
PROCEEDINGS OF THE
25TH MINISYMPOSIUM

OF THE

DEPARTMENT OF MEASUREMENT AND INFORMATION SYSTEMS
BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS

(MINISY@DMIS 2018)

JANUARY 29, 2018
BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS

BUILDING I

BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS

DEPARTMENT OF MEASUREMENT AND INFORMATION SYSTEMS

c© 2018 Department of Measurement and Information Systems,
Budapest University of Technology and Economics.

For personal use only – unauthorized copying is prohibited.

Head of the Department: Tamás Dabóczi

Conference chairman:
Béla Pataki

Organizers:
Vince Molnár
Dávid Honfi

Szilárd Bozóki

Homepage of the Conference:
http://minisy.mit.bme.hu/

Sponsored by:

Schnell László Foundation

http://minisy.mit.bme.hu/

FOREWORD

This proceedings is a collection of the lectures of the 25th Mini-Symposium held at the Department of
Measurement and Information Systems of the Budapest University of Technology and Economics. At
the beginning, starting 25 years ago, the main purpose of these symposiums was to give an opportunity
to the PhD students of our department to present a summary of their work done in the preceding year.
It was an interesting additional benefit that the students got some experience: how to organize such
events. Beyond this goal, it turned out that the proceedings of our symposiums give an interesting
overview of the research and PhD education carried out in our department. Some years ago, the scope
of the Minisymposium had been widened, foreign partners and some of the best MSc students were
also involved. This was a real benefit, therefore, this year we have kept this widened scope. By this
year, the event turned to be a small conference with an open call for papers instead of a PhD students’
symposium, but the traditional name is kept to represent the origins.

The lectures reflect parts of the scientific fields and work of our department, but we think that an insight
to the research and development activity of ours and our partner departments is also given by these
contributions. Traditionally, the symposium was focused on measurement and instrumentation. The
field has slowly changed, the scope widened during the last few years. New fields mainly connected
to embedded information systems, new aspects e.g. dependability and security are now in our scope of
interest as well. Both theoretical and practical aspects are dealt with.

During this twenty-five-year period there have been shorter or longer cooperation between our depart-
ment and some universities, research institutes, organizations and firms. Some research works gained
a lot from these connections. In the last year the cooperation was especially fruitful with the European
Organization for Nuclear Research (CERN), Geneva, Switzerland; Vrije Universiteit Brussel Dienst
ELEC, Brussels, Belgium; Robert Bosch GmbH., Stuttgart, Germany; Department of Engineering,
Università degli Studi di Perugia, Italy; National Instruments Hungary Kft., Budapest; University of
Innsbruck, Austria; University of Geneva, Italy; and University of Florence, Italy.

We hope that similarly to the previous years, this Minisymposium will also be useful for the lecturers,
for the audience and for everyone who reads the proceedings.

Budapest, January, 2018

Béla Pataki
Chairman of the
Minisymposium

2

PAPERS OF THE MINISYMPOSIUM

Author Title Page

Borkó, Máté and Bolgár,
Bence and Sarkozy,
Peter

Basecalling Raw Nanopore DNA Sequencing Reads using
Neural Networks

4

Bozóki, Szilárd and
Pataricza, András

Use of Resource Leveling in Peak Workload Scheduling 8

Bruncsics, Bence and
Gézsi, András and
Antal, Péter

Unknown, Uncertain, Untrue: Challenges in Inference
Using Semantic Life Science Data

12

Csurcsia, Péter Zoltán and
Schoukens, Johan and
Peeters, Bart

An Application Example of Regularization: Time-Varying
Operational Modal Analysis

16

Farkas, Rebeka and
Bergmann, Gábor

Towards Reliable Benchmarks of Timed Automata 20

Graics, Bence and Molnár,
Vince

Mix-and-Match Composition in the Gamma Framework 24

Guenfoud, Zeyneb and
Antal, Péter

Adaptive Sequential Laboratory Diagnostic Tests: Joint
Bayesian Analysis for Optimality

28

Hajdu, Ákos and Micskei,
Zoltán

A Preliminary Analysis on the Effect of Randomness in a
CEGAR Framework

32

Honfi, Dávid and Micskei,
Zoltán

Towards Supporting Dynamic Symbolic Execution via
Multi-Domain Metrics

36

Jagyugya, Erik and
Sarkozy, Peter

Comparison of Nanopore DNA Sequencing Basecallers on
Whole Human Data

40

Klenik, Attila and
Pataricza, András

Preliminary Performance Assessment of Hyperledger
Fabric

44

Nagy, Péter and Jobbágy,
Ákos

Oscillometric Blood Pressure Measurement Using
Constant Cuff Pressure Intervals

49

Rabatin, Gábor and Vörös,
András

Towards the Verification of Neural Networks for Critical
Cyber-Physical Systems

53

Šeketa, Goran and Dzaja,
Dominik and Vugrin,
Jurica and Lackovic,
Igor and Magjarevic,
Ratko

Signal Acquisition for Accelerometer-Based Fall Detection 57

Varga, Balázs and Orosz,
György

High Frequency Active Distortion Cancellation 61

Verbeke, Dieter and
Schoukens, Johan

Improved Frequency Response Measurements Using Local
Parametric Models

65

3

Basecalling Raw Nanopore DNA Sequencing Reads
using Neural Networks

Máté Borkó, Bence Bolgár, Peter Sarkozy
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Budapest, Hungary

borkomate@gmail.com

Abstract—The single-molecule real-time (SMRT) DNA se-
quencer developed by Oxford Nanopore Technologies offers
breakthrough read lengths in a handheld device, while greatly
simplifying input DNA library preparation procedures. The
standard method of identifying the individual bases passing
through each pore relies on a Hidden Markov Model (HMM),
mapping raw current levels to individual bases in a nonlinear,
multi-staged fashion. Recent advancements in artificial neural
networks (ANN) and related natural language processing (NLP)
techniques allow novel neural architectures that may improve the
accuracy of the basecalling. We developed and examined a novel
deep neural network based method to perform basecalling on
raw current level measurements, as well as an efficient method
of selecting and curating a training database from a set of real
measurements.

Index Terms—DNA sequencing, neural network, LSTM,
Nanopore

I. INTRODUCTION

Oxford Nanopore Technologies’s (ONT) MinION device
uses a new single-molecule real-time technique to read in-
dividual DNA sequencing. The greatest achievement of this
effort is the ability to sequence a single molecule of DNA
without resorting to enzymatic amplification of the strand.
ONT makes unprecedented read lengths possible, up to tens of
thousands of bases long, compared to several hundred bases
long provided by current technologies. One disadvantage of
this new platform is that the basecalling accuracy (the ratio of
correctly identified nucleotides in a sequence) is an order of
magnitude lower than other competing platforms. Sequencing
is performed by passing each individual single stranded DNA
molecule through an engineered nano-scale pore, along with a
ratcheting helicase enzyme to slow the passing of the molecule
to levels where the characteristic current of the nucleotides
inside each pore can be captured. The current is sampled at
4 kHz, while the average traversal rate of the DNA strand
is approximately 300-500 nucleotides per second. The current
level is representative of multiple nucleotides (up to 6), thus
currently Hidden Markov Models are used to perform the
basecalling.

The use of neural networks in the field of DNA sequencing
is a recent phenomenon, with only a few existing solutions [3].
The performance of deep neural networks in natural language
processing (NLP) gave us a good starting point, as they share
a strikingly similar underlying model from a signal processing

aspect. We aim to establish a high quality training set for future
neural network basecallers, and to identify an efficient and
NN architecture for basecalling. A successful neural network
basecaller architecture requires two vital components:

• The accuracy of any neural network is inherently limited
by the amount and quality of available training samples.

• An appropriate neural network structure must be declared.
The number of layers and neurons must be selected
according to the required result, and is governed by a
suitable cost function which allows the optimization of
the structure with respect to training time and accuracy.

II. CREATING TRAINING SAMPLES

A large, publicly available dataset, in the form of the whole
genome shotgun sequencing of the NA12878 human sample
[4] was used as a training set. This multi-TB dataset contains
the entire human genome at approximately 30x coverage, and
provides a wide variety of training data. We used the GRCh38
reference human genome as a gold standard, as its deviation
from the true NA12878 is orders of magnitude lower than our
expected error rates.

A. Original Mapping Procedure

Initially, we attempted to implement a method similar to
how Metrichor [5], the vendor-released basecaller maps input
signals to DNA sequences. This 3-step method functions as
follows:

• The raw data files containing the time-current measure-
ments are separated into contiguous segments with no
changes in current called events.

• The basecaller assigns a k-mer probability to each event,
using a HMM.

• The kmer probabilities along with the HMM step and stay
probabilities are calculated to assign a final basecalled
sequence and a PHRED score

The CIGAR string describes the alignment between the read
and the reference sequence, noting soft clipped (S), matched
(M), inserted (I) and deleted (D) bases. The process is sum-
marized on Fig. 1.

B. Sorting Training Data

Using the previously described method we were able to
assign raw data samples to reference bases. Initially, we

4

Fig. 1. Abstraction levels during basecalling. Raw current levels are shown in
green, event current levels in blue. Red columns denote each event start. The
vertical axis shows raw normalized current, and the horizontal axis shows the
reference sequence (not time scaled).

attempted training the neural network directly with these seg-
mented signals, but further research suggested an architectural
element, Connectionist Temporal Classification (CTC) [10]
that made data segmentation unnecessary.

All raw data files contained an offset to the start of the
segmentation, but the duration of some events were not defined
correctly, so the raw data-to-event mapping could not be
executed trivially. We corrected the durations by calculating
them from the start and stop times of each event. The results of
each measurement are stored in fast files. These files contain
all relevant measurement related metadata, e.g. the event
segmentation, offset, duration, temperature, and environmental
variables that could be transferred into the neural network
model. We extracted the fastq sequences from the fast5
files, and mapped them to the reference sequence using the
Burrows-Wheeler Aligner (BWA, [6]) and Samtools [7].
The aligner reports quality information about each alignment,
which we used to identify candidate reads for use as training
samples. Sequences that aligned to the positive strand of the
genome with a mapping quality threshold above 30 were used
as training samples. Additionally, if the CIGAR string of an
alignment indicated the presence of deletion more than 5 bases
long, the read was discarded from the training set [8].

C. Final training set

During the first phase of our research, we examined about
300 GB of raw measument data, originating from approxi-
mately 40000 reads. We initially selected 160 MB, or 1971
training sequences, to be representative of the entire set. The
training data consists of raw current signals and reference
nucleotide sequence pairs as inputs and outputs, respectively.
These files were sorted by length, as zero padding of shorter
sequences is required for efficient mini-batch training [12].
A neural network trained with these samples is capable of
translating raw current signals into nucleotide sequences, as
per the goal of our research. We normalized the samples before
storage.

III. SELECTING THE APPROPRIATE ARCHITECTURE

Recent research has created new artificial neuron models,
where the output of a neuron is the outcome of a more
complex process. In this case the output depends on the last n
(hidden)states of the neuron and on the last input sample, so
an output at the time point ti carries the effect of all previous
inputs indirectly. A networks built from such elements are
called Recurrent Neural Networks (RNN) [13]. The stored n
states enables the handling of the time dependencies in the
input sequence.

A. LSTM

During the backpropagation (training) RNN cells cannot
prevent exponentially increasing gradients. The errors have to
be backpropagated through all hidden neurons (states), which
is not possible, if the gradients grow to the infinity. As a result,
RNN structures allow only a finite number of hidden states,
thus the time dependency that can be handled by RNNs is
shorter than what is required for basecalling.

Long-Short Term Memory is an architecture that can handle
such long distance time dependencies [9]. In this model the
neurons are replaced with small memory cells, and these cells
have control over the output. Through this control they can
prevent the problem of exponentially increasing gradients.

The functionality of these cells can be described with 6
variables:

• g is the input
• i is the input gate. Its value is multiplied by the input, so

it functions as a weight.
• f is the forget gate. It controls the influence of the hidden

state.
• o is the output gate. It weights the value of the output
• s represents the state of the cell.
• h symbolizes the output.

Furthermore W are the related weight matrices and b the biases
for every state variable. The activation function, represented
by σ is a tanh function. The equations that describe the
functionality of an LSTM cell:

gt = σ(W gxxt +W ghht−1 + bg)

it = σ(W ixxt +W ihht−1 + bi)

ft = σ(W fxxt +W fhht−1 + bf)

ot = σ(W oxxt +W ohht−1 + bo)

st = gt · it + st−1 · ft
ht = σ(st) · ot

(1)

B. Bidirectional Networks

Alongside LSTM, bidirectional neural networks [11] have
become the most important development of RNN structures,
as these have been used to recognize handwritten letters.
Bidirectional cells contain two hidden neurons that are in
connection with the input cells and also with the output cells.
One of them has a recurrent signal from the input layer and the
other one from the output layer. This structure can learn the

5

sequence from the both directions, and predict the output as
the outcome of the previous and next time samples. Naturally,
this functionality enables only offline processing.

C. CTC

The core of the processing model is the CTC cost function
[10]. The usage of CTC makes input data segmentation
unnecessary in the preprocessing phase. CTC cost functions
with bidirectional LSTM structures have outperformed Hidden
Markov Models in many applications [10].

The brief functional description of CTC is as follows:
Alongside the standard output labels (here A,G,C, T) CTC
introduces a ”blank” label (b), and fills the desired output
sequence with these blank labels. E.g. the sequence ”ACGT”
would be ”bAbCbGbTb”. This is the extended output. In next
step, a two dimensional graph is declared, which contains a
number of nodes equal to the input sequence length in the
horizontal directions and extended output length number nodes
in the vertical direction. The applied neural network predicts
the probability of each label (A,C,G, T, b) in every time
step. There are permitted and prohibited transitions regarding
the output sequence. E.g. in the sequence ”bAbCbGbTb” the
prediction can start only with b or A and if a A has been
predicted, the next predictions can be A or b or C, but G
can not follow A, because it would cause loss (C would
be eliminated from the output). Similar to Hidden Markov
Models, two types of variables are used to model the state
of the predicted probabilities. A forward and a backward
variable for the forward and backward traversal of the graph.
Finally, the blank labels are removed from the predicted output
sequence, and depending on the decoder style, the repeated
labels will be collapsed.

IV. RESULTS

We initially started the formulation of the neural network
architecture without any specific restraint, and created models
1-2 hidden layers with a number of neurons between 50 and
1000. We used a single test sample to configure the initial
model structure, and the length of the input (raw current
level) at 9000 samples caused two main issues: a single
training iteration took longer than two minutes, and the CTC
architecture required the entire input sequence, which taxed
the memory subsystem of our hardware. We only used input
sequences that were shorter than 4000 samples in the current
domain to decrease training times. In order to select the
optimal number of neurons in each layer, we analyzed the
relationship between the raw current vector length and the
output nucleotide sequence. We used the reference sequence
to determine that each single nucleotide corresponds to ap-
proximately 11 raw current samples. However, the effect of a
single nucleotide on the current inside of each pore extends
further, to approximately 20 nucleotides [14]. This results in
approximately 220 raw current samples, and thus 200 neurons
were chosen to the output per time step. This network used
a mixture of LSTM and bidirectional neural networks with
100-100 neurons in the forward and backward layers.

Fig. 2. Training with different layer sizes

Networks with only 1 or 2 layers were unable to learn the
training data, so we increased the depth of our model. The
results of 3, 4, 5 layers are shown in the Tab. I and Fig. 2.

TABLE I
LAYER TEST RESULTS

Number of layers Epochs Training time [s]
3 287 2348.37
4 318 3681.05
5 330 4743.70

We determined that using 3 layers, the accuracy of the
network depended highly on the initially randomized weights,
while with 5 layers, the training time was unnecessarily
long. Thus a 4 layer model was chosen. Further results all
used 4 layers with 200 neurons per layer structures with the
ADAM optimizer and CTC loss function. The performance
on unidirectional networks were also investigated, so we
compared the reference network with a 4 layer feedforward
neural network using 200 neurons per layer. As the Fig. 3
shows it performed markedly worse. It was unable to learn the
reference sequence in 1000 iterations. Thus we concluded that
unidirectional networks do not have sufficient performance for
applying them in basecalling raw nanopore current levels.

Fig. 3. Comparison of forward and bidirectional networks

To enhance the power of our network we implemented
almost all of the optimization opportunities provided by the
Tensorflow framework. We used features such as dropout
training, using mini batches, shuffling the order of the training

6

data and layer normalization. Dropout and shuffling the order
of training data help avoid getting stuck in local minima and
overfitting. Mini batches aid in more robust convergence. The
optimal batch size is yet to be determined, as we currently
use one sample per batch (batch size 1). Finally, layer nor-
malization speeds up convergence and improves the achieved
accuracy. All implementations used the shuffling of the order
of training data. The Fig. 4 shows the result of dropout
training.

Fig. 4. Dropout test

As it is shown in the Fig. 4, we experienced, that the dropout
stabilizes the performance of the network, even so we used
it in further models. We initially had 34 training samples
with the input lengths shorter than 4000. The first acceptable
network was trained on these samples. The hyperparameters:
4 bidirectional layers with 100-100 neurons, dropout 0.5,
learning rate 0.003. The training samples were divided into two
parts, training samples (27) and test samples (7). The results
are shown Tab. II. During the training we got 5% error rate on
the training samples. We analyzed a larger subset of the entire
raw dataset to collect more samples meeting our criteria. This
increased our training set to 79 sequences shorter than 4000
samples, and were divided into training and test data by a ratio
of 64/15. The structure of the network was not changed. The
results in Tab. II show an accuracy of 4.8% on the updated
training samples.

TABLE II
TRAINING RESULTS

Number of training samples 27 64
Number of test samples 7 15
Average match rate 0.617 0.679
Average mismatch rate 0.112 0.084
Average insertion rate 0.198 0.134
Average deletion rate 0.072 0.104
Average label error rate 0.383 0.321
Training time 7 days 6 h 13 days

With respect to the label error rate, this nets an additional
5% improvement, resulting in a 68% final accuracy. While this
accuracy is lower than the best currently available basecallers
(up to 90%), it is still a promising result considering the small
number of training samples.

V. CONCLUSION

Although our model has not yet reached the accuracy of
Albacore yet, we have not found any reason why it could
not be achieved. The reached 68% is not a record-breaker,
but we must mention that the number of training samples
used is extremely low. Our only major hurdle appears to be
very long network training time, and we must explore further
options to decrease it. To further increase the accuracy of
our model, we plan to use longer training sequences. Adding
longer sequences to the network directly has dire consequences
in terms of memory usage and increased training times. Thus
we plan to segment the data into overlapping partitions with
a sliding window, allowing the use of arbitrary length raw
sequences as training data. We also plan to investigate the
addition of a convolutional layer into the model architecture, as
such a mixture of layers often give excellent results in practice
[10].

VI. ACKNOWLEDGEMENTS

The authors acknowledge that they are participants in the
Oxford Nanopore Technologies’s MinION Access Program,
and have no other conflicts of interest. This research was
supported by the OTKA-K-112915 Grant, and the Multipur-
pose Health Monitoring Platform bilateral Croatian-Hungarian
grant. The Titan Xp used for this research was donated by the
NVIDIA Corporation.

REFERENCES

[1] Oxford Nanopore Technologies. Electronics for nanopore sensing.
https://nanoporetech.com/how-it-works 05-20-2017

[2] Mikheyev AS., Tin MM., A first look at the Oxford Na- nopore MinION
sequencer. Mol Ecol Resour 14(6): p. 1097-102. DOI 10.1111/1755-
0998.12324 2014

[3] Wick, RR., Holt, KE., et al.: Comparison of Oxford Nanopore basecall-
ing tools. https://github.com/rrwick Basecalling-comparison 11-09-2017

[4] Nanopore Whole Genome Sequencing Consortium,
https://github.com/nanopore-wgs-consortium/NA12878 11-15-2017

[5] Oxford Nanopore Technologies, https://nanoporetech.com/ 2017-12-20
[6] Li H., Durbin R.: Fast and accurate long-read alignment with Burrows-

Wheeler transform. Bioinformatics, 26, 589-595. 2010
[7] Li H., et al: 1000 Genome Project Data Processing Subgroup (2009) The

Sequence alignment/map (SAM) format and SAMtools. Bioinformatics,
25, 2078-9. [PMID: 19505943]

[8] Sarkozy P., Antal, P., Jobbágy, Á.: Calling Homopolymer Stretches from
Raw Nanopore Reads by Analyzing k-mer Dwell Times. 2016. DOI:
10.1007/978-981-10-5122-7-61.

[9] Schmidhuber, J., Hochriter, S.: Long Short-term Memory.
1997. http://www.bioinf.jku.at/publications/older/2604.pdf, doi:
10.1162/neco.1997.9.8.1735

[10] Graves, A.: Supervised Sequence Labelling with Recurrent Neural
Networks, chapter 7. Connectionist Temporal Classification. 2012. doi:
https://doi.org/10.1007/978-3-642-24797-2.

[11] Schuster M., Paliwal, KK., Bidirectional Recurrent Neural Networks ,
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO.
11, NOVEMBER 1997, doi: 10.1109/78.650093

[12] Bottou, L.: Large-scale machine learning with stochastic gradient de-
scent. In COMPSTAT2010 (pp. 177-186). Physica-Verlag HD. 2010

[13] Hopfield, J. J. (1982). Neural Networks and Physical Systems with
Emergent Collective Computational abilities. Proc. Natl. Acad. Sci.
USA,79, 2554-2558.

[14] Teng, H., et. al.: Chiron: Translating nanopore raw signal
directly into nucleotide sequence using deep learning, doi:
https://doi.org/10.1101/179531

7

Use of resource leveling in peak workload scheduling

Szilárd Bozóki

Department of Measurement and Information Systems

Budapest University of Technology and Economics

Budapest, Hungary

bozoki@mit.bme.hu

András Pataricza

Department of Measurement and Information Systems

Budapest University of Technology and Economics

Budapest, Hungary

pataric@mit.bme.hu

Abstract— High availability is not anymore a designated

property of critical applications, but an important quality of

service requirement even for common applications. This way,

minimizing downtime, even under extremely high workload, has

been a fundamental requirement. Capacity planning is the art of

allocating sufficient and necessary resources to the applications.

Achieving both is even more complex when the workload is

extremely bursty.

Overestimating the workload in the case of peaks leads to

inefficient resource utilization and all the financial drawbacks

originating in it. Frequently, the designer has an influence on the

end-to-end process, including the shaping of the workload.

This paper investigates basic workload-resource leveling

mechanisms in the context of a bursty workload environment.

Keywords—Extreme Value Analysis, peak workload

management, burstiness, workload shaping, system dimensioning

1 INTRODUCTION

The phenomenon of system failure due to overloading has been

around since humanity started using tools and machines.

Consequently, over time, multiple different solutions have been

developed to manage this issue (e.g. over-provisioning,

queueing, auto-scaling, etc.) [1] [2].

Among others, estimating the characteristics of the system load

(using models) and using the estimated maximum value as a

basis for system dimensioning has been a very basic idea.

However, modeling the maximum (peak) workload is far from

trivial in many cases.

Dimensioning a system to an overestimated peak workload

could lead to a waste of resources due to underutilization. This

is especially true in the case of a workload ridden with rare but

highly bursts. Here the deviation from the average workload is

extremely large, necessitating a number of resources multiple

times larger than in the average case. However, as the peak

bursts are rare, their worst case values serving as a basic input

for dimensioning is extremely hard to predict.

This paper analyses two basic peak workload mitigation

strategies: (1) 5-day rolling average peak mitigation, (2) first-

in-first-out (FIFO) queueing with a constant maximum capacity

and infinite queue length, using R with several specialized

packages [3] [11] [12] [13] [14].

In order to highlight the differences between low variance and

high variance (bursty) workload, we evaluated two approaches

to dimensioning: Facebook Prophet, a sophisticated approach

aiming at dimensioning by focusing on the average load, and

Extreme Value Analysis (EVA) targeting the worst case (peak

workload).

1.1 Prophet

Facebook is a non-mission critical application with over 2

billion users across the globe served by a world-spanning

extremely large infrastructure. The geographical distribution of

its user base acts as a natural load balancer and statistical

multiplexing can be assumed, owing to the large number and

heterogeneity of its users.

Consequently, Facebook Prophet was designed for efficient

resource utilization in focus, which in effect suppresses the

outliers. Due to the nature of Facebook, this can be acceptable

because availability or timeliness guarantees of the service

under a peak workload are highly relaxed.

The heart of Facebook Prophet is a decomposable model aimed

at modeling the following mutually relatively independent

factors [9] [10]:

(1) Trends: increasing market penetration (e.g. shops,

restaurants etc.) and growth in the user base

(2) Seasonality: weekly, monthly, yearly (e.g. going out

with friends or family during the weekend, summer

vacations etc.)

(3) Holidays and events (e.g. Christmas, Black Friday,

Presidential election in the USA)

CI Max / average load Availability

95,00% 8,5 98,39%

96,00% 8,7 98,53%

97,00% 8,9 98,59%

98,00% 9,5 98,93%

99,00% 9,5 98,93%

99,90% 11,1 99,20%

99,99% 11,8 99,20%

1. Table Dimensioning with Facebook Prophet

8

Dimensioning the system based on the worst case scenario of

Facebook Prophet requires around 12 times the average

capacity and can achieve 99% availability (Table 1).

Considering critical applications requiring four nines or more

availability, the 99% availability of Facebook Prophet is

insufficient, as the non-peak periods over dominate the sample

from the point of view of the algorithm estimating the necessary

resources.

1.2 EVA

EVA is a branch of statistics aimed at modeling the extremely

deviant values (the values usually labeled as outliers in

traditional model fitting context) [4] [5] [6].

The classic question of EVA, originating from hydrology, is as

follows: “What is the maximal expected level of a flood in the

next 100 years based on historical data?” When using EVA, a

usual answer is the return level N 𝑙(𝑁), which is the maximal

level that is expected to occur once every N time intervals (100

years in the case of the example), along with the respective

confidence intervals (CI).

Let 𝜒 = 〈𝑋1, 𝑋2, . . . , 𝑋𝑛〉 be a sequence of independent and

identically distributed random variables with cumulative

distribution function 𝐹 and let 𝑀𝑛 = max⁡(𝑋1, 𝑋2, … 𝑋𝑛) denote

their maximum. Essentially, EVA aims at analyzing⁡𝑀𝑛.

𝑃(𝑀𝑛 ≤ 𝑦) = 𝑃(𝑋1 ≤ 𝑦, 𝑋2 ≤ 𝑦,…𝑋𝑛 ≤ 𝑦) =∏𝑃(𝑋𝑖 < 𝑦)

𝑛

𝑖=1

= [𝐹(𝑦)]𝑛

Equation 1. Computing the exact distribution of the

maximum if F is known

Provided 𝐹 is known, the exact distribution function of 𝑀𝑛

could be computed, due to the independence of the random

variables 𝑋𝑖 (Eq. 1).

However, when F is not exactly known (estimated, or

approximated), computing [𝐹(𝑦)]𝑛⁡ potentially ends in useless

results because the otherwise relative small estimation errors

are multiplied. In contrast, EVA takes a different approach by

approximating⁡[𝐹(𝑦)]𝑛⁡instead of F.

Essentially, there are two EVA models: the block maxima

model backed by the Fisher–Tippett–Gnedenko theory, and the

threshold exceedance model backed by the Pickands–

Balkema–de Haan theory [4].

In our analysis, the threshold exceedance model was used,

because it makes better use of a limited dataset. Threshold

selection was based on visual exploratory analysis. [7] [8]

2 VCL

The first analyzed dataset corresponds to the real-life workload

of a shared resource: a Virtual Computing Lab (VCL) operated

by the department between 2013 and early 2017. The workload

is computed by summarizing the concurrent virtual machine

reservations in the system reservation log.

The VCL has two distinct purposes:

a) IaaS platform for the various student labs and research

projects

b) Homework submission platform for a core course with

a large number of students

The workload originating from the IaaS offering has moderate

variance in the workload due to the managed scheduling of the

laboratories and the computationally heavy research projects.

On the other hand, the homework submission system is prone

to extreme workload spikes because the majority of the students

submit their homework just before the deadline.

1. Figure Visualizations of the VCL data series

To sum up, the overall workload consists of a background load

and spikes recurring every semester, with the largest spike

being around 250 concurrent sessions. (Fig 1.)

2.1 5-day smoothing

2. Figure Visualization of the VCL data series with 5-days

rolling average applied

Applying a 5-day rolling average to the workload reduced the

amplitude of spikes as expected, with the largest peak reduced

from 250 to 140 concurrent sessions. (Fig 2.)

With the original and the smoothed dataset at hand, Prophet and

EVA were conducted. For demonstration, the 𝑁 = 100 days

return level is presented. Figure 3 represents the predictions of

Prophet based on the smoothed dataset. With Prophet

repressing the outliers, its predictions are clearly off the marks

regarding peaks.

The 100 days return level of the original dataset expects a

workload around 502 concurrent sessions with 16 concurrent

sessions at 95% lower CI bound and 988 concurrent sessions at

95% upper CI bound. On the other hand, the smoothed dataset

resulted in a 100 days return level of 215 concurrent sessions

with 88 concurrent sessions 95% lower CI bound and 342

concurrent sessions upper 95% CI bound. (Fig. 3)

9

3. Figure Comparing the different cases

Comparing the EVA 100 days return levels results, the required

static capacity can be reduced by a factor around 2x-3x by using

a simple 5-day rolling average peak workload mechanism.

2.2 Queuing

The queueing mechanism was simulated by linearly parsing the

system reservation log, and putting all the tasks in a FIFO that

would exceed the predefined maximum capacity.

Essentially, the reservations where re-scheduled and the delay

was computed from the difference between the original start

time and the new start time.

4. Figure Plot of the re-scheduled data series with maximum

capacity set to 60 concurrent sessions using FIFO queuing

The effects of queuing become clearly visible when the new

data series is plotted. (Fig 4.)
max. capacity max. delay(h) total delay(h) average delay(h)

10 862,03 3976586,14 125,058

20 291,66 785925,72 24,716

30 136,11 324575,07 10,207

40 58,95 149764,04 4,710

50 35,44 70412,73 2,214

60 19,64 39209,23 1,233

70 13,24 21169,35 0,666

80 10,76 12923,49 0,406

90 8,75 7851,06 0,247

100 7,25 5052,87 0,159

110 6,13 3284,56 0,103

120 5,00 2141,47 0,067

130 4,25 1393,62 0,044

140 3,49 892,36 0,028

150 2,75 546,29 0,017

160 2,45 351,98 0,011

170 2,00 240,20 0,008

180 1,50 166,26 0,005

190 1,25 116,17 0,004

200 1,00 80,42 0,003

210 0,77 52,14 0,001

220 0,75 30,14 0,001

230 0,50 13,81 0,000

240 0,25 2,09 0,000

250 0,00 0,00 0,000

2. Table

In our case, queuing is a trade-off between the maximum

capacity needed and the delay induced by waiting in the queue

(Table 2).

2.2.1 Queueing with priority

It is well known that long tasks can dramatically increase

maximum and the average queueing time when using FIFO

queuing, because they unreasonably uphold the queue.

5. Figure The effect of prioritizing workload by length

Clearly, in our case, when the capacity is scarce (less than 30

concurrent sessions), the maximum and average delay is

significantly higher compared to the other cases.

As an idea, we filtered out the reservations longer than 24-hours

to see the effects. (Fig. 5) Comparing the maximum delay, the

result was that filtering out long-term reservations can really

help in resource-scarce scenarios.

As a conclusion, when managing the peak workload,

redirecting the background load to a separate infrastructure can

really help, thus workload classification, prioritization are both

viable alternatives.

10

3 NEPTUNE

The second dataset corresponds to the workload of a university-

wide student portal sampled at the start of a class registration

for a semester. Similar to the VCL load, the average load is

small compared to the peaks occurring when class registration

starts. Consequently, in our case, the load is measured in the

number of class registrations per hour.

Traditionally, class registration starts at 18:00, and the effect of

peaks end in 8 hours, narrowing the window of our analysis.

6. Figure Workload distribution during peak hours

Fig 6. depicts the different proceedings of class registrations.

Visibly, the first three hours are critical. Due to the extremely

limited dataset, EVA was not applied, only queueing was

investigated.

The dataset consists of hourly numbers (“there are buckets for

each hour”), thus, in this case, capacity means the maximum

amount of class registrations the system can process in an hour

(“the bucket size”). Moreover, FIFO queuing means, moving

class registrations from one bucket to another bucket (re-

scheduling them), which means that re-scheduling is delaying

class registration by integer hours.

capacity max. delay(h) total delay(h) average delay(h)

15000 7 169 3

20000 5 89 2

25000 4 49 2

30000 3 34 1

35000 2 17 1

40000 2 15 1

45000 2 11 1

50000 1 6 1

55000 1 5 1

60000 1 4 1

65000 1 2 1

70000 0 0 0

3. Table

Looking at the results, by embracing 3 hours of maximum

delay, the required capacity could be halved.

4 CONCLUSION AND FUTURE WORK

The basic dataset used for the EVA is quite narrow in the

statistical sense as it contains only a very limited number of

semesters. Moreover, each semester has its own dynamics in

the terms of the behavior of the students before the submission

deadline. Early analysis indicates a high level of similarity

between the individual semesters (the psychology of students

seems to be invariant…). In these terms, a combined

methodology of aggregating the data similar to the block

maxima principle before using the threshold exceedance

algorithm seems the most promising one.

However, note that the same phenomena appear in many

technical systems as well, where the operating time periods and

accordingly the number of log data collected go beyond the

strict limitations of the pilot example presented.

Based on our analysis, as expected, even the simplest peak

management mechanisms can greatly reduce the required

capacity in bursty workload environments, which could

significantly increase the overall utilization of a system.

During the analysis of the VCL dataset analysis, only a single

dimension was used: the number of concurrent virtual

machines. Multidimensional analysis, where the CPU and

memory usage are investigated, seems an evident and

interesting area to research.

When queuing was analyzed, only a simple FIFO queue was

implemented. However, considering the many queueing

algorithms available, there is much to be researched here.

Moreover, a basic workload classification and prioritization

idea (filtering larger than 24 hours reservations) seemed viable

in peak workload management (especially when the capacity is

limited), thus further investigations seem promising.

REFERENCES

[1] Robert Hanmer “Patterns for Fault Tolerant Software”, Wiley Publishing, 2007

[2] Marcus Carvalho, Daniel A. Menasc, and Francisco Brasileiro. 2017. Capacity

planning for IaaS cloud providers offering multiple service classes. Future Gener.

Comput. Syst. 77, C (December 2017), 97-111.

[3] The R Project for Statistical Computing: https://www.r-project.org/ (last check:

2017-12-01)

[4] Alexander J. McNeil, Rudiger Frey, and Paul Embrechts. 2015. Quantitative Risk

Management: Concepts, Techniques, and Tools. Princeton University Press,

Princeton, NJ, USA.

[5] P. Rakonczai: On Modeling and Prediction of Multivariate Extremes. Mathematical

Statistics Centre for Mathematical Sciences, Lund University, 2009

[6] Pavel Cízek, Wolfgang Härdle, Rafal Weron “Statistical Tools for Finance and

Insurance”, Springer, 2011

[7] Caeiro, Frederico; Gomes, MIvette; ‘Threshold Selection in Extreme Value

Analysis: Methods and Applications’, Extreme Value Modeling and Risk Analysis,

pp.69-86, Chapman and Hall/CRC, 2015

[8] Scarrott, C. & MacDonald, A. (2012), 'A review of extreme value threshold

estimation and uncertainty quantification', REVSTAT - Statistical Journal 10 (1),

33--60.

[9] Facebook Prophet: https://facebookincubator.github.io/prophet/ (last check: 2017-

12-01)

[10] Taylor SJ, Letham B. (2017) Forecasting at scale. PeerJ Preprints 5:e3190

[11] extRemes: Extreme Value Analysis, 2.0-8

[12] ismev: An Introduction to Statistical Modeling of Extreme Values, 1.41

[13] prophet: Automatic Forecasting Procedure, 0.2.1

0
10000
20000
30000
40000
50000
60000
70000
80000

18:00
-

18:59

19:00
-

19:59

20:00
-

20:59

21:00
-

21:59

22:00
-

22:59

23:00
-

23:59

00:00
-

00:59

01:00
-

01:59

Class registrations / hour

11

Unknown, Uncertain, Untrue: Challenges in
Inference Using Semantic Life Science Data

Bence Bruncsics, Andras Gezsi, Peter Antal
Budapest University of Technology and Economics

Department of Measurement and Information Systems
Budapest, Hungary

Email: {bruncsics, gezsi, antal}@mit.bme.hu

Abstract—The rapidly accumulating electronically available
data and knowledge in life sciences currently cannot be inte-
grated into a general, unified knowledge base with adequate
inference. A unified knowledge representation is still missing,
which could include large scale uncertain expert knowledge and
in silico predictions from machine learning. Thus, the available
information is fragmented and differently processed. In order to
overcome this barrier and provide a common base for automatic
data processing many databases became available in a semantic
form. However, the current query languages for semantic linked
open data have many limitations, therefore they are not suffi-
cient for creating an integrated knowledge representation and
reasoning. Overcoming this obstacle there are different solutions
for knowledge representation but currently no such tool has
the power to predict or find solutions for the most important
biological questions. Combination of semantic web technologies
and probabilistic techniques can result a novel powerful tool for
life sciences.

Index Terms—graph databases, intelligent systems, probabilis-
tic knowledge representation, semantic Web, uncertain databases

I. INTRODUCTION

Besides to regular free-text publication an emerging trend
is to make accessible data and knowledge in representations
more suitable for automated processing. Amongst databases
and information sources semantic technologies have the widest
range covering most of the life science entities and properties
with additional information about their relationships.

A. Semantic Solutions

Providing an efficient foundation for constructing, storing
and interpreting life science data is challenging due to its size,
complexity and the excessive need for an easily accessible way
to process these data. A candidate solution originates from
Word Wide Web Consortium in form of semantic technolo-
gies providing such scalable, efficient, accessible and simple
standards as the RDF (Resource Description Framework) [1]
and the OWL (Web Ontology Language) [2].
In practice the different biological entities like diseases, genes
or compounds are handled in different databases and cross-
domain integration is ensured by unique identifiers, URIs
(Uniform Resource Identifier) of these entities. The URIs form
a consistent system, because they are usually URLs pointing to
locations maintained by the databases creators or by projects
dedicated to RDFize multiple databases, technically they are

formed by proper database specific prefixes and IDs for each
entity.
There are numerous properties for most entities in the
databases and in RDF these are connected to the entities using
OWL based terms as a form of knowledge representation
e.g. genes have a location property describing a position
in the DNA where the gene can be found. In addition to
properties from the databases, there is information about the
relationship between entities from different databases like a
gene is associated with a disease. The associations can have
further properties like which mutation of a gene is associated
with a disease, resulting in complex relationships between
databases.

B. Linked Open Data and Semantic Databases

Data sharing became a central topic in life sciences, balanc-
ing aspects of privacy, proprietary, scientific advance and re-
peatability. To contribute to the semantic Web, the data needed
to be RDFized. It is usually done by database providers such as
PubChem [3], but more commonly separate organizations per-
form this conversation, such as the European Bioinformatics
Institute (EMBL-EBI) [4], or collaborative projects such as
Ontobee [5]. Semantic data has multiple locations, different
origins and can even have duplicates, therefore its proper
management is essential for its applicability. The Linked Open
Data approach (Fig. 1) is a large scale community project
aimed to set RDF links between the open RDF datasets and
to encourage the community to RDFize the separate databases
expanding the semantic Web [6].
Currently the most relevant semantic life science databases
contain thousands (103−104) of diseases, over a million genes
from different species, and millions (106−108) of compounds
and many more databases and descriptions with billions of
links between entities [7].

II. BACKGROUND KNOWLEDGE OF LIFE SCIENCES

In life sciences, many revolutionary measurement tech-
nologies have emerged in the last three decades, producing
unprecedented amount of data and many databases were
formed to store and organize these data. Further databases and
ontologies were made to organize the already existing current
information resulting in a large variety of information sources.
Most of the databases are formed along various aspects of

12

Fig. 1. Linked Open Data (LOD): Life sciences contribute the most data for
LOD [8]

drugs, genes, and diseases, such as genetic, proteomic, pheno-
typic or chemical information. The most important databases
are focusing on listing all the entities at a given level (such as
all the genes) and usually contain additional descriptions of
their entities via common properties. Other databases describe
ontologies and refer to other entities affected by the ontologies;
and there are databases focusing on linking databases based
on specific techniques like gene expression profiles in different
diseases (based on microarray technology).

However, inherent challenges of representing scientific in-
formation is still not addressed by the semantic framework,
such as the (1) representation of large scale implicit, negative
information (cf. closed world assumption), (2) representation
of uncertain information (3) and representation of inconsis-
tent information, partly as a consequence of untrue scientific
reports from misconducted or fraudulent studies.

A. Biases for known and unknown

Life sciences always had biases due to scientific paradigms,
trends, measurement constraints, budget limitations or publi-
cation and grant policies. For example, the publication bias
for positive findings, is a serious challenge for text-mining,
machine learning and automated discovery systems.

The need for publication and gathering citations creates
trends in science resulting popular fields but also popular
entities such as popular genes like CD4 gene which plays
a role in HIV infections but less important for the general
understanding of biology [9]. These trends result in disparate
distributions and characteristics for the different entities and
the popularity of a field or entity is not necessarily a conse-
quence of the biological relevance.
The effect of the uneven mapping stands out more when only a
small portion of field is discovered which is the case in most
part of the life sciences. For an integrating model in drug

discovery the chemical data should contain information about
the targets (usually proteins) of the compounds. Knowing this
information, a matrix can be created containing the compound
target interactions, but in practice the coverage of these ma-
trices can be as low as 0.1% (a standard bioactivity database
ChEMBL contains 14 million values including duplicates for
the 2 million x 10 thousand interactions of its compounds and
targets, [10]). Knowing that the data in these sparse matrices
are unevenly distributed rises further challenges for processing
this information.

B. Uncertain scientific knowledge

Statistical data analysis provides the base for our empiri-
cal science and evidence-based medicine, however the limits
and conditions of statistical test driven scientific publication
policies are often overlooked. Even if we assume honesty for
all researchers, it is easy to make mistakes (like excluding
seemingly wrong parts from data) without a statistical mindset,
not knowing the consequences of certain actions. And unfor-
tunately, experiments with positive results will have higher
chance to be accepted than those where the methods were
rigorously followed, but had negative results.
Further problem is the mystified requirement and uncondi-
tional acceptance of p-values as ultimate proofs. In the field
of biology, a result showing a p-value lower than 0.05 is
accepted as significant effect, even without considering its
power and the number of the corresponding experiments.
Often the number of trials or the parallelly tested theories
are not included in the statistics or sometimes these are not
even published resulting in an overwhelmingly large number of
false positive results. In summary, currently the representation
of certainty and the context of a statistical evidence is severely
restricted.

C. Untrue, Non-repeatable Scientific Reports

It is a suspected, but still astonishing finding that at least
50% of published studies of early-stage venture capital firms
cannot be repeated with the same conclusions by an indus-
trial lab [11]. Furthermore, a large-scale study by Bayer in
2011 showed that only 20-25% of their in-house findings
were completely in line with the original publications [12].
Therefore, it is clear that the databases based on publications
with overwhelming amount of false positive findings will have
the same biases.

III. REASONING USING LIFE SCIENCE DATA

The need for automation of reasoning using life science data
is clear, because it could overcome many questions that the
current state of science wouldn’t be able to answer otherwise,
but cooperative schemes with scientific discovery support
systems can also accelerate research and increase efficiency.

A. Challenges in Reasoning

Despite rapid advancements in deep linguistic analysis,
using solely free-text scientific publications is not a viable
option currently for reasoning in life sciences, therefore the

13

manually curated, computationally processable semantic data
remains a default option. However, the usage of semantic data
and technologies is hindered by many obstacles:

1) Vulnerable distributed inference: Life science databases
are usually not integrated into a common datastore; therefore,
distributed queries are strongly affected by the accessibility of
the sources; even one missing endpoint could fail the query.

2) Intractable inference: The computational complexity
of unrestricted queries is so high, that usual inference is
intractable even in a problem-specific unified database using
dedicated servers.

3) Expert queries: Query languages provide a wide range
of logical and calculation methods, but these can be rather
complicated, especially using negation for filtering.

4) Uncertain reasoning: There is no simple automated
way to construct uncertain evidence over different entities
and combine uncertain evidences, especially using further
quantitative measures as well, such as similarity measures,
which are popular in biomedicine.

5) Transparency: Checking the inference paths and calcu-
lation in case of complex queries requires deep understanding
of the underlying techniques and it is time consuming. Hence,
user-level interfaces are essential to translate the complex
inference processes for a domain-expert scientist to be able
to recognize the significance of a given inference.

There are numerous bioinformatics tools for the large-scale
fusion of heterogeneous data and knowledge, but these tools
either support the general, non-quantitative (logical) inference
over semantic resources or focus on a dedicated task, such
as gene prioritizers [13], [14]. Further problem in the current
approaches is the lack of support for high-dimensional, partial,
noisy evidences and deep control for the inference process.

IV. TOWARDS QUANTITATIVE SEMANTIC FUSION

To cope with these deficiencies, the Quantitative Semantic
Fusion (QSF) Framework was developed at the ComBineLab,
Department of Measurement and Information Systems. Epis-
temological aspects of linked open life science data can be
approached in QSF as follows:

1) Predicting the unknown: There are techniques to com-
plete sparse matrices based on the available data creating a
better foundation for reasoning [15]. Furthermore, the used
similarities and properties could be used to approximate prob-
abilities for the filled or even for the original data.

2) Probabilistic representation of uncertainty: Semantic
life science databases often formed around techniques like
chemical screening or microarrays providing access to the
sources. The statistical parameters of the data are characteristic
to the techniques, therefore it is possible to calculate or
approximate Bayesian probabilities for these entities.

3) Representing trust: There are dedicated solutions for
knowledge representation such as Evidence Code Ontology
(ECO) [16] in bio-medicine, providing information about the
data source (e.g. motility assay evidence) or HELO [17] which
is more suitable for probabilistic knowledge representation.
Furthermore, even textual information can be translated into

probabilistic graphical models and using approximations for
the most probable explanations creating link between the
available data and probabilistic techniques.
The QSF system offers the following solutions for the specific
challenges.

1) Integration For a general biological model the inte-
grative functions are necessary, therefore the essential
disease, genetic, protein, pathway and substance infor-
mation must be included. Based on linked open data
Chem2Bio2RDF [7], the QSF framework is able to
integrate and perform inference using the relevant in-
formation sources. Furthermore, it is possible to expand
the framework with further sources.

2) Accessibility and scaling To cope with computational
complexity, the relevant data sources are stored and
processed in one server. Due to RDF compression tech-
niques and proper selection of the relevant properties,
entities and links the overall size of a minimal, but
representative data covering the a given problem in life
sciences remains in the few GB range.

3) Filtering SPARQL cannot handle well negation and
complex filtering, but in the RDF-based QSF framework
complex logic can be applied to focus and control the
inference process.

4) Transparency Large-scale data visualization techniques
like Cytoscape [18] allow users to create and explore
graphs, which are natural, transparent, intuitive way
for representing biological data. The QSF allows the
export of the results of evidence propagation as paths
in knowledge graphs, which provides easy access and
interpretation for biologists.

5) Bayesian inference Using probabilistic methods, quanti-
tative evidences can be constructed for the input queries
based on the sources. For example, for a drug candidate
the acceptance rate based on the trial number is a
possible approximation for a drug-disease association.
The QSF allows the approximation of a Bayesian infer-
ence technique. Many bioinformatics tools are able to
incorporate and provide p-values, but QSF provides a
full-fledged approximation for a Bayesian inference.

6) Bayesian fusion Integrating multiple sources or using
data from similar, repeated experiments have significant
advantages, due to the cancellation effect of method
or setup specific biases. Calculating pseudo-Bayesian
posteriors for such data can result a significant improve-
ment in case of such an uncertain space as the life
sciences [19].

V. APPLICATION OF QUANTITATIVE SEMANTIC FUSION

Translation of questions with complex biomedical back-
ground to a formal query is often difficult and require special
technical knowledge. To support this process, the graphical
user interface of the QSF endowed with the following func-
tionalities:

1) Selecting targets: Having computationally approachable
targets (i.e. answers) is essential for constructing a query,

14

which in itself can be seen as a modeling activity. In QSF, ev-
idences are entered, then propagated throughout the network,
thus selection of targets does not influence the results, but
essentially influence interpretability.

2) Context-sensitive inference: Planning which sources and
paths should be taken into account in the inference can be
controlled by the query and the results can be affected by
them.

3) Collecting inputs: The proper input is key for inference
and it is recommended to collect as much data as possible
from different sources to overcome the biases of the data by
canceling out the random effects.

4) Converting evidences: Providing probabilities for the
inputs is challenging in many cases, and recommendations or
analytic solutions are needed for this step.

5) Applying conditions: Filtering is essential within the
inference, e.g. via negation even complex questions can be
asked.

6) Interpreting the results: It is essential to check the paths
of the evidences to find possible anomalies and to get a better
understanding of the dominating effects in behind the results.

VI. CONCLUSION

Automated reasoning using life science data is challenging
due to the fragmentation of the data located in separate
databases, but fortunately semantic web technologies and the
Linked Open Data approach provide sufficient background
to access these data. However, current approaches are very
limited in reasoning efficiently based on this knowledge:
(1) the native usage of semantic data as inference in graph
database lacks the ability of to incorporate uncertainty, (2)
network approaches using diffusion-based inference methods
lack semantic control within the inference, (3) kernel fusion
based prioritization methods cannot directly manage relational
data. Additionally, biases of life science data complicate the
problem further, because the sources are uncertain, incomplete
and unevenly distributed. Our group developed a system,
approximating a full-fledged probabilistic inference, which is
grounded in an underlying semantic graph database. Further-
more, we developed a graph-based query language to sup-
port the translation of complex biomedical queries, allowing
semantic influence over the inference process. I developed
multiple models and manually evaluated various inference
schemes in this system to refine existing applicability and ex-
plore new directions for its development [20]. Tools integrating
different information sources, handling high-dimensional weak
evidences, providing semantic control for the inference and
supporting the interpretation of the results, such as the QSF
framework, could provide new possibilities for cooperative
reasoning of experts and machines.

ACKNOWLEDGMENT

The author would like to thank the advices and guidance
of Peter Antal, and the continuous help of Andras Gezsi and
Gabor Guta. The research has been supported by the European
Union, co-financed by the European Social Fund (EFOP-3.6.2-
16-2017-00013).

REFERENCES

[1] S. Decker, S. Melnik, F. Van Harmelen, D. Fensel, M. Klein, J. Broek-
stra, M. Erdmann, and I. Horrocks, “The semantic web: The roles of
xml and rdf,” IEEE Internet computing, vol. 4, no. 5, pp. 63–73, 2000.

[2] S. Bechhofer, “Owl: Web ontology language,” in Encyclopedia of
Database Systems. Springer, 2009, pp. 2008–2009.

[3] S. Kim, P. A. Thiessen, E. E. Bolton, J. Chen, G. Fu, A. Gindulyte,
L. Han, J. He, S. He, B. A. Shoemaker et al., “Pubchem substance
and compound databases,” Nucleic acids research, vol. 44, no. D1, pp.
D1202–D1213, 2015.

[4] S. Jupp, J. Malone, J. Bolleman, M. Brandizi, M. Davies, L. Garcia,
A. Gaulton, S. Gehant, C. Laibe, N. Redaschi et al., “The ebi rdf
platform: linked open data for the life sciences,” Bioinformatics, vol. 30,
no. 9, pp. 1338–1339, 2014.

[5] E. Ong, Z. Xiang, B. Zhao, Y. Liu, Y. Lin, J. Zheng, C. Mungall,
M. Courtot, A. Ruttenberg, and Y. He, “Ontobee: A linked ontology
data server to support ontology term dereferencing, linkage, query and
integration,” Nucleic acids research, vol. 45, no. D1, pp. D347–D352,
2016.

[6] L. Yu, “Linked open data,” in A Developers Guide to the Semantic Web.
Springer, 2011, pp. 409–466.

[7] B. Chen, X. Dong, D. Jiao, H. Wang, Q. Zhu, Y. Ding, and D. J.
Wild, “Chem2bio2rdf: a semantic framework for linking and data mining
chemogenomic and systems chemical biology data,” BMC bioinformat-
ics, vol. 11, no. 1, p. 255, 2010.

[8] A. Abele, J. McCrae, P. Buitelaar, A. Jentzsch, and R. Cyganiak,
“Linking open data cloud diagram (2017),” 2017.

[9] R. Hoffmann and A. Valencia, “Life cycles of successful genes,”
TRENDS in Genetics, vol. 19, no. 2, pp. 79–81, 2003.

[10] A. Gaulton, A. Hersey, M. Nowotka, A. P. Bento, J. Chambers,
D. Mendez, P. Mutowo, F. Atkinson, L. J. Bellis, E. Cibrián-Uhalte
et al., “The chembl database in 2017,” Nucleic acids research, vol. 45,
no. D1, pp. D945–D954, 2016.

[11] L. Osherovich, “Hedging against academic risk,” SciBX: Science-
Business eXchange, vol. 4, no. 15, 2011.

[12] F. Prinz, T. Schlange, and K. Asadullah, “Believe it or not: how much
can we rely on published data on potential drug targets?” Nature reviews
Drug discovery, vol. 10, no. 9, pp. 712–712, 2011.

[13] L.-C. Tranchevent, A. Ardeshirdavani, S. ElShal, D. Alcaide, J. Aerts,
D. Auboeuf, and Y. Moreau, “Candidate gene prioritization with en-
deavour,” Nucleic acids research, vol. 44, no. W1, pp. W117–W121,
2016.

[14] G. Valentini, A. Paccanaro, H. Caniza, A. E. Romero, and M. Re, “An
extensive analysis of disease-gene associations using network integration
and fast kernel-based gene prioritization methods,” Artificial Intelligence
in Medicine, vol. 61, no. 2, pp. 63–78, 2014.

[15] B. Bolgár and P. Antal, “Vb-mk-lmf: fusion of drugs, targets and
interactions using variational bayesian multiple kernel logistic matrix
factorization,” BMC bioinformatics, vol. 18, no. 1, p. 440, 2017.

[16] M. C. Chibucos, C. J. Mungall, R. Balakrishnan, K. R. Christie, R. P.
Huntley, O. White, J. A. Blake, S. E. Lewis, and M. Giglio, “Stan-
dardized description of scientific evidence using the evidence ontology
(eco),” Database, vol. 2014, 2014.

[17] L. N. Soldatova, A. Rzhetsky, K. De Grave, and R. D. King, “Repre-
sentation of probabilistic scientific knowledge,” Journal of biomedical
semantics, vol. 4, no. 1, p. S7, 2013.

[18] P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage,
N. Amin, B. Schwikowski, and T. Ideker, “Cytoscape: a software en-
vironment for integrated models of biomolecular interaction networks,”
Genome research, vol. 13, no. 11, pp. 2498–2504, 2003.

[19] M. A. Province and I. B. Borecki, “Gathering the gold dust: methods for
assessing the aggregate impact of small effect genes in genomic scans.”
in Pacific Symposium on Biocomputing, vol. 13, 2008, pp. 190–200.

[20] B. Bence, “Large-scale data and knowledge fusion in aging research,”
Scientific Student Conference, 2017, 2017.

15

An Application Example of Regularization:

Time-varying Operational Modal Analysis

Péter Zoltán Csurcsiaa,b,*, Johan Schoukensa, Bart Peetersb
aVrije Universiteit Brussel, Department of Engineering Technology, Brussels, Belgium

bSiemens Industry Software NV., Leuven, Belgium

Abstract— This paper presents an efficient nonparametric

time-varying time domain system identification method for the

Operational Modal Analysis (OMA) framework. OMA tackles

industrial measurements of vibrating structures in real-life

operating conditions without the exact knowledge of the

excitation signal. In this work a method is provided to estimate

the time-varying output autocorrelation function of vibrating

structures and applied to a measurement of wind tunnel testing

of an airplane. Using the proposed methodology, the estimated

time-varying two-dimensional output autocorrelation model

provides a good data-fit with respect to tracking of varying

resonances.

Keywords— Bayesian methods; Nonparametric methods; Time-

varying system identification; Operational Modal Analysis

I. INTRODUCTION

The paper deals with the time variations of (vibrating)
mechanical and civil structures described by the nonparametric
Operational Modal Analysis (OMA) framework. OMA is a
special identification technique for estimating the modal
properties (e.g. resonance frequencies, damping, mode shapes)
of structures based on vibration data collected when the
structures are under real operating conditions without having
access to the excitation signals. This technique can provide the
engineers with useful information to understand the dynamic
behavior of the underlying structure in real-life usage scenario,
and it can be used to validate and update the numerical models
developed in the design phase [1].

The main issue is that the dynamics of underlying systems
may vary significantly when operating in real-life conditions.
In this case, advanced modelling is needed taking into account
the time-varying (TV) behaviour because the unmodelled time
variations might lead to instability and structural failures.
Contrary to the classical identification frameworks, a further
challenge with the OMA framework is that the excitation
signal is not known exactly, but it is assumed to be white noise.

A good example of a time-varying mechanical structure can
be, for instance, an airplane. The TV behavior originates from
the decreasing weight due to the fuel consumption, and from
different surface configurations during take-off, cruise and
landing Moreover, the resonance frequency and damping of
most vibrating parts (for instance the wings) of a plane vary as
a function of the flight speed and height. In this paper the wind
tunnel testing of an airplane is considered.

In this work the first results of a nonparametric TV OMA
method are presented to estimate efficiently the linear time-
varying (LTV) output autocorrelation function (ACF) of the
observed system. In case of TV systems it is a common
practice to use different types of short-time Fourier transform
(SFT) techniques that describes the underlying system as a
series of linear-time invariant (LTI) systems ([2]-[7]). In case
of TV OMA, other nonparametric techniques have a limited
applicability due to lack of knowledge of excitation. These SFT
based models can describe the time-varying behavior quite well
when the time-variations are very smooth. The drawback of
these methods is that such an LTI model is not sufficient to
describe the system’s behavior, if the time variations are fast,
or when a significant variation occurs.

The proposed method is intended to overcome the issues
with the classical SFT based methods and it is based on the
regularization methods that have been developed for impulse
response function (IRF) modelling of LTI systems ([7]-[9]).
The novelty of this work compared to the IRF regularization is
to formulate the regularization for the special case of the
estimation of LTV systems in an industrial OMA framework –
i.e. unknown input– similarly to the regularized LTV
framework with known excitation [3],[4].

The paper is organized as follows: in Section II the basic
concepts are summarized and the exact problem formulation is
given. Section III provides the model structure and the cost
function of the problem. Section IV introduces the regularized
LTV OMA estimation method and addresses the
implementation procedure. Section V shows a measurement
example where the results of the classical framework are
shown to compare to the results proposed method. Finally, the
conclusions are provided in Section VI.

II. BASICS

A. Definitions and Assumptions

Several definitions and assumptions must be addressed
prior to carrying out any system identification procedure.

A discrete LTV system is completely characterized by its
2D IRF ℎ[𝑡, 𝜏]. Its steady-state response to an arbitrary signal
𝑢[𝑡] is given by ([10],[11]):

 𝑦[𝑡] = ∑ ℎ[𝑡, 𝜏]𝑢[𝑡 − 𝜏]+∞
𝜏=−∞  (1)

where the parameter 𝑡 is the global time (the time when the
system is observed) and 𝜏 is the system time (the direction of
the impulse responses/lags) [3].

16

The following assumptions are made in this work:

ASSUMPTION 1 The system output 𝑦[𝑡] is disturbed by additive,
i.i.d. Gaussian stationary noise with a zero mean and a finite
variance.

ASSUMPTION 2 The 2D IRF is smooth i.e. the spectral content of
the underlying LTV system is highly concentrated at the low
frequencies. A more precise definition can be found in [9].

ASSUMPTION 3 The considered discrete LTV system is causal
(i.e. ℎ[𝑡, 𝜏] = 0, when 𝜏 < 0) and stable

ASSUMPTION 4 The length of the IRFs (L+1) is shorter than the
observation (measurement) window length (N).

ASSUMPTION 5 The excitation signal 𝑢[𝑡] is not known exactly
but it is assumed to be white noise with a TV finite variance.

B. Problem formulation

In this section, a brief overview of the LTV OMA problem
is presented where we explain 1) the issues related to the
nonparametric identification of LTV systems in general 2) the
issues related to the OMA framework w.r.t. the classical
identification framework.

1) Nonparametric Identification of LTV Systems

The challenge with LTV systems is that the TV 2D IRF and
FRF are not uniquely determined from a single set of input and
output signals – unlike the case of LTI systems.

Consider the model defined in (1). Imposing Assumptions
1-4, the following measured output ym[t] is given at time t:

 𝑦𝑚[𝑡] = 𝑦[𝑡] + 𝑒[𝑡] = ∑ ℎ[𝑡, 𝜏]𝑢[𝑡 − 𝜏] + 𝑒[𝑡]𝐿
𝜏=0  

where 𝑡 = 0 … 𝑁 − 1.

The problem lies in the fact that there is a nonuniqeness
issue. The number of unknown in the TV 2D nonparametric
model is NL but there are only N measured points. Hence, the
model that relates the input to the output is not unique, because
there are only N linear relations (measurement samples) for NL
unknowns.

2) Operational Modal Analysis Framework

OMA is a very important tool because in the case of
vibrating structures it is common that the real operating
conditions differ significantly from dynamic measurements
performed in laboratory conditions. In case of industrial
measurements of large mechanical and civil structures (e.g.
airplanes, bridges, wind tunnels) the excitation signal is most of
the time not measurable, or it would be too difficult and
complex to measure [1].

Because the excitation signal is not known (see Assumption
5) an IRF or FRF cannot be directly estimated. Instead, the
output autocorrelation function (ACF) and/or its Fourier
transform are used in practice.

III. THE NONPARAMETRIC IDENTIFICATION METHOD

A. The Model Structure

Using the OMA framework, the underlying time-varying
systems can be represented by their 2D ACF when Assumption

1-5 are satisfied. In this case the 2D TV ACF would provide

the convolved LTV IRF in time-domain (∑ ℎ[𝑡, 𝜏]ℎ[𝑡 + 𝜏]𝐿
𝜏=0).

The proof is out of scope of this paper, details for the LTI case

can be found in [1]. The TV ACF 𝑅𝑦𝑦 centered around t, at

time lag 𝜏, with a window length of (L+1), is estimated with
the measured output signal 𝑦𝑚 (see (2)) by smoothing over a
window with a length of L+1:

 𝑅̂𝑦𝑚𝑦𝑚
[𝑡, 𝜏] =

1

𝐿+1
∑ 𝑦𝑚[𝑡 + 𝜏 + 𝑘]𝑦𝑚[𝑡 + 𝑘]

𝐿

2

𝑘=−
𝐿

2

 3    

Next, the double time indices [𝑡, 𝜏] will be omitted in order
to make the text more accessible. The key idea of this work is
to extend the existing nonparametric regularization methods
such that some advanced prior information can be taken into
account.

B. The Cost Function

The basic idea of the regularization technique is that by
using the prior knowledge (formalized later on) on the system
dynamics, and by introducing some bias error, the variance can
be significantly reduced resulting in a significantly reduced
mean square error (MSE) [8]. In order to include the prior
knowledge in the nonparametric representation, an extended
cost function (𝑉) must be defined.

This cost function (𝑉) consists of the sum of the ordinary
least squares cost function (𝑉𝐿𝑆) which is now defined for the
2D LTV ACF case as

 𝑉𝐿𝑆 = ‖𝑣𝑒𝑐𝑡(𝑅𝑦𝑦) − 𝑣𝑒𝑐𝑡(𝑅̂𝑦𝑚𝑦𝑚
)‖

2

2
 (4)

and the regularization cost function (𝑉𝑟):

 𝑉𝑟 = 𝜎2𝑣𝑒𝑐𝑡(𝑅𝑦𝑦
𝑇)𝑃−1𝑣𝑒𝑐𝑡(𝑅𝑦𝑦), (5)

such that the new, combined cost function is given by

 𝑉 = 𝑉𝐿𝑆 + 𝑉𝑟 (6)
where 𝑃 is a – special covariance – matrix containing the prior
information, and 𝜎2 is the amount of regularization (prior)
applied – it is usually proportional to the noise variance of the
observation. To simplify the model and computational
complexity 𝜎2 is kept constant but in general TV 𝜎2 – and
observation noise– may be considered.

Minimizing (6) with respect to 𝑅𝑦𝑦 gives the solution

which estimates the 2D IRF of an LTV system:

 𝑣𝑒𝑐𝑡(𝑅̂𝑦𝑦,𝑟𝑒𝑔) = (𝐼 + 𝜎2𝑃−1)−1𝑣𝑒𝑐𝑡(𝑅̂𝑦𝑚𝑦𝑚
) (7)

where 𝐼 denotes the identity matrix.

IV. REGULARIZATION

In the section the practical implementation of the inclusion
of the prior knowledge into the covariance matrix is addressed.

A. Considered Kernel Functions

The covariance hypermatrix 𝑃 is constructed by using
kernel functions. The specific choice of the kernels has a major

17

effect on the quality of the estimate. Next, the kernels that will
be used in this paper are explained.

The smoother Radial Basis Functions (RBF) is defined by

 𝑃𝑅𝐵𝐹(𝑡1, 𝑡2) = 𝑒
−

(𝑡1−𝑡2)2

𝛾  (8)
where 𝛾 is a parameter representing the length scale. The

larger the length scale, the smoother the resulting estimated

function is.

In case of Diagonal Correlated (DC) kernels next to the
smoothness assumption, exponentially decaying envelope can
be imposed and is defined as follows:

 𝑃𝐷𝐶(𝑡1, 𝑡2) = 𝑒−𝛼|𝑡1−𝑡2|𝑒−
𝛽(𝑡1+𝑡2)

2  (9)

where 𝛼 quantifies the correlation length between adjacent
impulse response coefficients, or in other words it controls the
smoothness, and 𝛽 scales the exponential decaying.

Please note that depending upon the prior knowledge, different
shorts of kernel functions may be used.

B. The Covariance Matrix and the Prior Knowledge

In order to overview the properties of the TV ACF an
illustration is shown in Fig 1. The first prior knowledge is that
the considered ACFs are smooth. This smoothing is applied
once over the system time 𝜏 which refers to “classical”
evolution of IRF/ACF, and once over the global time 𝑡 which
gives a support to handle the time-varying behavior.

In addition to smoothing properties, another assumption can
be imposed and incorporated in P by applying a more strict
definition of stability: the IRFs and therefore the ACFs are
exponentially decaying. Note, that most of the stable
mechanical systems exploit this behaviour. When this is not the
case other kernels might be used.

In the proposed approach, every point of the 2D ACF
surface is connected to each other. It means that all the
elements in the covariance matrix are non-zero, therefore the
number of constraints is high, and the degrees of freedom of
the system of linear equations are significantly decreased
resulting in a unique solution. The elements in the 𝜏 direction
of the autocorrelations (horizontal blue direction) are linked by
DC kernels. Elements in the global time t direction (vertical red
direction) are linked by RBF kernels. This contraction is
formulated as follows:

 P{𝑡1,𝑡2},{𝜏1,𝜏2} = P𝑅𝐵𝐹(𝑡1, 𝑡2) ∙ P𝐷𝐶(𝜏1, 𝜏2) (10)

for every possible pair of 𝑡 and 𝜏.

C. Tuning of the Model Complexity and Hyperparamters

𝛾, 𝛼, 𝛽, 𝜎2 parameters in (5),(8),(9) are the so called

hyperparameters and their values are restricted as

follows: 𝛾, 𝜎2 > 0 and 𝛼, 𝛽 ≥ 0. The nonparametric system

identification method presented in this work consists

essentially of two steps: 1) optimization of the

hyperparameters to tune the matrix 𝑃, and 2) computation of

the model parameters using (7).

All the hyperparameters are tuned with the use of

measured output data only by maximizing the marginal

likelihood of the observed output ([8],[9]).

Fig. 1. The TV output ACF of a system. The arrows show the visualization of

the possible regularization directions. The blue arrow refers to the 𝜏 system

time where decaying and smoothness of the adjacent elements can be

imposed. The red arrow refers to the direction of time variations (𝑡 axis)

where the smoothness of the adjacent autocorrelation functions can be

imposed.

V. RESULTS

A. Measurement Setup

This section presents an industrial example of the in-line
flutter assessment of the wind tunnel testing of a scaled

airplane model. The measurement time is 424 sec , the

sampling frequency (fs) is 500 Hz, the number of data samples
(N) is 212000. The segmented window size (L+1) is

500 samples (which corresponds to 1 sec, 1 Hz resolution).
The Mach number (proportional to the airflow i.e. wind speed
w.r.t. sound speed) is varying between 0.07 and 0.79. An
illustration of the measurement setup is given in Fig 2.

Fig. 2. The measurement setup is shown. The airflow (wind speed) is varying

while the airplanes acceleration is measured in the wind tunnel.

In this type of testing, it is desired to carefully verify and
track the vibration behavior, since during flutter appearance,
system destruction can occur. In this paper, wind tunnel data at
various flow conditions are used to validate the approach for
tracking the evolution of the resonance frequencies, damping
ratios.

Further details on the measurement procedure can be found
in [12]. Exact specifications on the airplane are omitted due to
the confidentiality of the industrial project.

B. Results

In this section the time and frequency domain results of the
traditional SFT approach are compared to results of the 2D
regularization method. In case of SFT the output measurement

18

is split into short subrecords, and each time the output ACF is
calculated. The result is a series of ACFs which represents the
classical TV ACF estimate. The TV collerogram (power
spectrum estimate) is then given by the Fourier transform of
the TV ACF. When the proposed method is considered, the
ACF estimates are normalized and regularized as it is detailed
in Section III and IV.

Figure 3. and Figure 4. show the frequency domain results
of the SFT and regularized approach. Since the most important
part is the evolution the resonances, only the top view of the
2D collerograms is shown. Observe that the traditional
approach is very noise where the regularized solution is smooth
and more details can be captured.

It is important to remark that the classical SFT results can
also be post filtered/smoothened – even with regularization or
with other approaches (e.g. B-spline techniques) – but in this
case the accuracy of the result will be between the classical and
proposed approach.

Fig. 3. The time-varying output power spectrum estimate of observed system

is shown when the classical SFT method is considered.

Fig. 4. The time-varying output power spectrum estimate of observed system

is shown when the proposed method is considered.

VI. CONCLUSIONS

The main concept of the nonparametric TV OMA
framework is to provide more accurate and smoother models
which are suitable for simulation, design and – indirectly –
control. This will improve the overall quality and safety of
products, and speed up the design process. Using the proposed
advanced 2D regularization techniques it is possible:

 to reduce the noise influence such that the

measurement quality will be significantly better

 to gain a better insight into the details of the time-

variations

Further, a nonparametric TV OMA model can be used:

 to capture and to track the time-varying resonance

frequencies and damping ratios

 to simulate and validate during the design phases

When it is necessary, the nonparametric TV OMA model
can be used to estimate a parametric OMA model by cleaning
up the data and allowing direct access to the mode shapes and
making the control possible.

The drawback of the proposed method is that the
computational load and memory need are significantly higher
but this is negligible in the applications where 1) the
preparation of the measurement setup takes days, and 2) the
safety of the product and its intended users is concerned.

ACKNOWLEDGMENTS

This work was funded by the Fund for Scientific Research
(FWO-Vlaanderen), by the ERC advanced grant SNLSID,
under contract 320378, and by the VLAIO Innovation Mandate
project number HBC.2016.0235.

REFERENCES

[1] B. Peeters and G. De Roeck., “Stochastic system identification for
operational modal analysis: a review”, ASME Journal of Dynamic
Systems, Measurement, and Control, 123(4), pp. 659-667, 2001

[2] A. B. Jont, “Short Time Spectral Analysis, Synthesis, and Modification
by Discrete Fourier Transform”, IEEE Transactions on Acoustics,
Speech, and Signal Processing. Vol. 25, issue 3, pp. 235–238, 1977

[3] P. Z. Csurcsia, “Nonparametric identification of linear time-varying
systems”. Phd thesis. University Press, Zelzate, 2015

[4] P. Z. Csurcsia. and J. Lataire, “Nonparametric Estimation of Time-
varying Systems Using 2D Regularization”, IEEE Transactions on
Instrumentation and Measurement, 2016

[5] P. Z. Csurcsia and J. Schoukens, “Nonparametric Estimation of a Time-
variant System: An Experimental Study of B-splines and the
Regularization Based Smoothing”, IEEE International Instrumentation
and Measurement Technology Conference, pp. 216-221, Pisa, Italy,
2015

[6] M Freedman and G. Zames, “Logarithmic variation criteria for the
stability of systems with time-varying gains”, In SIAM Journal on
Control and Optimization, Pp. 487-507, vol. 6, no.3, 1968

[7] G. Pillonetto and A. Aravkin, “A new kernel-based approach for
identification of time-varying linear systems”, IEEE International
Workshop on Machine Learning for Signal Processing. pp. 1-6, Reims,
2014

[8] G- Pillonett, F. Dinuzzo, T. Chen, G. De Nicolao and L. Ljung, “Kernel
methods in system identification, machine learning and function
estimation: A survey”, In Automatica, 50(3), Pp. 657-682, 2014

[9] C.E. Rasmussen and C.K.I. Williams, “Gaussian Processes for Machine
Learning”. MIT press, Cambridge, 2006

[10] L. A. Zadeh L.A. “A general theory of linear signal transmission
systems”, Journal of the Franklin Institute. Vol. 253, no. 4, p. 293–312,
1952

[11] L.A. Zadeh, “Time-Varying Networks I”, Proceedings of the IRE, 1961

[12] B. Peeters, P. Karkle, M. Pronin and R. Van der Vorst R, “Operational
Modal Analysis for in-line flutter assessment during wind tunnel
testing”, 15th International Forum on Aeroelasticity and Structural
Dynamic, 2011

19

Towards Reliable Benchmarks of Timed Automata
Rebeka Farkas, Gábor Bergmann

Budapest University of Technology and Economics, Department of Measurement and Information Systems
Email: {farkasr,bergmann}@mit.bme.hu

MTA-BME Lendület Cyber-Physical Systems Research Group

Abstract—The verification of the time-dependent behavior of
safety-critical systems is important, as design problems often
arise from complex timing conditions. One of the most common
formalisms for modeling timed systems is the timed automaton,
which introduces clock variables to represent the elapse of
time. Various tools and algorithms have been developed for the
verification of timed automata. However, it is hard to decide
which one to use for a given problem as no exhaustive benchmark
of their effectiveness and efficiency can be found in the literature.
Moreover, there does not exist a public set of models that can
be used as an appropriate benchmark suite. In our work we
have collected publicly available timed automaton models and
industrial case studies and we used them to compare the efficiency
of the algorithms implemented in the Theta model checker. In
this paper, we present our preliminary benchmark suite, and
demonstrate the results of the performed measurements.

I. INTRODUCTION

Since their introduction by Alur and Dill [1], timed au-
tomata has become one of the most common formalisms for
modeling and verification of real time systems. There is a wide
range of application areas, such as communication protocols
[2] and digital circuits [3]. There are many extensions of the
formalism, such as the probabilistic timed automaton that is
able to represent stochastic behavior or the parametric timed
automaton that can describe parametric timing properties.

The key challenge of the verification of timed automaton-
based models is the same as in case of any formalism: deve-
loping efficient and scalable algorithms that can be applied in
practice. Several algorithms and tools have been designed for
this purpose, that may differ in the supported formalisms and
queries. Since these algorithms are as diverse as the problems
they address, a single best one can not be chosen: for each
algorithm there are classes of models, that can be verified
efficiently and other classes where other approaches would be
more suitable to use. This raises the need for some guidelines
to decide which tool to use for a given model.

A possible solution is to perform an exhaustive benchmark
on a set of relevant problems that can later be used to
determine which approach is the most suitable for a given
problem, however, this would require a set of relevant case
studies to use as inputs. Unfortunately such a benchmark suite
is not available for timed automata.

Our goal is to provide a set of timed automaton models (and
corresponding queries) that can be used as a benchmark suite
for comparing the efficiency of tools and algorithms developed
for the verification of timed automata. It is important that the
benchmark suite should allow the performed measurements to
fulfill the requirements of a reliable benchmark [4], [5].

In this paper we present our preliminary benchmark suite
that we assembled based on this principle and we demonstrate
its usability by measurements that we performed on the
algorithms implemented in the Theta [6] model checker.

II. BACKGROUND

A. Timed automata

1) Basic definitions: Clock variables are a special type of
variables, whose value is constantly increasing as the time
elapses. The only operation on clock variables is the reset
operation that sets the value of a clock to a constant. It is an
instantaneous operation, after which the value of the clock will
continue to increase. The set of clock variables is denoted by
C.

A clock constraint is a conjunctive formula of atomic clock
constraints. There are two types of atomic clock constraints:
• the simple constraint of the form x ∼ n and
• the diagonal constraint of the form x− y ∼ n,

where x, y ∈ C , ∼ ∈ {≤, <,=, >,≥} and n ∈ N. In other
words a clock constraint defines upper and lower bounds on
the values of clocks and the differences of clocks. The set of
clock constraints is denoted by B(C).

A timed automaton extends a finite automaton with clock
variables. It is formally defined as a tuple 〈L, l0, E, I〉 where
• L is the set of locations (i.e. control states),
• l0 ∈ L is the initial location,
• E ⊆ L× B(C)× 2C × L is the set of edges and
• I : L→ B(C) assigns invariants to locations [7].

The edges in E are defined by the source location, the guard
(represented by a clock constraint), the set of clocks to reset,
and the target location.

2) Extensions of timed automata: Many extensions have
been invented to increase the descriptive and the expressive
power of timed automata.

A network of timed automata [8] is the parallel composition
of a set of timed automata. Communication is possible by
shared variables or hand-shake synchronization using actions
on the edges. Constructing networks of timed automata does
not increase the expressive power, as a network of timed auto-
mata can be transformed into an equivalent timed automaton,
but it does increase the understandability of the model.

A parametric timed automaton [9] is an extension of a timed
automaton, where instead of constants, unbound parameters
are also allowed to appear in clock constraints. Verification of

20

parametric timed automata focuses on finding the parameter
bindings that satisfy certain properties.

A timed automaton extended with data variables (extended
timed automaton [8]) is an extension, where besides clock
variables, data variables (discrete variables such as integers,
bools, etc.) are also allowed. Data variables can also appear
in constraints to enable transitions (data guards) and can be
modified by transitions (update). However, clock variables are
not allowed to appear in data guards or updates.

3) Verification: The verification approach depends on the
type of property to check. Analysing safety properties is
reduced to searching for reachable states in the state space,
while checking liveness properties is solved by looking for
certain cycles (strongly connected components) in the state
space. [10]

B. Reliable benchmarks

Many requirements of reliable benchmarks are described in
the literature [4], [5]. Although most methodologies focus on
the execution of the benchmarks and not the inputs, some of
the requirements do raise expectations for the benchmark suite.
Realistic The inputs should resemble models from industrial

case studies.
Simple Just like other aspects of the benchmark, the input

models must be understandable.
Scalable Scalable models are necessary in order to support a

wide range of approaches.
Portable For portability, the models and the properties should

be defined in a widely supported format.
Public A reproducible benchmark requires a public bench-

mark suite.
Diverse In order to be able to analyze the strengths of a wide

range of tools, the models and the problems should be
classified and many classes of inputs should be included.

III. RELATED WORK

A. Model checking competitions

In case of most common formalisms, generally accepted
benchmarks are carried out by model checking competitions,
such as the Model Checking Contest1 for Petri Nets, the SV-
COMP2 on software verification and the Hardware Model
Checking Competition3 for hardware models. These compe-
titions are an effective way of assembling and maintaining re-
alistic benchmark suites and performing reliable benchmarks.
However, there is no such competition for timed automata.

B. Benchmarks of timed automata-based models

Since there does not exist a generally accepted benchmark
suite, each tool uses its own set of inputs to demonstrate the
efficiency of its algorithms. Table I summarizes the characte-
ristics of input sets of the most common tools: name of the
tool, input format, total number of models, number of scalable

1https://mcc.lip6.fr/
2https://sv-comp.sosy-lab.org/2018/
3http://fmv.jku.at/hwmcc17/

Tool input #models #scalable query ref
UPPAAL xml, xta 9 3 true true
Kronos aut 5 3 true true
PAT xml, xta 5 5 false false
MCTA xta 5 5 true true
TChecker xta 6 5 false true
REDLIB d 5 5 true false
Shrinktech aut 9 3 false true
CosyVerif grml 15 0 false true
PRISM pta 7 2 true false

TABLE I
AVAILABLE BENCHMARK SUITES

models, whether they describe a property to check, and whet-
her they provide references to papers where these models are
described. While most presented tools operate on networks of
extended timed automata, CosyVerif’s BenchKit [11] consists
of parametric timed automata, and the PRISM benchmark suite
contains probabilistic timed automata.

As it can be seen in the table, most model checkers
have their own input language. However, the most common
input format is xta defined by UPPAAL [8]. The presented
benchmark suites are small, and share many models – e.g.
the scalable models are the same for all benchmark suites,
except for MCTA that uses another kind of scalability (see
Section IV-D). In many cases the properties to verify are not
defined, instead, during benchmarks the complete statespace
of the model is explored. In some cases the source and the
description of the models are also missing.

In conclusion, the current benchmark suites are small, there
are very few scalable models, and portability, diversity and
understandability is not always ensured.

IV. XTA BENCHMARK SUITE

In this section, we present the Xta Benchmark Suite that is
a collection of inputs we propose for comparing the efficiency
of timed automaton verification algorithms. The suite was
constructed to meet the requirements enlisted in Section II-B.
While Table II describes the contained models, the complete
suite, including the models, the queries and the references can
be found online4. Note, that this is a preliminary suite.

A. Sources

The benchmark suite consists of models from existing ben-
chmarks of UPPAAL, PAT, MCTA and CosyVerif, as well as
UPPAAL case studies and other public models. Industrial case
studies were included in order to allow realistic benchmarks.
References to papers describing the models are provided in
order to ease understandability and to assure the benchmark
inputs are realistic, public and portable.

B. Format

In order to help portability, the xta format was chosen for
storing the models, as most timed model checkers are able to
parse this format (even if they are not able to transform their
own input language to xta). Another advantage of this format

4https://github.com/farkasrebus/XtaBenchmarkSuite

21

Name Description Source Type Scalable
FISCHER Fischer’s mutual exclusion protocol UPPAAL benchmark MutEx protocol true
CSMA The CSMA/CD protocol UPPAAL benchmark CD protocol true
FDDI Token Ring/FDDI protocol UPPAAL benchmark protocol true
BANDO Bang-Olufsen protocol UPPAAL benchmark CD protocol false
BOCDPFIXED Bang-Olufsen Collision Detection Protocol UPPAAL benchmark CD protocol false
BOCDP BOCDP - original, faulty version UPPAAL benchmark CD protocol false
CRITICAL Critical region PAT benchmark MutEx protocol true
LYNCH Lynch-Shavit protocol PAT benchmark MutEx protocol true
BAWCC Business Agreement with Coordination Completion protocol UPPAAL case studies protocol false
BAWCCENHANCED BAWCC - enhanced version UPPAAL case studies protocol false
SCHEDULE Schedulability Framework model UPPAAL case studies algorithm false
STLS Single Tracked Line Segment MCTA benchmark system false
MUTEX Mutual exclusion protocol MCTA benchmark MutEx protocol false
FAS Fire Alarm System [12] system false
SOLDIERS The soldiers problem public model problem false
ENGINE A running engine public model system false
ANDOR And-Or circuit CosyVerif BenchKit circuit false
BANGOLUFSEN Bang-Olufsen protocol CosyVerif BenchKit protocol false
EXSITH Sluice CosyVerif BenchKit system false
FLIPFLOP Flip-flop circuit CosyVerif BenchKit circuit false
LATCH Latch circuit CosyVerif BenchKit circuit false
MALER Maler’s Jobshop algorithm CosyVerif BenchKit algorithm false
RCP Root Connection Protocol CosyVerif BenchKit protocol false
SIMOP SIMOP Networked Automation System CosyVerif BenchKit system false
SRLATCH SR-latch circuit CosyVerif BenchKit circuit false
TRAIN Train gate controller protocol CosyVerif BenchKit system false

TABLE II
XTA BENCHMARK SUITE MODELS

is that it is possible to define scalable models in a way that the
size of the model can be modified by setting a single constant.

C. Transformations

In many cases the models were transformed. In case of
timed automata, UPPAAL was used to transform the xml-
based models to xta. Parametric timed automata are stored
in an xml based format (grml) by CosyVerif, that was
transformed to xta programmatically. As the xta format does
not allow parameters, they were parsed as const int and
manually bound to a value taken from the Shrinktech model
of the same system, where it was available. Additionally, one
of the models (TRAIN) was modified to a generalized version
(that allows more trains) in order to increase scalability.

D. Scalability

In most existing benchmark suites, scalable models repre-
sent communication protocols and scalability is introduced by
changing the number of participants – i.e. introducing new
timed automata to the network that behave similarly to the
original ones. On the other hand, in the MCTA benchmark
suite scalability is introduced to the model by increasing
constants used in clock constraints.

In the Xta Benchmark Suite only the former type of
models are considered scalable, since the most commonly used
algorithms are not sensitive to the values of bounds [7].

E. Queries

While algorithms based on state space exploration can
operate without a property to check, in order for benchmarks
to be realistic, the Xta Benchmark Suite also provides queries
for most models. This allows to perform measurements on a

wider range of algorithms – such as backward exploration, that
requires the target state to initiate from, or search algorithms
with heuristics that are efficient in finding an execution trace
to the target state but inefficient in state space exploration.

F. Classification
In order to demonstrate diversity the models were classi-

fied according to the type of problem they represent. This
also determines the types of properties to be checked. More
information on the classification can be found online.

V. MEASUREMENTS

Algorithms implemented in the Theta model checking fra-
mework were executed on the benchmark suite. Unlike the
usual purpose of benchmarks, these measurements were per-
formed to analyze the benchmark suite and not the algorithms.

A. Procedure
The measurements were executed on a virtual 64 bit Win-

dows 7 operating system with a 2 core CPU (2.50 GHz) and
4 GB of memory. Each algorithm was run 5 times on each
input and the average of the runtimes was taken. The timeout
was 5 minutes (300,000 milliseconds).

While the complete suite consists of 26 models, those
without a property to check were excluded as well as the ones
containing elements that Theta does not support yet, such as
broadcast channels. This reduced the number of inputs to 11.

The efficiency of six algorithms were compared. Algorithm
LU is presented in [13], algorithm ACT is the improvement
of the algorithm described in [7] by applying the activity
abstraction described in [14] using lazy evaluation and al-
gorithms BINITP, SEQITP, WEAKBINITP, and WEAKSEQITP
are variants of the algorithms described in [15].

22

Fig. 1. Distribution of execution times

Fig. 2. Summary of results

B. Results

The distribution of execution times can be seen in Figure 1.
Figure 2 summarizes the success rates and runtimes of the exe-
cutions. The rows correspond to algorithms and the columns
correspond to inputs.

The first row of a cell contains a fraction representing the
success rate of the algorithm on the input: the denominator is
the total number of instances of the model (in case of non-
scalable models it is one) and the nominator is the number of
instances successfully verified by the algorithm. The second
row presents the runtime on the largest instance that was
successfully verified or 0.0s if there was none.

Models BANGOLUFSEN and STLS turned out to be too
large to be verified by any of the examined algorithms in the
given time. Executing the algorithm ACT on input CRITICAL
resulted in an exception for all instances.

Results show that for each algorithm the benchmark suite
contained at least one model where the applicability of the
algorithm was demonstrated and that the execution times are
well distributed on the logarithmic scale.

VI. CONCLUSIONS

This paper proposed a benchmark suite to perform reliable
benchmarks of verification algorithms for timed automata.
The requirements of such a benchmark suite were identified,
then a preliminary collection of inputs were presented. To
demonstrate the applicability of the proposed benchmark suite
the models were used to compare the algorithms implemented

in the Theta model checking framework. The results of the
presented benchmark suggest that the benchmark suite meets
the described requirements.

Future works include increasing the size of the benchmark
suite by importing more models from benchmarks of other
tools or even other timed formalisms, focusing on scalable
models. We also plan to include more industrial case studies
that can be found in the literature.

REFERENCES

[1] R. Alur and D. L. Dill, “The theory of timed automata,” in Real-Time:
Theory in Practice, REX Workshop, Mook, The Netherlands, June 3-7,
1991, Proceedings, 1991, pp. 45–73.

[2] J. Bengtsson, W. O. D. Griffioen, K. J. Kristoffersen, K. G. Larsen,
F. Larsson, P. Pettersson, and W. Yi, “Verification of an audio protocol
with bus collision using UPPAAL,” in Computer Aided Verification, 8th
International Conference, CAV ’96, New Brunswick, NJ, USA, July 31
- August 3, 1996, Proceedings, 1996, pp. 244–256.

[3] O. Maler and A. Pnueli, “Timing analysis of asynchronous circuits using
timed automata,” in Correct Hardware Design and Verification Methods,
IFIP WG 10.5 Advanced Research Working Conference, CHARME ’95,
Frankfurt/Main, Germany, October 2-4, 1995, Proceedings, 1995, pp.
189–205.

[4] K. Huppler, “The art of building a good benchmark,” in Performance
Evaluation and Benchmarking, First TPC Technology Conference,
TPCTC 2009, Lyon, France, August 24-28, 2009, Revised Selected
Papers, 2009, pp. 18–30.

[5] D. Beyer, S. Löwe, and P. Wendler, “Reliable benchmarking: requi-
rements and solutions,” International Journal on Software Tools for
Technology Transfer, Nov 2017.

[6] T. Tóth, A. Hajdu, A. Vörös, Z. Micskei, and I. Majzik, “Theta: a frame-
work for abstraction refinement-based model checking,” in Proceedings
of the 17th Conference on Formal Methods in Computer-Aided Design,
D. Stewart and G. Weissenbacher, Eds., 2017, pp. 176–179.

[7] J. Bengtsson and W. Yi, “Timed automata: Semantics, algorithms and
tools,” in Lectures on Concurrency and Petri Nets, ser. LNCS. Springer
Berlin Heidelberg, 2004, vol. 3098, pp. 87–124.

[8] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi,
“UPPAAL - a tool suite for automatic verification of real-time systems,”
in Hybrid Systems III: Verification and Control, Proceedings of the
DIMACS/SYCON Workshop on Verification and Control of Hybrid
Systems, October 22-25, 1995, Ruttgers University, New Brunswick, NJ,
USA, 1995, pp. 232–243.

[9] R. Alur, T. A. Henzinger, and M. Y. Vardi, “Parametric real-time
reasoning,” in Proceedings of the Twenty-Fifth Annual ACM Symposium
on Theory of Computing, May 16-18, 1993, San Diego, CA, USA, 1993,
pp. 592–601.

[10] C. Baier and J. Katoen, Principles of model checking. MIT Press, 2008.
[11] F. Kordon and F. Hulin-Hubard, “Benchkit, a tool for massive concurrent

benchmarking,” in 14th International Conference on Application of
Concurrency to System Design, ACSD 2014, Tunis La Marsa, Tunisia,
June 23-27, 2014, 2014, pp. 159–165.

[12] S. F. Arenis, B. Westphal, D. Dietsch, M. Muñiz, and A. S. Andisha,
“The wireless fire alarm system: Ensuring conformance to industrial
standards through formal verification,” in FM 2014: Formal Methods
- 19th International Symposium, Singapore, May 12-16, 2014. Procee-
dings, 2014, pp. 658–672.

[13] F. Herbreteau, B. Srivathsan, and I. Walukiewicz, “Lazy abstractions for
timed automata,” in Computer Aided Verification - 25th International
Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013.
Proceedings, 2013, pp. 990–1005.

[14] C. Daws and S. Yovine, “Reducing the number of clock variables of
timed automata,” in Proceedings of the 17th IEEE Real-Time Systems
Symposium (RSS ’96. Washington - Brussels - Tokyo: IEEE, Dec. 1996,
pp. 73–81.

[15] T. Tóth and I. Majzik, “Lazy reachability checking for timed automata
using interpolants,” in Formal Modelling and Analysis of Timed Systems,
ser. Lecture Notes in Computer Science, A. Abate and G. Geeraerts, Eds.
Springer, 2017, vol. 10419, pp. 264–280.

23

Mix-and-Match Composition in the
Gamma Framework

Bence Graics, Vince Molnár
Budapest University of Technology and Economics,

Department of Measurement and Information Systems
Budapest, Hungary

Email: bence.graics@gmail.com, molnarv@mit.bme.hu

Abstract—The Gamma Statechart Composition Framework is
a modeling tool that supports the hierarchical composition of
statechart components with well-defined compositonal semantics,
as well as source code generation and formal verification. The
purpose of the framework is to provide common ground for mod-
eling and verification tools, as well as to support component-based
system design building on existing statechart modeling tools.
Currently, the framework has a single composition semantics,
which executes the components in a lockstep fashion. This paper
presents a new composition language for the Gamma Frame-
work, adding support for two more semantics. Asynchronous-
reactive semantics supports the proper abstraction of distributed
communication, synchronous-reactive supports the modeling of
highly synchronous communication, and cascade composition is
a sequential decomposition of a single function.

I. INTRODUCTION

Statecharts [1] are a widely used formalism to describe the
behavior of reactive systems, which process stimuli from the
environment and react with respect to their internal states.
Statecharts introduce complex elements to aid the modeling
of such systems, e.g., variables, hierarchical state refinement,
history states and complex transitions (e.g., inner transitions).

The requirements such systems have to meet are getting
more complex, which can result in very large system models,
hindering verifiability, maintenance and extensibility. A well-
known solution for managing complexity is decomposition.
In case of statecharts, one way of decomposition is to define
individual reactive components that, by means of communica-
tion, realize a more complex behavior. There are a number of
modeling tools that aim to support this practice with various
model-driven software development techniques such as code
generation and verification.

The Gamma Statechart Composition Framework is one such
tool, providing a layer for composing individual statechart
components (possibly coming from other tools) while extend-
ing the capabilities of automatic code generation and veri-
fication and validation (V&V). Functionalities of the Gamma
Framework as well as a case study are presented in [2]. In this
paper, we propose a new composition language for Gamma
that enables the hierarchical mixing of different composition
semantics, with a focus on features and modeling aspects.

Asynchronous-reactive: Such models represent a set of
components that are executed independently. Asynchronous

components communicate by means of messages and message
queues. This semantics is convenient when decomposition is
both logical and physical, e.g., for distributed controllers.

Synchronous-reactive: A synchronous model represents a
coherent unit consisting of strongly coupled but concurrent
components which communicate in a synchronous manner
using signals. This semantics is suitable for the logical decom-
position of synchronous systems or the modeling of hardware-
related designs.

Cascade: Cascade models represent a set of filters that are
applied sequentially to derive an output from an input. This
variant supports the design of adapters, runtime monitors and
units with a batch-like execution.

The rest of the paper is structured as follows. Section II
presents a short summary of tools that inspired the design of
the composition language. The elements of the language itself
and an example are introduced in Section III. Finally, Section
IV provides concluding remarks and ideas for future work.

II. RELATED TOOLS

We present three tools that also support the mixing of
different composition semantics for component-based systems.

Ptolemy II1 [3], [4] is an open-source framework aiming to
support the modeling of hierarchical composite systems with
numerous component variants and communication semantics.
Communication semantics are determined by directors, which
are responsible for defining a model of computation on a
particular hierarchy level. Various directors (e.g., process net-
work, synchronous data flow or synchronous reactive) can be
combined through different hierarchy levels, facilitating the
design of complex model behavior. One of the main strengths
of Ptolemy II is its simulation capability. However, source code
generation and formal verification are not supported.

BIP2 [5], [6] is a modeling framework that focuses on
the formal definition of heterogeneous systems. BIP offers
a language to define hierarchical composite models, where
the interactions of constituent components are based on syn-
chronization. BIP defines a clear operational semantics that
describes the behavior for both atomic components (transition

1http://ptolemy.eecs.berkeley.edu/
2http://www-verimag.imag.fr/Rigorous-Design-of-Component-Based.

html?lang=en

24

system model) and compound components (rigorous rules for
component interactions). Moreover, BIP offers a comprehen-
sive tool set, which provides model transformers for third-party
models, code generators, and formal verification capabilities.

Stateflow3 [7] is a commercial framework that supports the
modeling of reactive systems. Stateflow supports the design
of statecharts and provides various scheduling algorithms.
Furthermore, Stateflow supports the simulation, validation and
verification of models as well as source code generation.
Stateflow is a mature commercial software product with pro-
fessional support. As such, the possibilities of extending or
integrating it with other software is limited. Furthermore, it is
very expensive even for research purposes.

Gamma was designed to provide an extensible framework
for the design of statechart-based composite systems, inspired
by the merits and limitations of the presented tools.

III. THE GAMMA COMPOSITION LANGUAGE

The Gamma Composition Language (GCL) supports the
definition of communicating composite models built from indi-
vidual reactive components. The design of composite systems
starts with the definition of interfaces, which define the possi-
ble event types that can be transmitted between components.
The interfaces can be realized by ports of components, which
can be connected with channels, enabling communication.
Communicating components can be wrapped by composite
models, creating an independent composite reactive unit with
rigorously defined interaction patterns.

A. Communication Elements

In the GCL, components communicate through ports. Each
port defines a point of service through which certain event
notifications can be sent or received. An event notification
(or event for short) is a piece of information passed between
components, which can also have parameters to forward
data. An event is called message in case of asynchronous
components and signal in case of synchronous components.
Events are declared on interfaces, which may be realized by
ports. An event may be declared as input, output or in/out,
which means that it can be received, sent or both through
the realizing port. The declared direction will be reversed,
however, if the port does not provide, but require the interface,
which are the two possible modes in which a port can realize
an interface. A broadcast interface is a special type of interface
on which every event is output. This approach is similar to how
the Franca Interface Definition Language defines interfaces.4

The concept of input and output events with the two modes
of interface realization may be unusual at first sight, since ports
in UML-like modeling languages support event reception and
method declarations only, both of which are services that can
be invoked. Our goal with this solution is to investigate the
possibilities of precise interface-based communication in the
domain of reactive systems. On the other hand, it is possible

3https://www.mathworks.com/products/stateflow.html
4http://www.eclipse.org/proposals/modeling.franca/

to use only out events on every interface – then provided mode
is “output” mode and required mode is “input” mode.

The following snippet defines an interface that has a single
input event with an integer parameter as well as an interface
with a single output event, that is, a broadcast interface.� �
i n t e r f a c e S t a t u s {

in event que ry
/ / Event wi th i n t e g e r p a r a m e t e r
out event s t a t u s (code : i n t e g e r)

}
i n t e r f a c e P o l i c e I n t e r r u p t { / / A b r o a d c a s t i n t e r f a c e

out event i n t e r r u p t
}� �
B. Components

Components are the basic building blocks of composite
Gamma models. The declaration of a component always
defines one or more ports in the header which may be referred
to in the definition, as presented in the following snippet.� �
sync C r o s s r o a d [

port p o l i c e : r e q u i r e s P o l i c e I n t e r r u p t ,
port p r i o r i t y L i g h t : p r o v i d e s LightCommands ,
port s e c o n d a r y L i g h t : p r o v i d e s LightCommands

]� �
A component can be either atomic, wrapping a single

statechart, or composite, wrapping one or more component
instances. Statecharts can be defined in the Gamma Statechart
Language (GSL), presented in [2]. Composite components
may adopt three types of semantics, but regardless of that,
they will comprise of the same basic modeling elements:
component instances, port bindings and channels.

a) Component instance: Component declarations can be
instantiated in composite component definitions, but they may
not contain themselves (not even transitively). Composite com-
ponents may contain instances of other composite components,
yielding a hierarchical composition. Component instances in-
herit the declared ports through which they can communicate.� �
/ / I n s t a n c e o f a component t y p e
component c r o s s r o a d I n s t a n c e : C r o s s r o a d� �

b) Port binding: The port binding element is responsible
for mapping the declared ports of a composite component to
one of the ports of its constituent components.� �
/ / B ind ing component p o r t s t o i n t e r n a l p o r t s
bind p o l i c e −> c o n t r o l l e r . p o l i c e I n t e r r u p t
bind p r i o r i t y L i g h t −> p r i o r i t y L i g h t . l ightCommands� �

In the example above, the police port of the composite
Crossroad component declaration is mapped to the policeInter-
rupt port of the component instance controller. This means that
events received through the police port will be instantaneously
forwarded to the policeInterrupt port, and events sent through
the policeInterrupt port will be sent through the police port.

c) Channel: Communication may happen through chan-
nels. Simple channels can connect two ports if they implement
the same interface but in different modes, i.e., the signal direc-
tions will be exactly the opposite on the two ports. Broadcast

25

channels are similar, but they allow a single port providing a
broadcast interface to be connected to multiple ports requiring
the same broadcast interface. Note that the language will
restrict the usage of channels in certain composition semantics,
which is discussed in Section III-C.� �
/ / A s i m p l e and a b r o a d c a s t c h a n n e l
channel [c o n t r o l l e r . p r i o t i t y C o n t r o l] −o)−

[p r i o r i t y L i g h t . c o n t r o l]
channel [c o n t r o l l e r . p o l i c e I n t e r r u p t] −o)−

[p r i o r i t y L i g h t . p o l i c e , s e c o n d a r y L i g h t . p o l i c e]� �
C. Composite Component Variations

Composite components can be synchronous or asyn-
chronous, which will determine how they receive events and
how they execute their constituent components.

1) Synchronous Components: Synchronous components
represent models that communicate in a synchronous manner
using signals. Constituent components of synchronous com-
posite components must be synchronous themselves and are
executed in a lockstep fashion, triggered by the enclosing
asynchronous component or an external actor. When executed,
synchronous components process incoming signals and pro-
duce output signals in accordance with their internal states.
Input signals are not queued but sampled: upon execution,
the component can access the most recent signal for every
event on every port since the last execution (if any). Similarly,
output signals are reset in every execution and every output
event on every port may get a new signal assigned to it.
Synchronous components in Gamma are synchronous and
cascade composite components that can be freely mixed and
statechart definitions as atomic components.

a) Synchronous composite component: During the ex-
ecution of a synchronous composite component, every con-
stituent component is executed exactly once. The execution
has two phases: 1) all components sample their inputs, then
2) outputs and new internal states are computed. This strategy
guarantees that an output generated by a component will
affect other components only in the next execution – therefore
the execution order is insignificant and the composition of
deterministic components yields a deterministic composite
component. This behavior was one of the most important
design goals for synchronous-reactive compositions.

The only case that could violate the deterministic behavior
would arise when an input event has more than one sources.
In this case, one signal would overwrite the other, and their
“order” would be unspecified. To avoid this, the language
restricts the way ports can be connected with channels: every
port may be the endpoint of exactly one channel or be bound
to exactly one port of the enclosing component.

b) Cascade composite component: Conceptually, cas-
cade composite components represent a set of “filters” through
which inputs are transformed into outputs. Therefore, con-
stituent components will immediately see the output signals
of other components in the same composite component. This
is achieved by merging the sampling and computation phases

and performing them both when executing a component. De-
terministic behavior is achieved by executing the components
in the order of their instantiation.

This strategy guarantees that the effects of an input signal
will be observable in the immediate output of the composite
component (in case of synchronous composite components, the
effect may be delayed by several execution cycles). Signals
sent through feedback connections (i.e., when a component
sends a signal to another that comes earlier in the execution
order) will be delayed until the next execution (they may be
used for e.g., abort signals from monitor components). Note
that the synchronous and cascade composite components are
semantically incompatible, i.e., there are modeling designs
which can be described in only one of the variants.

The typical arrangement of a synchronous or cascade com-
posite component definition is as follows.� �
[sync | cascade] C r o s s r o a d [

/ / P o r t d e c l a r a t i o n s
port p o l i c e : r e q u i r e s P o l i c e I n t e r r u p t
. . .

] {
/ / Component i n s t a n c e s
component c o n t r o l l e r : C o n t r o l l e r
. . .
/ / B ind ing c o m p o s i t e model p o r t s t o i n t e r n a l p o r t s
bind p o l i c e −> c o n t r o l l e r . p o l i c e I n t e r r u p t
. . .
/ / Channel d e f i n i t i o n s c o n n e c t i n g i n t e r n a l p o r t s
channel [c o n t r o l l e r . p r i o r i t y C o n t r o l] −o)−

[p r i o r i t y L i g h t . c o n t r o l]
. . .

}� �
2) Asynchronous Components: Asynchronous components

represent independently running instances that communicate
with messages, collected in message queues. There is no
guarantee on the execution time or the execution frequency
of components. There are two types of asynchronous com-
ponents in Gamma: asynchronous composite components and
synchronous component wrappers.

a) Synchronous component wrapper: A synchronous
component wrapper is used to declare an asynchronous com-
ponent implemented by a single synchronous component,
facilitating the hierarchical mixing of the composition vari-
ants. In addition to the ports of the wrapped component,
synchronous component wrappers may declare additional ports
for control messages, as well as zero or more clocks, which
emit tick events at defined timed intervals.

A synchronous component wrapper has one or more mes-
sage queues, which have the following attributes: capacity
specifies the maximum number of messages that can be stored
in the particular queue; priority specifies the order in which
message queues are processed during the execution of the
asynchronous component (the next message is always retrieved
from a non-empty queue with the highest priority); event types
specify the messages that will be put in the particular queue.
Messages can be referred to either by specifically naming an
event on a port, referring to all events on a port (with the
any keyword instead of an event), or specifying the name of

26

a clock to refer to its tick event.
During execution, messages are retrieved individually from

messages queues. A message is always taken from the high-
est priority non-empty queue. If the particular message was
received on a port that is implicitly derived from the wrapped
component, the message is converted to a signal (as syn-
chronous components communicate with signals) and trans-
mitted to the wrapped synchronous component (potentially
overwriting previously sent signals). Otherwise, the message
is not transmitted.

A synchronous component wrapper also has one or more
control specifications, which describe when and how to ex-
ecute the wrapped component. The trigger messages can be
specified by referring to events as in case of message queues,
while the execution mode can be one of the following: “run
once” (run keyword) to trigger a single execution of the
wrapped component; “run to completion” (full step keyword)
to repeatedly execute the wrapped component until no more
internal signals are generated (applicable only to composite
components); reset (reset keyword) to reinitialize the wrapped
component to its initial state.

The following code snippet presents an example wrapper for
the previously defined CrossroadComponent, which defined
a control port named execution. Messages received on this
port are stored in the higher priority executionQueue, whereas
the messages of additional (implicit) ports are stored in the
other queue crossroadsQueue which has a capacity of 5.
According to the control specifications, upon processing an
execute message, the wrapped component is run to completion,
while either a clock signal or an interrupt signal of port police
triggers a single execution.� �
async AsyncCross road of CrossroadComponent [

/ / A d d i t i o n a l c o n t r o l p o r t s
port e x e c u t i o n : p r o v id e s E x e c u t a b l e

] {
/ / Clock d e f i n i t i o n s
c l o c k c l o c k S i g n a l (r a t e =100ms)
/ / C o n t r o l s p e c i f i c a t i o n s
when e x e c u t i o n . e x e c u t e / f u l l s t e p
when c l o c k S i g n a l / run
when p o l i c e . i n t e r r u p t / run
/ / Message queues
queue e x e c u t i o n Q u e u e (p r i o r i t y =2) {

e x e c u t i o n . e x e c u t e , c l o c k S i g n a l
}
queue c r o s s r o a d s Q u e u e (p r i o r i t y =1 , c a p a c i t y =5) {

p o l i c e . any , p r i o r i t y L i g h t . any ,
s e c o n d a r y L i g h t . any

}
}� �

b) Asynchronous composite component: Asynchronous
composite components support the hierarchical definition of
asynchronous components, just like synchronous composite
components do for the synchronous case. The structure of
asynchronous composite components is identical to their syn-
chronous counterparts, but the type of constituent components
must be asynchronous, i.e., either synchronous component
wrappers of other composite components. The execution se-
mantics of constituent components is totally asynchronous, any

component may be executed any time, given that their message
queues are not empty. Produced messages are placed into
message queues of components on the other end of channels,
and there is no restriction on how ports are connected. Note
that the hierarchy of asynchronous components may always
be flattened without affecting the meaning of the model.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an extension to the com-
position language of the Gamma Framework to support the
mixing of three semantic variants for the composition of reac-
tive components: asynchronous-reactive, synchronous-reactive
and cascade semantics. Asynchronous components represent
independently running components, which communicate with
messages stored in message queues. This semantics is suitable
for designing distributed or parallel processes. Synchronous-
reactive components are useful for modeling a single executing
unit consisting of multiple, functionally decomposed compo-
nents. This composition mode is for the design of different
aspects of a complex, but single-threaded component. Cascade
composition is practical for designing units with pipeline-like
behavior: the input fed into the model is processed by multiple
consecutive filters in a single run.

Subject to future work, we plan to extend the code genera-
tion and formal verification services of Gamma to support the
proposed language and the semantic variants it introduces. For
code generation, we already have code templates for the more
significant methods. The formal analysis of asynchronous-
reactive models, however, will be worth more research, as
the interleaving semantics of asynchronous models poses a
serious challenge to model checkers that should be handled in
the transformation to the formal input models of these tools.

ACKNOWLEDGMENT

Partially supported by the ÚNKP-17-2-I and ÚNKP-17-3-I
New National Excellence Program of the Ministry of Human
Capacities.

REFERENCES

[1] D. Harel, “Statecharts: A visual formalism for complex systems,” Sci.
Comput. Program., vol. 8, no. 3, pp. 231–274, Jun. 1987.

[2] B. Graics, “Model-Driven Design and Verification of Component-Based
Reactive Systems,” Bachelor’s thesis, Budapest University of Technology
and Economics, 2016. [Online]. Available: https://gamma.inf.mit.bme.hu

[3] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Sachs,
Y. Xiong, and S. Neuendorffer, “Taming heterogeneity - the ptolemy
approach,” Proceedings of the IEEE, vol. 91, no. 1, pp. 127–144, 2003.
[Online]. Available: http://chess.eecs.berkeley.edu/pubs/488.html

[4] C. Brooks, “Ptolemy II: An open-source platform for experimenting
with actor-oriented design,” February 2016, poster presented at
the ”https://www.terraswarm.org/conferences/16/bears/” 2016 Berkeley
EECS Annual Research Symposium. [Online]. Available: http://chess.
eecs.berkeley.edu/pubs/1166.html

[5] S. Yovine, “BIP: Language and tools for component-based construction,”
2007. [Online]. Available: http://users.cs.york.ac.uk/∼burns/papers/bip.
pdf

[6] M. D. Bozga, V. Sfyrla, and J. Sifakis, “Modeling synchronous systems
in BIP,” in Proceedings of the seventh ACM international conference on
Embedded software. ACM, 2009, pp. 77–86.

[7] S. T. Karris, Introduction to Stateflow with Applications. Orchard
Publications, 2007.

27

Adaptive Sequential Laboratory Diagnostic Tests:
Joint Bayesian Analysis for Optimality

Zeyneb Guenfoud, Péter Antal
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Budapest, Hungary

Email:{guenfoud, antal}@mit.bme.hu

Abstract—Laboratory diagnostic tests provide a fundamental,
traditional level in clinical practice and biomedical research.
Despite the detailed diagnostic characterization of individual
laboratory tests, their overall interdependences has not been
investigated. We summarize a probabilistic framework to define
optimal measurements, which relies on comprehensive, multivari-
ate probabilistic models of laboratory diagnostic tests formal-
ized as probabilistic graphical models. Within the probabilistic
framework we propose sequential inference schemes to improve
requested tests. We discuss the challenges and propose scenarios
for the integrated application of a decision support system
optimizing the selection of laboratory tests with an interplay
of clinicians and the laboratory. We also present results of pre-
processing a dataset from a central laboratory of a large medical
center, which will be the basis of later real-world evaluations.

Index Terms—artificial intelligence, probabilistic graphical
models, Bayesian learning, optimal decision, laboratory diagnos-
tic test, cost efficiency

I. INTRODUCTION

The availability of massive, electronic health datasets pro-
vides an unprecedented opportunity in early diagnosis and per-
sonalized medicine. Modern cornerstones of personal health
information are the various molecular biological datasets cor-
responding to different biological levels and corresponding
measurement technologies, such as genetics, transcriptomics
or proteomics. However, clinical laboratories are still have a
central role in clinical practice: for myriads of clinical requests
about diagnostic tests from a wide range, they provide stan-
dardized, high-quality information with strict time-constraints.
On the one hand, this separated service model focusing on the
measurement of the requested tests may increase efficiency at
the population level, e.g. optimizing the measurement process
of multiple requests according to the laboratory infrastructure
and workload. But on the other hand, it can decrease efficiency
at the level of patient, e.g. the measurement process in an
actual case could be guided by the measured information,
optionally involving the clinical expert as well. Specifically, a
sequential, adaptive measurement process of laboratory tests,
potentially with an interaction between the laboratory and
clinical diagnostician could result in the following:

1) Canceled measurements The laboratory could inform
the clinician that certain requested tests are confidently
predictable based on earlier measurements from the
patient’s history and from current measurements. De-
pending on the suspected disease and corresponding

diagnostic protocol, the clinician could decide that the
in silico predictions are sufficient and could cancel the
pending requests.

2) Extended measurements The laboratory could inform the
clinician that the value of certain not requested tests
are abnormal with high confidence, predicted based on
earlier measurements from the patient’s history and from
current measurements. Depending on the suspected dis-
ease and corresponding diagnostic protocol, the clinician
could decide that the measurements could be indeed
valuable for those variables and expand the request.

We investigate the following scenario of adaptive, sequential
laboratory diagnostic tests, for which the assumptions are
motivated by our real-world cooperation with the Central
Laboratory of the Semmelweis University:

1) Separated laboratory information The laboratory has
no access to the patient’s medical history and current
suspected diseases, but basic demographic information,
such as gender and age and earlier laboratory tests for
the patients may be available.

2) Requested tests with urgent/compulsory subsets and sug-
gested ordering The clinician could ask the measurement
of test(s) indicating also that certain measurements are
urgent and/or compulsory. Suggested ordering for their
sequential measurement can be also indicated.

3) Predictable tests The laboratory could inform the clin-
ician that the value of certain tests are confidently
predictable based on earlier measurements from the
patient’s history and from current measurements.

The central assumption of our approach is that laboratory
diagnostic tests have a robust probabilistic dependency struc-
ture, in fact, the redundancy of the current set of tests is one
of the main challenge in laboratory medicine [15]. Because
in our scenario information about indications and diseases are
not available, we focus on the separated, standalone depen-
dency structure of the tests. Note that this property excludes
the usage of information about well-known disease-specific
multivariate tests. Furthermore, to simplify our task, as a first
approximation, we ignore the temporal aspect of laboratory
tests, e.g. we do not perform a time-series analysis and do not
model that certain tests are used to monitor the result of a
surgery.

28

Based on these assumptions, the main questions of our work
is twofold:

1) Predictable measurements We try to estimate the distri-
bution, variance and expected value of the number of
correctly predictable measurements.

2) Unmeasured abnormalities We try to estimate the dis-
tribution, variance and expected value of the number of
unmeasured tests with abnormal values.

Two notes are in order. Note that certain measurements
are prescribed by medical protocols, e.g. to exclude vital
conditions. Thus, the expected value of predictable mea-
surements provides only an upper bound for the potentially
avoidable laboratory tests. Analogously, certain measurements
are trivially abnormal in certain medical conditions, so they are
not requested to measure, consequently the expected value of
unmeasured abnormalities is only an upper bound for missed,
medically relevant measurements.

In short, our assumptions are twofolds. Firstly, it relies
on a non-temporal learning phase, in which laboratory test
measurements in a given, recent period are merged into a vec-
torial description as current state, and earlier measurements are
neglected. This first phase results in a a posteriori distribution
over models. Secondly, we will approximate inference for a
given patient using this a posteriori distribution over models
and perform a sequential inference in a given model using
laboratory tests as evidences of the current state of a patient.

II. EARLIER WORKS

The broader context of our formalization and approxima-
tion for an adaptive, sequential use of laboratory diagnostic
tests encompasses the full-fledged Bayesian decision theoretic
framework, including actions for the selection of tests for
measurements, for the rejection of a measured value and
an action for stopping with the measurements and possibly
suggesting interventions based on the diagnosis. The optimal
selection of actions resulting in interventions and observations,
leads to the concept of expected value of an experiment
(EVE) [18].

Ignoring the potential interventional consequences, the uti-
lization of the temporal sequence of measurements for a given
patient can be seen as a time-series analysis, especially in the
prequential and online learning approaches for non-stationer
processes. This scenario corresponds to the monitoring of the
result of a surgery using a panel of biomarkers for example
in oncology.

The real-world constraints on measuring laboratory tests,
especially the financial and temporal constraints, can be also
investigated in the frameworks of active learning and budgeted
learning.

The measurement itself of a laboratory test usually indicates
an increased belief for a potential abnormal value, i.e. the
informativeness of the mere availability of a measured test.
Thus, the usual laboratory test datasets violate the missing-at-
random (MAR) assumption and require special approaches [5].

Assuming that the inductive part results in a limited number
of models, the adaptive, sequential use of laboratory tests

in this phase corresponds various types of inferences in a
complex, fixed model to explore the current state of a given
patient. If utility functions are available, then value of informa-
tion calculations could be used to support information gather-
ing [4], [6], [7], [9], [11]. Lacking informative utility functions,
general domain specific functions can be constructed and/or
sensitivity of inference could be used to support information
gathering. Another approach is to use explanation generation
methods [3], [10].

The joint analysis of all laboratory tests is a natural exten-
sion of the network paradigm from diseases, genes, drugs,
phenotypes and symptoms [20]. Indeed, both data mining
and deep analysis of electronic health records are among the
top priorities for improving health care [2], [8], with special
emphasis on using laboratory diagnostic tests [12]–[17], [19].

Unfortunately, these earlier frameworks and methods are not
directly applicable for this problem, so there are no available
benchmark results.

III. DOMAIN AND DATASETS

The raw dataset contains all results for the measurements
of 225 most relevant laboratory blood tests between 2011
and 2015 October at the Central Laboratory of the Semmel-
weis University. From this 4-year period, the original dataset
contains 13,754,888 measurements from 1,376,759 orders for
1,392 laboratory tests and 202,976 persons.

The measurements are grouped by their orders, which
usually correspond to a visit to a medical professional and
a respective blood sampling. For each order, the urgency of
the measurement and the institute of the doctor ordering the
tests are indicated, but not used in the current analysis. For
each patient, gender and age will be available, but could not
yet accessed. The identifiers and the abbreviated names of
the laboratory diagnostic tests are the World Health Organi-
zation (WHO) codes and the Logical Observation Identifier
Names and Codes (LOINC) codes. The reference interval
and the measurement unit for each measurement is separately
indicated in the database, which allows the following semi-
quantitative coding and interpretation:

1) Non-measured (0): not suspicious or relevant, default
assumption for the unmeasured value is normal.

2) Measured-normal (1): suspicious and relevant, but
measured test value is in the reference range.

3) Abnormally-low (2): the measured test value is below
the lower bound of the reference range.

4) Abnormally-high (3): the measured test value is above
the upper bound of the reference range.

In the current analysis, for each patient the measurements
in a given, most recent period are merged and earlier mea-
surements are neglected. We treat these merged tests vectorial
representation as the current state of the patient.

The applied combinations for the window size and merge
function are as follows. We split the data for 5 sub-data as
last month (1m), last 3 months (3m), last half year (6m), last
year (1y) and last 2 years (2y). In the continuous version
of the merge, we aggregate all the sub-data calculating the

29

maximum (max), minimum (min), average (avg) and median
(med) values or keeping only the last measurements (last). In
the discretized version of the merge, we first convert each
value into a binary normal(0)/abnormal(1) value, then we
aggregate all the sub-data calculating their AND (and) and
OR (or) combinations or keeping only the last measurements
(last, there is no difference in this case between the continuous
and discretized version).

For each aggregation, we generated the following three
types of matrices with semi-quantitative values, when the rows
are the patients and the columns are the laboratory tests.

1) Measurement indicator matrix (IM) has binary values,
where 1 means that the laboratory test is performed for
the patient in the given period, and 0 if not performed.

2) Abnormality data matrix (D) The value 2 means that
lab-test is performed for patient and its merged value
is outside the reference/normal range in the continuous
case and 1 in the discretized case. The value 1 means
the analogous case and empty means that the lab-test is
not performed for the patient in the given period.

3) Ternary data matrix (T). Technically, it is a completed
version of the Abnormality data matrix by setting its
all empty items to 0. An intuitive interpretation is that
a non-measured test indicate an a priori normal value,
which is in certain cases suggest a smaller risk then a
measured, i.e. suspicious, but normal value.

Fig. 1 shows the data preprocessing pipeline.

Fig. 1. The preprocessing pipeline resulting discrete data matrices.

We have developed Python scripts for these preprocessing
steps and exploratory statistical data analysis.

IV. METHODS

The central tasks according to our assumptions are the
indication of confidently predictable tests among the requested
ones and tests with confidently abnormal values among the
unrequested ones. In our non-temporal approach using the
described merging and discretization, we conceive these tasks

as (1) the indication of confidently predictable tests among
the known tests after merging and (2) as the indication of
tests with confidently abnormal values among the unknown
tests after merging. We introduce concepts for the probabilistic
formalization of these questions in case of a new, actual patient
with index N + 1, assuming that the same preprocessing is
applied in this case as for the data matrix DN with N samples.
Let KN+1 denote the set of the indices of known tests for
patient N+1: i ∈ K iff IN+1,i = 1. The known set is divided
to an evidence set E ⊂ K and query set Q = K \ E. Using
these index sets, DN+1,K denotes the subvector of known
tests. We call the tests in Q as l − τ predictable iff |E| = l
and tests DN+1,Q are predictable with at most τ probability:

∀i ∈ Q : τ < max
j=1,2

p(DN+1,i = j|DN+1,E , DN). (1)

For a given τ , the minimal value with this property is
denoted with lN+1(τ), i.e. the size of the minimum number of
tests from the known set sufficient the predict the rest of the
known ones. Note that the set of potentially redundant tests
could be defined more precisely using a multivariate approach.
Using this univariate formalization, the number of τ -probably
redundant tests is defined as

rN+1(τ) = |KN+1| − lN+1(τ). (2)

Analogously, the set CN+1(τ) of probably abnormal vari-
ables with threshold τ is defined as follows

i ∈ CN+1 : τ < p(DN+1,i = ”abnormal”|DN+1,K , DN).

We apply Bayesian network models Mi in the Bayesian
model averaging framework to approximate the predictive
distributions, i.e. for target Y

p(Y |DN+1,K , DN) ≈
∑

Mi

p(Y |Mi, DN+1,K)p(Mi|DN).

For this purpose, currently we are extending and evaluating
Markov Chain Monte Carlo (MCMC) methods over Bayesian
network structures developed earlier in our group [1]. In the
general batch case for M patients DN+1:N+M , we treat the
cases separately, because of computational limitations.

V. RESULTS

The laboratory test measurements are highly incomplete,
as they are specific to diseases and clinical conditions. Using
only the last laboratory visit for each patient, Fig. 2 shows
the proportion of cases with measurement, valid value and
normal value for the laboratory tests (proportion of ”Valid”
is not shown as nearly all measurements have proper syntax,
thus valid). The existence of a measurement means its presence
in the dataset, its validity means that it has proper syntactic
format and the reference interval (a.k.a. normal region) is
available, finally, normality means that the measurement of
a test has a valid decoding in the reference region.

In the current approach we merge the laboratory visits
using varying window size. Table I represents proportions of

30

Fig. 2. Proportion of cases that were requested (”Measured”) and their value
is in the reference range (”Normal”).

measured tests, valid values and normal values in the dataset
using 1 month (1M), 3 month (3M) and 6 month (6M) window
sizes for merging the results per patients.

TABLE I
PROPORTIONS OF MEASURED TESTS BY ACCUMULATING RESULTS.

Measured Valid Normal
1M 10.46% 10.44% 8.03%
3M 10.66% 10.64% 8.39%
6M 21.75% 21.71% 17.13%

As results in Table I show the effect of merging laboratory
test results in a 3 month period is negligible, which probably
related to clinical protocols limiting the repetition of certain
tests. These results indicate that the high level of incomplete-
ness of the laboratory test data remains a major challenge,
as the ratio of valid data is still around 20% after merging
results in a 6 month period (homogeneity assumptions of the
clinical state for longer periods usually cannot be expected).
However, incompleteness is informative for laboratory tests,
as indicated by the proposed semi-quantitative coding and
interpretation, which property suggest the use of respective,
complete datasets.

Currently, we are investigating the effect of discretization,
approaches to cope with incomplete data and computational
schemes to perform Bayesian inference using Monte Carlo
methods jointly over the missing part of the dataset and
predictive models.

VI. CONCLUSION AND FUTURE WORK

The prediction of unknown tests could be used both in
actual clinical decision support and in evaluation of health
policies. From clinical point of view, the investigated methods
aim to support the cost-effective use of laboratory capacities,
as the set of the requested tests can be adaptively modified.
Additionally, these functionalities can also support quality
control implementing professional protocols, but it could also
help the design and refinement of diagnostic protocols.

REFERENCES

[1] Péter Antal, András Millinghoffer, Gábor Hullám, Csaba Szalai, and
András Falus. A bayesian view of challenges in feature selection:
feature aggregation, multiple targets, redundancy and interaction. In
New Challenges for Feature Selection in Data Mining and Knowledge
Discovery, pages 74–89, 2008.

[2] David Blumenthal and Marilyn Tavenner. The “meaningful use” regu-
lation for electronic health records. N Engl J Med, 2010(363):501–504,
2010.

[3] Urszula Chajewska and Joseph Y Halpern. Defining explanation in
probabilistic systems. In Proceedings of the Thirteenth conference on
Uncertainty in artificial intelligence, pages 62–71. Morgan Kaufmann
Publishers Inc., 1997.

[4] Clifford Champion and Charles Elkan. Visualizing the consequences of
evidence in bayesian networks. arXiv preprint arXiv:1707.00791, 2017.

[5] Andrew Gelman, John B Carlin, Hal S Stern, David B Dunson, Aki
Vehtari, and Donald B Rubin. Bayesian data analysis, volume 2. CRC
press Boca Raton, FL, 2014.

[6] David Heckerman, Eric Horvitz, and Blackford Middleton. An ap-
proximate nonmyopic computation for value of information. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 15(3):292–
298, 1993.

[7] Finn V Jensen and Thomas Dyhre Nielsen. Probabilistic decision graphs
for optimization under uncertainty. Annals of Operations Research,
204(1):223–248, 2013.

[8] Peter B Jensen, Lars J Jensen, and Søren Brunak. Mining electronic
health records: towards better research applications and clinical care.
Nature Reviews Genetics, 13(6):395–405, 2012.

[9] Andreas Krause and Carlos E Guestrin. Near-optimal nonmyopic value
of information in graphical models. arXiv preprint arXiv:1207.1394,
2012.

[10] Carmen Lacave and Francisco J Dı́ez. A review of explanation methods
for bayesian networks. The Knowledge Engineering Review, 17(2):107–
127, 2002.

[11] Wenhui Liao and Qiang Ji. Efficient non-myopic value-of-information
computation for influence diagrams. International Journal of Approxi-
mate Reasoning, 49(2):436–450, 2008.

[12] Giuseppe Lippi, Antonella Bassi, and Chiara Bovo. The future of
laboratory medicine in the era of precision medicine. Journal of
Laboratory and Precision Medicine, 1(3), 2016.

[13] Giuseppe Lippi, Chiara Bovo, and Marcello Ciaccio. Inappropriateness
in laboratory medicine: an elephant in the room? Annals of translational
medicine, 5(4), 2017.

[14] Giuseppe Lippi and Camilla Mattiuzzi. The biomarker paradigm:
between diagnostic efficiency and clinical efficacy. Pol Arch Med Wewn,
125(04):282–288, 2015.

[15] Giuseppe Lippi and Mario Plebani. False myths and legends in
laboratory diagnostics. Clinical chemistry and laboratory medicine,
51(11):2087–2097, 2013.

[16] Giuseppe Lippi and Mario Plebani. Laboratory economics. risk or
opportunity? Clinical Chemistry and Laboratory Medicine (CCLM),
54(11):1701–1703, 2016.

[17] Martina Montagnana and Giuseppe Lippi. The risks of defensive
(emergency) medicine. the laboratory perspective. Emergency Care
Journal, 1(1), 2016.

[18] Changwon Yoo and Gregory F Cooper. An evaluation of a system
that recommends microarray experiments to perform to discover gene-
regulation pathways. Artificial Intelligence in Medicine, 31(2):169–182,
2004.

[19] Zhongheng Zhang. The role of big-data in clinical studies in laboratory
medicine. Journal of Laboratory and Precision Medicine, 2(6), 2017.

[20] XueZhong Zhou, Jörg Menche, Albert-László Barabási, and Amitabh
Sharma. Human symptoms–disease network. Nature communications,
5:4212, 2014.

31

A Preliminary Analysis on the Effect of
Randomness in a CEGAR Framework

Ákos Hajdu1,2, Zoltán Micskei1
1Budapest University of Technology and Economics, Department of Measurement and Information Systems

2MTA-BME Lendület Cyber-Physical Systems Research Group
Email: {hajdua, micskeiz}@mit.bme.hu

Abstract—Formal verification techniques can check the cor-
rectness of systems in a mathematically precise way. Counter-
example-Guided Abstraction Refinement (CEGAR) is an au-
tomatic algorithm that reduces the complexity of systems by
constructing and refining abstractions. CEGAR is a generic
approach, having many variants and strategies developed over the
years. However, as the variants become more and more advanced,
one may not be sure whether the performance of a strategy
can be attributed to the strategy itself or to other, unintentional
factors. In this paper we perform an experiment by evaluating
the performance of different strategies while randomizing certain
external factors such as the search strategy and variable naming.
We show that randomization introduces a great variation in the
output metrics, and that in several cases this might even influence
whether the algorithm successfully terminates.

I. INTRODUCTION

Formal verification techniques (such as model checking [1])
can check whether a model (formal representation) of a system
meets certain requirements by exhaustively analyzing its possi-
ble states and transitions. As our reliance on computer systems
grows, the importance of these techniques is also increasing.
However, a typical drawback of using formal methods is
their high computational complexity. The Counterexample-
Guided Abstraction Refinement (CEGAR) approach [2] alle-
viates this problem by automatically constructing and refining
abstractions that over-approximate the behavior of systems.
CEGAR starts with a coarse initial abstraction (to minimize
complexity) and then applies refinements based on candidate
counterexamples until a sufficient precision is reached (that is
fine enough for deciding whether the requirement holds).

THETA is a generic framework that includes many configu-
rations (variants) of the CEGAR algorithm in a common envi-
ronment [3]. The framework relies on first order logic (FOL):
the behavior of the models is encoded in graphs annotated with
FOL formulas and the algorithms use SAT/SMT solvers [4]
as the underlying engine. We already performed experimental
evaluations in THETA and in most cases we concluded that the
configurations have a diverse performance: different configu-
rations are more suitable for different tasks [5], [6]. However,
as the underlying strategies of the configurations are also
becoming more advanced, we cannot be certain whether their
performance can be attributed to their intentional, algorithmic
behavior. Rather, they might be unintentionally influenced by
certain external factors in a way that the final outcome is a
better performance in certain cases. For example, a different

ordering of commutative formulas might unintentionally affect
the order in which states are processed.

In this paper we investigate two such factors. A higher
level, algorithmic factor is the search strategy in the abstract
state space. A configuration may fail to build a suitable
abstraction efficiently if a deterministic search strategy guides
it in the “wrong” direction. A lower level, external factor is
the naming of the variables. Most of the refinement strategies
employ an SMT solver for computing over-approximations.
We observed that the name of the variables affects their order
in certain collections (e.g., sets), which may influence the
inner heuristics of the solvers, also affecting the quality of
the generated abstractions.

Our experiment shows that randomizing any of the afore-
mentioned factors greatly increases variations in the output
metrics (e.g., execution time). Furthermore, randomization
often even affects whether the algorithm can successfully
terminate within the given time limit. We also examine some
cases where a randomized configuration can verify a model
for which the deterministic ones fail. Based on this feedback,
we can improve the shortcomings of the deterministic config-
urations and we can also introduce nondeterministic options
to the configurations as a viable alternative.

II. EXPERIMENT PLANNING

In our experiment several configurations of the CEGAR
algorithm of THETA were executed on various input models
deterministically and also with randomizing the search strategy
or the variable names.

A. Research Questions

The current research questions focus on a preliminary,
exploratory analysis of the results.

RQ1 Are there any cases where a randomized configu-
ration could verify a model (at least once) that its
deterministic counterpart could not?

RQ2 How does randomization affect the variation of
output metrics (e.g., execution time) compared to
deterministic configurations? Which yields a greater
variation? Randomizing search or variable names?

B. Subjects and Objects

THETA includes many parameters for the CEGAR algo-
rithm. For this experiment we selected the two most prominent,

32

TABLE I
VARIABLES OF THE EXPERIMENT.

Category Name Type Description

Input
(model)

Category Factor Category of the model. Possible values: eca, hw, locks, plc, ssh (see Section II-B).
Model String Unique name of the model.

Input
(config.)

Domain Factor Domain of the abstraction. Possible values: PRED (predicate), EXPL (explicit value).
Refinement Factor Refinement strategy. Possible values: BIN (binary interpolation), SEQ (sequence interpolation).
Randomized Factor Factor that is randomized. Possible values: DET (deterministic, no randomization), SEARCH (random search

strategy), VARS (random variable names).

Output
(metrics)

Succ Boolean Indicates whether the algorithm successfully provided a result within the given time limit.
TimeMs Integer Execution time of the algorithm (in milliseconds).
Iterations Integer Number of refinement iterations until the sufficiently precise abstraction was reached.
ArgSize Integer Number of nodes in the Abstract Reachability Graph (ARG), i.e., the number of explored abstract states.
ArgDepth Integer Depth of the ARG.
CexLen Integer Length of the counterexample, i.e., a path leading to a state of the model that does not meet the requirement.

namely the domain of the abstraction and the refinement strat-
egy. We experimented with predicate [7] and explicit value [8]
domains with binary [9] and sequence [10] interpolation-
based refinements, as these strategies are also implemented
in many other verification tools [11]. The third parameter is
the randomized factor, i.e., the search strategy, the variable
names, or nothing (deterministic). Therefore, there are a total
number of 2 · 2 · 3 = 12 configurations.

Due to the long execution time of the measurements, we
only evaluated the configurations on 30 input models. Never-
theless, we tried to make these models relevant and diverse.
Therefore, we picked 10 hardware models (hw) from different
categories of the Hardware Model Checking Competition [12],
15 models from 3 categories (eca, locks, ssh) of the Com-
petition on Software Verification [11] and 5 industrial PLC
software modules (plc) from CERN [13]. Based on previous
measurements, we picked models with different difficulties,
including easy (verified by most configurations) and difficult
instances (verified by a few or no configurations).

C. Variables

Variables of the experiment are listed in Table I, grouped
into three main categories: properties of the model (input),
parameters the configuration (input) and metrics of the algo-
rithm execution (output). If the algorithm did not provide a
result within the time limit, the variable Succ is false and the
other output metrics are empty (NA).

D. Measurement Procedure

Measurements were executed on two 64 bit Windows 7
virtual machines with 2 cores (2.50 GHz), 8 GB RAM and
JRE 8 (THETA is implemented in Java). Z3 version 4.5.0 [14]
was used as an SMT solver. Each measurement was repeated
30 times with a different random seed. The time limit for each
execution was 180 seconds.

E. Analysis Methods

RQ1 can be answered by summarizing heatmaps and filter-
ing the data. Furthermore, it would be interesting to analyze
each case separately in more detail using for example the

logs produced by THETA. RQ2 can be examined with basic
descriptive statistics and summarizing plots (e.g., box plots),
yielding a good overview on the variations of the output
metrics under different configurations.

F. Threats to Validity

We worked with input models from different sources, in-
cluding well-known benchmarks sets such as HWMCC [12]
and SV-COMP [11]. However, due to time constraints, only
30 models were picked. External validity could be improved
by selecting more models both from the same sources and
from additional ones. This experiment focused only on THETA,
which includes many algorithms known from state-of-the-
art tools [11]. However, external validity would benefit from
repeating the experiment with different tools. It would also
be interesting to experiment with a higher time limit (e.g.,
SV-COMP uses 900s) and more randomized factors (e.g.,
reorder commutative formulas in the models). Internal validity
is increased by repeating the measurements 30 times on
dedicated virtual machines. However, if more resources were
available, measurements should be repeated even more times
(e.g. 1000 times [15]) on dedicated physical machines.

III. ANALYSIS

This section discusses the analyses and results related to our
research questions. The analyses were performed with the R
software environment [16]. The raw data, the R script and a
detailed report can be found on a supplementary web page.1

A. Terminology and Overview

A run is a single execution of a configuration on a model.
A run is successful if a result (whether the model is correct or
not) is provided within the given time limit. A measurement
is the collection of all repeated runs of the same configuration
on the same model. A measurement is successful if it includes
at least one successful run. In this case we also say that the
configuration verified the model.

1http://dx.doi.org/10.5281/zenodo.1117853

33

In this experiment 12 configurations were executed on 30
models (from 5 categories), yielding 12 · 30 = 360 mea-
surements. Each measurement was repeated 30 times, giving
360 · 30 = 10800 runs. There are 7080/10800 successful runs
(66%) and 261/360 successful measurements (72%). Fig. 1
summarizes the range and distribution of the output metrics.

0
2000
4000
6000

FALSE TRUE

Succ

co
un

t

0

500

1000

1e+03 1e+04 1e+05

TimeMs

0

500

1000

1 10 100

Iterations

0
250
500
750

1000

10 1000

ArgSize

co
un

t

0
200
400
600

10 1000

ArgDepth

0
200
400
600

10 100

CexLen

Fig. 1. Distribution of the output metrics.

Fig. 2 shows the number of successful runs for each model.
It can be seen that besides the easy models in category locks,
their difficulty is gradually increasing, supporting our claim
on diversity.

0

60

120

180

240

300

360

ec
a/

pr
ob

1_
la

b1
9

lo
ck

s/
lo

ck
s_

10
_2

lo
ck

s/
lo

ck
s_

11
_8

lo
ck

s/
lo

ck
s_

14
_1

lo
ck

s/
lo

ck
s_

15
_0

lo
ck

s/
lo

ck
s_

5_
4

pl
c/

pl
c1

pl
c/

pl
c3

ss
h/

s3
_s

rv
r_

1
hw

/p
dt

vi
st

w
oa

ll1
pl

c/
pl

c2
pl

c/
pl

c4
a

pl
c/

pl
c4

b
ec

a/
pr

ob
1_

la
b1

5
ss

h/
s3

_c
ln

t_
3

hw
/b

ob
tu

in
t1

2n
eg

ss
h/

s3
_c

ln
t_

1
hw

/6
s2

82
b0

1
hw

/o
sk

i1
5a

14
b1

6s
ec

a/
pr

ob
2_

la
b5

7
hw

/m
en

to
rb

m
1p

04
hw

/b
j0

8a
m

ba
4g

5
hw

/te
xa

sp
im

ai
np

08
ec

a/
pr

ob
3_

la
b4

8
ss

h/
s3

_s
rv

r_
3

ss
h/

s3
_s

rv
r_

4
hw

/in
te

l0
01

hw
/1

39
44

4p
22

ec
a/

pr
ob

3_
la

b0
3

hw
/b

ee
m

ad
d3

b1

Model

S
uc

ce
ss

fu
l r

un
s

Category

eca

hw

locks

plc

ssh

Fig. 2. Number of configurations that verified the models.

Fig. 3 presents the number of verified models and successful
runs for each configuration. Configurations are abbreviated
with the first letters of their parameters, e.g., PB-V stands
for predicate domain, binary interpolation and variable name
randomization. The difference between the best and worst
configuration is 25 − 19 = 6 regarding verified models and
685− 518 = 167 regarding successful runs.

0
5

10
15
20
25

E
S

−
D

P
S

−
D

E
B

−
D

E
B

−
V

E
S

−
V

E
B

−
S

E
S

−
S

P
B

−
D

P
S

−
S

P
S

−
V

P
B

−
S

P
B

−
V

Config

M
od

el
s

ve
rif

ie
d

0

200

400

600

P
B

−
S

P
S

−
S

P
S

−
D

P
S

−
V

E
S

−
D

E
B

−
V

E
S

−
V

E
B

−
S

E
B

−
D

E
S

−
S

P
B

−
D

P
B

−
V

Config

S
uc

c.
 r

un
s Randomized

DET

SEARCH

VARS

Fig. 3. Number verified models and successful runs for each configuration.

B. RQ1: Successful Verifications

Fig. 4 illustrates the number of successful runs for each
measurement. White cells represent no successful runs. It can
be seen that in most cases the deterministic configurations
have either 0 or 30 successful runs. There are a few exceptions
though, where the execution time was close to the time limit.

PS−V
PS−S
PS−D
PB−V
PB−S
PB−D
ES−V
ES−S
ES−D
EB−V
EB−S
EB−D

ec
a/

pr
ob

1_
la

b1
5

ec
a/

pr
ob

1_
la

b1
9

ec
a/

pr
ob

2_
la

b5
7

ec
a/

pr
ob

3_
la

b0
3

ec
a/

pr
ob

3_
la

b4
8

hw
/1

39
44

4p
22

hw
/6

s2
82

b0
1

hw
/b

ee
m

ad
d3

b1
hw

/b
j0

8a
m

ba
4g

5
hw

/b
ob

tu
in

t1
2n

eg
hw

/in
te

l0
01

hw
/m

en
to

rb
m

1p
04

hw
/o

sk
i1

5a
14

b1
6s

hw
/p

dt
vi

st
w

oa
ll1

hw
/te

xa
sp

im
ai

np
08

lo
ck

s/
lo

ck
s_

10
_2

lo
ck

s/
lo

ck
s_

11
_8

lo
ck

s/
lo

ck
s_

14
_1

lo
ck

s/
lo

ck
s_

15
_0

lo
ck

s/
lo

ck
s_

5_
4

pl
c/

pl
c1

pl
c/

pl
c2

pl
c/

pl
c3

pl
c/

pl
c4

a
pl

c/
pl

c4
b

ss
h/

s3
_c

ln
t_

1
ss

h/
s3

_c
ln

t_
3

ss
h/

s3
_s

rv
r_

1
ss

h/
s3

_s
rv

r_
3

ss
h/

s3
_s

rv
r_

4

Model
C

on
fig

1

10

20

30
Count

Fig. 4. Number of successful runs for each measurement.

However, there are 9 + 9 cases where a configuration with
randomized search or variable names could verify a model
that its deterministic counterpart could not. These cases are
marked with dots and triangles respectively in Fig. 4.

Interestingly, there are 3 models (139444p22, intel001,
s3 srvr 4) where only randomized configurations were success-
ful. It is a hard task to investigate the behavior of the algorithm
in detail for these cases, as these models are very complex
(sometimes consisting of thousands of variables and formulas
with hundred thousands of terms and operands). Nevertheless,
we examined the logs to get some insight on what is happening
with and without randomization.

139444p22 is a large model, consisting of 8600 variables and
formulas with a total size of 1.6×105 (measured in the number
of terms and operands). The deterministic configuration runs
out of time when checking a candidate counterexample using
the SMT solver. The randomized configuration also spends
roughly half of its time on checking counterexamples, but in
the successful runs, it quickly finds a feasible one, terminating
the algorithm. A possible explanation is that the solver can
find an easy solution for feasible counterexamples, but fails to
prove infeasibility due to the large formulas.

The intel001 model is not large, but the formulas refuting
the feasibility of counterexamples can grow unmanageably
large. In the successful runs of the randomized configuration,
it manages to produce refutation formulas with a maximal
size of 4.4 × 104. The deterministic configuration however,
generates a refutation formula of size 4 × 106 in the 6th
iteration, prohibiting the exploration of the abstract states.

Repeating the measurements for the s3 srvr 4 model (to get
logs) revealed that the deterministic configuration can also
verify this model, but its execution time is slightly above the
limit of 180s. By examining the randomized runs as well, we

34

observed that for this model the success of verification depends
on the number of refutation formulas discovered. The deter-
ministic configuration discovers some unnecessary formulas,
making the number of abstract states higher. However, the
randomized configurations can find a subset of these formulas
(in some runs) that is still enough to prove the correctness of
the model in less time.

Feedback learned from these cases identified various short-
comings of deterministic configurations and also gave us ideas
on how to improve them.

C. RQ2: Variations

For each measurement, the 30 repeated runs form a distribu-
tion for each output metric. Variation is usually described by
the standard deviation (SD). However, the output metrics have
a vastly different range, making SD incomparable between
them. Therefore, we calculate the relative standard deviation
(RSD = SD / mean). Furthermore, for the Boolean variable Succ,
we replace false by 0, true by 1 and calculate the SD.

The distribution of the deviations are summarized using box
plots in Fig. 5, grouped by the factor that is randomized. There
are 5 outlier points between 1.25 and 3.5 that were cropped
so that the box plots can be depicted using the same scale.

D S V D S V D S V
0.0

0.3

0.6

0.9

1.2

ArgDepthRSD
ArgSizeRSD

CexLenRSD
IterationsRSD

SuccSD
TimeMsRSD

Metric

D
ev

ia
tio

n

Randomized

DET

SEARCH

VARS

Fig. 5. Distribution of the deviations of the output metrics.

Deterministic configurations also have some small devia-
tions for the execution time and the success indicator. As it was
mentioned previously, the latter can be attributed to execution
times near the time limit. All other output metrics have 0
deviation, increasing our confidence that these configurations
are indeed deterministic.

It can be seen that the randomized configurations have
greater deviation for all output metrics. The largest deviations
appear for the execution time (TimeMs) and the number of
abstract states explored (ArgSize). The length of the coun-
terexample (CexLen) has the lowest deviations. This metric
has a smaller sample size, as only 9 out of the 28 verified
models were incorrect. Furthermore, counterexamples often
correspond to a single concrete execution in the original
model, which has a fixed length. It can also be clearly observed
that in most cases randomizing the search strategy yields
greater deviations than randomizing the variable names.

IV. CONCLUSIONS

In our paper we evaluated various configurations of the
CEGAR algorithm in the THETA tool under randomized search
strategies and variable names. Our experiment highlighted
that randomizing these factors introduces a great variation
in the output metrics. In several cases this also influences
whether a configuration can successfully verify a model. We
also examined some cases where a randomized configuration
verified a model that none of the deterministic ones could.
Feedback from these cases will help us to improve the current
shortcomings of the algorithms. Thus, preliminary results are
interesting, but to improve their external validity, a more
thorough experiment is needed with more models, repetitions
and randomized factors as well.

REFERENCES

[1] E. Clarke, O. Grumberg, and D. Peled, Model checking. MIT Press,
1999.

[2] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-
guided abstraction refinement for symbolic model checking,” Journal of
the ACM, vol. 50, no. 5, pp. 752–794, 2003.

[3] T. Tóth, A. Hajdu, A. Vörös, Z. Micskei, and I. Majzik, “Theta: a
framework for abstraction refinement-based model checking,” in Proc.
17th Conf. on Formal Methods in Computer-Aided Design. FMCAD
inc., 2017, pp. 176–179.

[4] A. Biere, M. Heule, and H. van Maaren, Handbook of Satisfiability.
IOS press, 2009.

[5] A. Hajdu and Z. Micskei, “Exploratory analysis of the performance of a
configurable CEGAR framework,” in Proc. 24th PhD Mini-Symposium.
BME DMIS, 2017, pp. 34–37.

[6] G. Sallai, A. Hajdu, T. Tóth, and Z. Micskei, “Towards evaluating size
reduction techniques for software model checking,” in Proc. 5th Int.
Workshop on Verification and Program Transformation, ser. EPTCS.
Open Publishing Association, 2017, vol. 253, pp. 75–91.

[7] S. Graf and H. Saidi, “Construction of abstract state graphs with PVS,”
in Computer Aided Verification, ser. LNCS. Springer, 1997, vol. 1254,
pp. 72–83.

[8] D. Beyer and S. Löwe, “Explicit-state software model checking based
on CEGAR and interpolation,” in Fundamental Approaches to Software
Engineering, ser. LNCS. Springer, 2013, vol. 7793, pp. 146–162.

[9] K. McMillan, “Applications of Craig interpolants in model checking,”
in Tools and Algorithms for the Construction and Analysis of Systems,
ser. LNCS. Springer, 2005, vol. 3440, pp. 1–12.

[10] Y. Vizel and O. Grumberg, “Interpolation-sequence based model check-
ing,” in Formal Methods in Computer-Aided Design. IEEE, 2009, pp.
1–8.

[11] D. Beyer, “Software verification with validation of results,” in Tools and
Algorithms for the Construction and Analysis of Systems, ser. LNCS.
Springer, 2017, vol. 10206, pp. 331–349.

[12] G. Cabodi, C. Loiacono, M. Palena, P. Pasini, D. Patti, S. Quer, D. Ven-
draminetto, A. Biere, K. Heljanko, and J. Baumgartner, “Hardware
model checking competition 2014: An analysis and comparison of
solvers and benchmarks,” Journal on Satisfiability, Boolean Modeling
and Computation, vol. 9, pp. 135–172, 2016.

[13] B. Fernández Adiego, D. Darvas, E. Blanco Viñuela, J.-C. Tournier,
S. Bliudze, J. O. Blech, and V. M. González Suárez, “Applying model
checking to industrial-sized PLC programs,” IEEE Trans. on Industrial
Informatics, vol. 11, no. 6, pp. 1400–1410, 2015.

[14] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools
and Algorithms for the Construction and Analysis of Systems, ser. LNCS.
Springer, 2008, vol. 4963, pp. 337–340.

[15] A. Arcuri and L. Briand, “A hitchhiker’s guide to statistical tests for
assessing randomized algorithms in software engineering,” Software
Testing, Verification and Reliability, vol. 24, no. 3, pp. 219–250, 2014.

[16] R Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria,
2017. [Online]. Available: https://www.R-project.org/

35

Towards Supporting Dynamic Symbolic Execution
via Multi-Domain Metrics

Dávid Honfi, Zoltán Micskei
Department of Measurement and Information Systems,
Budapest University of Technology and Economics,

Budapest, Hungary
Email: {honfi,micskeiz}@mit.bme.hu

Abstract—A popular code-based test generation technique is
dynamic symbolic execution (DSE), which combines concrete
executions with symbolic ones. The current maturity of DSE led
to industrial usages. However, the complexity of software used in
industrial practice poses several challenges for DSE. The issues
caused by these are often hard to identify as they are mostly
indicated by only the lack of coverage. In this paper, we gather
and present metrics that can be used on top of our already
elaborated approach that visualizes symbolic executions trees.

I. INTRODUCTION

Today, testing is an inevitable task of software development.
Academic research also tackles the topic from various aspects.
As test development is a time-consuming task, it is beneficial
to introduce automation. Several approaches have been pro-
posed addressing this challenge, including ones automatically
generating tests from source code (white-box test generation).
One of these techniques is symbolic execution (SE).

Symbolic execution is a widely used technique originating
from the ’80s. It begins the execution on a given entry point in
the program. SE replaces the concrete variables with symbolic
ones and uses them to form path constraints on each known
execution path (path condition). Then, these constraints are
transformed to SMT problems, which can be solved using
special-purpose tools. The concrete values satisfying the path
constraints steer the program execution exactly to the path
corresponding to the given constraint.

Dynamic symbolic execution (DSE) enhances the original
technique by mixing it with concrete executions. DSE starts
a concrete execution from an arbitrary entry point with the
simplest concrete input values as possible, while symbolic
execution is performed in parallel. During the concrete ex-
ecution, SE collects the constraints on the given path. When
a path in an execution has finished, the DSE transforms (e.g.,
negates) the collected constraint system and then attempts to
obtain a solution by defining it as a Satisfiability Modulo
Theories (SMT) problem. If a solution is available, then a
new concrete execution is feasible with the new inputs. This
process continues until either no more feasible paths are
available or an execution boundary (e.g., time limit) is reached.

Both SE and DSE face several challenges in numerous
cases. This includes, for instance, the following [1].

• Constraint solver issues (CSI): There are typical issues
for constraint solvers such as formulas containing floating
point arithmetics due to the high precision representation,
or large path constraints with diverse types of variables.

• State space explosion (SSE): When dynamic symbolic ex-
ecution is unbounded, the algorithm may explore program
states that are out-of-scope or cause fruitless executions
(e.g., redundant paths). However, when a boundary is set,
it should be defined in a way that it does not hinder
exploring important states in the program.

• Object creation (OC): A common issue in complex
programs is that the objects passed as parameters must
be assembled through sequences of method calls or using
special factory methods. These are usually hard to guess
automatically for a symbolic execution engine, which
prevents the program exploration. In these cases, manual
intervention or specialized algorithms shall be used.

• Environment interactions (EI): Interactions with the envi-
ronment of the unit under analysis are commonly found in
complex software. These interactions are mostly calls to
databases, to network or to the file system. Furthermore,
there could be invocations to underlying frameworks.
Omitting the handling of these calls may lead to undesired
behaviors (e.g., writing to file system or database).

These challenges often cause issues that result in not enough
tests being generated. However, identifying and localizing the
root causes of the occurring issues may require an excessive
amount of effort. The effort spent on the identification may
reduce the advantages gained from automation.

To alleviate the identification and localization process, we
have already presented an approach that visualizes the sym-
bolic execution [2]. This technique uses an internal repre-
sentation of the execution called symbolic execution tree and
visualizes it with a predefined semantics. The use case of the
visualization is twofold: it gives an overall overview of the ex-
ecution, and gives internal details at each symbolic state (e.g.,
path condition). In our visualization, we enriched the symbolic
execution tree nodes with various metadata: sequence number,
location, corresponding runs, path condition, constraint solver
calls, generated tests (for leaf nodes). An example code and the
corresponding symbolic execution tree is shown in Figure 1.

The attached metadata serves as the basis for identifying

36

p u b l i c i n t S w i t c h B r a n c h i n g (i n t c o n d i t i o n) {
var d i v i s o r = 0 ;
sw i t ch (c o n d i t i o n) {

case 0 : re turn 0 ;
case 1 : re turn −1;
case 2 : re turn −2;
d e f a u l t : re turn (c o n d i t i o n / d i v i d e r) ;

};
}

(a) The source of SwitchBranching. (b) The symbolic execution tree.

Fig. 1. A simple method and the corresponding symbolic execution tree
extracted from SEViz. The green leaves indicate passing generated tests, while
the red leaf shows a test generated for the path, which raises an exception.

the issues of the test generation process. However, in a wider
focus area, there is a large number of other metrics that can
be attached to a symbolic execution tree. These metrics can
be obtained from related domains (e.g., source codes, graphs).
With the additional metrics attached, a symbolic execution tree
may be more capable of indicating root causes of challenging
issues. Moreover, the data obtained for the metrics can be used
for recommendations and predictions.

The goal of this paper is to gather from literature, present
and describe valuable metrics attached to symbolic execution
trees. The metrics we set out to present are obtained from var-
ious sources and domains to improve diversity. Furthermore,
another goal in the paper is to present the applicability of the
metrics on an artificial example.

The rest of the paper is organized as follows. In Section II
we present the collected metrics in detail including their
original domains. Section III shows examples on how to
support test generation and identify issues using the gathered
metrics. Section IV discusses the related work, while Sec-
tion V concludes our contributions.

II. METRIC SELECTION

Source. To gain an overview of what metrics can be at-
tached to a symbolic execution tree, we defined four categories
from related domains of dynamic symbolic execution-based
test generation. For each of the categories, we searched for
survey papers that collect the most important and widely-used
metrics in their domains. The domains we selected are source
code, dynamic symbolic execution, tests, and graphs.

Context. In this paper, we select and detail four most rel-
evant metrics for each category. Also, we provide indications
on which metric could be influenced by the issues stated
before and vice versa (denoted with the abbreviation of the
issue). Albeit the selected metrics could be used as standalone
indicators for issue prediction, our paper only focuses on using
them for extending symbolic execution trees to perform post-
analysis. We defined three locations, where a metric can be
attached to a symbolic execution tree. We indicate these next
to the name of the metric.
• Nodes (N): A node in a symbolic execution tree repre-

sents a program state. Each node is mapped to a given
location of the program (as a basic block).

• Paths (P): A path is a sequence of nodes in the SE tree
that represents a corresponding execution.

• Exploration (E): The exploration refers to the set of all
the paths that have been executed. Basically, this is the
whole symbolic execution tree.

Selection. We defined the selection criterion of the metrics
based on two dimensions: 1) challenges occurring in dynamic
symbolic execution and 2) locations where a metric can be
placed in a symbolic execution tree. Each of the examined
metrics was labeled with values from these dimensions. The
defined coverage criterion requires to cover all the combi-
nations of the locations-challenges dimensions with at least
one metric. The labeling was based on our experiences and
intuitions regarding with symbolic execution trees [2].

A. Static code-based metrics (SC)
The domain of source code can be viewed from various

aspects, e.g., abstract representations like abstract syntax trees
of control-flow graphs. We obtained the source code metrics
from two papers. One of them is a study conducted to extract
characteristics of 147 open-source Java projects [3], while the
other compares programmer opinions to complexity [4].

1) Lines of Code [E][SSE]: The LoC is a textual metric of
the source code measuring the number of lines. A very large
program with many modules interacting with each other could
lead to huge path constraints causing constraint solvers to fail.

2) Cyclomatic complexity [E][CSI, SSE]: CC is a metric
that indicates the number of linearly independent paths in the
source code. The number of these paths are derived from the
control-flow graph (CFG) of the program. Large CC could
indicate the presence of loops that would yield large path
conditions and search space. Both hinder constraint solvers.

3) Halstead’s difficulty [E][CSI, SSE]: The metric is some-
times called the error-proneness, which is regarding with the
number of unique operators and operands in the code. Both
the operators and operands are usually expanding the search
space that the DSE interpreter must explore.

4) Number of method calls [N, P, E][SSE, EI]: This metric
is an indicator how many calls are performed to any other
methods (e.g., to other classes, libraries, environment). The
larger the number of external method calls, the higher the
probability of environment accessing issues for DSE. Obvi-
ously, if there are other, additional methods to explore, the
search space also grows.

B. Dynamic symbolic execution metrics (SE)
In dynamic symbolic execution, one of the key concepts is

the path condition that is solved by constraint solvers on each
path [3]. Also, an important feature of the explored paths is
the variety of instructions found along each path [5].

1) Path condition length [N,P][CSI, OC]: Represents the
length of the constraint system collected on an execution path
(sum of variables and operators used). Note that this metric
does not care about the repeated use of the same variable,
constant or operator.

2) Number of variables in path condition [N,P][CSI]: The
metric measures the number of distinct variables in the path
condition. This represents how dependent is the outcome of
the execution path on the symbolic variables.

37

3) Number of constants in path condition [N,P][CSI, OC]:
The metric measures the number of distinct constants in the
path condition including all data types that support constants.
This denotes how restrictive is the program code in the given
path on the variables.

4) Path description vector [P][SSE, EI]: An executed
path can be represented as a sequence of interpreted basic
blocks. Each basic block contains a given number of low-level
instructions, which can be represented using an occurrence
vector with a fixed length (based on the number of possible
instruction types on the given platform). Then, for each path, a
feature matrix can be assembled using the occurrence vectors
obtained along the path. This matrix represents the covered
program features on the given path [5].

C. Generated test metrics (GT)

At each leaf node of the symbolic execution tree, a test
case can be derived that executes the corresponding path,
which ends in that node. When a test case is produced, the
characteristics of the test (regarding with the inputs, actions
and expectations) may give overview of the given path about
what is performed along [6], [7].

1) Number of assertions [P][SSE, OC, EI]: This metric
tells how many assertions are found in the given generated
tests. If there are too many, then the test may be too specific,
which could cause false positive outcomes and could lead to
Assertion Roulette [8]. On the contrary, if there are few asser-
tions, then it could mean that the test case is too permissive and
may omit to check important behaviors. This issue is usually
caused by a problem in the DSE engine about what observed
behaviors to check.

2) Number of different types of assertions [P][SSE, OC,
EI]: It measures the variety of assertions in a generated
test. It may indicate that the single test case is checking
multiple behaviors. However, a high number for this metric
may indicate that the test is too specific. This is usually caused
by an issue on observing the behavior of the program.

3) Lines of test code [P][OC]: The length of the test code
is usually a good indicator of its complexity. Too long tests
may hinder easy understanding, or it could contain unwanted
setups or assertions. Long tests may also indicate that the
dynamic symbolic execution engine was only able to setup
the test environment in an unusual or unnecessary way.

4) Number of constants in test code [P][CSI, SSE]:
The metric measures the number of constant values that the
dynamic symbolic execution engine was able to generate into
the code. If there is a value, it means that the algorithm was
able to discover and parse it from a given basic code block. A
large number of constants in the code usually yields wrongly
handled unbounded loops in the program.

D. Generic graph metrics (GG)

It is typical to apply general metrics for a wide variety
of graphs across several domains. This is the case for soft-
ware engineering as well [9]. The most common abstract
representation of a program is its control-flow graph that is

by definition contains the possible execution paths between
the basic code blocks in the program. However, to our best
knowledge, there is no study, which maps these general graph
metrics to symbolic execution trees.

1) Average branching factor [E][CSI, SSE, OC]: Let graph
G be the symbolic execution tree with a set of vertices V (G).
We define the branching factor d+(v) for each node v ∈ V (G)
as its number of outgoing edges. The overall metric for the
whole tree is an average calculated as 1

|V (G)| ∗
∑

v∈V (G)

d+(v).

If a symbolic execution tree has a low branching factor, it
could reveal that the constraint solver faced issues during the
solution of complicated path conditions. High branching factor
could indicate the presence of unbounded loops.

2) Height of tree [E][SSE]: The height of a tree is given by
the length of the longest path selected out of all possible paths
from the root to a leaf. A suspiciously deep symbolic execution
tree may indicate that the dynamic symbolic execution engine
was not able to appropriately handle bounds of execution.

3) Number of leaves [E][SSE]: The number of leaves in
a tree provides a way to determine its width. As a leaf node
represents the end of an execution path, we use this metric to
decide how many tests could have been generated. The metric
should be used in strong cooperation with others (e.g., test
outcomes, branching factor).

4) Diameter of the tree [E][SSE]: To determine the di-
ameter of a symbolic execution tree, we temporarily remove
the directions of edges and calculate the longest path available
among all of the node pairs. From the longest paths between all
of the node pairs, we select longest one to indicate the diameter
of the whole tree. If the diameter of a symbolic execution tree
is unusually large, it may yield that search space is too huge
for the engine and must be handled properly.

In Table I we summarize the coverage of the metrics on
both of the defined dimensions. It can be seen that although
the coverage criterion has been fulfilled, yet there are some
fields, which have a smaller amount of associated metrics (e.g.,
object creation issue identification on node level).

TABLE I
SUMMARIZING TABLE OF METRIC COVERAGE OF THE TWO DIMENSIONS

DEFINED (LOCATION-CHALLENGE).

CSI SSE OC EI

N SE-1, SE-2,
SE-3

SC-4 SE-1, SE-3 SC-4

P SE-1, SE-2,
SE-3, GT-4

SC-4, SE-4,
GT-1, GT-2,

GT-4

SE-1, SE-3,
GT-1, GT-2,

GT-3

SC-4, SE-4,
GT-1, GT-2

E SC-2, SC-3,
GG-1

SC-1, SC-2,
SC-3, SC-4,
GG-1, GG-2,
GG-3, GG-4

GG-1 SC-4

III. AN EXAMPLE USE OF THE METRICS

We present how the metrics could indicate issues through an
example. In this simple program, the identification of an object

38

(a) Class diagram of the example.

p u b l i c bool Foo (B b) {
i f (b == n u l l) re turn f a l s e ;
i f (b . G e t S t a t e () == 5) re turn true ;
re turn f a l s e ;

}

(b) Example method for analysis.

Fig. 2. The example program architecture and code with classes A and B.

creation issue (OC) will be demonstrated via the attached
metrics. Consider the example class layout shown in Figure 2a.
Class A contains the current method under test Foo that has an
argument of type B. Class B has a private default constructor
and a method (Instance) that obtains an instance of this
class. We executed dynamic symbolic execution on method
Foo using Microsoft Pex, a state-of-the-art DSE-based test
generator [10]. The outcome visualized in SEViz is shown
in Figure 3a. We identified the number of constants in the
path condition (II-B3), the lines of test code (II-C3) and the
branching factor (II-D1) as a unique indicator set of the OC.

Figure 3b shows the symbolic execution tree after the
OC issue has been resolved using a manual factory method.
The branching factor of the tree previously was 1, while it
increased to 1.66 with using the factory. Furthermore, the
generated test code length was 5 LoC in the first case,
which increased to 6.33 in the second case. The number of
constants in the path condition also confirms the issue: in the
first case, there is only one constant used in the only path
(null), while in the extended case, there are other constants
as well (e.g., state == 5). Only null constants in the path
conditions throughout the tree usually indicate that there is a
problem with creating objects for the given variable. In this
example, this hypothesis was supported by two facts: the low
branching factor of the tree and test cases with short length.
The identification of the root cause is fairly simple using the
path condition variables, therefore can be automated: one shall
examine, which variables were only constrained to null. T

(a) SE tree with OC issue present.(b) SE tree after resolved OC issue.

Fig. 3. SE trees for the example with the OC issue present and resolved.

IV. RELATED WORK

A related technique is Covana [11] that aims to identify
OC and EI issues. Covana monitors DSE and collects problem
candidates that are examined using data dependence analysis.
While this approach is based on runtime monitoring, our ap-
proach uses only metrics attached to previously produced sym-
bolic execution trees. SED is a symbolic execution debugger

that visualizes symbolic execution trees with metadata [12].
The main difference between their approach is that they use it
for debugging, while our approach aims at identifying issues
of DSE-based test generation. Baldoni et al. survey symbolic
execution techniques along with identifying their challenges
[1]. They also consider possible solutions to these problems.
Our technique may be extended with advising solutions to
identified issues. Eler et al. analyzed characteristics of Java
programs influencing the performance of symbolic execution
[3]. We used some of their defined metrics to attach them to the
nodes of the generated symbolic execution trees (representing
a program state and location).

V. CONCLUSIONS AND FUTURE WORK

In this paper, we gathered and presented metrics from
various domains to alleviate the issues of dynamic symbolic
execution based on previously extracted symbolic execution
trees. We selected 16 metrics from papers of 4 related domains
based on a predefined coverage criterion to enhance the prob-
lem identification process. The metrics have been presented
in detail along with two metadata for each of the metrics
indicating that 1) for which issue they can be used and 2)
where they can be attached in the symbolic execution tree.
We also presented an example issue, where the metrics have
perceivable changes caused by the presence of the given issue.

Our future work is twofold: 1) we plan to extend the set of
collected metrics in a more systematic way, 2) we elaborate
a technique providing automated identifications of DSE prob-
lems using the metrics attached to symbolic execution trees.

REFERENCES

[1] R. Baldoni, E. Coppa, D. C. D’Elia, C. Demetrescu, and I. Finocchi, “A
survey of symbolic execution techniques,” CoRR, vol. abs/1610.00502,
2016. [Online]. Available: http://arxiv.org/abs/1610.00502

[2] D. Honfi, A. Voros, and Z. Micskei, “SEViz: A tool for visualizing
symbolic execution,” in ICST, April 2015, pp. 1–8.

[3] M. M. Eler, A. T. Endo, and V. H. Durelli, “An empirical study
to quantify the characteristics of Java programs that may influence
symbolic execution from a unit testing perspective,” Journal of Systems
and Software, vol. 121, pp. 281 – 297, 2016.

[4] B. Katzmarski and R. Koschke, “Program complexity metrics and
programmer opinions,” in 2012 20th IEEE International Conference on
Program Comprehension (ICPC), 2012, pp. 17–26.

[5] R. P. L. Buse and W. Weimer, “The road not taken: Estimating path
execution frequency statically,” in 31st IEEE International Conference
on Software Engineering, 2009, pp. 144–154.

[6] V. Garousi and M. Felderer, “Developing, verifying, and maintaining
high-quality automated test scripts,” IEEE Software, vol. 33, no. 3, pp.
68–75, 2016.

[7] D. Bowes, T. Hall, J. Petrić, T. Shippey, and B. Turhan, “How good are
my tests?” in Proceedings of the 8th Workshop on Emerging Trends in
Software Metrics. IEEE Press, 2017, pp. 9–14.

[8] G. Meszaros, XUnit Test Patterns: Refactoring Test Code. Upper Saddle
River, NJ, USA: Prentice Hall PTR, 2006.

[9] P. Bhattacharya, M. Iliofotou, I. Neamtiu, and M. Faloutsos, “Graph-
based analysis and prediction for software evolution,” in ICSE. IEEE,
2012, pp. 419–429.

[10] N. Tillmann and J. de Halleux, “Pex–white box test generation for .net,”
ser. TAP: Second International Conference, 2008, pp. 134–153.

[11] X. Xiao, T. Xie, N. Tillmann, and J. De Halleux, “Precise identification
of problems for structural test generation,” in ICSE. IEEE, 2011, pp.
611–620.

[12] R. Hähnle, M. Baum, R. Bubel, and M. Rothe, “A visual interactive
debugger based on symbolic execution,” in ASE, 2010, pp. 143–146.

39

Comparison of Nanopore DNA Sequencing Basecallers on Whole
Human Data

Erik Jagyugya, Peter Sarkozy
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Budapest, Hungary

psarkozy@mit.bme.hu

Abstract—Since the release of Oxford Nanopore Technologies’
MinION single molecule real-time (SMRT) DNA sequencing plat-
form, a multitude of approaches have been evaluated to identify
the exact nucleotide sequence passing through the individual
pores based on the raw, picoampere level current recorded from
the device. Multiple Hidden Markov Model (HMM) and artificial
neural network (ANN) based basecalling approaches have been
released.

We examined the most promising academic approaches, and
compared them to the reference solution provided by the platform
vendor, using the NA12878 whole genome shotgun sequencing
dataset. Multiple types of systematic errors offer challenges to
each individual solution, thus we propose a framework to unify
the strengths of each basecaller, and to aggregate their output in
order to increase their accuracy over any single solution.

Index Terms—DNA sequencing, Basecalling, Nanopore

I. INTRODUCTION

The MinION released by Oxford Nanopore Technologies
(ONT) is a single-molecule real-time (SMRT) DNA sequenc-
ing technology that offers unprecedented read lengths in a
novel, compact form factor while greatly simplifying library
preparation procedures compared to current next-generation
sequencing (NGS) platforms.

The method of identifying the individual nucleotides com-
prising a DNA sequence utilizes a nano-scale pore embedded
in an artificial membrane across a semiconductor surface. The
blockage of the picoampere level current passing through the
pore while a DNA molecule passes through it is measured
and sampled at 4kHz. The traversal of each molecule is slowed
down by a ratcheting enzyme, to ensure enough time to sample
the current respective of the DNA sequence. The current level
is determined by 5-6 consecutive nucleotides (k-mers), and is a
characteristic of the types of bases. Despite offering extremely
long reads (up to 100kb), the accuracy of the platform is only
approximately 90%, compared to the 99-99.9% accuracy of
NGS platforms [1].

The original method to transform the current measurement
into a sequence of nucleotides (basecalling) splits the current
into consecutive segments (events) where the current levels
were relatively static. The series of events are then passed into
a hidden markov model (HMM) for decoding into a sequence
of k-mers [2]. Finally, empirically calibrated quality scores are
assigned to each base, and the results stored in the original
fast5 HDF [3] container file.

Recently, neural networks models have been developed to
perform nanopore DNA basecalling.

In our study we reviewed some of the available basecallers.
We investigated characteristics such as read identity, insertion
and deletion rate, the size and frequency distribution of
insertions and deletions among the software tools and we
summarized the overall accuracy. We unified this information
and propose consensus calling by pairwise merging.

II. MATERIALS AND METHODS

A. Raw and reference data

We used the publicly available whole genome shotgun
sequencing dataset of human sample NA12878 [4]. This is
a well characterized genome, and is used as a gold standard
in measuring the quality of human DNA sequencing.

For our study, we compared the source of the chromosome
1 data. We chose a subset of chromosome 1 which represent
the whole genome well in our case, because the entire dataset
was deemed too large. The subset is approximately 300 GB
and contains 100000 individual fast5 files with a mean read
length of 10kb. Using the rel3 version with R9.4 chemistry.
We used the GRCh37 human reference genome from the Ref-
erence Genome Consortium [5] instead of NA12878 reference
because the deviation between them is two orders of magnitude
lower than the expected read error rate.

B. Basecalling DNA sequences

Raw reads were processed by four basecallers, Albacore
[11], Chiron [10], Metrichor and Scrappie. The Metrichor data
was available directly from the raw fast5 files, as it is a cloud-
based basecaller that cannot be run locally.

Albacore, Chiron and Scrappie all utilize GPU support for
the majority of their computations, however our version of
Chiron had issues with our GPU setup so it was run in CPU
only mode. The same neural network architecture is run on
the CPU as the GPU, but the computations are orders of
magnitude slower. We attempted to include a fifth basecaller,
basecRAWler [6], but it had to be removed due errors and
poor support for our hardware.

Metrichor

Metrichor is the ONT cloud-based platform basecaller [8], it
works by segmenting the raw current signal into events which
represent the traversion of a single nucleotide through the pore,

40

and utilizes a HMM on the event sequence to indentify the
nucleotide order. Instead of each event representing each the
base individually, the current level is influenced by adjacent
bases which correlate to the length of the narrowest region of
the nanopore. The model supports 5 and 6 adjacent bases in
the decoding step [7]. The individual events are decoded into
stay and skip probabilities by the HMM, according to their
duration, mean current and noise. These state transitions are
decoded into the final basecalled sequence.

The HMM model was superseded by a more accurate
recurrent neural network (RNN) model in early 2016 [7]. We
used the data from the cloud-based version as integrated into
the EPI2ME service which relied on HMM. The raw fast5
files already contained the required Metrichor basecall results,
and were used subsequently without modification.

Albacore

Albacore is one of the official command-line basecallers
of ONT, and is considered the ”gold-standard” in accuracy.
As the software is unfortunately not open source, the neural
network structure used in its model is not public. We used
version 2.1.3, the most recent at the time of writing. The neural
network does not require segmenting the reads into events, and
instead operates on the raw current levels, allowing for great
improvements in basecalling accuracy.

Albacore enforces stricter limits on minimum sequence
quality, and will refuse to call low quality reads, contributing
to it’s higher overall performance. In our study, this has no
effect as we only used reads called by all 4 basecallers.

Chiron

Chiron is a novel third-party neural network based base-
caller [10]. It couples a recurrent neural network (RNN), a
convolutional neural net (CNN) and a connectionist temporal
classification (CTC) decoder. This structure also enables it
to model the raw signal data directly, without use of any
segmentation step. It is the first publicly available artificial
neural network which can translate raw current signals directly
to nucleotide base sequences. The basecaller was trained on
only a small subset of data from the lambda phage genome
and from the E. coli genome, and yet it has a surprising
ability to generalize to larger genomes such plant and mammal
genomes. Chiron is as accurate as the ONT designed and
trained Albacore in some cases, and outperforms all other
existing basecallers on bacterial genomes.

Chiron consists of two sets of layers: a set of convolutional
and a set of recurrent ANN see Fig. 1. The convolutional layer
defines local patterns from raw signal, whereas the recurrent
layer combines these pattern into base probabilities. The CTC
decoder makes data segmentation unnecessary through the use
of blank labels inserted into the sequences. This allows it to
model input and output sequences of varying lengths. It models
a two dimensional graph similar to a pairwise alignment
matrix, and the neural network predicts the probabilities of
the transitions along the alignment matrix.

Fig. 1. The neural network architecture used by Chiron [10]

Scrappie

Scrappie is another basecaller developed by ONT, this is
the first basecaller that was developed specifically to address
homopolymer deletions. One of the major hurdles in SMRT
sequencing is accurately determining length of homopolymers
[9]. Scrappie was run parallel with Metrichor and NanoNet
(a first generation experimental NN basecaller) on human
chromosome 20. It was found that Scrappie indeed called ho-
mopolymer areas more accurate than the other two basecaller.
Homopolymeric stretches of up to 16 bases were called ac-
curately which referred to the transducer-based homopolymer
calling[8][12]. We utilized version 1.3.0 with the raw model
to perform basecalling.

C. Processing DNA sequences

We prepared our dataset by first running all of the base-
callers and extracting the relevant data for the entire set. Not
all basecallers produce output sequences for every input, so we
selected a subset of reads that had calls from each basecaller.
All of the software tools use different naming schemes when
outputting results, so these had to be unified to contain only
the read ID string. The resulting sequences were aligned to the
reference genome using the Burrows-Wheeler Aligner which
is tolerant with errors given longer query sequences [13][14],
and all alignments with mapping qualities below 30 were

41

discarded, because low alignment quality is indicative of the
read originating from a different chromosome, especially at the
read lengths produced by the ONT platform. In the alignment
processing BWA uses soft clipping. Some reads had secondary
alignments, but only the highest-scoring alignment was used.
We investigated the overall match, mismatch and insertion
rates of each dataset.

III. RESULTS

A. Systematic errors
While all tested basecallers perform reasonably well on

our dataset, homopolymer stretches (repeating identical nu-
cleotides) still present a challenge. HMM based basecallers
struggle with calling homopolymers longer than 5 bases, as the
event segmentation process hides the very long times that the
current stays static because there are identical nucleotides in
the pore, as shown on Fig. 4. Albacore called the overall lowest
number of deletions and the highest identity rate too, as NN
based tools tend to cope better with homopolymer stretches.
Insertions were overall less common, and mostly randomly
distributed along the sequence without any sequence-specific
bias Fig. 3. A insertions and deletions were twice as common
as T indels, with G and C indels being equally common. A/G
and C/T nucleotide substitutions are approximately 3x more
frequent than other substitutions, as they share similar current
signatures due to their similar purine/pyrimidine molecular
structures, respectively as shown in Tab. III-A and Tab. III-C.

B. Unified Basecaller
The aggregation of the output of multiple basecallers to

obtain a consensus read is nontrivial in the case of ONT
reads. While multiple sequence alignment approaches are
feasible for individual genes and transcripts, even pairwise
alignment quickly becomes computationally expensive with
ONT read lengths. We implemented a method to perform
the pairwise merging of all basecaller output sequences. We
find the optimal pairwise alignments with the Smith-Waterman
algorithm, using a match score of 1, a mismatch, gap open
and gap extension penalty of -1. Each read is successively
merged, taking to account the PHRED-scaled quality scores.
On matches, the maximum of the quality is passed on. On
mismatches, the higher quality base overrides the lower quality
one, and on gaps, a configurable threshold is specified to select
the sensitivity in which insertions and deletions are selected.
Unfortunately, Scrappie did not provide base quality scores,
so we used a flat PHRED score of 10 to approximate it.

C. Read identity
Read identity was derived from total base matches. Albacore

and Scrappie have the best performance as shown on Fig.
2. These basecallers developed by ONT. However Metrichor
performed the worst which is also an ONT product. As
Metrichor relies on a HMM its accuracy is far away from
basecallers based on NN. Chiron and Consensus medians are
near each other but their distribution is markedly different.
Chiron produces more accurate read against Consensus. The
overall identity rates are shown on Tab. III-C.

Albacore

Matches A C G T

A 22.98% 0.35% 1.11% 0.34%
C 0.30% 21.16% 2.35% 0.40%
G 0.26% 0.26% 20.91% 0.37%
T 0.34% 0.47% 0.31% 23.95%

Chiron

Matches A C G T

A 20.87% 0.41% 1.34% 0.36%
C 0.33% 20.06% 0.23% 0.59%
G 1.71% 0.35% 19.86% 0.39%
T 0.27% 0.39% 0.25% 22.40%

Metrichor

Matches A C G T

A 20.92% 0.45% 1.44% 0.37%
C 0.27% 19.48% 0.22% 0.46%
G 1.34% 0.34% 19.30% 0.35%
T 0.37% 0.55% 0.32% 22.54%

Scrappie

Matches A C G T

A 22.32% 3.73% 1.32% 0.32%
C 0.31% 20.62% 0.23% 0.37%
G 0.11% 0.27% 20.34% 0.27%
T 0.37% 0.52% 0.33% 23.58%

TABLE I
The match and mismatch rate of all 4 basecallers. Columns specify

reference bases, while rows show the read bases.

Fig. 2. Read identity distribution and medians which was weighted by read
lengths it is marked by black horizontal line.

IV. CONCLUSION

The characteristics of each basecaller show that currently
Albacore performs the best on our dataset. We have confirmed
that most of the errors in the sequences crop up at identical
positions in the sequences, meaning that they are artifacts of
the underlying measurement process, and unifying the output
of multiple basecallers can only offer limited improvements
in accuracy. The pairwise merging of the output of each
basecaller into a consensus sequence benefits from the specifi-
cation of each basecaller’s error characteristics, as they provide

42

Consensus

Matches A C G T

A 22.18% 4.42% 1.02% 0.40%
C 0.46% 20.88% 0.37% 0.46%
G 0.97% 0.36% 20.53% 0.35%
T 0.50% 0.54% 0.47% 23.51%

TABLE II
The match and mismatch rate of consensus sequences. Columns specify

reference bases, while rows show the read bases.

Basecaller Insertion rate Deletion rate Identity rate

Albacore 3.57% 5.54% 89.01%
Chiron 1.92% 10.16% 83.2%
Metrichor 1.52% 11.20% 82.25%
Scrappie 2.63% 7.31% 86.86%
Consensus 5.21% 5.33% 88.06%

TABLE III
The overall accuracy of the 4 tested basecallers, and the results of the

consensus sequences

Fig. 3. The size and frequency distribution of insertions among the 4
basecallers

Fig. 4. The size and frequency distribution of deletions among the 4
basecallers

additional information when considering the individual base
quality scores. However, the quality scores provided by each

basecaller show marked differences, and it could prove useful
to perform base quality score recalibration based on empirical
results. While our unified basecalls did not show an overall
lead above all individual basecallers, it did provide more robust
results overall, with a more reliable per-base quality score.

ACKNOWLEDGMENT

The authors acknowledge that they are participants in the
Oxford Nanopore Technologies’s MinION Access Program.
The Titan Xp used for this research was donated by the
NVIDIA Corporation. This research was supported by the
OTKA-K-112915 Grant, and the Multipurpose Health Mon-
itoring Platform bilateral Croatian-Hungarian grant. The au-
thors state that they have no other conflicts of interest.

REFERENCES

[1] Quail MA, et al, A tale of three next generation sequencing platforms:
comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq
sequencers. BMC Genomics 2012; 13:341; DOI:10.1186/1471-2164-13-
341

[2] Matei D., et al, Nanocall: an open source basecaller for
Oxford Nanopore sequencing data. Bioinformatics 2017
DOIL10.1093/bioinformatics/btw569

[3] The HDF Group. Hierarchical Data Format, version 5, 1997
http://www.hdfgroup.org/HDF5/.

[4] Oxford Nanopore Human Reference Datasets
,https://github.com/nanopore-wgs-consortium/NA12878, 11-15-2017

[5] Human Genome Overview - Genome Reference Consortium,
https://www.ncbi.nlm.nih.gov/grc/human, 03-12-2017

[6] Stoiber M., Brown J.: BasecRAWller: Streaming Nanopore Basecalling
Directly from Raw Signal BioarXiv 2017 DOI:10.1101/133058

[7] C. V. de Lannoy, D. de Ridder, J. Risse, A Sequencer Com-
ing Of Age: De Novo Genome Assembly Using MinION Reads,
https://www.biorxiv.org/content/early/2017/05/26/142711, 2017-12-07

[8] Oxford Nanopore Technologies, https://nanoporetech.com/, 2018
[9] P. Antal P. Sarkozy, Á. Jobbágy. Calling Homopolymer Stretches from

Raw Nanopore Reads by Analyzing k-mer Dwell Times. 2016. DOI:
10.1007/978-981-10-5122-7-61.

[10] T. Haotian, C. M. Duc, H. M. B., D. Tania, W. Sheng and C. Lach-
lan, Chiron: Translating nanopore raw signal directly into nucleotide
sequence using deep learning, bioRxiv

[11] Oxford Nanopore Technologies, https://nanoporetech.com/about-
us/news/new-basecaller-now-performs-raw-basecalling-improved-
sequencing-accuracy, 11-15-2017

[12] S. Wermter, Knowledge Extraction from Transducer Neural Networks,
Journal of Applied Intelligence, 12, 27, 44 (2000)

[13] Li H. and Durbin R. (2010) Fast and accurate long-read alignment
with Burrows-Wheeler transform. Bioinformatics, 26, 589-595. [PMID:
20080505]

[14] Li H. Burrows-Wheeler transform repository,
https://github.com/lh3/bwa, 11-15-2017

43

Preliminary Performance Assessment of
Hyperledger Fabric

Attila Klenik, András Pataricza

Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest, Hungary
Email: {klenik, pataric}@mit.bme.hu

Abstract—After the success of bitcoin proved the viability of
the distributed ledger technology, other frameworks emerged
with the goal of providing a general purpose blockchain platform
for businesses to execute smart contracts. The private and
permissioned platforms are promising replacements for many
current systems in several sectors, such as finance, healthcare,
and IoT.

Such timeliness and throughput critical applications require a
framework offering predictable temporal characteristics. Bench-
marking is a traditional method for measuring (and later predict-
ing) the performance related extra-functional characteristics of a
system. However, blockchain frameworks currently lack standard
benchmarks due to the novelty of the domain.

This paper present a preliminary performance assessment of
a private and permissioned blockchain framework, Hyperledger
Fabric. The evaluation is based on a synthetic load and targets the
scalability and performance of different functional parts of the
framework architecture. Findings are presented for the different
phases of the lifecycle of transactions in the framework.

I. INTRODUCTION

Motivated by the success of Bitcoin [1], the interest
for blockchain technologies grew rapidly in the past years.
The irrefutable way of committing and auditing transactions
without a third trusted party makes blockchain a promising
new technology for numerous sectors, e.g., finance,1 business
workflows [2], healthcare, the government sector,2 Internet of
Things [3], and Cyber-Physical Systems.

The use cases of distributed, ”trustless,” Bitcoin-inspired
peer-to-peer systems are wider than managing cryptocurren-
cies. This inspiration gave rise to a large number of contin-
uously evolving, experimental systems. These all modify the
”Bitcoin architecture” (and protocol) in fundamental ways, but
two aspects do not vary: a) there is a blockchain and peers
maintain a copy of it and b) peers participate in a distributed
consensus protocol to maintain a consistent state of the system.

The complexity of blockchain systems makes it challenging
to ensure certain requirements. Such requirements include
temporal properties, like throughput and timeliness; depend-
ability properties, like availability; and security aspects, like
confidentiality and privacy. Employing model driven devel-
opment (MDD [4]) allows the application of model-based

1http://www.reuters.com/article/banking-blockchain-bonds-idUSL8N16A30H
2https://www.gov.uk/government/publications/

distributed-ledger-technology-blackett-review

simulations and (formal) analyses to facilitate ensuring these
requirements. A subset of these models captures performance-
related behaviours enabling the performance prediction of
complex systems [5]. Model-based performance analysis sup-
ports the identification of bottlenecks and execution of sen-
sitivity analysis in the early stages of development, both on
platform independent models (e.g., functional architecture) and
platform dependent models (e.g., the configuration of system
components).

This paper presents a preliminary performance assessment
of a pilot reference implementation of a general purpose
blockchain platform, Hyperledger Fabric,3 through a system-
atic methodology.

II. ARCHITECTURE ELEMENTS

In order to discuss the evaluation methodology and the
findings, it is important to first introduce the key concepts of
Hyperledger Fabric. The blockchain network consists of a set
of nodes. Each of them maintains its own replica of the same
tamper-proof key-value store – called the ledger – through
constant communication. Note, that the concept of nodes
above is used in the functional sense without constraining the
deployment to physical servers. Nodes can take on two main
roles in the system:

• Peer nodes store and maintain their own local copy of the
ledger. If this is their only responsibility, then these nodes
are referred to as committer peers. However, the users of
the network can deploy executable ”smart contracts” –
chaincodes in Hyperledger Fabric terminology – to some
of the peer nodes.
In this case these nodes also participate in validating
the transaction executions, i.e., the chaincode invocation
attempts of the user. This process is called endorsement
(detailed in Section III), consequently, these nodes are
referred to as endorsing peers.

• Orderer nodes deliver transactions to the committer
peers. The ordering service guarantees atomic delivery
of messages (also known as total-order broadcast, or
consensus in distributed system theory) and some degree
of reliability, depending on the actual implementation of

3https://www.hyperledger.org/projects/fabric

44

the service. Due to efficiency reasons, the service imple-
mentations usually broadcast the ordered transactions in
batches.

The previous versions of Hyperledger Fabric (v0.x) had
serious limitations regarding scalability that manifested in a
relatively low effective throughput: based on previous mea-
surements [6], around 300 transactions per second. The issue
originated from the architectural design that first ordered (in
batches) then executed the transactions in a sequential manner.
The sequential execution of chaincode invocations proved to
be a bottleneck in the system even for simple chaincode
implementations.

The new architecture of Hyperledger Fabric v1.0 was
subject to a fundamental redesign in order to alleviate this
problem. The transaction execution phase now precedes the
ordering and is performed in parallel. Moreover there is an
additional validation step before committing the ledger modi-
fications of the transactions. The life-cycle of a transaction is
detailed in the next section.

III. TRANSACTION LIFE-CYCLE

The redesigned architecture resulted in a more complicated
transaction life-cycle than in the previous versions. A trans-
action has to go through numerous steps before its effect is
reflected in the ledger. These steps are the cornerstones of the
current evaluation, so their detailed understanding is a must.
The phases of transaction committing are the following:

1) The client initiates a transaction proposal towards a
subset of endorsing peers. This step is usually referred
to as sending a transaction for endorsement (detailed in
the next step). The transaction is considered endorsed
if and only if a ”sufficient” number of peers endorse it
according to some endorsement policy (e.g., at least 2
out of 3 participants).

2) The endorsing peers (that received a proposal) execute
the chaincode with the parameters of the transaction.
The chaincode is executed against the current state of the
ledger (based on the latest committed transaction block)
and every proposed transaction is executed in parallel.
This is a significant difference compared to the previous
architecture, where the transaction execution was strictly
sequential.
During the execution, the endorsing peer builds a read
set and a write set. The read set contains the keys and
their versions that were read from the ledger during
the execution. The write set contains the keys and
their values that were written to the ledger during the
execution.
It is important to note, that the written values are not
actually committed to the ledger at this point, they are
simply gathered by the endorsing peer. Accordingly, this
step is also referred to as simulating the transaction.

3) The endorser peers send back a result to the client
indicating whether the execution was successful or not,
together with the produced read and write set.

4) The client inspects the received results and decides
whether to proceed with the next step or not. If the
endorsement policy for the chaincode is not satisfied by
the received endorsement results, then the transaction
will ultimately be rejected as invalid (detailed in step
9), so it is better not to submit it, but try again the
proposal. Furthermore, if the produced read sets are
different across endorsing peers, then it is recommended
to retry the proposal step.

5) The client sends the gathered endorsements along with
the read and write sets to the ordering service.

6) The ordering service acknowledges that the transaction
was submitted for ordering.

7) The ordering service produces a transaction block from
the received transactions, either based on a predefined
timeout or on the maximum number of transaction
permitted in the block.

8) The ordering service delivers the produced block to the
committing peers in the network.

9) The committing peers validate the submitted transaction.
At this point the transaction will be definitely included
in the blockchain, irrespectively of the validation result.
The validation includes checking whether the chaincode
policy is satisfied by the submitted endorsements and
whether the key versions in the read set match the
current state of the ledger. The latter verification is also
referred to as multiversion concurrency control (MVCC)
in the database domain.
This means, that the version of every key in the read
set must match the version of those keys in the current
state of the ledger. If meanwhile an other transaction
has already updated a key from the read set, then the
transaction will be marked invalid.
The transaction is considered valid if and only if the
endorsement policy is satisfied and the key versions in
the read set match the key versions in the current state of
the ledger. If this holds, then the write set is committed
to the ledger. Note, that at this point, the transaction is
not executed again, only its write set is written to the
ledger.

The performance of these steps will be the main focus of
the evaluation, detailed in Section VI.

IV. MEASUREMENT DETAILS

This section presents the goals of the evaluation, the details
of the measurement environment (i.e., the used network topol-
ogy), deployment details and the business logic specific parts
of the evaluation, i.e., the chaincode and the client.

A. Evaluation goals

The goal of the current evaluation is not to determine the
effective throughput of the platform, but to inspect the scal-
ability and relative performance of the presented transaction
life-cycle steps. The main focus is on the chaincode execution
times and on the different steps that process the read and write
sets produced by the execution.

45

To this end the evaluation will focus on the response time
changes of these steps in case of different ledger update
sizes. The sizes of these ledger updates affect the chaincode
execution time through the ledger access, and also affect the
validation and commitment times of transactions due to sizes
of the read and write sets.

B. The environment

The network consists of two participants (referred to as
organizations from now on), each maintaining two endorsing
peers (for availability reasons).

The ordering service consists of a single orderer node that
orders the transactions in a first-come-first-served manner. In
production environments it is highly recommended to use a
more robust topology for the ordering service (e.g., PBFT [7]).

The entire network is deployed on a single virtual machine
using Docker containers. The virtual machine had access to
four physical CPU cores (each with 3.1 GHz clock frequency),
8 GB of RAM and was backed by a solid state drive.

C. The chaincode and the client

Due to the lack of standard blockchain platform bench-
marks, the deployed chaincode only provides functionality
for updating (reading then writing) entries in the ledger. The
number and size of the updates are configurable at the time of
deployment in order to be capable of approximating the ledger
load of real-life chaincodes with different characteristics.

During deployment of the chaincode enough keys were
inserted into the ledger at deploy time to provide conflict-free
updates for two blocks of transaction, assuming that the block
timeout of the ordering service is one second. This means
that transactions updating the same entry are approximately
two seconds apart, so the updates will be conflict free as long
as the committing times of these transactions are under two
seconds. As we will see, this is not always the case.

The client that generated the transactions is a general
blockchain platform benchmark tool, called Caliper.4

V. EVALUATION WORKFLOW

This section presents the steps of the evaluation and their
results. The process followed an iterative workflow (Figure 1,
[6]) that systematically guides the evaluation through a se-
quence of steps with well-defined tasks to perform. This
preliminary evaluation only covers the first six steps.

A. Operating envelope

Defining an operating envelope consist of limiting the
input space of the system to a subset, that will keep the
system within the desired operational conditions throughout
the evaluation. Since the goal is to observe the response time
changes based on the ledger load, we choose a transaction
load rate that minimizes the number of invalid transactions in
the system.

Based on some short preliminary test runs, a 100 transac-
tions per second was selected as constant load rate for the

4https://github.com/Huawei-OSG/caliper

rest of the evaluation. Due to the cyclic behaviour of the
chaincode, the load duration time was selected to be 2 minutes
for each measurement. This means that for each measurement
approximately 12000 transactions were submitted and the
timing of their steps recorded.

B. Rough functional architecture

The components of the system covered by the measurements
correspond to the steps of the transaction life-cycle. Unfortu-
nately, not every step can be measured on its own, at least not
without performing additional instrumentation on Hyperledger
Fabric.

The platform only provides an event about the commit
result of a transaction. This means that the client can only
observe the execution times after the endorsement, the orderer
acknowledgement, and the commit event. These times will also
contain the network latency, but since the network is deployed
on a single virtual machine, this time should be negligible. The
observed attributes are detailed Section VI

C. Instrumentation and harness

Caliper provides timing data for different steps of the
executions that can be processed in an arbitrary manner. The
chaincode execution time is logged in the running chaincode
and retrieved from the Docker container logs after the mea-
surement is over.

D. Experiment campaigns

The main parameters of the measurements are the number
and size of the updates a chaincode invocation will perform.
The explored parameter space consists of the combination of
the values of the following two variables:

• Number of updates: 1, 2, 4, 8
• Size of updates (in bytes): 8, 32, 128, 512, 2048
These parameters currently have a technical limit, since

the underlying remote procedure call library (gRPC5) has a
maximum message size configured to approximately 4MB.
This limits the number and/or size of entries created in the
ledger during deploy time, since deployment also produces a
read and write set that is sent back to the client.

VI. EXPLORATORY DATA ANALYSIS

This section describes the attributes of the collected data and
presents preliminary results using exploratory data analysis
(EDA). EDA offers a wide variety of tools and methods to
intuitively assess larger datasets without detailed knowledge of
the measured system. During the measurements the following
attributes were collected about each transaction:

• create time: The CPU time when the transaction was
created, measured with millisecond precision. Unique
identifier for transactions.

• endorse time: The time it took to send the transaction
proposal to the endorsing peers, execute the transaction
and receive the endorsements from the peers. Measured
with millisecond precision.

5https://grpc.io/

46

Define operational

envelope

Use cases

Behaviour trajectories

Create rough functional

architecture

Functional architecture

Experiment campaigns

Load size sweep

Configuration sweep

Visualizations &

Exploratory Data

Analysis

Rough empirical model

Bottlenecks and hot spots

Qualitative characteristics

No

Is bottleneck
component
 atomic ?

Targeted sensitivity

analysis

Parametric component

model

Yes

Model composition

(without feedbacks)

Parametric rough estimates

Estimates for non-bottlenecks and model validation

Instrumentation and

harness

System under test

Metric distributions

E
n

v
e
lo

p
e
 d

is
c
o

v
e
ry

Figure 1: Evaluation methodology

• order time: The time it took to check the received
endorsements, submit them to the ordering service and
receive the acknowledgement from the ordering service.
Measured with millisecond precision.

• validation time: The time it took to order the transaction
and validate it at the committing peers and received
the event about the result. Measured with millisecond
precision.

• org[1/2] execution time: The time it took to execution
the transaction on the current endorsing peer of the
first and second organization. Measured with millisecond
precision.

A. Assumptions

Based on a priori knowledge of the platform, the following
assumptions were made, which guided the exploratory data
analysis:

1) Due to the extra number of entries inserted in the ledger,
there should be no conflict between transactions updat-
ing the same entries. This means that the transactions
should be committed in a two block time range, which
is approximately 2 seconds.

2) The execution times of transactions should be symmetric
on both endorsing peer, since the same deterministic
chaincode is running with the same parameters.

3) The following times should be sensitive for the size of
the ledger load: execution time, commit time. Normally,
the network communication time would also be in this
list, but we omit it now due to the local network
communication. Unfortunately the commit time contains
the ordering time also, so the pure version validation
time cannot be separated in the current evaluation.

B. Assumption checks

During the measurement with the biggest ledger load (8
updates, each 2048 bytes) there were almost 2500 failed trans-
actions. Every other measurement committed every transaction
successfully, except for a small transient time period, where

Figure 2: Total execution times of transaction

the resource utilization of the host machine interfered with the
resources of the virtual machine.

So the first assumption holds for almost every measurement,
except one. Figure 2 shows the total commit time for the
transactions initiated in the first 10 seconds of that mea-
surement. The plot shows that numerous transactions had a
commit time above 2 seconds. This results in a conflict for
the next transaction that tries to update the same value. The
second transaction still reads the old value (with the same key
version), since the first transaction has not been committed
yet. But by the time the second transactions is about to be
committed, the first already overwrote that value, resulting in
a version conflict.

The second assumption is a reasonable one, since the same
code is executed on both endorsing peers in the same way.
However, Figure 3 refutes this assumption. If the assumption
was true, the observations would lie along the diagonal of the
plot. This phenomenon could be explained by the resource
constrained environment, but Figure 4 reveals another discrep-
ancy.

47

Figure 3: Execution times for the different organizations

Figure 4: The pattern of execution and validation time of
transactions

The vertical dashed lines are denoting the block timeouts,
and the sawtooth-like plots approximately fit them. Note,
that the transactions have higher execution times when being
committed in the middle of a block, except for the first block.
This phenomenon requires further, more detailed investigation,
possibly through additional instrumentation of Hyperledger
Fabric. For this reason, it is outside the scope of this paper.

The third assumption is checked by calculated the mean,
median and 95th quantile of the execution times for the
different ledger load sizes. This is illustrated in Figure 5.
The plot clearly shows the sensitivity of the execution time
for the size of ledger writes generated by the chaincode. The
sensitivity should be investigated for larger ledger load sizes,
but this requires some modification to the chaincode behaviour
and Caliper timing data harnessing, consequently it is left as
future work.

VII. CONCLUSION AND FUTURE WORK

In this paper we presented the detailed working of the
new architecture of Hyperledger Fabric, a pilot reference

Figure 5: Execution times for the different ledger loads

implementation of a general purpose blockchain platform.
Then following a systematic methodology, we evaluated the
scalability of the platform using different ledger loads. We
concluded, that the sensitivity assumption between the ledger
load size and the chaincode execution time holds. However,
based on current data, it is hard to argue about the timeliness
of the platform.

The presented assumption checks showed that the evaluation
methodology is capable of delivering important knowledge
about the platform. As future work, the evaluation must be
repeated in a cloud environment, lifting the current resource
constraints, which could be the source of significant noise in
the data. Moreover, the ledger load size constraint should be
circumvented, and measurements repeated for bigger parame-
ter values. Furthermore, in order to extract network commu-
nication delays from the data, a more detailed monitoring or
instrumentation is needed, preferably at the transaction life-
cycle step level.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[2] I. Weber, X. Xu, R. Riveret, G. Governatori, A. Ponomarev, and

J. Mendling, “Untrusted Business Process Monitoring and Execution
Using Blockchain,” in Business Process Management: 14th International
Conference, BPM 2016, Rio de Janeiro, Brazil, September 18-22, 2016.
Proceedings, Marcello La Rosa, Peter Loos, and Oscar Pastor, Eds.
Cham: Springer International Publishing, 2016, pp. 329–347.

[3] K. Christidis and M. Devetsikiotis, “Blockchains and Smart Contracts
for the Internet of Things,” IEEE Access, vol. 4, no. 99, pp. 2292–2303,
2016.

[4] B. Selic, “The pragmatics of model-driven development,” vol. 20, no. 5,
pp. 19–25.

[5] S. Balsamo, A. D. Marco, P. Inverardi, and M. Simeoni, “Model-based
performance prediction in software development: a survey,” vol. 30, no. 5,
pp. 295–310.

[6] I. Kocsis, A. Klenik, A. Pataricza, M. Telek, F. Deé, and D. Cseh, “Sys-
tematic performance evaluation using component-in-the-loop approach,”
International Journal of Cloud Computing, submitted.

[7] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in Pro-
ceedings of the Third Symposium on Operating Systems Design and Im-
plementation, ser. OSDI ’99. Berkeley, CA, USA: USENIX Association,
1999, pp. 173–186.

48

Oscillometric blood pressure measurement using

constant cuff pressure intervals

Péter Nagy, Ákos Jobbágy

Budapest University of Technology and Economics,

Department of Measurement and Information Systems,

Budapest, Hungary

Email: {nagy, jobbagy}@mit.bme.hu

Abstract—Oscillometric blood pressure (BP) measurement is

a widely used method to assess the state of the cardiovascular

system. Fast inflation and slow deflation of the cuff causes a

constantly changing excitation for the cardiovascular system.

This paper describes an electronic device and a measurement

method using a special cuff pressure profile containing constant

pressure intervals. Keeping cuff pressure (CP) at constant value

can help measure and compensate the reaction of the

cardiovascular system to the occlusion. Pulse wave transit time

(PWTT), heart rate variability (HRV) as well as the amplitude of

the photoplethysmographic (PPG) signal at the fingertip were

examined. The device aids home health monitoring, it does not

require trained operator.

Keywords—oscillometry, blood pressure measurement; pulse

wave transit time; heart rate variability

I. INTRODUCTION

High BP is an important cardiovascular risk factor, if it is
left undetected and uncontrolled, it can lead to vascular and
cerebrovascular diseases. Elevated BP is also linked causally to
kidney failure and dementia. Accurate BP measurement is the
basis of optimal diagnosis and treatment of hypertension [1].
Most indirect BP measurement techniques are based on fast
inflation and slow deflation of the cuff, typically placed on the
left upper arm [2]. The occlusion of the brachial artery caused
by the cuff changes the diameter of the artery as well as the
strain in the arterial wall. These effects can be considered an
excitation, to which the cardiovascular system reacts [3]. This
means that the measurement method itself influences the
measured quantity. Keeping CP at constant value can help
observe the reaction of the cardiovascular system to a constant
excitation. Breathing also influences BP [4]. This influence is
superimposed on the changes caused by cuff occlusion and if
CP is changing constantly, the effect of breathing is difficult to
analyze separately. Applying constant CP can also help
overcome this problem. Oscillometric BP measurement is a
commonly used method to determine systolic and diastolic BP.
The method basically estimates the mean arterial pressure,
systolic and diastolic pressure are calculated. Arterial stiffness
can have great impact on accuracy of the calculated values,
thus reliability of the method is questionable for those with
cardiovascular diseases [5].

II. MATERIALS AND METHODS

A. The measurement device

A home health monitoring device (HHMD) was developed
at our laboratory more than a decade ago. A novel method for
the examination of the state of the cardiovascular system is
PWTT, which is the time while the pressure wave generated by
the heart propagates from the aortic valve to a peripheral part
of the body (typically the fingertip). PWTT can also be used to
determine the frequency and the phase of breathing [6]. In
order to calculate PWTT, the developed device measures not
only CP, but also ECG and PPG signal. In the past 15 years,
more than 2000 measurements have been recorded by the
device including measurement of patients with cardiovascular
disease. Analysis of the measurements has pointed out some
weak points of the device and raised the need for the
development of a new device. The HHMD used reflection type
PPG sensors without fixation of the sensor to the measured
finger. As a result of motion artifacts, signal-to-noise ratio of
the PPG signal was not sufficient in several measurements,
making the calculation of PWTT inaccurate. The new device
contains a transmission type PPG sensor that is fixed to the
measured finger. The HHMD used ECG electrodes integrated
into the housing of the device, the tested person had to place
their palms onto the housing. As a result, size of the housing in
the longest dimension exceeded 45 cm, making the device
hardly portable. The new device uses conventional limb
electrodes connected to the device by wires, enabling a housing
with portable size (26 cm in the longest dimension). Both
HHMD and the new device measure ECG in Einthoven I lead.
The sampling frequency is 1 ksample/s for both devices. The
HHMD used a single controllable one-way valve for fast
deflation of the cuff and a constriction element for slow
deflation. The device was not able to keep CP at constant
value. In addition to the one-way valve and the constriction
element, the new device also contains a two-way valve. The
one-way valve and the constriction element are connected in
parallel and to them, the two-way valve is serially connected.
Thus, when the two-way valve is closed, CP can be kept at
constant value. The new device with transmission type PPG
sensor, limb electrodes connected by wire, two valves and
reduced size is more appropriate for the planned measurements
than the original device; it is portable and can be used without
special training. Figure 1 shows a picture of the developed
device.

49

Fig. 1. The developed measurement device and its dimensions.

B. Tested Persons

Ten healthy test subjects volunteered for the study, two
seniors (age between 66 - 67 years), four middle aged persons
(age between 39 - 57 years) and four young adults (age
between 22 - 26 years), male:female ratio was 6:4.

C. Measurement protocol

During the measurement, tested persons were sitting at rest
in a silent room with 25°C temperature. In the first 24 s of the
measurement, only ECG and PPG signals were recorded, the
cuff was not inflated. After 24 s, inflation started with
approximately 6 mmHg/s speed, until 150 mmHg was reached.
At 150 mmHg, inflation stopped and deflation started
immediately, approximately with the same speed as inflation.
Then, deflation stopped at CP = 90 mmHg for 1 minute and at
60 mmHg for 1 minute. When 40 mmHg was reached during
deflation, CP changed abruptly to 0 mmHg. After complete
deflation, only ECG and PPG signals were recorded for further
24 s, then the measurement ended. Cuff pressure as a function
of time during the measurement is shown in Figure 2.

Fig. 2. Cuff pressure as a function of time during the measurement.

III. DATA ANALYSIS

A. Improving signal-to-noise ratio

ECG, and PPG signals are likely to be distorted by motion
artifacts and electrical noise of the measurement device and the
measurement environment. Therefore, the signals have to be
filtered. However, distortion caused by filtering must be
minimized in frequency ranges corresponding to physiological
processes of interest. We filtered the ECG and PPG signals
using band-pass filters with cutoff frequencies, conventionally
used for ECG and PPG filtering. In case of the CP signal,
recorded by our device, spectral energy is concentrated below 8
Hz. We used a low-pass filter with cutoff frequency at 8 Hz.
Table I shows cutoff frequencies of the applied filters.

Using the CP signal, the time of the propagation of the
pulse wave from the heart to the cuff can also be determined. A
widely used method for the examination of oscillometric pulses
is to use a high-pass filter [7]. For the detection of onset points
of signals in general, zero crossing points of the first derivative
are commonly used. High-pass filtering however, works as
differentiation, therefore we recommend detrending of CP
without high-pass filtering, before taking the first derivative.
As inflation and deflation speed is not perfectly constant, the
method we used performed detrending for each heart cycle
separately based on local minima in CP.

TABLE I. CUTOFF FREQUENCIES OF THE APPLIED FILTERS

Signal Lower cutoff frequency (Hz) Upper cutoff frequency (Hz)

ECG 6 16

PPG 0.5 10

CP - 8

B. PWTT calculation

PWTT was calculated using ECG and PPG signals from the
heart to the fingertip, therefore we denote it by PWTTHF. We
calculated PWTTHF as the time difference between the R-peak
in ECG and the local minimum in the PPG signal,
corresponding to the same heart cycle. PWTTHF defined this
way is thus the sum of the cardiac pre-ejection period (PEP),
that is the period of isovolumetric ventricular contraction, and
the vessel transit time [8]. Ahlstrom et al. [8] and Wong et al.
[9] pointed out that PEP is an important contributor to the
correlation between PWTT and BP, and the inclusion of PEP in
PWTT increases the accuracy of BP estimation and respiration
monitoring. Detection of the arrival of the pulse wave to the
cuff makes it possible to cut PWTTHF into two parts, the
propagation time from the heart to the cuff (PWTTHC) and
from the cuff to the fingertip (PWTTCF). Mean values of the
PWTTHF, PWTTHC and PWTTCF parameters can be
calculated for time intervals with constant CP. Denoting the
mean PWTTHC value while CP equals 90 mmHg as
PWTTHC_90 and the mean PWTTHC value while CP equals
60 mmHg as PWTTHC_60, ratio of these mean values can be
defined. PWTTHC_90_60 is defined as in (1).

 WTTHC_90_60 = WTTHC_90 / WTTHC_60 

50

For PWTTHF and PWTTCF, similar ratios can be defined.
These ratios can help quantify the change of PWTT as a result
of the change in CP.

C. Assessment of the change in the PPG signal amplitude

Amplitude of the PPG signal also depends on the blood
flow rate into the body part where the PPG sensor is placed.
This rate is influenced by cuff occlusion, when the cuff CP
exceeds diastolic BP, the artery is closed during a certain part
of the cardiac cycle. When the occlusion is eliminated, the
blood flow rate in body parts distal to the occluded region
increases and exceeds the flow rate that was present before
occlusion was applied. This phenomenon is called reactive
hyperemia [3]. Increase of blood flow rate during reactive
hyperemia is impaired in patients with cardiac risk factors [10].
Denoting the mean PPG amplitude while CP equals 90 mmHg
as PPG_90, and mean PPG amplitude while CP equals 60
mmHg as PPG_60, ratio of these mean values can be defined.
PPG_90_60 is defined as in (2).

 PG_90_60 = PG_90 / PG_60 

The defined ratio can help quantify the change in the blood
flow rate arriving to the index finger as a result of the occlusion
and elimination of the occlusion of the brachial artery.

D. Effect of breathing

Breathing influences BP and PWTT. Systolic pressure
decreases during normal inspiration while PWTT increases.
The effect of breathing makes the analysis of the dependence
of PWTT on CP difficult. Burdened by this distortion, PWTT
cannot be interpreted as patient specific diagnostic information,
therefore, compensation of this effect is necessary. Respiratory
oscillations are present in the ECG and the PPG as amplitude
variations as well as frequency variations (Respiratory Sinus
Arrhythmia) [6]. Breathing can be estimated based on ECG and
PPG [6], [11].

E. Stress level estimation

Stress level of the tested person also influences BP. HRV is
a recommended measure to determine momentary stress level.
HRV characterizes the variation of the beat-to-beat time
intervals [12]. In the frequency domain, dominant bands of
HRV range from 3.3 mHz to 0.4 Hz. Some sources define a
frequency band even below 3.3 mHz. Analysis of the lowest
frequency band needs a resolution of at least 2 mHz, requiring
a minimum 500-s long recording, during which HRV cannot be
considered constant. For short time recordings, time domain
analysis is required to characterize HRV. Here, usually the
length of heart cycles (NN) is examined. pNN50 is a widely
used parameter, it characterizes the differences in successive
NN intervals. pNN50 is the ratio of differences exceeding 50
ms to the total number of differences [13]. We also calculated
pNN0_20 and pNN20_50, which are the ratios of differences
between 0 and 20 ms as well as 20 and 50 ms to the total
number of differences, respectively [13]. The CP(t) protocol
with 60-s constant pressure values makes a good estimation of
the tested person’s stress level possible. For the time interval

where CP is equal to 90 mmHg the following notations are
used: pNN0_20_90mmHg, pNN20_50_90mmHg,
pNN50_90mmHg. For the time interval, where CP was equal
to 60 mmHg the notation is similar.

IV. RESULTS

Changes of the PWTTHF, PWTTHC and PWTTCF values
as a result of cuff occlusion are person specific, but not age-
group specific. However, PPG amplitude exhibited a larger
change as a result of changes in CP for healthy young persons
than for healthy middle aged and senior individuals. Figure 3
shows the PPG signal as a function of time during the
measurement for a healthy young adult (upper trace) and a
healthy senior (lower trace). Figure 4 shows the values of the
PWTTHC_90_60 and PPG_90_60 parameters for each tested
person. It can be seen that healthy young adults can be
separated from healthy middle aged and senior individuals
based on PPG_90_60 values but not on PWTTHC_90_60
values.

For pNN parameters, neither mean values, nor ratio of
mean values corresponding to intervals with constant CP are
age-group specific. Figure 5 shows the values of the
pNN50_60mmHg and pNN50_90mmHg parameters for each
tested person. Separation of groups based on these parameters
is not possible.

Fig. 3. PPG signal as a function of time during the measurement for a healthy
young adult (upper signal) and for a healthy senior (lower signal).

V. DISCUSSION

The extent of the change in PPG amplitudes as a result of
decreased CP from 90 mmHg to 60 mmHg was found to be
larger for young adults than for middle aged and senior
individuals. It can be supposed that this result indicates age
related increase in the rigidity of arteries. However, it is
difficult to determine whether the used PPG_90_60 parameter
characterizes mainly the state of the brachial artery, or the
microvascular system in the fingertip. The fact that the change
in PWTTHF, PWTTHC and PWTTCF as a result of decreased
CP from 90 mmHg to 60 mmHg do not correlate well with the
PPG_90_60 parameter suggests that impaired vascular function
during reactive hyperemia does not necessarily imply increased
PWTT from the heart to the cuff or from the cuff to the
fingertip.

51

Fig. 4. PWTTHC_90_60 and PPG_90_60 parameters for each tested person.

x: healthy seniors, o: healthy middle aged persons, Δ: healthy young adults.

Fig. 5. pNN50_60mmHg and pNN50_90mmHg parameters for each tested
person. x: healthy seniors, o: healthy middle aged persons, Δ: healthy young

adults.

For the pNN50 parameter, decreased CP from 90 mmHg to
60 mmHg resulted in increased value of the parameter in case
of 3 persons, decreased value in case of 6 persons and no
change for 1 person. For pNN0_20 and pNN20_50 the
direction of change as a result of decreased CP from 90 mmHg
to 60 mmHg was also not the same for all persons. This result
suggests, that the measured stress level of tested persons
changed differently. This is in accordance with our previous
experiences: a given stimulus can increase stress level of one
individual while the same stimulus decreases stress level of
another individual in the same experiment.

VI. CONCLUSION

Continuous change of CP during oscillometric BP
measurement affects accuracy of the assessment of the state of
the cardiovascular system in several ways. In this paper we
described a BP measurement device that stops cuff deflation at
90 mmHg and 60 mmHg CP and records ECG, PPG and CP
signals. We introduced parameters that characterize changes in
PWTT, HRV and PPG amplitude values as a result of change
in CP. Age-group specific differences were found only for the
change in the PPG amplitude. This article presents that using

ECG, PPG and CP, doctors can be provided with more
information about the patient, than using conventional BP
measurement. However, the measurement series, needed to
evaluate this extra information has not been carried out yet. For
the explanation of the observed phenomena and validation of
preliminary results, we aim to organize a new measurement
series with more participants in hospitals. BP measurement
using the suggested CP(t) protocol not only gives a good
estimate of systolic and diastolic pressures but also provides
information on the rigidity of arteries. The device we have
developed is meant for home health monitoring helping
personalized health care.

REFERENCES

[1] J. Kaczorowski, M. Dawes, M. Gelfer, C.D. Kapse, B.R. Patil,
“Measurement of blood pressure: New developments and challenges”,
British Columbia Medical Journal, vol. 54, no. 8, 2012, pp. 399-403.

[2] C.D. Kapse, B.R. Patil, “Auscultatory and Oscillometric methods of
Blood pressure measurement: a Survey”, International Journal of
Engineering Research and Applications, vol. 3, no. 2, 2013, pp. 528-
533.

[3] A. Fonyó, Az orvosi élettan tankönyve, 5th ed., Medicina Könyvkiadó
Rt., Budapest, 2011, pp. 306.

[4] D.J. Pitson, A. Sandell, R. van den Hout, J.R. Stradling, “Use of pulse
transit time as a measure of inspiratory effort in patients with obstructive
sleep apnoea”, European Respiratory Journal, vol. 8, no. 10, 1995, pp.
1669–1674.

[5] N.M. van Popele, W.J.W. Bos, N.A.M. de Beer, D.A.M. van der Kuip,
A. Hofman, D.E. Grobbee, J.C.M. Witteman, “Arterial Stiffness as
Underlying Mechanism of Disagreement Between an Oscillometric
Blood Pressure Monitor and a Sphygmomanometer”, Hypertension vol.
36, no. 4, 2000, pp. 484-488.

[6] C. Ahlstrom, A. Johansson, T. Lanne, P. Ask, “A Respiration Monitor
Based on Electrocardiographic and Photoplethysmographic Sensor
Fusion” Proceedings of the 26th Annual International Conference of the
IEEE EMBS, San Francisco, CA, USA, September 1-5, 2004, pp. 2311-
2314.

[7] M. Ursino, C. Cristalli, “A mathematical study of some biomechanical
factors affecting the oscillometric blood pressure measurement”, IEEE
Transactions on Biomedical Engineering, vol. 43, no. 8, 1996, pp. 761-
778.

[8] C. Ahlstrom, A. Johansson, T. Lanne, P. Ask, “Pulse wave transit time
for monitoring respiration rate”, Medical and Biological Engineering
and Computing, vol. 44, no. 6, 2006, pp. 471–478.

[9] M.Y.M. Wong, E. Pickwell-MacPherson, Y.T. Zhang, J.C.Y. Cheng,
“The effects of pre-ejection period on post-exercise systolic blood
pressure estimation using the pulse arrival time technique” European
Journal of Applied Physiology, vol. 111, no. 1, 2011, pp. 135-44.

[10] J.T. Kuvin, A. Mammen, P. Mooney, A.A. Alsheikh-Ali, R.H. Karas,
“Assessment of peripheral vascular endothelial function in the
ambulatory setting”, Vascular Medicine, vol. 12, no. 1, 2007, pp. 13–16.

[11] A. Johansson, “Neural network for photoplethysmographic respiratory
rate monitoring”, Medical and Biological Engineering and Computing,
vol. 41, no. 3, 2003, pp. 242–248.

[12] A.J. Camm, et al., "Heart rate variability: standards of measurement,
physiological interpretation, and clinical use. Task Force of the
European Society of Cardiology and the North American Society of
Pacing and Electrophysiology”, Circulation, vol. 93, no. 5, 1996, pp.
1043–1065.

[13] Á. Jobbágy, M. Majnár, L. K. Tóth, P. Nagy “HRV-based stress level
assessment using very short recordings”, Periodica Polytechnica EECS,
vol. 61, no. 3, 2017, pp. 238-245.

52

Towards the Verification of Neural Networks for
Critical Cyber-Physical Systems

Gábor Rabatin1, András Vörös1,2
1Budapest University of Technology and Economics, Department of Measurement and Information Systems, Budapest, Hungary

2MTA-BME Lendület Cyber-Physical Systems Research Group, Hungary
mail: rabigabor@gmail.com, vori@mit.bme.hu

Abstract—Smart technologies are emerging in the field of
Cyber-Physical Systems (CPS) yielding new challenges for system
engineers. Rigorous techniques are necessitated to ensure the
correct and accident-free behaviour of critical CPS. Neural
networks gain increasing popularity in CPS, and even critical
functionalities may rely on neural network based solutions. In this
paper, we overview the literature and summarize our experiences
of a neural network verification algorithm used in an academic
case-study.

Index Terms—neural network, verification, CPS

I. INTRODUCTION

Recent advances in the field of artificial intelligence and
especially neural networks led to the wide-spread application
of smart techniques in Cyber-Physical Systems (CPS). How-
ever, a large set of CPSs can be regarded as critical, which
necessitates their correct behaviour to be ensured. Neural
networks can approximate arbitrary functions by using the so-
called teaching process: input-output pairs are provided and
the neural network learns an approximation by using various
techniques such as back-propagation and optimization tech-
niques to strengthen its generalization ability. Neural networks
are gaining increasing importance in critical CPS, such as
autonomous vehicles, smart factories and autonomous robots.
Ensuring the correct behaviour of critical CPS is essential,
where both design-time [1] and also run-time analysis tech-
niques can be used. Typical design time verification techniques
are testing and formal verification, both are exploited for
neural networks.

A. (Deep) Neural Networks

Over the last decade, Deep Neural Networks (DNNs)
achieved an impressive break-through in supervised, unsu-
pervised and also reinforcement learning. DNNs are used in
various fields such as image, video and speech recognition
and they achieved better results in classification than humans
[2]. The progress in the effectiveness of DNNs led to their
application in critical systems.

A DNN consists of an input layer, multiple hidden layers
and an output layer. Each layer contains multiple neurons as
shown on Fig. 1. A neuron is a small unit inside a DNN which
applies an activation function (e.g. sigmoid, hyperbolic tangent
and Rectified Linear Unit (ReLU)) on its inputs and it passes
the result to other neurons.

Fig. 1. Structure of a Multi-Layer Perceptron (MLP)

Each neuron has directed connections with neurons in the
following layer. These connections have weight parameters
which represent the strength of each connection. In supervised
learning, these weights are learned during the training phase
by minimizing a cost function over the training data. The
most popular algorithm used for optimization is gradient
descent using backpropagation [3]. The algorithm computes
the gradients iteratively whereby if we changed our weights,
then we could minimize the cost function over a given subset
of training data.

Besides basic layers consisting only simple neurons, there
are several other type of layers which have specific functions,
like the convolutional layers which have been very popular
recently, because it had reached significant process in image
processing tasks.

An important weakness of DNNs is their sensitivity to
adversarial examples. An extended definition of adversarial
examples is proposed in [4] that captures all the important
aspects, building on legal theory and the reasonable person
test: a pair of inputs x;x′ is an adversarial example for a
classifier, if a reasonable person would say they are of the
same class but the classifier produces significantly different
outputs.

Many techniques were developed to find adversarial ex-
amples for/against trained DNNs, where adversarial example
synthetization algorithms may use the DNN as a white-box
[5] or as a black-box [6].

53

B. Case-study: MoDeS3

Model-based Demonstrator for Smart and Safe Systems
(MoDeS3) is used as a case-study in this paper. MoDeS3
is a demonstration system, where trains travel in a railway
system controlled by the users. A camera-based monitoring
system is installed to collect visual data and calculate the
position information of the trains. If the monitoring system
detects a dangerous situation, i.e. when the trains are too close
to each other, then the safety subsystem stops the trains. A
neural network is trained to detect the trains and estimate their
positions. MoDeS3 demonstrates the usage of neural networks
in a critical application.

C. Machine Learning Safety

The safety aspects of machine learning approaches are
investigated in various papers [7], [8]. The application of AI
techniques, and especially DNNs in safety application has to
rely on various design time and runtime techniques [9]:

a) Redundancy and Dissimilarity: Redundant architec-
tures are a common solution to improve the dependability of
systems. Typically, some computing units (either replicated
or dissimilar) calculates local results in parallel, and a voter
then compares the different results and decides the final output
based on the majority. Similar strategies can successfully be
applied in ML.

b) Correct by Construction and Formal Verification:
Correct-by-construction approaches heavily rely on formal
methods to define and analyze the precise behavior of our
systems.

c) Interpretability: It is highly desirable to understand
the behavior of AI algorithms, and in our context, the behavior
of DNNs both in design time and also at runtime.

II. VERIFICATION TECHNIQUES FOR NEURAL NETWORKS

In the former section, we discussed the safety aspects of
using AI technologies. In this section, we will only focus
on various verification techniques, namely formal verification,
testing and runtime verification.

A. Formal Verification

Formal verification is a technique to find a precise formal
proof for the correctness of systems. Formal verification
necessitates that both the property and also the system to be
described in a formal (mathematically precise) way. Safety
verification of DNNs is investigated in [10], where the authors
propose a method to compute safe regions in a DNN by using
an SMT1 solver. They succeeded to do exhaustive search and
find possible counter-examples or ensure that there cannot be
one. Unfortunately, as the neural networks are getting deeper
and deeper, the complexity of exhaustive search also increases.

A recent study shows an algorithm based on a modified
SMT solver - the ReluPlex [11] - which can be used for
formal verification on networks that are an order of magni-
tude larger than the largest networks verified using existing

1Satisfiability modulo theories

methods. The approach handles DNNs with a specific kind of
activation function, called a Rectified Linear Unit (ReLU) and
the verification algorithm searches out-of-bound behaviour of
DNN-based controllers. The input of ReluPlex is a trained
neural network, formally specified statements and a dataset,
and it gives as output whether the statements can be satisfied.

B. Testing

On the other hand, in most cases we cannot define a proper
specification for the desired task (e.g. recognizing a lamp).
Therefore formal verification cannot be used on them. In such
cases we can have a separated validation set to determine
whether the system generalizes well or overfits [12]. This
works well if one can sample the distribution of the problem
perfectly. If that does not occur then there is chance to have
corner-cases where the model is not tested therefore can
behave ’dangerously’. There are many recent studies which
aim to develop new methods to ensure systematic testing with
generating potential adversarial examples. Such studies are
DeepTest [13], - which focuses on automated testing of au-
tonomous cars by generating new inputs with the combination
of different domain-specific image transformations - DeepSafe
[14] - which tries to determine with data-guided clustering
techniques whether safe regions within the network are robust
against adversarial inputs - and DeepXplore [15] which will
be discussed in this paper.

C. Runtime Verification and Monitoring

Runtime verification is a complementary technique when
design time verification is not feasible. Monitoring the be-
haviour of neural networks relies on the traditional approaches
used for runtime verification. In the MoDeS3 project, we
introduced a monitoring framework to analyze the runtime
behavior of the trained DNN responsible for detecting the
objects. A Complex Event Processing (CEP) framework was
used and a graph language helped us to specify the expected
behavior of the system. The specification of the possible
situations and also the simplified dynamics of the system was
used to detect misclassification and other problems during
runtime. The monitoring of DNNs used in real-life has to solve
the challenge that typically those DNNs, which are used in
CPSs, have to work in an evolving, formerly not fully known
environment. This makes it difficult to define the monitored
properties during design time.

III. EVALUATION OF DEEPXPLORE ON MODES3

Our main goal was to create a reliable system that can
predict the positions of the trains in MoDeS3. This rather
small demonstrator is used to evaluate and experiment with
techniques that are used also by the industry in complex
systems. The image recognition and classification task in the
demonstrator would not require a complex DNN. However,
we wanted to try out large networks to demonstrate the
effectiveness of the verification algorithm on an illustrative
example where the safety is critical. We used several image

54

processing techniques and neural networks to predict the posi-
tions and we used some post-processing mechanisms to filter
out the incorrect predictions. In this section, our algorithm
and the used techniques are explained and also DeepXplore is
introduced to enhance the accuracy of our predictions.

A. Working of the Algorithm

We tried all of the state-of-the-art algorithms in object
detection with neural networks, e.g. FRCNN [16], YOLO [17],
YOLO9000 [18], SSD [19]. We found that we could get higher
reliability and accuracy if we used an algorithm that consists
of image preprocessing techniques and a neural-network based
classifier and not an end-to-end object detector.

We take advantage of that our task is to predict the train
positions on a video and there is only a small difference
between the frames, therefore we can use background sub-
straction [20] to reduce the complexity of the problem. After
that, we use dilation and erosion [21] to get smoother blobs
and from these, we filtered out the not proper train candidates
by shape and size. The resulting candidates are used as input
for the classifier neural network. The output of the network
can be one of the train types (Taurus, SNCF, Red) or Other
(e.g. the table, railway line, decorative element or a human’s
hand). These results are examined whether they could occur
and only the possible positions are kept.

B. Trained Neural Networks

Different neural network structures are tried for this classi-
fication task. We used two pretrained neural networks (Incep-
tionV3 [22], ResNet [23]) via transfer learning [24] and a basic
neural network (target network) with convolutional layers in it,
similar to LeNet-5 [25]. The test set has been sampled from the
original data set, and it has not been used during the training
phase at all. The results are shown in Table I.

TABLE I
EVALUATION OF USED MODELS

Model Accuracy on test set Training time (sec/epochs)
InceptionV3 99.17% 300

ResNet 99.38% 600
Basic network 99.72% 180

Our experience shows that the training dataset should not
contain too many elements, because after about 2000 images
per classes there would be many repetitions (due to the
limited number of states in the railway systems). To enhance
the learning, we used augmentation to artificially create new
samples with shearing, rotation and brightening. The results
shown above are achieved by early stopping [26].

C. Details of the Verification

Our main goal was to develop a trustworthy AI-based
demonstrator, so we tried one of most prevalent techniques to
verify our system: we used the DeepXplore’s approach for test-
ing the recognition capabilities and robustness of our trained
DNN. For this purpose, we used three models (showed above)

that are different and have been trained on the same train-
classifying problem. We used a verification dataset consisting
of 600 input images different from the training data.

a) Neuron Coverage: The proportion of the neurons that
have been activated2 on a specific input image. The bigger this
value is, the bigger part of the neural network is responsible
for computing the output. The optimization tries to find an
attack with high neuron coverage.

b) Verification: The first step of the verification process
is to find misclassification of the input images (described on
Fig 2). The different networks are fed by the same input and
the algorithm compares their output.

Fig. 2. Searching for misclassified images

If the outputs of the algorithms are the same, then the
algorithm tries to modify the image and attack the target
network.

c) Optimization Procedure: The joint objective can be
described as depicted on Fig 3. the algorithm calculates the
gradients of the used models on the images and this gradient
value is used to alter the input image as follows. The objective
for the modification of the images is to cause misclassification
of (only) the target model. In addition, increasing the neuron
coverage by the attack is the other optimization factor.

Fig. 3. Adversarial attack (DeepXplore workflow) [15]

d) Realistic Modifications: It is important to have real-
istic outputs, which can be ensured by generating inputs that
need to satisfy several domain-specific constraints. In this case
three different types of constraints are used: (1) brightening
effects are for simulating different light conditions, (2) occlu-
sion effects are for simulating that the attacker potentially is
blocking some parts of the camera, and (3) blackout effects

2having an output greater than a predefined value (zero in this case)

55

are for simulating dirts on the camera lens. In all the three
cases it is ensured that the pixel values are between 0 and
255.

This way, we generated several examples which misled our
neural networks, example images are shown on Fig 4.

Fig. 4. First row: original images, second row: generated images by DeepX-
plore algorithm with brightening, occlusion, blackout image transformations
(respectively)

D. Our Experiences

As we were able to generate a lot of adversarial images, we
decided to use this technique as an augmentation technique
to generate more training images. After that, we achieved
99.72% test accuracy with the Basic network. We found that
it is capable of not just helping to enhance the accuracy but
finding the critical corner-cases for our neural network.

IV. CONCLUSION AND FUTURE WORK

Our goal with this paper was to overview the current
state of techniques for trustworthy DNNs. Various verification
techniques exist for DNSs, such as testing, formal verification
or monitoring. We chose the DeepXplore testing method and
evaluated it on the MoDeS3 case-study.

In the future we plan to integrate the enhanced train-detector
model in the MoDeS3 on a Jetson TX2 and experiment with
formal verification techniques (e.g. ReluPlex) on a neural
network based train controlling system. Besides, we want to
develop adversarial transformations which are more similar to
’dangerous’ corner-cases we experienced on MoDeS3 during
open events.

ACKNOWLEDGMENT

This work was partially supported by the MTA-BME
Lendület Cyber-Physical Systems Research Group and the
ÚNKP-17-2-I. New National Excellence Program of the Min-
istry of Human Capacities.

REFERENCES

[1] Tommaso Dreossi, Shromona Ghosh, Alberto L. Sangiovanni-
Vincentelli, and Sanjit A. Seshia. Systematic testing of convolutional
neural networks for autonomous driving. CoRR, abs/1708.03309, 2017.

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving
deep into rectifiers: Surpassing human-level performance on imagenet
classification. CoRR, abs/1502.01852, 2015.

[3] Sebastian Ruder. An overview of gradient descent optimization algo-
rithms. CoRR, abs/1609.04747, 2016.

[4] Andrew Ilyas, Ajil Jalal, Eirini Asteri, Constantinos Daskalakis, and
Alexandros G Dimakis. The robust manifold defense: Adversarial
training using generative models. arXiv preprint arXiv:1712.09196,
2017.

[5] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and harnessing adversarial examples. arXiv preprint arXiv:1412.6572,
2014.

[6] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha,
Z Berkay Celik, and Ananthram Swami. Practical black-box attacks
against deep learning systems using adversarial examples. arXiv preprint
arXiv:1602.02697, 2016.

[7] Rick Salay, Rodrigo Queiroz, and Krzysztof Czarnecki. An analysis of
iso 26262: Using machine learning safely in automotive software. arXiv
preprint arXiv:1709.02435, 2017.

[8] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John
Schulman, and Dan Mané. Concrete problems in AI safety. arXiv
preprint arXiv:1606.06565, 2016.

[9] CW Johnson. The increasing risks of risk assessment: On the rise
of artificial intelligence and non-determinism in safety-critical systems.
2018.

[10] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. Safety
verification of deep neural networks. In Rupak Majumdar and Viktor
Kunčak, editors, Computer Aided Verification, pages 3–29, Cham, 2017.
Springer International Publishing.

[11] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J.
Kochenderfer. Reluplex: An efficient SMT solver for verifying deep
neural networks. CoRR, abs/1702.01135, 2017.

[12] Igor V. Tetko, David J. Livingstone, and Alexander I. Luik. Neural
network studies. 1. comparison of overfitting and overtraining. Journal
of Chemical Information and Computer Sciences, 35(5):826–833, 1995.

[13] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. Deeptest: Au-
tomated testing of deep-neural-network-driven autonomous cars. CoRR,
abs/1708.08559, 2017.

[14] Divya Gopinath, Guy Katz, Corina S. Pasareanu, and Clark Barrett.
Deepsafe: A data-driven approach for checking adversarial robustness
in neural networks. CoRR, abs/1710.00486, 2017.

[15] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. Deepx-
plore: Automated whitebox testing of deep learning systems. CoRR,
abs/1705.06640, 2017.

[16] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 39(6):1137–1149, June 2017.

[17] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali
Farhadi. You only look once: Unified, real-time object detection. CoRR,
abs/1506.02640, 2015.

[18] Joseph Redmon and Ali Farhadi. YOLO9000: better, faster, stronger.
CoRR, abs/1612.08242, 2016.

[19] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy,
Scott E. Reed, Cheng-Yang Fu, and Alexander C. Berg. SSD: single
shot multibox detector. CoRR, abs/1512.02325, 2015.

[20] T. Bouwmans, F. El Baf, and B. Vachon. Background modeling using
mixture of gaussians for foreground detection a survey. In Recent
Patents on Computer Science, pages 219–237, 2008.

[21] Jean Serra. Image Analysis and Mathematical Morphology. Academic
Press, Inc., Orlando, FL, USA, 1983.

[22] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens,
and Zbigniew Wojna. Rethinking the inception architecture for computer
vision. CoRR, abs/1512.00567, 2015.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. CoRR, abs/1512.03385, 2015.

[24] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How
transferable are features in deep neural networks? CoRR, abs/1411.1792,
2014.

[25] Yann Lecun, Lon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. In Proceedings of the
IEEE, pages 2278–2324, 1998.

[26] Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. On early stopping
in gradient descent learning. Constructive Approximation, 26(2):289–
315, Aug 2007.

56

Signal Acquisition for Accelerometer-based Fall

Detection

Goran Šeketa1,
1University of Zagreb Faculty of Electrical Engineering &

Computing

Zagreb, Croatia

goran.seketa@fer.hr

Dominik Dzaja1, Jurica Vugrin1, Igor Lackovic1,

Ratko Magjarevic1

University of Zagreb Faculty of Electrical Engineering &

Computing

Zagreb, Croatia

Abstract— Rapid growth of wireless technologies enabled the

design of a multitude of wearable devices collecting data on

individuals’ health, behaviour and practices. All these acquisitions

may be used for on-line decision making (medical or others) but

can also be stored and saved for further use in analysis and

research. Scientists welcome that process and request open but

secure access to the datasets collected by wearables, however the

ownership of the data is not clear in many cases, there is a lack of

standardisation in the content and format of the acquired data and

practical guidelines for dataset use are often missing. We have

been confronted with the challenge of acquiring data for research

on optimisation of fall detection algorithms. We present the

acquisition procedure and the results of an experimental study

with 16 subjects performing activities of daily living and of

simulated falls. The subjects were wearing wireless sensor nodes

with embedded triaxial accelerometer to track their movements.

Different features from the accelerometer data were calculated

and used for evaluating accuracy of fall detection.

Keywords—wearables, wireless device, fall detection,

acceleration

I. INTRODUCTION

In the early stage of their development, wearable sensors
often were single devices monitoring only one health indicator,
physiological parameter, fitness or another measurable
parameter. Later such sensor nodes became integrated into
closed systems for multiparameter monitoring and/or
measurement. Integrated data was processed by a
microprocessor built into one of the sensor nodes which had the
appropriate embedded sensor. In such an architecture, the data
followed a pathway from the equipment holder to a defined user
(usually a health professional) through a defined communication
channel, and there was an immediate action in case of
emergency, or the data was stored and saved for later use. But in
some cases, data was discarded after some time or even deleted,
especially if it was considered not being medical data but just
behavioural. With the global increase of storage capacity,
opening of the “clouds”, and the rapid development of tools to
access and process large amounts of data from multiple sources
– big data, the advantages of accessing and analysis options in
health care were perceived not only for monitoring and
diagnosis, but in prevention and prediction of diseases and/or
unwanted events for health or in daily life. In a closed
monitoring system, the protocols and the structure of the data are
well defined and easy to use for the end user. Such

configurations are preferred for clinical settings, e.g. in patients
who just left the intensive care unit. Aging population, increase
of prevalence and incidence of chronic diseases and the
consequential burden to the budget of health care, led to change
of health care policy: the patients should be serviced at their
home if possible, again by introduction of appropriate
technology, accepted by the user. The patient empowerment
policy, defined by European Patients Forum as a “process that
helps people gain control over their own lives and increases their
capacity to act on issues that they themselves define as
important” [1], certainly anticipates free choice of technology
and monitoring devices ruled for the most part by user
acceptance reasoning. The devices which individuals are
voluntarily wearing for the purpose of monitoring one or more
physiological, wellness, behavioural or other parameters are not
any more parts of a closed integrated monitoring system, but
bought “off the shelf” and widely equipped with connectivity.
These devices may be considered as data sources from the
Internet of Things or recently introduced, from the Internet of
Medical Things. However, the generated repositories which
contain high potential for research, are mainly not a public good
but are available to companies mainly in IT sector.

Interest for research and development activities in fall
detection have been frequently addressed in the projects
financed by the EC, e.g. Fallwatch, FATE [3, 4] and they
confirm the presence of the technology for fall detection on the
market. However, literature reviews confirm that there is little
standardised reporting on the sensors used [5]. Also, little of the
datasets generated in the research has been made available to the
research community [6], and there is a lack of common
experimental procedure, guidelines for sensor placement
resulting in large dissimilarity in the values and format of the
data resulting in no agreement on referent values in activities of
daily living (ADL) or for fall detection [7]. Our future work goal
is to explore the possible causes of these disparities by analysing
the existing publicly available datasets and by creating our own
datasets in different conditions (e.g sensor placements, sensor
ranges…).

Our recent research activities are associated with monitoring
of health and providing preventive programs and IT tools for
diabetic and cardiovascular patients as well as the elderly
population in general. More details on the monitoring system
and platform have been published earlier [2, 3]. Promoting

57

physical activity, both for strengthening endurance and power,
while enabling usage of the same monitoring devices for
tracking of ADL, brought into consideration inclusion of fall
detection as a common problem in the vulnerable elderly
population. We have developed a wireless real-time health
monitoring and alerting system which minimally interferes with
the everyday life of the monitored person. The system enables
generation of warnings upon detecting high risk for the health of
the monitored person. The aim of the system is monitoring of
persons at risk both at home and outside, in case they leave the
home.

For the purpose of fall detection, motion sensors detect a fast
change in position which may indicate a fall of the monitored
person and the real challenge is to generate minimum number of
false alarms while detecting all falls, i.e. to have both high
sensitivity and high specificity in the fall detection. In threshold-
based detection algorithms for fall detection, the choice of
appropriate threshold values is crucial for the achievement of
acceptable algorithm accuracy. Algorithm threshold values can
thereby be set by analysing signals recorded from a test group of
subjects performing ADL and simulated falls as we described in
our previous work [9]. Procedures we used to acquire the signals
for threshold selection and the results are further analysed in this
paper.

II. MATERIALS AND METHODS

A. Subjects and equipment

For the purpose of this study, 16 healthy volunteers were
recruited, 11 males and 5 females. They performed ADL and
simulated falls in three different fashions. They were informed
on the procedures in the study and agreed with informed consent.
The age of the subjects ranged from 15 to 44 (mean 23.1, std
6.7), height from 159 cm to 192 cm (mean 176.4, std 8.9) and
body mass 55 kg to 93 kg (mean 75.2, std 12.8).

The subjects were carrying a Shimmer3 sensor node
(ShimmerSensing, Dublin, Ireland) inertial measurement unit
(IMU) attached to the right hip with a Velcro belt. The waist has
been referred to be the optimal position for accelerometer based
fall detection [8]. The IMU was fitted to the body with the axis
oriented as shown in Figure 1.

Shimmer3 contains a triaxial accelerometer, triaxial
gyroscope, triaxial magnetometer and an altimeter [10]. The
sensor node has two types of accelerometers embedded: a wide
range accelerometer with selectable measurement range from

2g to 16g and a low noise accelerometer with sensitivity 2g
and less noise). Wide range accelerometer was used for the

measurements at the selected range of 8g. Data from sensors
were sampled with a rate of 204.8 Hz and streamed via
Bluetooth to a PC.

B. Experiment protocol

Subjects were asked to perform 15 tasks. Twelve activities
were considered: walking, fast walking, running, fast running,
jumping, jumping over obstacles, sitting down, standing up from
sitting position, lying down, getting up

from lying position, walking down the stairs and walking up the
stairs and they were followed by three simulated falls on a
trainer. Three types of falls were simulated by falling on a 2 cm
thick tatami mat: forward fall, sideways fall and backward fall.
All activities were conducted in a safe laboratory environment
as shown in Figure 2. Data from each subject was recorded
during the sessions. Data was gathered and processed with a
GUI implemented in Matlab.

Figure 1. Sensor placement - Y axis was pointing up (vertical), X axis

was pointing backward (antero-posterior plane) and Z axis was pointing

away from the body (medio-lateral plane)

Figure 2. Plan of the laboratory setting where the ADL and simulated

falls were performed in a row: 1) walking, 2) fast walking, 3) running, 4)
fast running, 5) jumping, 6) jumping high, 7) sitting down, 8) standing up

from sitting possition, 9) lying down, 10) getting up from lying position,

11) falling forward 12) falling sideways 13) falling back (walking up and

down the stairs has been performed separately outside of the laboratory)

58

C. Signal Delimitation

All the signals were acquired by performing the actions of

ADL and simulated falls in a row in order to speed up the

measurement process. For the signals to be used for fall

detection analysis, the signals had to be delimited in separate

files containing only one activity or simulated fall. Matlab was

used to manually delimit the signals by the researchers that

conducted the measurements with subjects.

D. Features

From the acquired raw acceleration signals, we calculated
the parameter Acceleration Gravity Sum Vector Magnitude
(AGSVM) using the following equation according to [11]:

𝐴𝐺𝑆𝑉𝑀(𝑛) =
𝜃(𝑛)

90
∙ 𝐴𝑆𝑉𝑀(𝑛)

where Acceleration Sum Vector Magnitude (ASVM) is
calculated by:

𝐴𝑆𝑉𝑀(𝑛) = √𝑎𝑥2(𝑛) + 𝑎𝑦2(𝑛) + 𝑎𝑧2(𝑛),

and the Euler angle (𝜃) between the vertical device axis and

the direction of gravitational field is obtained from:

𝜃(𝑛) = tan−1(
√𝑎𝑦2(𝑛) + 𝑎𝑧2(𝑛)

𝑎𝑥2
) ∙

180

𝜋

where ax(n), ay(n), az(n) represent x, y and z acceleration

components of the n-th sample.

Each feature was calculated using accelerometer

measurements from all subjects and experimental sessions. For
the calculation of theta, a four-quadrant inverse tangent function

was used that returns values in the closed interval [-,].

III. RESULTS AND DISCUSSION

From all subjects, AGSVM values were calculated for every
activity and simulated fall. From each signal recording that
contained only one activity/fall, the maximal values of AGSVM
were extracted and were used to plot the boxplot of the acquired
dataset as shown in Figure 3.

The boxplot shows high differences in the distribution and
large values of outliers. Though some median values from ADLs
involving lower effort from the performers (e.g. 2, 5-8 and 10-
12 in Fig.3) might be used for successful threshold based
differentiation of those activities from falls (13 – 15 in Fig. 3),
there is still overlapping of overlay values, e.g. 7 in Fig. 3. In
ADLs requiring more effort (1, 3-4, 9), median values are close
to those of the simulated falls. Large differences within the
recorded group indicate the need for personalized determination
of features to be used in fall detection and to use more complex
threshold and machine learning algorithms.

The authors are aware of the limits of the experiments
performed for this study. In order to learn more on the
repeatability of recorded data for these activities within the
group and deviations in data from a single subject, additional
recording of ADLs and simulated falls are planned in the

continuation of the study. In such a way we plan to obtain large
datasets from younger population without any known
dysfunctions and to build a well described database. In addition,
we plan to organize structured acquisition of ADL and fall data
from elderly population in order to obtain more realistic datasets.

ACKNOWLEDGMENT

We thank all the subjects for their participation in the signal
acquisition process and the Taekwondo club Cigra that provided
the space and equipment necessary for the measurement process.

REFERENCES

[1] http://www.eu-patient.eu/whatwedo/Policy/patient-empowerment/,

accessed 22nd December 2017

[2] Šeketa G., Džaja D., Žulj S., Celić L., Lacković I., Magjarević R. (2015)
Real-Time Evaluation of Repetitive Physical Exercise Using Orientation
Estimation from Inertial and Magnetic Sensors. In: Jobbágy Á. (eds) First
European Biomedical Engineering Conference for Young Investigators.
IFMBE Proceedings, vol 50. Springer, Singapore

[3] Zulj S. et al. (2017) Supporting Diabetic Patients with a Remote Patient
Monitoring Systems. In: Torres I., Bustamante J., Sierra D. (eds) VII Latin
American Congress on Biomedical Engineering CLAIB 2016,
Bucaramanga, Santander, Colombia, October 26th -28th, 2016. IFMBE
Proceedings, vol 60. Springer, Singapore

[4] http://cordis.europa.eu/result/rcn/58267_en.html, accessed 22nd
December 2017

[5] https://ec.europa.eu/digital-single-market/content/fate-monitoring-
devices-helping-fall-detection, accessed 22nd December 2017

[6] Patel S, Park H, Bonato P et al (2012) A review of wearable sensors and
systems with application in rehabilitation. J. Neuroeng. Rehabil, vol. 9,
no. 1, pp. 21-38

[7] Casilari E, Santoyo-Ramón JA, Cano-García JM. Analysis of Public
Datasets for Wearable Fall Detection Systems.Sensors (Basel). 2017 Jun
27;17(7). pii: E1513. doi: 10.3390/s17071513.

Figure 3. Boxplot of AGSVM values for falls and activities of daily

living. Maximum whisker length is specified as 1 times the interquartile

range. The vertical axis are values of the AGSVM parameter are in units

of gravitational constant (g). Horizontal axis represents following

activities/falls: 1-fast run, 2-fast walk, 3-high jump, 4-jump, 5-lie down, 6-
stand up from lying, 7-sitting down, 8-standing up from sitting, 9-slow run,

10-walking up the stairs, 11-walking down the stairs, 12-slow walk, 13-fall

on the back, 14-fall forward, 15-fall sideways

59

[8] Pannurat N, Thiemjarus S, Nantajeewarawat E (2014) Automatic Fall
Monitoring: A Review. Sensors (Basel) vol. 14, issue 7, pp. 12900-12936

[9] Seketa G, Vugrin J, Lackovic I. (2017) Optimal Threshold Selection for
Acceleration-based Fall Detection. 3rd International Conference on
Biomedical and Health Informatics, ICBHI 2017; Thessaloniki; Greece;
18 November 2017 through 21 November 2017. IFMBE Proceedings
Volume 66, 2018, Pages 151-155

[10] Shimmer Sensing Webpage, URL: www.shimmersensing.com, accessed:
15.9.2017

[11] N. H. Kim and Y. S. Yu, “Fall recognition algorithm using gravity-
weighted 3-axis accelerometer data,” Journal of theInstitute of Electronics
and Information Engineers, vol. 50, no. 6, pp. 254–259, 2013.

60

High Frequency Active Distortion Cancellation
Balázs Varga, György Orosz

Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest, Hungary
Email: bvarga92@gmail.com, orosz@mit.bme.hu

Abstract—This paper presents a signal processing method
for cancelling spurious distortion products in high frequency
bandpass signals. The proposed method uses a direct-conversion
demodulator to transpose the signal to baseband, and a resonator-
based observer to determine the harmonic content of the base-
band signal. Based on the observed parameters, the algorithm
generates an appropriate signal that is converted back to the car-
rier frequency and subtracted from the original signal, in order
to suppress the distortion products. The method is illustrated by
simulations and an experimental implementation.

Index Terms—active distortion cancellation, IQ modulation,
digital signal processing

I. INTRODUCTION

Power amplifiers and other active electrical devices often
exhibit nonlinearity, which causes spectral components that are
not present in the input signal to appear in the output signal.
These unwanted distortion products may adversely affect the
operation in several applications where high spectral purity is
required, such as wireless communications and high-precision
instrumentation. In these cases, the effects of nonlinearities
must be minimized so that the output signal can be as free of
spurious spectral contents as possible.

Methods for compensating nonlinearities can be divided into
two major categories: passive and active. Passive approaches
utilize no on-line adaptation, the distortion compensation
mechanism is designed along with the entire system, and is not
changed during operation. The simplest example is filtering the
signal with an analog or digital bandpass filter tuned to fixed
frequencies. A more advanced approach involves the identi-
fication of the transfer function and the pre-distortion of the
input signal according to the inverse of the identified function
[1]. The obvious disadvantage of these passive methods is the
necessary presupposition of long-term stability – if the transfer
function changes during operation, the compensation will no
longer work properly.

In active distortion cancellation, nonlinearities are compen-
sated by a digital control loop which adds an appropriate
signal to the input or the output of the system, suppressing
unwanted frequency components, and making the resulting
response appear linear [2]. With active distortion cancellation,
it is not necessary to make assumptions about the nature of the
nonlinearity at design time; the transfer function is adaptively
identified and compensated during operation.

However, active methods are not without drawbacks either.
Fig. 1 shows two possible arrangements of an active distortion
cancelling system. The addition of the compensating signal

DSP

-

+

DSP

-

+

Fig. 1. Summation at input vs. output.

can be performed at the input or the output of the nonlinear
system. In the former case, the nonlinear system is part of
the control loop, which may have detrimental effects on the
stability and dynamical properties. On the other hand, if the
summation takes place at the output of a power amplifier, the
large signal amplitudes may present a practical challenge [2].

This paper is structured as follows. Section II describes
an algorithm for determining the amplitude and phase of
the distortion products. In Section III, a digital controller is
introduced that can be used in active distortion cancelling
systems, and a method is proposed by which this controller
can be extended to work on high frequency signals. The
described methods are illustrated with numerical simulations
in Section IV. Section V highlights some potential difficulties
that may rise in practical implementations. In Section VI, an
experimental implementation of high frequency active distor-
tion cancellation is presented, along with measurement results.
Finally, Section VII concludes the paper.

II. DETECTION OF DISTORTION PRODUCTS

Let us consider the nth sample of the signal y as a scalar
product of a basis vector cTn and a state vector xn:

yn = cTnxn (1)

In the case of the Discrete Fourier Transform (DFT), let cn
be the nth sample of the set of DFT basis functions:

cn = [ck,n] = ejωkn, k = −L . . . L (2)
ω−k = −ωk (3)

61

×
1

z−1

g1;n

×

c1;n

x̂1;n

×
1

z−1

g2;n

×

c2;n

x̂2;n

×
1

z−1

gN;n

×

cN;n

x̂N;n

++
yn

-

en

Fig. 2. The resonator-based observer.

The resonator-based observer (RBO) – introduced and thor-
oughly analysed in [3] and shown in Fig. 2 – is described by
the following equations:

x̂n+1 = x̂n + gnen (4)

en = yn − cTn x̂n (5)

gn = [gk,n] =
1

N
ck,n (6)

where x̂n is the estimated state vector and N = 2L + 1.
If all equations (1)-(6) are satisfied, the resonator poles are
arranged uniformly on the unit circle, and the observer per-
forms a Recursive Discrete Fourier Transform (RDFT) – the
estimated state vector xn contains the DFT coefficients of y,
at frequencies corresponding to the resonator channels [2].

In practice however, usually not all resonator channels need
to be realised. In this case, (6) becomes:

gn = [gk,n] = αck,n (7)

where 0 < α < 1
N is a common convergence parameter,

chosen to be small enough to ensure stability. Furthermore,
the fundamental frequency f1 (ω1) might change over time, or
it might be unknown. In such cases, the resonator frequencies
can be adaptively tuned to coincide with the harmonics of the
input signal [4].

In an active distortion cancelling application, the resonator-
based observer can be used to determine the amplitude and
phase of the distortion products. The RBO has the following
advantages over traditional DFT implementations:

• A current estimate of x is always available – as opposed
to a blockwise DFT implementation.

• Only the necessary resonator channels need to be realised,
• which also allows faster computation.

III. CONTROL LOOP

A. Traditional control loop

When the RBO has reached steady state, the error signal
is zero and the output follows the input. This feature can
be utilized to construct a resonator-based controller, shown
in Fig. 3 [2]. The controller contains resonator channels
at frequencies that are to be cancelled. The inputs are the

×

c1;n

x̂1;n

×

c2;n

x̂2;n

×

cN;n

x̂N;n

+
rn

β1;n
z−1

β2;n
z−1

βN;n

z−1

Fig. 3. Traditional controller.

corresponding coefficients observed by the RBO. Therefore,
if the controller output rn is subtracted from the input signal
yn, the resulting signal will no longer contain components
at the frequencies of the controller channels – assuming the
algorithm converges.

In the case when there are only linear systems in the control
loop, convergence can be ensured by the appropriate choice
of parameters

βk,n =
β

H(zk)
(8)

where β is a convergence parameter and H(zk) is the transfer
function from the output of the controller to the input of the
system, evaluated at the kth frequency [5]. H(zk) generally
cannot be calculated, therefore it has to be measured prior to
the beginning of operation. This can be done automatically:
the controller generates a sinusoidal signal of the desired
frequency, and the RBO observes the corresponding coefficient
at the input [2].

When nonlinearities are present in the control loop, stability
analysis becomes complicated. However, practical experiments
show that the same linear approach works in the majority of
these cases as well [2].

B. High frequency control loop

According to the sampling theorem, if a signal contains
no frequencies higher than fB , and it is sampled at a rate
of at least 2fB , then it can be perfectly reconstructed from
its samples. Unfortunately, for high frequency signals – such
as those used in wireless communications – blindly applying
this rule would necessitate very high sampling rates and
computational requirements.

However, different approaches exist for signals with narrow
bandwidth that are converted up to a high carrier frequency
(also called bandpass, passband, non-baseband or narrowband
signals) [6], [7]. In this paper, the method known as IQ
modulation is described.

Let us consider the high frequency sinusoidal signal

y(t) = A cos(ωct+ ϕ) =
A

2

[
ej(ωct+ϕ) + e−j(ωct+ϕ)

]
(9)

The spectrum of a real-valued signal always satisfies the
Hermitian property – i.e. Y (−ω) = Y (ω). Multiplication by

62

!c
−!c !

jY (!)j

Fig. 4. Bandpass signal.

a complex exponential corresponds to the linear translation of
the spectrum and yields a complex-valued signal:

v(t) = y(t)e−jω0t =

= y(t) cos(ω0t)− jy(t) sin(ω0t) = (10)

=
A

2
ej((ωc−ω0)t+ϕ) +

A

2
e−j((ωc+ω0)t+ϕ)

Naturally, a complex-valued signal cannot be realised, how-
ever, its real and imaginary part can individually exist as
physical signals. If they are digitised separately, then the
complex signal can be computationally constructed. Taking
into account the anti-aliasing lowpass filters of the analog-to-
digital converters (ADCs), and assuming that ω0 is chosen to
be sufficiently close to ωc, the complex signal becomes

vf (t) =
A

2
ej((ωc−ω0)t+ϕ) (11)

The filtered complex signal vf (t) still carries all amplitude and
phase information of y(t), but its spectrum has been shifted
to the left by ω0 and the resulting high-frequency component
has been omitted. An RBO with a single resonator channel at
ωc−ω0 can be used to determine the amplitude and phase of
vf (t), and therefore also of y(t).

The same principle can be used to generate high frequency
signals. Let us consider the low frequency complex signal

w(t) = Aej(ωt+ϕ) (12)

The real and imaginary part of w(t) can be individually
generated and multiplied by other sinusoidal signals:

r(t) = Re{w(t)} cos(ω0t)− Im{w(t)} sin(ω0t) =

= A cos(ωt+ ϕ) cos(ω0t)−A sin(ωt+ ϕ) sin(ω0t) =

= A cos((ω + ω0)t+ ϕ) (13)

Similarly as before, the high frequency real signal r(t) re-
tained the amplitude and phase of its low frequency complex
representation w(t).

-

DSP+

ADC

ADC

DAC

DAC

+

×

××

×

cos(!0t)

− sin(!0t)

Fig. 5. High frequency controller.

Fig. 5 shows how the method of IQ modulation1 can be
used to extend the traditional distortion cancelling system to
work on high frequency signals.

IV. SIMULATION RESULTS

The high frequency distortion cancelling arrangement
shown in Fig. 5 was simulated in MATLAB. The aim was
to suppress a single sinusoidal signal with a frequency of
fc = 110 kHz. The local IQ signals were generated with
f0 = 100 kHz, resulting in 10 kHz baseband signals. The
complex signal introduced in (11) was assembled and an RBO
was applied to it. Then, the control loop was created according
to Fig. 5.

The simulation results are shown in figures 6 and 7. The
algorithm clearly converges and successfully generates an
output signal (RFout) that cancels out the input signal (RFin).

0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5
RF input and compensation

t [ms]

R
F

in
,

R
F

o
u

t,
e

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1
ADC inputs

t [ms]

in
I,

in
Q

RF
in

RF
out

error

in
I

in
Q

Fig. 6. High frequency (top) and downconverted signals (bottom) at the
beginning of the cancellation. The controller is turned on at 0.4ms.

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5
Observed amplitude

t [ms]

x
1

Fig. 7. Magnitude of the estimated state variable x̂1.

1The name IQ modulation originates from the fact that the local oscillator
produces two signals with a 90 degree phase shift between them: one is often
referred to as the in-phase (I) signal, and the other as the quadrature (Q)
signal.

63

V. IMPLEMENTATION ISSUES

Thus far, the in-phase and quadrature signal paths have been
assumed perfectly identical. In reality however, imbalances
such as offset and gain errors are present. Taking these into
account on the downconversion (input) side, (10) becomes:

ṽ1(t) = (y(t) + C) cos(ω0t)− j (y(t) +D) sin(ω0t) =

= v(t) + C cos(ω0t)− jD sin(ω0t) (14)
ṽ2(t) = y(t) (cos(ω0t) + C)− jy(t) (sin(ω0t) +D) =

= v(t) + Cy(t)− jDy(t) (15)
ṽ3(t) = (1 + ε) y(t) cos(ω0t)− jy(t) sin(ω0t) =

= v(t) + εy(t) cos(ω0t) (16)

As can be seen from (14) and (15), offset errors cause high
frequency components to appear, which are of no particular
concern, since these are eliminated by the lowpass filters of the
ADCs. On the other hand, the gain error results in baseband
components, which are sampled by the ADCs.

Similarly, on the upconversion (output) side, (13) becomes:

r̃1(t) = (Re{w(t)}+ C) cos(ω0t)−
− (Im{w(t)}+D) sin(ω0t) =

= r(t) + C cos(ω0t)−D sin(ω0t) (17)
r̃2(t) = Re{w(t)}(cos(ω0t) + C)−

− Im{w(t)}(sin(ω0t) +D) =

= r(t) +AC cos(ωt+ ϕ)−AD sin(ωt+ ϕ) (18)
r̃3(t) = (1 + ε)Re{w(t)} cos(ω0t)−

− Im{w(t)} sin(ω0t) =

=
(
1 +

ε

2

)
r(t) +

Aε

2
cos((ω0 − ω)t− ϕ) (19)

In this case, all errors have significant effect on the output
signal. A simple way to eliminate these effects is to nu-
merically compensate the errors by the multiplication and
addition of appropriate constants – which can be determined
via measurement or heuristic (e.g. tune the parameters until the
output spectrum is sufficiently pure). This approach proved to
be adequate in the experiment presented in Section VI.

VI. EXPERIMENTAL RESULTS

To experimentally illustrate the viability of the described
concepts, a high frequency distortion cancelling system proto-
type was constructed that closely matches the diagram shown
in Fig. 5. In our setup, all computation was done by an Analog
Devices ADSP-21364 digital signal processor. For the two
ADC and two DAC channels, an AD73322L audio codec was
used. The IQ signal pair was generated by an AD9854 direct
digital synthesizer (DDS) chip designed specifically for this
application. The signal multiplications were carried out by four
AD835 analog multipliers.

Similarly as in Section IV, the aim was to suppress a high
frequency sinusoidal signal. In the measurements presented
here, the frequency of the input signal was 101 kHz, and the
local oscillator was set to 100 kHz, resulting in 1 kHz baseband
signals, which were then sampled by the codec at 64 kHz.

Fig. 8 shows that over 50 dB suppression was achieved. In
Fig. 9, the convergence of the algorithm can be observed.

Fig. 8. Output spectrum without (top) and with (bottom) the controller in
operation. Horizontal scale 25 kHz/div.

Fig. 9. Settling of the output after applying a 101 kHz signal to the input.
Horizontal scale 5ms/div. Settling time approximately 50 milliseconds.

VII. CONCLUSION

In this paper, the concept of a high frequency active dis-
tortion cancelling system was introduced. The mathematical
background was explored and illustrated with simulations, as
well as a working prototype. Some practical difficulties were
examined and a possible solution was proposed. However,
further research should focus on overcoming these issues.

REFERENCES

[1] M. K. Nezami, “Fundamentals of power amplifier linearization using
digital pre-distortion,” High Frequency Electronics, pp. 54–59 , Septem-
ber 2004.

[2] L. Sujbert, B. Vargha, “Active distortion cancelation of sinusoidal
sources,” Proceedings of the IEEE Instrumentation and Measurement
Technology Conference, May 2004, Como, Italy, pp. 322–326.

[3] G. Péceli, “A common structure for recursive discrete transforms,”
IEEE Transactions on Circuits and Systems, vol. CAS-33, pp. 1035–
36, October 1986.

[4] F. Nagy, “Measurement of signal parameters using nonlinear observers,”
IEEE Transactions on Instrumentation and Measurement, vol. IM-41 no.
1, pp. 152–155, February 1992.

[5] L. Sujbert, G. Péceli, “Periodic noise cancelation using resonator based
controller,” 1997 Int. Symp. on Active Control of Sound and Vibration,
ACTIVE 97, pp. 905–916, Budapest, Hungary, August 1997.

[6] R. G. Vaughan, N. L. Scott, D. R. White, “The theory of bandpass
sampling,” IEEE Transactions on Signal Processing, vol. 39 no. 9, pp.
1973–1984, September 1991.

[7] H. Zhou, Y. Zheng, “An efficient quadrature demodulator for medical
ultrasound imaging,”, Frontiers of Information Technology & Electronic
Engineering, vol. 16 no. 4, pp. 301–310, April 2015.

64

Improved frequency response measurements using
local parametric models

Dieter Verbeke
Department ELEC

Vrije Universiteit Brussel
Brussel, B-1050

Email: dieter.verbeke@vub.be

Johan Schoukens
Department ELEC

Vrije Universiteit Brussel
Brussel, B-1050

Email: johan.schoukens@vub.be

Abstract—The concept of local parametric modelling has
sparked renewed attention in frequency response function (FRF)
measurements. Essentially, these approaches assume a particular
parametric structure and approximate the FRF and the leakage
errors in a small window around the frequency of interest.
Following the successful application of the idea in the local
polynomial method (LPM), the local rational method (LRM)
was developed. The smoothness of the transfer function in lowly
damped systems can be insufficient for polynomial approximation
to be effective, provoking us to consider rational functions instead.
The power of the LRM has previously been demonstrated in
both simulations and experiments. At the cost of increased
computation, the LRM reduces the leakage errors with several
orders of magnitude w.r.t. its alternatives while the sensitivity to
disturbing noise remains comparable to that of classical methods.

Keywords—Frequency response function, local parametric mod-
elling, polynomial functions, rational functions, approximation

I. INTRODUCTION

Measuring the FRF to characterize the dynamic behaviour
of a linear time invariant (LTI) system is a well-studied prob-
lem. Spectral analysis methods based on correlation techniques
have long been used as standard tools in engineering practice,
see e.g. [1], [2]. Any non-parametric method suffers from
leakage errors and noise errors. Leakage errors put a major
restriction on the classical methods, even in the absence of
measurement or process noise. For that reason the problem
again attracted considerable attention in more recent years.
With the so-called local polynomial method (LPM), the con-
cept of local parametric modelling was introduced in [3], [4],
[5]. Basically, LPM locally uses polynomial approximations of
the transfer function and the transient behaviour of the system
caused by finite data length and initial conditions effects.
The idea was subsequently extended [6] replacing polynomial
by rational approximants, resulting in what is referred to as
the local rational method (LRM). The potential advantage
of rational approximations is that they may behave better
in the vicinity of poles, and, in particular, may be used to
extrapolate or interpolate a function beyond poles that would
block the convergence of a polynomial, see e.g. [7], [8]. In
this paper we investigate rational approximations of a transfer
function in an effort establish an error bound that relates tuning
parameters to system properties. In this paper we focus on the
LRM. We regard it as a particular instance of a more general
local parametric approach. Inspired by the promising results in

simulations [6] and in experiments [9] we discuss and compare
the different local parametric methods.

II. LOCAL MODELLING

The local parametric methods focus directly on the rela-
tion between input and output DFT spectra. Their essential
advantage lies in their ability to dramatically reduce leakage
errors. The central idea is to estimate the frequency response
by considering a narrow interval around each frequency. Inside
that interval the system and transient model can be represented
by low order approximations. As such a reduced system
identification problem is solved at each frequency of interest.

A. Problem formulation

The data consists of the N-point discrete Fourier transform
(DFT) [10] spectra of input and output signals, possibly
disturbed by additive noise

U(k)=U0(k) (1)
Y (k)=Y0(k) +NY (k). (2)

Inside the window B = [k − n, k + n] the spectra are related
according to

Y (k) = G(k)U(k) + TG(k) +

H(k)E(k) + TH(k), (3)

with

G(k) = BG(k)/AG(k),

T (k) = TG(k) + TH(k) = I(k)/AG(k). (4)

TG(Ωk) and TH(Ωk) are, respectively, the system and
noise transient terms. These are rational functions of the
generalized frequency variable, Ωk, that share the same set of
poles with respectively G(Ωk) and H(Ωk). Note that k and Ωk
as the arguments to a function f(·) are used interchangeably
throughout the text. The transient terms cause leakage errors
in the frequency response function measurements [4].
The unobserved (band-limited) white noise source is assumed
to be independent and identically distributed (iid) at the sam-
pling points, resulting in a DFT spectrum E(k) with favourable
properties (see [4]). The noise variance is given by

σ2
V (k) = Var(V (k)) with V (k) = H(Ω)E(k) (5)

65

The goal is now to obtain a non-parametric estimate of the
frequency response matrix G(k) and the noise variance σ2

V (k)
from the measured input and output spectra in the frequency
band of interest. The major difficulty in obtaining accurate
estimates is the suppression of the leakage terms.

Both transfer function and transient term in model (3-4) are
estimated by minimizing the residuals E(`) inside the interval
B for all ` = k + r with r = −n, . . . , 0, . . . , n

E(`) = Y (l)−G(`, θG)U(`)− TG(`, θTG), (6)

using a weighted least-squares cost function:

Vc(k) =
∑

B

W (`)|E(`)|2, (7)

that is minimized with respect to θG and θTG , the model pa-
rameters. Under mild conditions σ2

Y (k+r) = σ2
Y (k)+O(r/N)

([4], Appendix B), so that we may reasonably assume that
the output noise variance is constant in the interval B. In the
following we revise several options for the weighting function
W (`) and justify our choice in the final algorithm.

B. Weighting the least-squares cost

a) Local polynomial method (LPM): W (`) = 1, Ĝ =
BĜ, T̂ = I . The nonlinear problem is transformed into a linear
least-squares problem by setting the denominator equal to one
AĜ(`) = 1. The minimizer of the simplified cost function

VLPM (k) =
∑

B

|Y (`)−BĜ(`)U(`)− I(`)|2. (8)

is found by solving an overdetermined set of linear equations.

b) Iterative local rational method (ILRM): W (`) = 1,
Ĝ = BĜ/AĜ, T̂ = I/AĜ. Due to the presence of the denom-
inator AĜ(`), the objective function remains truly nonlinear:

VILRM (k) =
∑

B

|Y (`)− BĜ(`)

AĜ(`)
U(`)− I(`)

AĜ(`)
|2. (9)

The optimization problem must now be solved iteratively.

c) Local (linearized) rational method (LRM): W (`) =
|AĜ(`)|2, Ĝ = BĜ/AĜ, T̂ = I/AĜ. The objective function is
linearized by this particular choice of the weighting function,
resulting in another linear least-squares problem, [6],[11]:

VLRM (k) =
∑

B

|AĜ(`)Y (`)−BĜ(`)U(`)− I(`)|2. (10)

C. Comparison of properties

With a short discussion of the properties of the three
outlined methods, we highlight the pertinence of the LRM.

a) Iterative local rational method: The ILRM appears
to be the most straightforward, and the increased computational
cost does not entail an unreasonable burden. A more critical
issue is its high noise sensitivity. Excess poles and zeros
can create large spikes in case of closely spaced poles and
zeros. These artifacts can only be avoided by dedicated model
tuning (at each single frequency). Obviously, this slashes
the robustness of the overall process. The effect of the cost
function on pole-zero cancellation is the subject of Section V.

b) Local polynomial method: The simplified approach
using polynomial approximation proves to be very attractive.
The identification problem is linear in the parameters, and
it turns out that model selection is not critical. Clearly, a
polynomial can only approximate a rational form adequately
in a finite frequency window B. It was shown in [12] that
in case of lowly damped systems the approximation error
ELPM is bounded by (BLPM/B3dB)R+2. In this expression
BLPM is the local bandwidth of the LPM, R the degree of
the local polynomial (assumed to be even), and B3dB the 3-dB
bandwidth around a resonance, a system property. Compared
to the spectral windowing methods, a huge gain is made in the
reduction of leakage errors. The length of the local window
is subject to a trade-off [13]. On the one hand the interval
should be as small as possible to reduce model errors. On
the other hand it must contain enough frequencies to estimate
all complex coefficients in the polynomial approximants. In
addition, increasing the length of B reduces the sensitivity of
the estimate to noise.

c) Local rational method: For systems with low damp-
ing, as often occurs in advanced mechanical applications (and
other applications dealing with high resonances), the constraint
B ≤ B3dB may not be satisfied. The potential advantage of
rational approximations is that they may behave better in the
vicinity of poles, and, in particular, may be used to extrapolate
or interpolate a function beyond poles that would block the
convergence of a polynomial, see e.g. [7], [8].

III. A CLOSER VIEW ON THE LOCAL RATIONAL METHOD

The basic idea of the LRM is very simple. The frequency
response G and the transient term T are smooth functions of
the frequency. Furthermore, for a linear time invariant system,
they have a rational form. As a result, they can be approx-
imated in a narrow band around a particular frequency k by
low-order complex rational functions. The complex parameters
are estimated in a local band and the function value at the
center frequency k is retrieved as the FRM at that point.

A. Basic equations

The crucial property used in local parametric approaches
is that G(Ωk), H(Ωk), T (Ωk) are smooth functions of the
frequency. Returning to the local frequency variable r =
−n, . . . , 0, . . . , n the output spectrum at line k + r can be
written as:

Y (k+ r) = G(k+ r)U(k+ r) + T (k+ r) + V (k+ r), (11)

where T (k) = TG(k) + TH(k) since there is no means of
discriminating between system and noise transients at that
level. G(k) and T (k) are assumed to be rational functions,
consequently having continuous derivatives up to any order.
Then G(k + r) and T (k + r) can be expanded at k + r as:

G(k + r) = G(k) +

R∑

s=1

gs(k)rs +O((r/N)(R+1)),(12a)

T (k + r) =
R∑

s=1

ts(k)rs +N− 1
2O((r/N)(R+1)). (12b)

This expression originates from applying Taylor’s formula
with remainder to (11) and is the basis for the LPM. The

66

remainders are, respectively, the system interpolation error
and the sum of the residual system and noise leakage errors.

In the LRM the above polynomial approximation is sub-
stituted for a (linearized) rational approximation Ĝ(k) =
B(k)/A(k). Note that the subscript Ĝ is dropped to unburden
the notation. Neglecting the remainders results in

Y (k + r) =
B(k + r)

A(k + r)
U(k + r) +

I(k + r)

A(k + r)
+ V (k + r) (13)

where X (k + r) = X (k) +
∑R
s=1 xs(k)rs with X =

I,B,Aandx = i, b, a denote the polynomials corresponding to
the transient term, and the transfer function’s denominator and
numerator. Note that for the expansion of the system transfer
function numerator and denominator, as well as the leakage
term, different orders are allowed. However, it turns out that
if an R-th order approximation is suitable for Ĝ (effectively
A), it is also appropriate for T̂ . The reason is that G and T
have the same poles, and that the system leakage term TG is
dominant with respect to the noise leakage term TH .

B. Linearized least squares

Rearranging (13) (without the noise contribution) leads to

A(k + r)Y (k + r) = B(k + r)U(k + r) + I(k + r). (14)

In order to avoid the trivial solution Θ = 0, A(k) is set equal
to one. With this additional assumption the equation becomes:

Y (k + r) = B(k + r)U(k + r) + I(k + r)

−ÃY (k + r) + Ṽ (k + r)

= ΘK(k + r) + Ṽ (k + r), (15)

where we have introduced Ã(k + r) = A(k + r) − 1, and
Ṽ = A(k + r)V (k + r). Θ is the 1× (3R + 2) vector of the
unknown complex parameters

Θ = [b0(k) b1(k) b2(k) . . . nR(k) . . .

i0(k) i1(k) i2(k) . . . iR(k) . . .

a1(k) a2(k) . . . aR(k)] (16)

K(k + r) is a vector of size (3R+ 2)× 1:

K(k + r) =



κ(r, β)U(k + r)

κ(r, ι)

−κ(r, α)Y (k + r)


 (17)

where β, ι = [0 1 . . . R]
T and α = [1 2 . . . R]

T . κ(r, χ) is
defined as

κ(r, χ) = rχ ∈ Znχ×(2n+1), (18)

with nX the number of elements of X . Collecting (15) for
r = −n,−n+ 1, . . . , 0, . . . , n− 1, n gives

Yn = ΘKn + Ṽn (19)

where Yn, Kn and Vn are, respectively, 1× (2n+ 1), (3R +
2× (2n+ 1) and 1× (2n+ 1) matrices

Xn = (X(k − n)X(k − n+ 1) . . . X(k) . . . X(k + n)) (20)

with X = Y, K, Ṽ .
When 2n+ 1 ≥ 2(R+ 1) +R. Eq. (19) is an overdetermined
set of equations that can be solved in the least squares sense
as

Θ̂ = YnK
H
n (KnK

H
n)−1. (21)

xH denotes the Hermitian transpose of x.

The local rational estimate of the frequency response
function and the transient term at frequency k is then obtained
via

Ĝ(k) = Θ̂ (1 0)
H

= Θ̂[1] (22)

Î(k) = Θ̂ (0 1 0)
H

= Θ̂[(R+1)+1] (23)

where X[1,j] selects the j-th element of X . Because the DFT
lines k + r, for r = −n, n − n + 1, . . . , n are used for
estimating the FRF at k, Ĝ(k) is correlated with Ĝ(k + r)
for r = −n,−n+ 1, . . . 0, . . . , n.

IV. APPROXIMATION ERROR

When the system under test exhibits strongly resonant
behaviour, the LRM performs remarkably better than the
classical spectral analysis techniques, and even, the LPM.
Figure 1 supports that claim. Given that for a certain class of
systems the interpolation errors dominate stochastic errors, it is
of prime importance to understand the source of approximation
errors induced by rational approximation.

0 0.5
−200

−150

−100

−50

0

f/f
s

(a)

A
m

pl
itu

de
 (

dB
)

0.29 0.3 0.31
−20

−10

0

10

20

0 0.5
−200

−150

−100

−50

0

f/f
s

(b)

A
m

pl
itu

de
 (

dB
)

Fig. 1. A comparison of errors in FRF measurements for a simple numerical
example using undisturbed data. A system composed of a highly and a lowly
damped resonance is excited with filtered white noise (bandwidth of 0.4fs)
The full record contains 4096 samples. Figure (a) shows the results for a
spectral analysis method with Hann window applied on subrecords of length
N = 256 (red) and N = 1024 (pink) samples, both with an overlap of
R = 2/3 × N . In the inset of (a) a zoom around the second resonance is
given. The LPM (pink) and LRM (red) in figure (b) is applied to the full length
record. Observe that the errors of the LPM/LRM are an order of magnitude
smaller than those of the Hanning method. The LRM outperforms the LPM.

V. POLE-ZERO CANCELLATION

In Section II-C we mentioned that closely spaced zeros
and poles can create large spikes in the ILRM. We used this
argument to reject the ILRM in favour of the LRM. Here we
support that observation with a simplified analysis of their

67

respective cost functions. We consider the simplest transfer
function one can imagine: a SISO transfer function with one
pole-zero pair that cancels itself. Then we add a disturbance on
the zero and study the effect on the respective cost functions.

A. Simplified analysis

We consider the simplest transfer function one can imagine:
a SISO transfer function with one pole-zero pair that cancels
itself. Then we add a disturbance on the zero and study the
effect on the respective cost functions.

B

A
=

1 + bs

1 + as
with

{
b = (d+ ε)j
a = (d+ 0)j

(24)

In case of the ILRM we work with the cost function

EILRM = Y − B

A
U, (25)

and find that the perturbed transfer function is equal to
1 + djs+ εjs

1 + djs
= 1 +

εjs

1 + djs
. (26)

Evaluating the above in s = j(1/d + ∆) gives an error
expression

EILRM = ε
1/d+ ∆

∆
U (27)

In case of the LRM the error function has the form

ELRM = AY −BU. (28)

Evaluating again at s = j(1/d+∆), this leads to an error term

ELRM = ε(1/d+ ∆)U (29)

Summing over all neighbouring frequencies r =
−n, . . . , 0, . . . , n we get

∑

r

E2
ILRM,r =

∑

r

ε2
|1/d+ ∆r|2

∆2
r

|U |2 (30)

∑

r

E2
LRM,r =

∑

r

ε2(1/d+ ∆r)
2|U |2 (31)

Figure 2 compares the error terms (30) and (31). From this
graphical display it becomes clear that the ILRM is much more
sensitivity to residual effects due to closely spaced poles and
zeros.

VI. CONCLUSION

In this contribution we introduce the local parametric
modelling approaches to FRF estimation from the point of
view of the cost function in the subordinate identification
problems. We investigate the errors due to rational approx-
imation and consider the effect of pole-zero cancellation.
We find that rational functions can suppress approximation
errors, consequently lowering the requirements on frequency
resolution, shortening measurement time, while simultaneously
being robust to perturbations.

ACKNOWLEDGMENT

This work was supported in part by the Fund for Scientific
Research (FWO-Vlaanderen), and by the ERC advanced grant
SNLSID, under contract 320378. Dieter Verbeke is supported
by an SB-grant of the FWO.

−100 −50 0 50 100

−80

−70

−60

−50

−40

r [-]

E
rr

or
[d

B
]

ILRM
LRM

Fig. 2. Pole-zero cancellation and the effect of small perturbations on the
error function. In this numerical example c = 0.01, ε = 0.0001 and n = 100.

REFERENCES

[1] J. Bendat and A. Piersol, Engineering applications of correlation and
spectral analysis. Wiley, 1980.

[2] K. Godfrey, “Correlation methods,” Automatica, vol. 16, no. 5, pp. 527
– 534, 1980.

[3] J. Schoukens, G. Vandersteen, K. Barbé, and R. Pintelon, “Nonparamet-
ric preprocessing in system identification: A powerful tool,” European
Journal of Control, vol. 15, no. 3-4, pp. 260–274, 2009.

[4] R. Pintelon, J. Schoukens, G. Vandersteen, and K. Barbé, “Estimation of
nonparametric noise and FRF models for multivariable systems—Part
I: Theory,” Mechanical Systems and Signal Processing, vol. 24, no. 3,
pp. 573 – 595, 2010.

[5] ——, “Estimation of nonparametric noise and FRF models for multi-
variable systems—Part II: Extensions, applications,” Mechanical Sys-
tems and Signal Processing, vol. 24, no. 3, pp. 596 – 616, 2010.

[6] T. McKelvey and G. Guérin, “Non-parametric frequency response
estimation using a local rational model1,” IFAC Proceedings Volumes,
vol. 45, no. 16, pp. 49 – 54, 2012.

[7] P. Gonnet, “Robust rational interpolation and least-squares,” Electronic
Transactions on Numerical Analysis, vol. 38, pp. 146–167, 2011.

[8] W. Van Assche, “Padé and Hermite-Padé approximation and orthogo-
nality,” Surveys in Approximation Theory, vol. 2, pp. 61–91, 2006.

[9] D. Verbeke and J. Schoukens, “Improved nonparametric identification
of lightly-damped mechanical multiple-input multiple-output systems,”
Proceedings of the International Conference on Noise and Vibration
(ISMA 2016), pp. 2983 – 2993, 2016.

[10] R. Pintelon and J. Schoukens, System identification: a frequency domain
approach. John Wiley & Sons, 2012.

[11] E. Levy, “Complex-curve fitting,” IRE transactions on automatic con-
trol, no. 1, pp. 37–43, 1959.

[12] J. Schoukens, G. Vandersteen, R. Pintelon, Z. Emedi, and Y. Rolain,
“Bounding the polynomial approximation errors of frequency response
functions,” IEEE Transactions on Instrumentation and Measurement,
vol. 62, no. 5, pp. 1346–1353, 2013.

[13] P. Thummala and J. Schoukens, “Estimation of the frf through the
improved local bandwidth selection in the local polynomial method,”
IEEE Transactions on Instrumentation and Measurement, vol. 61,
no. 10, pp. 2833–2843, Oct 2012.

68

