j

In this architecture, each mote accumulates the filter updates
for every other mote for a preset number of steps, after which

the updates are sent to the other motes over the communication
network. This operation is similar to that described in [4]
and [5] – however, the authors proposed a frequency-domain
implementation, which only allows blockwise processing.
Contrarily, a time-domain implementation allows every mote
to apply an update based on its own error signal in each step,
which may lead to faster convergence. Furthermore, the algo-
rithm described above makes it possible to tune transmission
periods individually, allowing the available communication
bandwidth to be distributed among the motes arbitrarily.

Since each mote needs to carry out N + 1 FIR filtering
operations and N+1 vector additions in the majority of steps,
the per-mote computational complexity scales linearly with the
number of nodes.

III. SIMULATION RESULTS

Each of the active noise cancellation architectures described
in Section II was implemented in MATLAB for two channels.
Simulations were run with multiple physical configurations;
the results presented in this section were obtained under the
following common circumstances:

• The speakers and the microphones were located in the
vertices of a square, except for the microphone of chan-
nel 2, which was moved significantly farther.

• The acoustic paths were chosen as simple allpass filters
with delay and attenuation corresponding to the geometry.

• 200 Hz sinusoidal signal was used as reference.
• The sampling frequency was 8 kHz.

In each simulation, the step size was tuned to obtain the
fastest possible settling time. The error signal was considered
settled when its RMS (root mean square) decreased below 10%
of its initial value.

A. Comparison of the Architectures

The first experiment was carried out in order to compare
the fastest attainable settling time with the three previously
described ANC architectures, under identical circumstances.
The error signals obtained in the three simulations are shown
in Figures 6-8, in decreasing degree of centralization.

As anticipated, the fastest settling was achieved with the
fully centralized system, where every filter update is applied
as soon as it becomes available.

The partially distributed architecture provided significantly
worse results, with an average settling time nearly twice longer
than in the previous case. This is not surprising, considering
the delay introduced by the buffering nature of this system.

The fully distributed system provided results comparable
to the centralized case, the average settling time being only
8% longer. This superior behavior presumably stems from two
characteristics of this distributed algorithm. First, all filters
are updated in every step based on the locally available error
signal. Secondly, all filter updates are still calculated in every
step – it is only the application that is delayed.

30

0 0.5 1 1.5 2
−1

0

1

t [s]

e
1

0 0.5 1 1.5 2
−1

0

1

t [s]

e
2

Fig. 6. Settling – centralized (427ms and 574ms)

0 0.5 1 1.5 2
−1

0

1

t [s]

e
1

0 0.5 1 1.5 2
−1

0

1

t [s]

e
2

Fig. 7. Settling – distributed acquisition (908ms and 997ms)

0 0.5 1 1.5 2
−1

0

1

t [s]

e
1

0 0.5 1 1.5 2
−1

0

1

t [s]

e
2

Fig. 8. Settling – distributed (474ms and 609ms)

B. Effect of Transmission Period

In the next experiments, the behavior of the fully distributed
ANC system was further investigated.

First, multiple simulations were run with different trans-
mission periods (equal in the two motes), under otherwise
identical conditions. As shown in Fig. 9, this had practically no
effect on the settling time until the transmission time became
comparable to the settling time itself. This finding is consistent
with the analytical results obtained in [6].

C. Effect of Bandwidth Distribution

In our final experiment, the distribution of the available
network bandwidth among the motes was variable. Fig. 10
shows that this also had very little effect on the settling
time; the slower channel could not be made to settle any
faster by varying the bandwidth distribution. (A distribution
of 0 corresponds to the case when all network resources are
allocated to mote 2, and mote 1 is unable to transmit – and
vice versa.)

0 1000 2000 3000 4000 5000
3

4

5

6

7

8

9

10

11

transmission period

T
s
 [

s
]

mote 1

mote 2

Fig. 9. Settling time vs. transmission period

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4

4.5

5

bandwidth distribution

T
s
 [

s
]

mote 1

mote 2

Fig. 10. Settling time vs. bandwidth distribution

IV. CONCLUSION

In this paper, a time-domain implementation of a dis-
tributed active noise cancelling algorithm was proposed and
its properties were compared to other similar methods. Its
performance was found to be superior to a simpler, more
centralized ANC architecture. Future research should focus on
the analytical derivation of settling parameters, investigation of
the algorithms for the case of more than two channels, as well
as on formulating feasible design guidelines.

ACKNOWLEDGEMENT

The research reported in this paper was supported by the
Higher Education Excellence Program of the Ministry of Hu-
man Capacities in the frame of Artificial Intelligence research
area of Budapest University of Technology and Economics
(BME FIKP-MI/SC).

REFERENCES

[1] S. J. Elliot, P. A. Nelson, “Active noise control,“ IEEE Signal Processing
Magazine, 10(4):12–35, October 1993.

[2] D. Miljković, “Active Noise Control: From Analog to Digital – Last 80
Years,“, 39th International Convention on Information and Communica-
tion Technology, Electronics and Microelectronics (MIPRO), pp. 1358–
1363, June 2016.

[3] B. Widrow, D. Shur, S. Shaffer, “On adaptive inverse control,“ Pro-
ceeding of the 15th Asilomar Conference on Circuits, Systems and
Computers, pp. 185–189, November 1981.

[4] C. Antoñanzas, M. Ferrer, M. de Diego, A. Gonzalez, “Blockwise
Frequency Domain Active Noise Controller Over Distributed Networks,“
Applied Sciences, 6 (5), 124, April 2016.

[5] J. Lorente, C. Antoñanzas, M. Ferrer, A. Gonzalez, “Block-based
distributed adaptive filter for active noiose control in a collaborative
network,“ 23rd European Signal Processing Conference (EUSIPCO), pp.
310–314, Nice, France, 2015.

[6] G. A. Clark, S. K. Mitra, S. R. Parker, “Block Implementation of
Adaptive Digital Filters,“ IEEE Transactions on Circuits and Systems,
vol. CAS-28, no. 6, pp. 584–592, June 1981.

31

