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FOREWORD

This proceedings is a collection of the lectures of the 23rd Minisymposium held at the Department of
Measurement and Information Systems of the Budapest University of Technology and Economics. In
the previous years the main purpose of these symposia was to give an opportunity to the PhD students
of our department to present a summary of their work done in the preceding year. It is an interesting
additional benefit, that the students get some experience: how to organize such events. Beyond this
actual goal, it turned out that the proceedings of our symposia give an interesting overview of the
research and PhD education carried out in our department. This year the scope of the Minisymposium
has been widened; foreign partners and some best MSc students are also involved.

The lectures reflect partly the scientific fields and work of the students, but we think that an insight into
the research and development activity of our and partner departments is also given by these contribu-
tions. Traditionally our activity was focused on measurement and instrumentation. The area has slowly
changed, widened during the last few years. New areas mainly connected to embedded information
systems, new aspects e.g. dependability and security are now in our scope of interest as well. Both
theoretical and practical aspects are dealt with.

The lectures are at different levels: some of them present the very first results of a research, others
contain more new results. Some of the first year PhD students have been working on their fields only
for half a year. There are two types of papers. One is a short independent publication; it is published
in the proceedings. The other is simply a summary of the PhD student’s work. This second one is
intended to give an overview of the research done during the last year; therefore, it could contain
shorter or longer parts of the PhD student’s other publications. It does not necessarily contain new
results, which have not been published earlier. It is clearly indicated in each paper that which category
it belongs to. To avoid copyright conflicts, these papers are not published in the proceedings. Anyone
interested, please contact the author.

During this twenty-two-year period there have been shorter or longer cooperation between our depart-
ment and some universities, research institutes, organizations and firms. Some PhD research works
gained a lot from these connections. In the last year the cooperation was especially fruitful with the
European Organization for Nuclear Research (CERN), Geneva, Switzerland; Vrije Universiteit Brussel
Dienst ELEC, Brussels, Belgium; Robert Bosch GmbH., Stuttgart, Germany; Department of Engineer-
ing, Università degli Studi di Perugia, Italy; Department of Medical Engineering and Physics, Riga
Technical University, Latvia; National Instruments Hungary Kft., Budapest; IEEE Instrumentation and
Measurement Society & Engineering in Medicine and Biology Society Joint Chapter, IEEE Hungary
Section.

We hope that similarly to the previous years, also this Minisymposium will be useful for the lecturers,
for the audience and for all who read the proceedings.

Budapest, January, 2016

Béla Pataki
Chairman of the PhD

Mini-Symposium

2





LIST OF PARTICIPANTS

Participant Supervisor Programme
Birpoutsoukis, Georgios Schoukens, Johan PhD
Darvas, Dániel Majzik, István PhD
Debreceni, Csaba Varró, Dániel PhD
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Generic Representation of PLC Programming
Languages for Formal Verification

Dániel Darvas∗†, István Majzik∗ and Enrique Blanco Viñuela†
∗Budapest University of Technology and Economics, Department of Measurement and Information Systems

Budapest, Hungary, Email: {darvas,majzik}@mit.bme.hu
†European Organization for Nuclear Research (CERN), Beams Department

Geneva, Switzerland, Email: {ddarvas,eblanco}@cern.ch

Abstract—Programmable Logic Controllers are typically pro-
grammed in one of the five languages defined in the IEC 61131
standard. While the ability to choose the appropriate language
for each program unit may be an advantage for the developers,
it poses a serious challenge to verification methods. In this paper
we analyse and compare these languages to show that the ST
programming language can efficiently and conveniently represent
all PLC languages for formal verification purposes.

I. INTRODUCTION AND BACKGROUND

Programmable Logic Controllers (PLCs) are widely used
for various control tasks in the industry. As they often perform
critical tasks – sometimes PLCs are even used in safety-
critical settings up to SIL3 – the verification of these hardware-
software systems is a must. Besides the common testing and
simulation methods, formal verification techniques, such as
model checking are increasingly often used.

The corresponding IEC 61131 standard defines five PLC-
specific programming languages: Instruction List (IL), Struc-
tured Text (ST), Ladder Diagram (LD), Function Block Di-
agram (FBD) and Sequential Function Chart (SFC) [1]. It is
out of the scope to discuss the features of these languages in
detail, but a simple example in Figure 1 shows the different
flavours of these languages. The first four example program
excerpts are execution equivalent, i.e. for all possible starting
(input and retained) variable valuations, the results of these
programs are the same variable valuations. The SFC example is
different from the others, as this is a special-purpose language
for structuring complex applications.

This variety of languages responds to the fact that PLCs
are used in different settings and programmed by people with
various backgrounds. This is an advantage for the developers,
but an important challenge for the verification. The languages
can be freely mixed, e.g. a function written in IL can call an ST
function. To provide a generally applicable formal verification
solution, all these languages should be supported.

A. Motivation

Our practical motivation lies in the PLCverif formal ver-
ification tool and its workflow [2], [3]. The PLCverif tool
provides a way for PLC program developers to apply model
checking to their implementation. This allows to check the
satisfaction of various state reachability, safety and liveness
requirements. The inputs of the model checking workflow
are the source code and the requirements formalized using
verification patterns. At the moment, programs (or program
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IF NOT(x = TRUE OR
   y = FALSE) THEN
    r1 := TRUE;
END_IF;
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Fig. 1. PLC language examples

units) written in the Siemens variant of ST or SFC are
supported. These inputs are convenient for the users not famil-
iar with formal verification methods. PLCverif automatically
generates temporal logic expressions from the pattern-based
requirements, parses the input code, builds a simple, automata-
based intermediate verification model, calls the chosen external
model checker tool (e.g. nuXmv), and presents the results in
a simple, self-contained format to the user. The tool is in use
at the European Organization for Nuclear Research (CERN)
to check critical control programs [4]. While most of the PLC
programs are written in ST at CERN, in special cases (e.g.
safety-critical applications) restrictions forbid the use of ST. To
make PLCverif generally applicable, all five PLC programming
languages should be supported.

From the development point of view, providing a complete
parser and a verification model builder is a great effort.
Furthermore, the grammars of the PLC languages are notably
different, making it difficult to use the same technology stack.
For example, the currently used Xtext-based parser is not suit-
able for the IL language, where the same tokens can be treated
as keywords or names depending on the context. On the other
hand, the different languages have many common parts, e.g.
function and function block declarations, variable declarations.
If these should be developed for each language independently,
the maintenance of the tool may become difficult.

Instead, in this paper we investigate the possibility of
a different approach: is it possible to use the ST language
as a pivot to represent all five standard PLC languages? If
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the translation preserves the properties of the model to be
checked, adding this extra translation step (i.e. transformation
to ST, then parse and build the verification model) makes no
theoretical difference, the pivot language might be considered
as a concrete syntax of the underlying verification model.
However, as it will be discussed later, the development and
maintenance effort needed could be significantly lower.

To answer this question, the relations between the PLC
languages have to be investigated. As it might not be possible
or practical to translate each language directly to ST, the
relationship between all languages should be discussed.

B. Related Work

Transformation of PLC programs were already studied pre-
viously. For example, Sadolewski translates ST programs into
ANSI C [5] and Why [6] for verification purposes. However,
in both work the source and target languages are on a similar
abstraction level, not necessitating a detailed analysis of the ST
language. Sülflow and Drechsler [7] translate IL programs to
SystemC representation in order to perform equivalence check-
ing. Here the translation involves a significant change in the
abstraction level, requiring more considerations. Furthermore,
all of them targeted one single source PLC language. In our
work, all the five PLC languages are compared.

The paper is structured as follows. Section II defines
our comparison method. Section III discusses the relations
between the different IEC 61131 PLC programming languages.
Next, Section IV discusses a concrete implementation of these
languages, namely the one provided by Siemens. Section V
analyzes the results of the paper and draws the conclusions.
Finally, Section VI summarizes the paper.

II. COMPARISON METHOD

The expressive power of different programming languages
is often discussed in computer science. However, the typical
answer to these questions for a pair of commonly used
languages is that both languages are Turing complete, therefore
their expressive power is equivalent.

For our purposes, this is not a useful comparison. Firstly,
because these languages are designed for special purposes,
therefore they contain many limitations. One of them is the
lack of dynamic memory allocation. Together with the lack
of recursion [1, Sec. 2.5] and the limited data structures, it
is impossible to use more storage than the amount defined
explicitly in compilation time. These limitations are parts of the
language definition, not caused by implementation or hardware
limitations, therefore these languages are not Turing complete.

Secondly, when we are looking for a pivot language, it is
not enough to know that a certain program can be represented
in another language, i.e. for each program in source language
S there exists an execution equivalent program in language
T . It should be known as well, how can this translation be
performed. Therefore we are interested in a stronger, element-
wise emulation relation that determines whether each “ele-
ment”1 of a language S can be mapped to language T . If this
relation holds, then inductively all programs of language S

1As the PLC languages are significantly different, “element” is understood
on a high level (i.e. an element can be a statement, but also a wire junction).

can be translated into language T , in other words language T
can emulate language S. This is close to defining a small-step
operational semantics for language S in language T .

In the following we investigate for each pair of PLC
languages if such element-wise mapping relation exists. Note
that this relation is transitive, reflexive and asymmetric. We
start the investigation with the IEC 61131 version of the
languages, as they have a detailed, yet semi-formal description
in [1]. Later, we check the differences between the standard
and the Siemens variants.

III. STANDARD LANGUAGES

In this section, we discuss the element-wise representation
relation for each pair of standard PLC languages. The find-
ings are summarized in Table I. Here “–” denotes that this
representation is not possible.

TABLE I. ELEMENT-WISE MAPPING BETWEEN STANDARD LANGUAGES

XXXXXXXfrom
to ST IL FBD LD SFC

ST + + – – –
IL – + – – –

FBD – + + + –
LD – + + + –

SFC + + + + +

SFC is based on a specification method called Grafcet,
which itself has roots in safety Petri nets. The goal of SFC
is to structure the programs, it is not intended to be a generic
PLC language. As only certain types of program units can be
represented by SFCs, while the other four languages target all
of the program unit types, no other language can be repre-
sented in SFC. Since it is based on Petri nets, translating the
structure of an SFC program to any other language might be
problematic, because Petri nets allow non-determinism, while
the PLC languages are deterministic. However, determinism is
explicitly required by the standard [1, Sec. 2.6.5]. The parts
of SFC besides the structure are defined as simple program
snippets in other languages and these specific parts can be
easily mapped to any other PLC language, assuming that the
ambiguities of the standard are first resolved [8].

FBD and LD are two similar graphical languages. FBD is
composed by signal flow lines and boxes representing built-in
and user-defined program units. LD is closer to the electric
diagrams, with concepts like power rails, contacts and coils.
Despite the differences, IEC 61131 defines LD and FBD in a
similar way, with many common elements. The differences
[1, Sec. 4.2–4.3] are minor and mainly syntactic. All LD-
specific elements (e.g. coils, power rails) can be translated
to equivalent FBD elements and vice versa. The wires and
flow lines represent data flows, the coils and contacts have
corresponding instructions in IL, that is an assembly-like, low-
level language. The built-in and user-defined blocks of FBD
and LD can be called from IL as well. Therefore each FBD
and LD program can be element-wise mapped to IL, in some
cases requiring to explicitly introduce new variables that are
only implicitly present (as wires) in the FBD and LD programs.

Contrarily, LD and FBD programs cannot be element-wise
mapped to ST. The FBD, LD and IL languages support labels
and jumps, but ST enforces structured programming, thus
jumps are missing from the language [1, Sec. B.3]. Although
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it is known that Turing complete programs can be made jump-
free by replacing jumps with loops and conditional statements
[9], this construction does not fit to our approach of element-
wise mapping.

IL has instructions such as LD (load value to accumulator)
or ST (store the accumulator value to the given variable), and
the other languages do not provide direct access to the accu-
mulator, this way the element-wise (instruction by instruction)
translation to any other PLC language is not possible.

ST is a high-level, structured textual language. Besides
providing program structuring elements, such as conditional
statements (IF, CASE) and loops, it also makes the indi-
rect variable access possible. For example, the expression
“array_var[var1]” is allowed in ST, but not in FBD
or LD [1, Sec. 2.4.1.2], therefore the ST to FBD or LD
translation is not possible. On the other hand, these expressions
are allowed in IL. More precisely, the ST syntax for defining
expression is allowed in IL in certain cases. Based on the
syntax and semantics definitions of ST and IL, each ST
statement can be represented by a list of IL instructions: the
corresponding arithmetic operations exist in IL as well, the
variable assignments can be performed through LD and ST,
the selection and iteration statements can be represented by
labels and jumps, etc.

Based on the above discussion and Table I, ST does not
seem to be a pivot language candidate. However, before the
final conclusion, the implementation of the languages should
also be checked for two reasons: (1) the different manufactur-
ers may have differences in their implementation compared to
the standard, and (2) the IEC 61131 standard is ambiguous [8],
[10] and the vendors might resolve the ambiguities differently.
The following section compares a concrete implementation of
the five PLC programming languages.

IV. IMPLEMENTATION OF THE LANGUAGES

The IEC 61131 standard does not discuss the implemen-
tation details of the languages. Several decisions are left to
the vendors, marked as “implementation-dependent” feature
or parameter in the standard (e.g. range of certain data types,
output values on detected internal errors). Consequently, PLC
providers support different variants of the languages. The
implementation-dependent details are also important for the
behaviour of the programs, thus it is necessary to check these
details. Siemens is the PLC provider most used at CERN,
therefore we focus on the Siemens variants of the languages
in this section. All five languages are supported in Siemens
PLCs, however with some differences [11]. Compared to the
standard, the differences are significant in some cases, also
some languages have ancestors from times before IEC 61131,
thus Siemens uses different names for their languages: instead
of ST, IL, FBD, LD, SFC the Siemens languages are called
SCL, STL, FBD, LAD, SFC/GRAPH, respectively. To avoid
the confusion of the readers, we will use the standard language
names for the Siemens variants too, with an added apostrophe.

The differences between the standard and Siemens versions
of FBD, LD and SFC are subtle and mainly syntactic2 [11].

2For instance, LD’ fully implements the standard. The only difference
between FBD and FBD’ is that the latter does not support the unconditional
jumps, but it is easy to represent them as conditional jumps [11].

TABLE II. ELEMENT-WISE MAPPING BETWEEN SIEMENS LANGUAGES

XXXXXXXfrom
to ST’ IL’ FBD’ LD’ SFC’

ST’ + + – – –
IL’ – + – – –

FBD’ + + +
LD’ + + +

SFC’ + + + + +

Notable differences in syntax and semantics between the stan-
dard and the implementation can be observed in the Siemens
variants of ST and IL. The following part of the section
overviews the differences compared to Table I, see Table II.

As the FBD’, LD’, and SFC’ are equal to the standard
versions, the relations between them are valid for the Siemens
variants too. ST’ and IL’ are extended compared to the standard
equivalents. Therefore if one of these languages can be mapped
to ST or IL, it can be mapped also to the corresponding
implementation, and if ST or IL cannot be mapped to one
of these languages, IL’ or ST’ cannot be mapped to the
implementation of the same language either. Consequently, the
shaded cells of Table II are inherited from Table I.

Due to the limitations of the Siemens development envi-
ronment, the FBD’ and LD’ programs can only be exported if
they are translated to IL’ first. According to [12], the translation
from LD’ and FBD’ to IL’ is always possible. We omit the
discussion of transforming LD’ and FBD’ to ST’ or SFC’, as
they would be practically infeasible.

The Siemens variant of ST is significantly extended com-
pared to the standard. It includes labels and jump functions,
which invalidates the reasoning of Section III why IL, LD
and FBD cannot be represented in ST. Despite the extensions,
it is not possible in ST’ to directly access the registers, e.g.
modifying the contents of the accumulators. Therefore the IL’
instruction “L var1”, transferring the contents of Accumula-
tor 2 to Accumulator 1 and then loading the content of variable
var1 to Accumulator 2 cannot be directly represented in ST’.
One can argue that a function containing only the instruction
“L var1” is meaningless, as its effect will be made invisible
when the function returns. However, this example is enough
to demonstrate that the element-wise mapping is not possible.

The Siemens variant of IL is remarkably different from
the standard IL. This is manifested in a different syntax. A
short example is the following: the IL program in Listing 1
and the IL’ program in Listing 2 give the same outputs to the
same inputs, but they use a significantly different syntax and
underlying semantics. The behaviour of both code snippets is
equivalent to r:=(a >= b) in ST. The background of this
difference is that the standard defines only one “register”, the
result variable. The Siemens implementation is closer to the
assembly-like languages, using several status bits, registers,
accumulators, etc3. As the ST’ and IL’ language definitions
are non-formal, it is difficult to argue about the ST’ to
IL’ transformation. However, the Siemens development tool
provides this transformation capability, therefore we treat this
as possible.

3From this point we use the term “register” in a generic way, referring to
status bits, accumulators, nesting stack, etc.
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1 LD a (∗ RES:=a ∗)
2 GE b (∗ RES:=(RES>=b) ∗)
3 ST r (∗ r:=RES ∗)

Listing 1. Example IL code

1 L a (∗ ACC2:=ACC1; ACC1:=a ∗)
2 L b (∗ ACC2:=ACC1; ACC1:=b ∗)
3 >=I (∗ RLO:=(ACC2>=ACC1) ∗)
4 = r (∗ r:=RLO ∗)

Listing 2. Example IL’ code

FBD’

LD’

SFC’

IL’

ST’

STr’

(1)

(1)
(2)

(3) (4)

Fig. 2. Unified representation of Siemens PLC languages

V. ANALYSIS AND CONCLUSION

Looking at Table II might lead to the same conclusion
for the Siemens implementations of the languages as Table I.
However, due to the extensions in the implementations, the
gap between IL’ and ST’ is much smaller than between their
standard equivalents. The only difference between them is the
possibility to access the registers directly. Therefore ST’ can be
a pivot language, if it is extended with the emulation of register
access by using dedicated local variables for verification
purposes. We will refer to this format of the programs as
STr’. As the values of the registers are saved on the stack
on each function call, their values are local to each program
unit, they can be represented as local temporary variables.
Thus the mapping from IL’ to STr’ can be done instruction
by instruction, by explicitly representing the effects of each
instruction on the basis of their semantics. For example, the
above-mentioned “L var1” will be represented as “ACC2
:= ACC1; ACC1 := var1;”, where ACC1 and ACC2 are
the local variables representing Accumulator 1 and 2. This idea
is similar to the SystemC representation used in [7].

Although the FBD’ and LD’ cannot be directly translated to
STr’ in practice, it is feasible through IL’. The SFC’ programs
can directly be mapped to ST’, thus to STr’ also. The advantage
of this method is that one parser and generator to construct
the intermediate verification model fits all languages. Only a
simpler, text-to-text mapping to STr’ has to be developed for
each language that is responsible for translating the language-
specific parts, element by element.

One could argue that IL’ might be a good pivot language
without defining any extension or representation convention
for the verification. However, STr’ is a higher-level language,
with a more compact representation (especially the expression
description is more compact). The underlying intermediate
verification model supports also complex expressions (simi-
larly to the formalism of many model checkers, e.g. nuXmv,
UPPAAL), therefore translating a compact ST’ expression to
a lengthy IL’ form is inefficient. Also, in our setting typically
ST’ codes are verified, therefore using STr’ (and not IL’) as
pivot can provide support for the other languages without any
impact on the verification of ST’ programs.

Figure 2 summarizes the proposed generic representations
of PLC languages for PLCverif. The FBD’ and LD’ graph-
ical languages can be translated into IL’ by the Siemens
development environment (1). An instruction-by-instruction
transformation from IL’ to STr’ that makes the effects of the
IL’ instructions explicit is implemented for the most common
instructions (2). The SFC’ to ST’ translation is relatively
simple, it can be implemented using the same principles as the

ones used in [2] to represent SFC’ directly using the PLCverif
intermediate model (3). Finally, ST’ is a subset of STr’, thus
it does not need any further transformation step (4). The STr’
code is the input for the verification model generation.

In this paper interrupts were not targeted. Certain PLCs
may use interrupts, interrupting the execution of the main
program. A certain IL’ instruction can be atomic, but the cor-
responding STr’ representation, comprising several statements
will not be atomic. This might cause concurrency problems
and discrepancies between the two representations of the code.
However, if this is critical, a locking mechanism can be added
to the translation. Although the IEC 61131 standard does not
define any locking mechanism, it is defined for the Siemens
ST’ language via the available system function blocks.

VI. SUMMARY

This paper presented the relations between the different
PLC programming languages, both for the standard versions of
IEC 61131 and the Siemens implementations. For our practical
goals, i.e. to extend PLCverif to support all five Siemens
variants of the PLC languages, a good pivot language candidate
was found: STr’ that is the Siemens ST’ language emulating
register access with variable access for verification purposes.
Using STr’, PLCverif can efficiently support the verification
of low-level languages (IL’, FBD’, LD’), without modifying
the core workflow or decreasing the verification performance
of the programs written in ST’ language.
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Abstract—The verification of safety-critical real-time systems
can find design problems at various phases of the development or
prove the correctness. However, the computationally intensive na-
ture of formal methods often prevents the successful verification.
Abstraction is a widely used technique to construct simple and
easy to verify models, while counterexample guided abstraction
refinement (CEGAR) is an algorithm to find the proper abstrac-
tion iteratively. In this work we extend the CEGAR framework
with a new refinement strategy yielding better approximations
of the system. A prototype implementation is provided to prove
the applicability of our approach.

I. INTRODUCTION

It is important to be able to model and verify timed behavior
of real-time safety-critical systems. One of the most common
timed formalisms is the timed automaton that extends the finite
automaton formalism with real-valued variables – called clock
variables – representing the elapse of time.

A timed automaton can represent two aspects of the be-
havior. The discrete behavior is represented by locations and
discrete variables with finite sets of possible values. The time-
dependent behavior is represented by the clock variables, with
a continuous domain.

A timed automaton can take two kinds of steps, called
transitions: discrete and timed. A discrete transition changes
the automaton’s current location and the values of the discrete
variables. In addition, it can also reset clock variables, which
means it can set their value to 0. Time transitions represent the
elapse of time by increasing the value of each clock variable
by the same amount. They can not modify the values of
discrete variables. Transitions can be restricted by guards and
invariants.

In case of real-time safety-critical systems, correctness is
critical, thus formal analysis by applying model checking
techniques is desirable. The goal of model checking is to
prove that the system represented by the model satisfies a
certain property, described by some kind of logical formula.
Our research is limited to reachability analysis where the
verification examines if a given set of (error) states is reachable
in the model. Reachability criterion defines the states of
interest.

Many algorithms are known for model checking timed
systems, the one which defines an efficient abstract domain
to handle timed behaviors is presented in [1]. The abstract
domain is called zone, and it represents a set of reachable

valuations of the clock variables. The reachability problem is
decided by traversing the so-called zone graph which is a finite
representation (abstraction) of the continuous state space.

Model checking faces the so-called state space explosion
problem – that is, the statespace to be traversed can be
exponential in the size of the system. It is especially true for
timed systems: complex timing relations can necessiate a huge
number of zones to represent the timed behaviors. A possible
solution is using abstraction: a less detailed system description
is desired which can hide unimportant parts of the behaviors
providing less complex system representations.

The idea of counterexample guided abstraction refinement
(CEGAR) [2] is to apply model checking to this simpler
system, and then examine the results on the original one.
If the analysis shows, that the results are not applicable to
the original system, some of the hidden parts have to be
re-introduced to the representation of the system – i.e., the
abstract system has to be refined. This technique has been
successfully applied to verify many different formalisms.

Several approaches have been proposed applying CEGAR
on timed automata. In [3] the abstraction is applied on the
locations of the automaton. In [4] the abstraction of a timed
automaton is an untimed automaton. In [5], [6], and [7]
abstraction is applied on the variables of the automaton.

Our goal is to develop an efficient model checking algorithm
applying the CEGAR-approach to timed systems. The above-
mentioned algorithms modified the timed automaton itself:
our new algorithm focuses on the direct manipulation of the
reachability graph, represented as a zone graph, which can
yield the potential to gain finer abstractions.

The paper is organized as follows. Section II provides some
definitions and basic knowledge about timed automata and
CEGAR. In Section III our approach is explained, and a
simple implementation is described. Section IV gives some
final remarks.

II. BACKGROUND

In this section we define the important aspects of timed
automata and briefly explain the relevant parts of the reacha-
bility algorithm presented in [1]. We present the verification
of Fischer’s protocol as an example. CEGAR is also explained
at a high level.
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A. Basic Definitions

A valuation v(C) assigns a non-negative real value to each
clock variable c ∈ C, where C denotes the set of clock
variables.

A clock constraint is a conjunctive formula of atomic con-
straints of the form x ∼ n or x−y ∼ n (difference constraint),
where x, y ∈ C are clock variables, ∼∈ {≤, <,=, >,≥} and
n ∈ N. B(C) represents the set of clock constraints.

A timed automaton A is a tuple 〈L, l0, E, I〉 where L is
the set of locations, l0 ∈ L is the initial location, E ⊆ L ×
B(C)× 2C × L is the set of edges and, I : L→ B(C) assigns
invariants to locations. Invariants can be used to ensure the
progress of time in the model.

A state of A is a pair 〈l, v〉 where l ∈ L is a location and
v is the current valuation satisfying I(l). In the initial state
〈l0, v0〉 v0 assigns 0 to each clock variable.

Two kinds of operations are defined. The state 〈l, v〉 has a
discrete transition to 〈l′, v′〉 if there is an edge e(l, g, r, l′) ∈ E
in the automaton such that v satisfies g, v′ assigns 0 to any
c ∈ r and assigns v(c) otherwise and v′ satisfies I(l′). The
state 〈l, v〉 has a time transition to 〈l, v′〉 if v′ assigns v(c)+d
for some non-negative d to each c ∈ C and v′ satisfies I(l).

B. Reachability Analysis

A zone is a set of nonnegative clock valuations satisfying
a set of clock constraints. The set of all valuations reachable
from a zone z by time transitions is denoted by z↑.

A zone graph is a finite graph consisting of 〈l, z〉 pairs
as nodes, where l ∈ L refers to some location of a timed
automaton and z is a zone. Therefore, a node denotes a set of
states. Edges between nodes denote transitions.

The construction of the graph starts with the initial node
〈l0, z0〉, where l0 is the initial location and z0 contains the
valuations reachable in the initial location by time transition.
Next, for each outgoing edge e of the initial location (in the
automaton) a new node 〈l, z〉 is created (in the zone graph)
with an edge 〈l0, z0〉 → 〈l, z〉, where 〈l, z〉 contains the states
to which the states in 〈l0, z0〉 have a discrete transition through
e. Afterwards z is replaced by z↑. The procedure is repeated
on every newly introduced node of the zone graph. If the states
defined by a newly introduced node 〈l, z〉 are all contained in
an already existing node 〈l, z′〉, 〈l, z〉 can be removed, and the
incoming edge should be redirected to 〈l, z′〉. Unfortunately
the described graph can possibly be infinite.

A concept called normalization is introduced in [1]. Let k(c)
denote the greatest value to which clock c is compared. For any
valuations v such that v(c) > k(c) for some c, each constraint
in the form c > n is satisfied, and each constraint in the form
c = n or c < n is unsatisfied, thus the interval (k(c),∞) can
be used as one abstract value for c. Normalization is applied
on z↑ before inclusion is checked. Using normalization the
zone graph is finite, but unreachable states may appear.

The operation split [1] is introduced to eliminate such
states. Instead of normalizing the complete zone, it is first
split along the difference constraints, then each subzone is
normalized, and finally the initially satisfied constraints are

sleeping request

waiting

𝑥𝑖: = 0
𝑖𝑑 = 0

𝑥𝑖 ≤ 𝑘

critical

𝑥𝑖 ≤ 𝑘

𝑖𝑑:= 𝑖

𝑖𝑑 = 0

𝑥𝑖 > 𝑘

𝑖𝑑 = 𝑖

𝑖𝑑:= 0
𝑥𝑖: = 0𝑥𝑖: = 0

Fig. 1. Fischer’s protocol

S0 R0

W1

𝑥1 ≔ 0

𝑥1 ≤ 𝑘

C1

𝑥1 ≤ 𝑘
𝑥1 ≔ 0

𝑥1 > 𝑘

Fig. 2. Timed automaton

reapplied to each zone. If the result is a set of zones, then
multiple new nodes have to be introduced to the zone graph.
Applying split results in a zone graph, that is a correct and
finite representation of the state space.

Example: Fischer’s protocol assures mutual exclusion by
bounding the execution times of the instructions. It can be
applied to a number of processes accessing a shared variable.
Fig. 1 shows the operation of a process. The location critical
indicates that the process is in the critical section. The value
of the shared variable id ranges between 0 and n, where n
denotes the number of processes. The model also contains a
clock variable xi for each process where i ∈ {1 . . . n} denotes
the identifier of the process. The constant k is a parameter of
the automaton.

The mutual exclusion property would suggest that at any
given time at most one of the processes is in the critical loca-
tion. In order to check the given property we must construct a
timed automaton that models the operation of a given number
of processes.

As our definition of timed automaton only allows clock
variables in the system, everything else must be encoded in the
location. To demonstrate, Fig. 2 shows the reachable locations
of the product automaton of Fischer’s protocol where n = 1.
The names of the locations refer to the original locations of
the process, the number denotes the value of the variable id.

C. CEGAR

The CEGAR approach introduced in [2] makes abstraction
refinement a key part of model checking. The idea is illustrated
on Fig. 3.

Model-
checking

Analysis

Refinement

Initial
abstraction

[Unreachable]

Counterexample

[Reachable]

[Valid][Invalid]

Refined
system

Correct
system

Erroneous
system

Fig. 3. Counterexample guided abstraction refinement
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First, an abstract system is constructed. The key idea behind
abstraction is that the state space of the abstract system
overapproximates that of the original one. Model checking
is performed on this abstract model. If the target state is
unreachable in the abstract model, it is unreachable in the
original model as well. Otherwise the model-checker produces
a counterexample – a run where the system reaches the
target state. In our case the counterexample is a sequence
of transitions – i.e., a trace. Overapproximation brings such
behaviors to the system that are not feasible in the original
one. Because of this, the counterexample may not be a valid
trace in the real system, so it has to be investigated. If it
turns out to be a feasible counterexample, the target state is
reachable. Otherwise the abstract system has to be refined. The
goal of the refinement is to modify the abstract system so that
it remains an abstraction of the original one, but the spurious
counterexample is eliminated. Model checking is performed
on the refined system, and the CEGAR-loop starts over.

The algorithm terminates when no more counterexample is
found or when a feasible trace is given leading to the erroneous
state.

III. APPLYING CEGAR TO THE ZONE GRAPH

In this section we explain our approach of applying CEGAR
to the timed automaton. Some details of our implementation
are also discussed.

A. Phases of CEGAR

Our algorithm is explained in this section. To ease presen-
tation, we illustrate the algorithm on an example. The timed
automaton is on Fig. 2 and the value of the parameter k is 2.
The property to check is whether the automaton can reach the
critical section.

1) Initial Abstraction: The first step of the CEGAR-
approach is to construct an initial abstraction, which is an over-
approximation of the system’s state space. In our algorithm,
the state space is represented by the zone graph. Instead of
constructing the zone graph of the system an abstract simpler
representation is constructed from the timed automaton.

Erroneous states are represented by (erroneous) locations,
so we decided not to apply abstraction on them. However, the
zones are overapproximated – the initial assumption is that
every valuation is reachable at every location. This means that
the initial abstraction of the zone graph will contain a node
〈l, z∞〉 for each location l, where z∞ is the zone defined by
the constraint set {c ≥ 0 | c ∈ C}.

Edges of the abstract zone graph can also be derived from
the timed automaton itself. If there is no edge in the automaton
leading from location l to l′ there can not be a corresponding
edge 〈l, z〉 → 〈l′, z′〉 in the (concrete) zone graph regardless
of z and z′. Thus, there should not be an edge from 〈l, z∞〉 to
〈l, z′∞〉 in the abstract zone graph either. All other edges are
represented in the initial abstraction.

This results in a graph containing locations (extended with
the zone z∞) as nodes, and edges of the automaton (without
guard and reset statements) – an untimed zone graph, derived

≪ 𝑆0, 𝑧∞ ≫ < 𝑅0, 𝑧∞ >

< 𝑊1, 𝑧∞ >< 𝐶1, 𝑧∞ >

Fig. 4. The abstract zone graph
of the automaton

≪ 𝑆0, 𝑧∞ ≫ < 𝑅0, 𝑥1 ≤ 2 >

< 𝑊1, 𝑧∞ >< 𝐶1, 𝑥1 > 2 >

Fig. 5. The refined graph

completely from the automaton as the real zone graph is
unknown. The initial abstraction derived from the example
timed automaton can be seen on Fig. 4.

This will be the model on which we apply model checking.
2) Model Checking: During the reachability analysis only

the counterexample traces will be refined in the zone graph.
Thus, model checking becomes a pathfinding problem in the
current abstraction of the zone graph in each iteration. Either
we prove the target state to be unreachable or a new path is
found from the initial node to the target node.

The result of pathfinding in the graph on Fig. 4 is denoted
by bold arrows.

3) Counterexample Analysis and Refinement: Analyzing
the counterexample in the original system and refining the
abstract representation are two distinct steps of CEGAR, but
in our approach they are performed together. The goal of
refinement is to eliminate the unreachable states from the
abstract representation. Refinement is applied by replacing the
abstract zones in the counterexample trace with refined zones
containing only reachable states.

In the first iteration, no nodes of the abstract graph has ever
been refined, so refinement starts from the node that belongs
to the initial location where the refined zone is calculated from
the initial valuation. In case of the later iterations the first few
nodes of the trace will already be refined, so the refinement can
start from the first abstract node. The reachable zone should be
calculated from the last refined zone, considering the guards
and the reset as described in [1].

Of course, as discussed in Section II-B sometimes the result
of the refinement is more than one zone. In this case the node
in the graph (and the edge pointing to it) is replicated, and
one of the refined zones are assigned to each resulting node.
The refinement can be continued from any of these nodes –
the path branches. All of these branches should be analyzed
(refined) one by one.

It is also advised to reuse zones already refined. Suppose at
one point of the algorithm the zone z∞ of the node 〈l, z∞〉 is
refined to z, and z is a subzone of a zone z′ in a node 〈l, z′〉
(both nodes contain the same location l). In this case any state
that is reachable from 〈l, z〉 is also reachable from 〈l, z′〉, thus
any edge leading to 〈l, z〉 is redirected to 〈l, z′〉, and 〈l, z〉 is
removed. After that the analysis of the path can continue from
that 〈l, z′〉.

If the erroneous location is reachable through this path,
the procedure finds it, and the CEGAR algorithm terminates.
Otherwise, at some point a guard or a target invariant is not
satisfied – the transition is not enabled. The corresponding
edge is removed and the analysis of the path terminates.
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Let us consider the example. Refining the path on Fig. 4
is performed as follows. Refinements starts with the initial
node 〈S0, z∞〉. First, we must consider the edge 〈C1, z∞〉 →
〈S0, z∞〉. The refinement will eliminate any state that is
unreachable in the initial node of the zone graph, but there
might be another node in the real zone graph with the location
S0, so we duplicate the node before the refinement and the
edge 〈C1, z∞〉 → 〈S0, z∞〉 will point to the duplicate. The
value of x1 is 0 in the initial state. Before the discrete
transition occurs, any delay is enabled (as there is no location
invariant on S0), so x1 can take any non negative value.
Thus {x1 > 0} = z∞ is the zone assigned to the initial
location. Since it is contained in the existing 〈S0, z∞〉 (the
duplicate), 〈S0, x1 > 0〉 (the refined node) can be removed
and the analysis of the path continues from the remaining
node 〈S0, z∞〉.

The next node to refine is 〈R0, z∞〉. The transition from
〈S0, z∞〉 resets x1, so its initial value in location R0 is 0.
The invariant of the location limits the maximum value of
x1, hence the maximum value of a time transition at location
R0 is 2. Thus the reachable zone in R0 satisfies x1 ≤ 2.
The refinement of the trace continues, and C1 turns out to be
reachable. The refined zone graph is depicted on Fig 5.

B. Implementation

A simple implementation of the method is explained in this
section. Please note that this is still an on-going research,
and our current proof-of-concept implementation is far from
optimal.

1) Data Structure: The zone graph is represented by an
auxiliary graph that can be formally defined as a tuple
〈NA, NR, E

↑, E↓〉 where NA ⊆ L × {z∞} is the set of
abstract nodes, NR ⊆ L × B(C) is the set of refined nodes,
E↑ ⊆ (NA × NA) ∪ (NR × NR) is the set of upward
edges, and E↓ ⊆ N × N where N denotes NA ∪ NR is
the set of downward edges. The sets E↑ and E↓ are disjoint.
T ↓ = (N,E↓) is a tree. The depth of a node n in T is denoted
by d(n).

Nodes are built from a location and a zone like in the
zone graph but in this case nodes are distinguished by their
trace reaching them from the initial node. This means the
graph can contain multiple nodes with the same zone and
the same location, if the represented states can be reached
through different traces. The root of T is the initial node of
the (abstract) zone graph. A downward edge e points from
node n to n′ if n′ can be reached from n in one step in the
zone graph. In this case d(n′) = d(n) + 1.

Upward edges are used to collapse infinite traces of the
representation, when the states are explored in former itera-
tions. An upward edge from a node n to a node n′ where
d(n′) < d(n) means that the states represented by n are a
subset of the states represented by n′, thus it is unnecessary
to keep searching for a counterexample from n, because if
there exists one, a shorter one will exist from n′. Searching
for new traces is only continued on nodes without an upward
edge. This way, the graph can be kept finite.

Refined nodes appear in the refinement phase. Upward
edges can point from abstract to abstract, or from refined to
refined node.

2) Applying our Algorithm to the Graph Structure: In
our implementation model checking is performed by breadth-
first search (BFS). The graph is built until we reach a node
containing the target location at some depth (or the location
turns out to be unreachable). The trace can be computed by
stepping upward on the downward egdes to the root of T .

Before refining a node n, we take care of the upward edges
pointing to it. Since the node is about to be refined no upward
edge from an abstract zone should point to it. Thus, if there
is an edge n′ → n ∈ E↑, we remove it, and instead continue
BFS from n′, until the current depth of T is reached. It can
be proven that this will not introduce new counterexamples.

Refinement is performed by replacing abstract nodes with
refined ones. Refined zones are calculated as described above.
If at some point a node is replicated (because of the split
operation), then the subtree should be copied as well. New
paths are introduced in the new subtrees, that have to be
analyzed later.

If a zone z is a subzone of z′ where d(〈l, z〉) > d(〈l, z′〉)
we introduce an upward edge 〈l, z〉 → 〈l, z′〉, and terminate
the analysis of the current trace, as it can be proven that it
will turn out to be invalid.

IV. CONCLUSION

This paper introduced a new CEGAR-based reachability
analysis of timed automata. Unlike the similar existing ap-
proaches, where the refinement phase focuses on the complete
automaton, the key idea of our approach is to refine the
zone graph incrementally. A prototype implementation is also
introduced.
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Abstract—Matrix Inversion Tomosynthesis (MITS) is a linear 

shift invariant MIMO system that deconvolves the X-ray projec-

tions that are acquired in tomosynthesis arrangement. As MITS 

theoretically models the examined volume by finite, zero thin 

slices, it has a special effect called partial volume artifact. This 

paper describes the basics of the MITS reconstruction and the 

theory of the analyzing of the reconstruction using Modulation 

Transfer Function (MTF) in detail. The dependency of the par-

tial volume artifact on the number of reconstructed slices is anal-

yzed using MTF and illustrated by slice images. Based on our 

results reconstructing more than 350 slices is suggested in the 

case of imaging a 250 mm thick volume. 

Keywords—chest tomosynthesis; MITS; MTF; partial volume 

artifact 

I. INTRODUCTION  

Digital chest tomosynthesis is a relatively new imaging 
modality that computes reconstructed slice images from a set 
of low-dose X-ray projections acquired over a limited angle 
range by a flat panel detector [1]. Theoretically this modality is 
equivalent to a limited angle Cone-beam CT. Tomosynthesis 
was originally developed for breast screening, however nowa-
days it is starting to be applied in clinical chest screening pur-
poses, too. In this article linear chest tomosynthesis is exa-
mined, where the basic arrangement is illustrated by Fig. 1. 

 

Fig. 1. Schematic arrangement of linear chest tomosynthesis. 

In linear chest tomosynthesis arrangement the X-ray source 
and the flat panel detector move continuously in parallel along 
the y axis in opposite directions. During the motion about 50 
projection images are acquired from different positions. Accor-
ding to the figure, the acquired images are located in the x-y 

plane, where the rows of the images are parallel with the x axis, 
and the columns of the images are parallel with the y axis. 
From these projections the coronal slices of the 3D examined 
volume (in our case mainly the lung) are reconstructed (one of 
them is illustrated by the blue dashed line in the figure). This 
paper focuses on the partial volume artifact in the case of using 
Matrix Inversion Tomosynthesis (MITS) algorithm [2] for re-
construction. MITS, which is described in the second section in 
detail, deconvolves the projections of the coronal slices from 
the X-ray projections. In the third section the transfer function 
based analysis of the reconstruction is presented, in section IV 
the partial volume problem and a possible technique of its 
treatment is described. Finally in section V conclusions are dis-
cussed, and the required number of slices to avoid the artifact 
caused by the partial volume problem in the case of chest 
tomosynthesis reconstructed by MITS is determined. 

II. MATRIX INVERSION TOMOSYNTHESIS 

In the case of tomosynthesis, the projection images can be 
modelled as the sum of shifted projections of infinitesimally 
thin slices of the examined volume [2]. In the special case of 
linear tomosynthesis arrangement, shifting is always along the 
y axis, and the amount of shifting can be expressed analytical-
ly as a function of the geometry of the projections’ scanning 
arrangement (illustrated by Fig. 2.) that is detailed later. 

 

Fig. 2. Projection geometry of linear chest tomosynthesis 

In the figure the trajectory of the X-ray beam source is deno-
ted by the black dashed line, and the examined slice is marked 
by the blue dashed line (H denotes its distance from the detec-
tor). The red line marks the x-z plane located at y=0, the green 

This work was supported in part by ARTEMIS Joint Undertaking and in 
part by the Hungarian Ministry of National Development within the framework 
of the Reconfigurable ROS-based Resilient Reasoning Robotic Cooperating 
Systems Project. 
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line models the projection beam of the center (x=y=0) of the 
examined slice (its intersection with the detector’s surface is at 
x=0, y=D). The distance between the detector’s surface and 

the beam’s trajectory is denoted by 
0

H , and the position of 

the beam source is    , 0 ,x y S , and the center of the 

detector is at    , 0 ,x y C . The projection of the examined 

slice is shifted parallel to the y axis, the displacement 
compared to the situation where the y position of the beam 
source is 0, and the center of the detector is at 0y  , is: 

 
0

H S
D C C

H H


  



  (1) 

Due to the linear tomosynthesis arrangement the shift along 
the x axis is always zero, so for different x values the intensity 
profiles can be processed independently of each other as one-
dimensional functions of y. Hereafter we will call projections 
the continuous intensity profiles of the 2D X-ray projection 
images, that located parallel to the y axis at fixed x positions. 
These projections are: 
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where 
 h

i  denotes the h -th X-ray projection, 
 k

r  denotes the 

central projection of the k -th modelled slice and   denotes 

convolution. Central projection means the projection where 
both the beam source and the detector are at 0y   position, 

while in modelled slices we mention the non-empty slices 

(every other slices of the volume presumed empty). 
 ,k h

f  is 

the weight function between the k -th modelled slice and the 

h -th acquired projection, while the 
 ,k h

D  is defined by (1). 

The goal of the MITS algorithm [2] is to deblur the 
conventional Shift And Add (SAA) [3] reconstructed slices. 
The SAA algorithm is equivalent to the conventional back 
projection (in the case of linear tomosynthesis), apart from 
that the outputs of the SAA reconstruction are the projections 
of the reconstructed slices. The SAA can be modeled as a 
MIMO linear shift invariant system: 
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where 
 h

t denotes the h -th SAA reconstructed slice project-

tion. Based on (2) and (3) the SAA reconstructed slice project-
tions can be expressed as the function of the central project-
tions of the modeled slices: 
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The MITS algorithm calculates the estimation of the projec-
tions of the modeled slices by deblurring the SAA reconstruc-
ted slice projections. As MITS is designed to invert a linear 
shift invariant MIMO system, it can be derived more easily in 
spectral domain. 

By applying Fourier transform to the second rows of (3) 
and (2), it is obtained that: 
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where x  denotes the complex conjugate of x , and  F T


 

denotes the operator of 1D continuous Fourier transform at   

frequency, j  denotes the imaginary unit. Based on this obser-

vation (2) and (3) are equivalent to the following: 
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where  ˆ i  denotes a column vector containing the spectral 

components of the input projections at   frequency. Similar-

ly  ˆ r  is the column vector of the spectrum of the projection 

of the modeled slices and  ˆ t  is the column vector of the 

spectrum of the SAA reconstructed slice projections at   fre-

quency.  F  denotes the projection matrix, where its ele-

ments are defined by: 
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where 
 ,i j

A  denotes the  ,i j -th element of the A  matrix.  

By substituting the first equation into the second equation of 
(6), the spectral representation of (4) is derived: 
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  t F F r   (8) 

The SAA reconstructed slice projections can be expressed as a 
function of the slice projections (based on (6)): 
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   F i F F r   (9) 

Therefore deblurring the SAA reconstructed slice projections 
is equivalent to inverting the system described by the first row 
of (6): 
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where  
†

F  denotes the pseudo inverse of the projection 

matrix,  ˆ
j

r  denotes the estimation of  ˆ
j

r . From this 

point of view the MITS can be interpreted as a Maximum 
Likelihood estimation, formally: 

      ˆˆ a rg m a x P r
j
 

x

r i x   (11) 
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where  P r y x  is defined by a multivariate Gaussian distribu-

tion, with the expected value of   F x , and the covariance 

matrix of 2

  I , where   

 . 

The theory described previously is valid if and only if 
special conditions are fulfilled. The three most significant con-

ditions are: (*)  F T


  denotes continuous Fourier transform. 

In digital signal processing the spectrum can be calculated by 
discrete Fourier transform (DFT). The problem of under-sam-
pling can be avoided by using a detector for image acquisition 
with sufficiently high resolution. The distortion caused by 
spectral leakage can be reduced by sufficiently modifying the 
projections before calculating the reconstruction. The second 

(**) assumption is that  F  should be well-, or over-

determined, otherwise numerical problems can significantly 
decrease the quality of the MITS reconstructed slices. As it is 
shown in [4] - mainly in low frequencies - this condition is 
always violated and causes numerical sensitivity of the recon-
struction. The third (***) assumption is connected to (2) and 
(4). These equations are adequately modelling the reality if 
and only if the volume modelled by an infinite number of 

infinitesimal thin slices (
 k

r -s). However this can’t be 

realized which causes artifact. As a similar effect in PET and 
CT modalities is called partial volume effect [7] we will call it 
as partial volume artifact of tomosynthesis. This paper focuses 
on this problem, while the other two problems will be 
examined in forthcoming publications.  

III. TRANSFER FUNCTIONS OF THE RECONSTRUCTION 

As it is given by (10), MITS is considered as a shift inva-
riant linear multiple input–multiple output (MIMO) system. 
Therefore MITS is characterized in the spatial frequency do-
main by its transfer function. The transfer function is deter-
mined from the reconstruction of the noise-free simulated pro-
jections of a so called wire phantom. This phantom contains 
an infinitesimally thin wire, whose points are defined along a 
1D line: 
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where   denotes the angle between the perpendicular pro-

jection of the wire to the 0z   plane, and the 0z y   lines. 

  denotes the angle between the wire and the 0z   plane, 

0z denotes the offset of the wire along the z  axis. The value 

of 0z ,   and   define the part of the 3D space which recon-

struction can be examined by this analysis. The position of the 
projection of the wire along the x  axis is (independently of 

the positions of the beam source and the center of the detector 
along the y  direction): 
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Let 
 i

R  denote the projection of the i -th reconstructed 

slice calculated by MITS from the projections of the wire. Due 

to invertibility of  p l  
  

 

: ,

i

p l
R  is the weight function bet-

ween the projection of the plane of the examined volume lo-

cated at z l  and the i-th reconstructed slice. From this re-

construction the transfer functions of the MITS reconstruction 
can be calculated: 
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where 
 

 

: ,

i

l
O denotes the optical transfer function (OTF) of the 

reconstruction of the slice located at z l , while M denotes 

the modulation transfer function (MTF) of the reconstruction. 

Fig. 3. illustrates 
 i

M  as an intensity image.  
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Fig. 3. MTF of a MITS reconstructed slice. The horizontal arrow points to 
the main lobe, which determine the height of structures reconstructed as in-
plane signal. The vertical arrow points to leakage from distant planes. 

IV. PARTIAL VOLUME ARTIFACT 

According to [5] the number of the reconstructed slices 
should not be more than the number of the projections, how-
ever our previously published results confirmed that the num-
ber of the reconstructed slices can be increased without dec-
reasing the quality of the reconstruction [6]. In the case of 
chest tomosynthesis typically 40-60 projections are acquired, 
the angular range of projections is limited to ±20°, and the 
total thickness (extension along the z axis) of the examined 
volume is not less than 250 mm. If only a few (e.g. 60), evenly 
spaced slices of the volume are reconstructed there will 
remain parts of the volume that have not been reconstructed in 
any slice, mainly in higher frequencies. Fig. 4 illustrates the 
main lobe of the aggregated MTF of two adjacent slices in the 
case of 60 (in the upper picture) and in the case of 400 (in the 
lower picture) reconstructed slices. The aggregated MTF is: 
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where  m a x ,   denotes the elementwise maximum operator. 

From the figure it is clearly visible that if only 60 slices are 
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Fig. 4. Central lobe of a typical aggregated MTF of adjacent reconstructed 
coronal slices. In the case of the upper picture 60 slices are reconstructed, while 
in the case of the lower 400 slices are reconstructed from the same projections. 

mm from the detector are not reconstructed into any of their 
two enclosing slices at >0.4 1/mm frequencies. In the second 
case (400 slices are reconstructed) such a problem did not oc-
curred. Fig. 5. shows reconstructions of an ideal spherical arti-
ficial chest nodule (with the diameter of 3.5 mm) located at an 
anthropomorphic phantom. The visibility (therefore the detec-
tability) of the nodule is significantly lower in the case of 60 
slices compared to the case of 400 slices. This phenomenon is 
not the same, but similar to the so called partial volume arti-
fact [7], therefore we use the same term. 

 

Fig. 5. Adjacent 3 slices of the same reconstructed volume. In the upper 
row 60 slices, in the lower row 400 slices were reconstructed. The arrows point 
to the nodule’s reconstruction. 

V. RESULTS AND DISCUSSIONS 

The accumulated extent of the parts of the examined 
volume which is not reconstructed by any of the slices as 
in-plane signal (not covered by the union of the main lobes of 
the reconstructed slices’ MTF) at a given spatial frequency is: 
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where H  denotes the thickness (extent along the z axis) of the 

examined volume, 
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 is defined by the full width half maximum principle: 
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 i n d   denotes the logical indicator function. Its value is 1 if 

and only if its argument is true, else it is zero. Based on our 

observations 
 

V


 significantly depends on the number of 

reconstructed slices. V  as the function of spatial frequency 

(denoted by  ) and as the function of the number of the 

reconstructed slices is illustrated by Fig. 6.  
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Fig. 6. The relative extent of the volume, which is not reconstructed as in-
plane signal by any of the slices as a function of the spatial frequency and the 
number of reconstructed slices. 

From the figure we can conclude that to compute approx. 350-
400 slices is necessary in order to completely avoid the 
problem of partial volume in the case of chest tomosynthesis 
reconstructed by the MITS algorithm. The recommended 
minimum number of the slices depends on the thickness of the 
examined volume and the thickness of the reconstructed 
slices. This concrete result corresponds to 250 mm thick 
chests reconstructed by the previously described MITS 
algorithm. For linear shift invariant reconstruction methods 
the optimal parameters of the reconstruction in the sense of 
minimizing the partial volume artifact can be determined by 
the previously described MTF based method. 
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Abstract—Beam loss monitoring (BLM) is a key element of
the scheme for machine protection and beam setup at the Eu-
ropean Organisation for Nuclear Research (CERN). The project
related to this paper aims to elaborate a process ensuring a
comprehensive and continuous surveillance of the entire BLM
signal chain, particularly the functionality and connectivity of
the detectors. This paper presents a method elaborated with the
view to realizing a noninvasive detector connectivity check.

I. INTRODUCTION

The European Organisation for Nuclear Research (CERN)
is one of the world’s leading particle physics research labora-
tories, hosting a complex of particle accelerators dedicated to
fundamental research. The particles injected into the flagship
machine of the complex, the Large Hadron Collider (LHC), are
first accelerated to progressively increasing energies through
a series of preaccelerators known as the LHC injectors.

These aging low energy machines are being overhauled
and consolidated within the framework of the LHC Injectors
Upgrade (LIU) project in order to meet the more and more
stringent requirements that the evolution of the LHC imposes
on the quality of the particle beams.

The measurement of the showers of secondary particles
generated by particles under acceleration escaping the beam
lines is referred to as beam loss monitoring (BLM). The
strategy for machine protection and beam setup at CERN
relies heavily on BLM systems. A continuous supervision
of the entire BLM signal and processing chain is therefore
fundamental, yet no particle accelerator in the world has this
feature at present.

This paper presents the latest results of a project aimed at
designing a process providing such continuous surveillance
for the new BLM system currently under development for the
injectors, mandated by the LIU project.

II. BEAM LOSS MONITORS

A. Beam loss monitoring at CERN in brief

The beam loss monitoring system of the LHC uses mainly
ionization chambers as detectors. The ionizing particles cross-
ing the gas-filled active volume of the chamber create electrons
and ions, which are separated by a bias high voltage applied
to the extremities of the detector and collected on a stack

Tamás Dabóczi acknowledges the support of ARTEMIS JU and the
Hungarian National Research, Development and Innovation Fund in the frame
of the R5-COP project.

of parallel electrodes. The resulting current signal is acquired
and digitized by the front-end cards of the system, then for-
warded to the back-end electronics for further processing. The
measured data are archived for machine tuning and calibration
purposes, and if necessary for protecting the machines from
damage caused by the beam, the safe extraction of circulating
beams and an inhibition of further injections is initiated.

The new BLM system for the injectors is in an advanced
stage of development at present. Currently, two prototypes of
the system are installed: one in the laboratory, and one at
the Proton Synchrotron Booster (PSB) accelerator alongside
the operational system currently used for machine protection.
Each front-end card of the BLM system for the injectors is
capable of acquiring the output current of eight detectors [1].
The digitized signals are forwarded to the back-end card over
a bidirectional optical link for further processing. These cards
feature reprogrammable FPGA devices to ensure flexibility
and high data throughput. The acquisition stage of the new
system has been designed to be flexible and accommodate
various detector types. In most locations, ionization chambers
similar to those in the LHC system will be installed [2].

B. Connectivity checks

The current best solution for supervising the functioning
of a beam loss monitoring system along with the correct
connection and functionality of its detectors is in operation
at the LHC, where a connectivity check of each detector
channel is enforced every 24 hours. This procedure, only
executable while the accelerator is offline, involves inducing
a sinusoidal modulation on the order of 10mHz in the bias
high voltage of the ionization chambers, then measuring the
resulting modulation in the output current of each channel. If
the cabling connection of a detector is defective, the harmonic
modulation will not be detectable in its output current. Addi-
tionally, correspondence has been found between variations in
the amplitude and phase of the modulation in the output signal
and various nonconformities of the acquisition chain, thus, this
process is also usable as a component integrity survey.

The project related to this paper targets the elaboration of an
improved procedure, to be constructed, tested and integrated
into the BLM system of the injectors. The process should
provide a continuous supervision of the entire signal chain
from the detectors to the processing electronics as well as the
measurement ability of the detectors.
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III. THE SUGGESTED MEASUREMENT METHOD

A. Approach for a non-invasive connectivity check

A series of measurements have been conducted on the
prototype of the BLM system for the injectors to assess the
capabilities of the signal processing chain [3], with a view to
implementing a connectivity check process relying on mod-
ulating the high voltage supply of the detectors, similarly to
the LHC implementation. This investigation has revealed that
parasitic components corresponding to the switching frequency
of about 30 kHz of the high voltage power supply (HVPS)
and its harmonics are consistently present in the digitized
output signal of the detectors. The detection of these parasitic
components is very appealing, since it may allow verifying
detector connectivity continuously by simply post-processing
the digital signal without altering the analog signal in any
way, thereby realizing a non-invasive on-line connectivity
check. Further studies will be required for assessing how
these components are coupled into the signal chain and which
connection nonconformities can be detected by this approach.
The part of the work described in the present paper is aimed at
detecting this parasitic signal efficiently within the hardware
constraints imposed by the architecture of the BLM system.

The resonator-based spectral observer (Fourier analyzer, FA)
proposed by Péceli [4] was chosen as basis for a signal
processing method to detect the spectral peaks resulting from
the operation of the HVPS. Its advantages include inherent
stability due to the unit negative feedback in the observer,
flexibility in setting the frequencies of the observer channels
[5], and that a straightforward frequency adaptation method
[6] has been suggested for it, which should allow tracking the
slowly varying frequency of the HVPS components.

B. The adaptive Fourier analyzer

One obtains the Fourier analyzer when using Péceli’s
resonator-based observer as a spectral observer. The structure
estimates the state variables of the conceptual signal model
[4], which can in turn be interpreted as a multisine generator
reconstructing the signal from its DFT. In this interpretation,
the state variables of the observer correspond to the complex
Fourier coefficients of the signal and they each represent a
harmonic resonator of the corresponding frequency.

The state variables, i.e. the complex Fourier components of
the signal yn can then be estimated using an appropriately
designed observer, of the structure shown in Fig. 1, described
by the following system equations:

x̂n+1 = x̂n + gen = x̂n + g (yn − ŷn) , (1)

x̂n = [x̂i,n]
T ∈ CN×1, i = −K, . . . , K, (2)

ŷn = cTn x̂n, (3)

zi = ej2πif0 , (4)

cn = [ci,n]
T ∈ CN×1, ci,n = ej2πif0n = zni , (5)

gn = [gi,n]
T ∈ CN×1, gi,n =

α

N
c∗i,n, (6)

+

g−K,n

× 1
z−1

c−K,n

×
...gi,n

× 1
z−1

ci,n

×
...gK,n

× 1
z−1

cK,n

×

+

yn en

x̂−K,n

x̂i,n

x̂K,n

ŷn

−

Figure 1. Block diagram of the resonator-based observer.

where x̂i,n are the estimators of the state variables, thus of the
complex Fourier components of the signal, ŷn is the estimated
signal and en is the estimation error. The vector cn is the
time-varying coupling vector to calculate the estimator of
the signal from the state variables, while gn represents the
observer gain, a tunable parameter for setting the poles of the
observer. The signal is considered to have K harmonics, thus
N = 2K +1 complex Fourier components including DC. For
a real valued signal, the estimators of these components will
form complex conjugate pairs: x̂i,n = x̂∗−i,n. The frequency of
the fundamental harmonic relative to the sampling frequency
is f0 = f1/fs. It is assumed that K · f1 ≤ fs/2. If they’re
equal, i = −K, . . . , K+1 and N = 2K+2 in all equations.

At this point, suppose that the frequency of the fundamental
signal harmonic f0 and the frequency of the fundamental res-
onator fr, both expressed relative to the sampling frequency,
are different. Then, the complex number estimating the Fourier
coefficient of the fundamental harmonic is going to rotate with
a frequency corresponding to the difference between f0 and
fr [6], that is,

f0 − fr ≈
arg x̂1,n+1 − arg x̂1,n

2π
, (7)

which constitutes the basic principle of the methods for
adapting fr.

C. Realizing a customized spectral observer

As mentioned in Section II-A, front-end and back-end
processing of the digitized data in the BLM system of the in-
jectors is based on reconfigurable FPGA devices. This implies
that ideally, data processing for on-line detector connectivity
checks is realized on these FPGAs.

It’s clear from (1)–(6) that the state update of the observer
requires multiplications and additions of complex numbers.
The polar representation (z = Aejϕ) would be convenient for
multiplications, however, additions would require converting
the numbers to the algebraic form (z = a + jb), which is
extremely resource-consuming on an FPGA. In the algebraic
form, complex multiplications can be realized by a series of
multiplications and additions, thus using this representation is
preferable in terms of FPGA resource cost.
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The digitized current values are represented using 20-bit
integer arithmetic. For the FPGA implementation, we decided
to use IEEE-754 compliant 32-bit floating point arithmetic
realized with manufacturer-supplied IP cores to cope with the
dynamic range expected from the inputs and the coefficients
used for the state update.

For implementing the observer, we didn’t rely on the linear
time-variant (LTV) model presented in Section III-B. The
observer model we chose is linear time-invariant (LTI) since it
uses time-invariant gn and cn coefficients, but it’s equivalent
to the LTV model. It has the advantage that exponentiation of
zi as in (5) is not required. The problem with this calculation
is that it is numerically unstable when using the algebraic
form with 32-bit IEEE-754 arithmetic for certain values of
ci,1: limn→∞ ci,n = 0 or ∞.

Our current implementation includes two parallel processing
channels calculating the real and imaginary parts of the
updated state variable separately. With a multiplier, an accu-
mulator and a memory block storing the LTI coefficients, using
the pipelining features of the floating point cores, each channel
is capable of producing a new value every three clock cycles
once the pipeline is full. The updated values for each state
variable are calculated sequentially. This processing could be
carried out in parallel for each resonator, and if necessary,
all operations can be performed using just a single channel,
which affords a big margin for tuning FPGA resource use
versus processing speed.

The original observer structure was tailored heavily for
an FPGA-based implementation. Since the output current of
the detectors is acquired at a frequency of 500 kHz in the
BLM system of the injectors, and the aim is to acquire
a signal of about 30 kHz and its harmonics, the sampling
frequency cannot be reduced by much. The observer runs
at 500 kHz to ensure on-line data processing. Using sensible
DFT bin widths of about 10 − 100Hz, this would yield an
unmanageable number of resonators, since either the FPGA
resource usage or the time required for processing would be
too high. Thus, we considered an extremely coarse resonator
distribution with the DFT points placed at the HVPS frequency
and its harmonics. If slower convergence can be tolerated, the
bandwidth of the resonator channels may be controlled by
tuning the α

N parameter. This allows achieving an acceptable
frequency sensitivity as shown in Fig. 2, without impacting on
the stability of the structure.

In order to have an estimate of the noise floor in the
measurement along with the value of the signal component of
interest, we turned some of the individual resonators at lower
frequencies into resonator triplets by adding two resonator
positions on either side of the resonator in question. However,
if the observer gain α

N is set so high that the bandwidths of
neighboring resonators overlap, resonances may occur.

D. The new method for frequency adaptation

1) Principle: Using (7) directly for frequency adaptation
would require calculating the phases of complex numbers,
which is a resource-consuming task better avoided. Moreover,
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Figure 2. Transfer function of a resonator channel for different values of α.
Its center frequency is frel = 0.06, that is, 30 kHz at fs = 500 kHz. The
transfer function has zeroes at the frequencies of the other resonators.

the phase of the Fourier coefficients tends to have abrupt
transients when processing the output current of the detectors,
which might misguide the adaptation. Therefore, we devised
a method to adapt the frequency without having to calculate
actual phases: we detect zero crossings in phase. This is very
simple when using the algebraic form, since one only needs
to consider the sign bits of the real and imaginary parts of
the complex number. We need to make sure we exclude those
events when the phase wraps from π to −π or vice versa,
since technically, the phase crosses zero even in these cases.
Taking this consideration into account, we register an event
if Im {x1,n} changes sign while Re {x1,n} ≥ 0. Then, if Nz
zero crossings have been registered in a time window of tm,
we have the following estimate for the frequency difference:

|f0 − fr| ≈
(Nz − 1) · 2π

tm · fs
1

2π
=
Nz − 1

tm · fs
, (8)

where the sign of the difference can be determined by con-
sidering the sign of the zero crossing: if Im {x1,n} changes
from negative to positive, we register a positive zero crossing
corresponding to f0 > fr, and the opposite for negative zero
crossings. At the expense of slower adaptation, this scheme
can be implemented at a comparatively low cost in terms of
FPGA resources and it’s also less subject to the effect of abrupt
transients in the phase signal.

2) Implementation: The source of the parasitic signal we’re
aiming to detect is the same HVPS for all eight channels of the
same card, thus we decided to carry out frequency adaptation
on one channel only and use the same coefficient values for
all channels.

The frequency adaptation principle described in Section
III-B relies on the LTV model of the observer. Our realization
calculates LTI state variables, which thus need to be multiplied
by zni for conversion to LTV. This exponentiation is subject to
the numerical problems described in Section III-C. Since zi is
recalculated every time the frequency is adapted, this effect is
mitigated but not eliminated.
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If the input signal is noisy, repetitive fake zero crossing
events like those shown in Fig. 3 may occur. These can be
eliminated by setting an adequate minimum time difference
requirement between consecutive zero crossings and ignoring
those violating this constraint.
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Figure 3. Spurious zero crossings caused by noise in the phase of x̂1,n
calculated from a real signal acquisition. The markers and correspond to
rejected positive and negative zero crossings, respectively, while represents
the one accepted positive zero crossing.

Additionally, transients in phase resulting from noise may
cause the processing to register alternating positive and neg-
ative zero crossings. In our scheme, we count these events
separately, either until a given number of events of either
type is collected or for a given amount of time, and then
we use the difference Nz+ − Nz− to calculate the estimate
of the frequency difference. Currently, we acquire 128 events
of either type, adapt the frequency, then discard the first 128
events to suppress the transients caused by the adaptation.

Since calculating the new set of coefficients using FPGA
logic directly would imply prohibitively high resource usage,
we decided to carry out this processing on a very simple soft-
core CPU embedded in the FPGA. Since the CPU features
no floating-point core, all floating-point arithmetic is executed
in software, therefore calculating a new set of coefficients for
the 13 resonators we currently use takes about 0.1 s. Since the
adaptation itself is fairly slow, this time overhead is acceptable.

E. Results with the custom adaptive observer

We tested the current version of our processing with fre-
quency adaptation both in the laboratory system and the
prototype installed at the PSB.

The performance of the frequency adaptation in the lab-
oratory system is demonstrated in Fig. 4. The processing is
capable of following the slow frequency drift satisfactorily.

As a tradeoff between limiting the noise in the signal
and ensuring the detectability of the HVPS contributions, our
resonators have a bandwidth of about 5−10Hz. The resonator
outputs react to beam loss events, but the recovery is fairly
quick (about 0.1−0.5 s) and these contributions can be filtered
out. They also have little effect on frequency adaptation. In
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Figure 4. Demonstration of frequency tracking by the resonator-based
observer: evolution of the fundamental resonator frequency, registered at each
frequency adaptation step. The variation of the fundamental frequency of the
HVPS contributions is also shown: every marker ( ) represents an acquisition.

general, the resonators centered on the HVPS peak show
values about 20 dB higher than the other resonators of the
triplet if the HVPS contributions are present.

Under real operating conditions, our method usually seems
to underestimate the actual frequency difference, especially
if it is relatively high. However, we’ve seen the frequency
adaptation converge for initial differences as high as 500Hz.
In our experience, this covers the frequency band the HVPS
signal fluctuates in.

IV. CONCLUSIONS

We presented a method to identify parasitic components
caused by the operation of the high voltage power supply
in the output current of the BLM detectors. Further studies
will need to be conducted to determine precisely how this
signal is coupled into the signal chain and which connection
nonconformities can be detected by this approach. An exten-
sion of the procedure to cover all faults targeted by the LHC
implementation is foreseen.
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Abstract—Research of source code-based test input generation
has recently reached a phase, where it can be transferred to
industrial practice. Symbolic execution is being one of the state-
of-the-art techniques, yet its usage on industrial-sized software
is often hindered by several factors, like the interaction with the
environment of software under test. The solution of this problem
can be supported with isolating the interactions by using so-called
test doubles instead of the original objects. This time-consuming
process requires deep knowledge of the unit under test. The
technique presented in this paper is able to automatically
generate isolation environment from the data collected during
symbolic execution. We also present our promising preliminary
results using a prototype implementation.

I. INTRODUCTION

Generating test inputs and test cases from source code
has been one of the main topics in software test research
since decades. Numerous techniques and algorithms have been
proposed to enhance the test generation processes by analyzing
only the source code itself, commonly called as white-box
test generation. Symbolic execution [1] is one of the state-
of-the-art techniques due to the promising results of its fault
detection ability. This technique represents possible paths of
the source code with logical formulas over symbolic variables.
The execution starts from an arbitrary method in the program
and each statement is interpreted in parallel with gathering
the expressions over the symbolic variables. The solution of
these collected expressions provide input values that drive the
execution of a program along different paths. Test cases are
formed using these inputs extended with assertions derived
from the observed behavior of the program under test.

In our previous research, we used Microsoft Pex [2] (cur-
rently known as IntelliTest) for test generation that is a state-
of-the-art white-box test generator tool for .NET. Pex uses
dynamic symbolic execution, which is an enhanced technique
that combines concrete with symbolic execution. The tool
generates input values for so-called Parameterized Unit Tests
(PUTs) [3] that are simple unit test methods with arbitrary
parameters. PUTs can be extended with assumptions and
assertions, thus can serve as a test specification. Pex generates
test cases from the combination of the generated inputs and
the corresponding PUTs.

A current research topic is the industrial adoption of sym-
bolic execution. However, it is hindered by several factors
[4]–[7]. One of the main problems is that in the majority of

cases, the test cases generated by symbolic execution typically
achieve very low source code coverage. Our previous experi-
ences [8] also confirmed these challenges. We applied Pex in
testing of a model checker tool and a content management
system.

A solution for this problem could be isolating the external
dependencies of the unit under test (see Section II). However,
in large-scale software that contains numerous components in-
teracting with each other, a plentiful of calls to the environment
can be identified. The identification and isolation of these calls
is a highly time-consuming task, especially for test engineers
who did not participate in the development of the unit.

In this paper, we present an approach and a prototype
tool that endeavors to support symbolic execution-based test
generation in complex, environment-dependent software by
automatically generating code for isolation purposes. Thus,
the research question of the paper is the following.

How can the isolation process be supported during symbolic
execution-based test generation?

II. BACKGROUND

Unit-level testing should be done in isolation, thus all the ex-
ternal dependencies of the unit should be removed or replaced.
A solution could be to replace the external dependency with a
replacement object, and call into that instead of the original.
This idea and the increasing importance of unit testing led
to a whole new area in software test engineering called test
doubles.

Test doubles is the common name of static or dynamic
objects that can be used as a replacement of real objects during
test executions, in order to handle the problem of isolation in
unit testing. Many types of test doubles exist, however the
naming conventions can be different across publications. To
overcome this, Meszaros wrote a summarizing book [9], that
assesses the notions and patterns around unit testing, including
test doubles too. We also applied the notions of this book
extended with a Microsoft-specific type, called shims. Shims
are powerful test doubles where the call is made to the original
object, however the call is detoured during runtime to a user-
defined method. This allows easy isolation of calls that invoke
3rd party libraries, legacy code or other resources where source
is not available.
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Consider the following example scenario introducing the
isolation problem. Let UUT be the unit under test, and let ED be
the external dependency. The body of method M1(int):int
contains a branching where the decision depends on the return
value of method M2(int):int from ED. Unit testing class
UUT shall include the isolation of the mentioned dependency,
moreover this shall be applied during symbolic execution-
based test generation too. If method M2 is not accessible during
testing due to some reason (e.g., not yet implemented, accesses
external resources) symbolic execution would not reach the
statements found in the two branches.

class UUT
{

ED ed = new ED();
int M1(int a)
{

if(ED.M2(a)) return 1;
else return -1;

}
}

If we assume that parameter a will not be larger than 10
and only -1 or 1 can be returned, then creating a PUT for
method M1 would look like the following.

void M1Test(int a)
{

Assume.IsTrue(a <= 10);
UUT uut = new UUT();
int result = uut.M1(a);
Assert.IsTrue(result == 1 || result == -1);

}

PUTs are used for compact representation of multiple test
cases, where different input values trigger different behavior
of the unit under test. It can be seen however that the PUT
misses the isolation in this example. For the solution, we use
the isolation syntax defined by Microsoft Fakes, a powerful
isolation framework for .NET that uses shims, thus can isolate
wide-range of external invocations. Extending the PUT with
the following snippet will isolate the external call of M2 for
every instance of ED and return 1 or -1 depending on the value
of the passed parameter, thus simulating a custom behavior.

ED.AllInstances.M2 = (ED instance, int param) =>
{ return param > 5 ? 1 : -1; };

III. OVERVIEW OF THE APPROACH

In order to support symbolic execution-based test gener-
ation, our approach is to generate the source code of the
isolation environment automatically. This novel technique uses
the collected data from the symbolic execution process itself.

Fig. 1. The approach of automated isolation

Component 
under test

External 
dependency A B.Foo(C c, int i) B.Foo := (c,i) => { }

1. Detection 2. Analysis 3. Generation

The technique builds on top of parameterized unit tests in
order to have test doubles, which can give back values that
are relevant to the component under test. A quick overview of
the approach is presented in Figure 1.

The automated generation of isolation environment relies on
an analysis process, which is conducted when an invocation
to a predefined external dependency is reached during the
symbolic execution. Then, based on the results of the analysis,
the generation step creates double objects that are able to
replace the original ones.

A. Detection

Detection is the first phase of the isolation process. Firstly,
the test engineer defines the unit or namespace under test with
giving its fully qualified name (FQN). During the symbolic
execution, this FQN is used for detecting an external call
by analyzing the reached stack frames. When an external
invocation is detected, all the information regarding this call
is collected and stored for later usage by the analysis step.

B. Analysis

The analysis step plays the main role, since the decisions
are made here that define how double objects are generated.
The analysis can be divided into three substeps, which are the
analysis of return value, the analysis of parameters and the
assessment of the results gathered from the previous steps.

Fig. 2. Overview of return value analysis example
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1) Return value analysis: In the first step, the return value
of the invoked external method is analyzed, which is a crucial
information of the double object. Figure 2 shows the overview
of the code example mentioned in Section II, where SE denotes
the symbolic execution process and A stands for our analysis
technique. The return value can be used in the unit under test
in logical conditions, thus execution paths possibly rely on this
value. In order to cover these paths, the correct value must be
selected. If a path relies on the variable that obtained its value
from the external call, the symbolic execution interprets it as a
term in the path condition. Problems occur, when the analysis
can not provide proper inputs through this dependency (e.g.,
not yet implemented, gets value from database or file system).
This can be alleviated if the solver of symbolic execution can
give concrete values for the variable that represents the return
value. By this way, arbitrary values can be assigned to this
variable and the coverage criteria (e.g., an execution path) can
be satisfied that depends on the variable. The arbitrary values
can be passed to the concrete execution through the parameters
of the unit test. In summary, our idea provides a solution with
the analysis of the return value, where two actions are done.
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• The parameters of the PUT is extended with the return
type of the external dependency.

• A test double is created in order to replace the behavior
of the original class. In the body of the double, the new
PUT parameter is returned, which gives the ability for
symbolic execution to handle it as a free variable that
can have arbitrary values.

Fig. 3. Overview of parameter analysis example
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2) Parameter analysis: The analysis of parameters is the
second part of the analysis, however not all types of parameters
are in focus. Method parameters can be primitive or complex
types. In the two popular managed environments (.NET, Java)
every complex type is handled as reference and the parameters
are passed by value by default. Thus, when using reference
type parameters, the reference itself is passed to the method as
value, which means it is copied and refers to the same object.
This enables the called method to modify the pointed object,
which modifications can be also seen in the caller. However,
the original reference cannot be modified. The reference type
parameters lead to a problem in isolation scenarios, when the
called method is an external dependency, because the passed
object can be modified inside the dependency and therefore
it can affect the coverage in the unit under test. Our idea
to overcome this is similar as in the case of return values,
but the scenario is more complex. The first step is the same:
extending the parameters of the PUT with the complex type
parameter under analysis and handle it in the created double
object. However, due to the complex type, there are numerous
possibilities to modify the state of the object outside the
unit. The idea is to explore the publicly available fields and
properties of the object and use them to alter its state. By
this way, the generated results of our approach can simulate
the actions made inside the external dependency that can be
required to increase the coverage inside the unit under test.
Figure 3 presents this process on the extension of the example
found in Section II. The scenario contains a new ED2 external
dependency as a complex type parameter.

3) Assessment: During the last step of the analysis, all the
collected information about the return values and parameters
are filtered for duplications, then stored, which is used for dou-
ble generation. Every method should contain the information
that describe what to emit, when they are in the focus of code
generation, which also includes the doubles of complex type
parameters.

C. Generation

The generation is the last step of processing an external
dependency, which can be also divided into substeps. Firstly,

the newly created parameters of the parameterized unit tests
are emitted and appended to the original one. Then, the double
of the method is assembled and emitted into the body of
the PUT. This emission includes the name of the double
method, which can be specific to isolation frameworks and
also includes the inner body that can include setting of state
modification for parameters and verification too. Finally, the
test doubles of the complex type parameters are generated
that are property or field setter methods (if the type of the
parameter is located outside the unit under test).

IV. PRELIMINARY EVALUATION

We implemented the presented technique as an extension to
Microsoft Pex and Fakes. Fakes seamlessly collaborates with
Pex and is powerful enough to use for our approach. Fakes
is capable of creating stubs and shims for a very wide-range
of method calls (regardless their place and type) found in any
.NET software.

The implementation had many challenges including the run-
time reflection of types and methods. We used this technique
to obtain detailed information on each external call that is
required for the return value and the parameter analysis.

Although the current prototype implementation does not
support every scenario that can be found in arbitrary .NET
code, it does work sufficiently for preliminary evaluation. We
implemented example scenarios (intentionally similar to real-
world source code snippets) to present the potential in our
approach. The coverage results with and without our technique
is presented in Fig 4. This figure shows the achieved statement
coverage with and without the generated isolation environment
after symbolic execution on the five different method under
test. The names starting with S denotes simple scenarios where
symbolic execution can benefit from the isolation. The two
methods denoted with RW represent source code gathered
from open-source software ( [10] and the CMS system men-
tioned in Section I. There were no hindering factors during the
measurement, however we wanted to make sure that our results
are valid: the evaluation was repeated three times on each
method. The presented figure shows the average statement
coverage of the three executions.

Fig. 4. The results of the preliminary evaluation
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The results show that in each case, running Pex with
the generated isolation environment achieves higher statement
coverage than running the tool without any unit isolation. This
may emphasize that this technique has potential in the area
of supporting the usage of symbolic execution in large-scale
industrial software.

V. RELATED WORK

Our idea originally derives from a paper written by Tillmann
et al. [11], where the idea of mock object generation is
described. They also created a case study for file-system
dependent software [12], which showed promising results.
Their technique is able to automatically create mock objects
with behavior and ability to return symbolic variables, which is
used during the symbolic execution to increase the coverage of
the unit under test. However, their solution needs the external
interfaces explicitly added to the parameterized unit tests,
moreover they did not consider reference type parameters that
can affect the coverage. Thus, our solution covers a wider
area of scenarios and needs rather less user interaction for
the automated generation (our approach only requires the
namespace of the unit under test).

The idea of Galler et al. is to generate mock objects
from predefined design by contract specifications [13]. These
contracts describe preconditions of a method, thus the derived
mocks are in respect of them, which makes mocks able
to avoid false behavior. However, their approach does not
relate to symbolic execution, and it may also introduce work
overhead to create contracts. A similar approach is introduced
in parallel with a symbolic execution engine to Java by Islam
et al. [14]. The difference is that they build on interfaces as
specifications instead of contracts.

An other approach of mock generation was presented by
Pasternak et al. [15]. They created a tool called GenUTest,
which is able to generate unit tests and so-called mock aspects
from previously monitored concrete executions. However, the
effectiveness of the approach largely relies on the complete-
ness of previous concrete executions, while our approach relies
on symbolic execution.

VI. CONCLUSION AND FUTURE WORK

One of the discovered challenges in real-world scenarios
was the unit isolation in testing a software component, be-
cause these applications have several external dependencies
(e.g., databases, external services). Isolating the dependencies
requires large amount of time, which can be reduced by
automation.

The described isolation technique in this paper could sup-
port the solution of this problem by automatically generat-
ing isolation environment. The main idea is to detect the
dependencies during the symbolic execution and to generate
the isolation environment for the unit under test from the
data retrieved from symbolic execution. We also presented
our preliminary evaluation of a prototype implementation that
showed promising results.

The approach presented in this paper may be continued in
the following directions.

• Expanding the implementation to cover all the possible
unit isolation cases that could be present in real-world
software.

• Experiments and measurements for the presented tech-
nique to confirm its usability in different scenarios.

• Combination of automated isolation and compositional
symbolic execution [16] that leads to a new level of
automated test input generation, where the work of test
engineers can be greatly supported.
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Abstract—Model query operations form the basis of model-
driven software engineering tools and model transformations.
While the last decade brought considerable improvements in
distributed storage technologies, known as NoSQL systems,
evaluation of graph-like queries on large models requires further
research. Unlike typical NoSQL workloads, model queries often
include lots of join and complex filtering operations. Thus, the
evaluation of such queries on continuously changing data proves
to be a challenge for query engines. In this paper, we present
INCQUERY-DS, a distributed graph query engine, which utilizes
sharding to allow scaling for larger models.

I. INTRODUCTION

Model-driven software engineering (MDE) plays an impor-
tant role in the development processes of critical embedded
systems. With the dramatic increase in complexity that is
also affecting critical embedded systems in recent years,
modeling toolchains are facing scalability challenges as the
size of design models constantly increases, and automated tool
features become more sophisticated. Many scalability issues
can be addressed by improving query performance.

Traditional query approaches reevaluate the entire query on
every modification, which is expensive for large datasets. In
contrast, with incremental query evaluation, the reevaluation is
only calculated on parts of the model impacted by the change.
This leads to a significant speedup for large, continuously
changing data. The Rete algorithm [3] is an incremental algo-
rithm that keeps the partial matches in memory. These matches
are stored in nodes that are also the units of computation, i.e.
each node performs a relational algebraic operation.

Sharding or horizontal partitioning of data is a technique
widely used in NoSQL databases and stream processing en-
gines [12]. However, up to our best knowledge, it has not been
applied to incremental query engines. In this paper we adopt
the idea of sharding to distributed query processing networks.

While sharding mitigates the problem of memory exhaus-
tion, we should also reduce the memory consumption of our
tools without performance degradation. The performance of
the join operation is crucial in this area, hence we also present
the performance comparison of different join algorithms.

This work was partially supported by the MONDO (EU ICT-611125)
project and the MTA-BME Lendület 2015 Research Group on Cyber-Physical
Systems.

II. PRELIMINARIES

A. Running Example: the Train Benchmark

We use the Train Benchmark [5] to present the core concepts
of our approach.1 The benchmark was designed to measure the
efficiency of model queries under a real-world MDE workload.
It defines a railway network composed of typical railroad
items, including routes, semaphores, and switches (Figure 1).

Fig. 1: Train Benchmark example model.

B. Model Validation with Graph Queries

Engineering models can be represented as typed graphs with
labeled vertices and edges. For example, the edges of the graph
in Figure 1 can be represented with the following relations:

• follows (Route, SwitchPosition) : (1, 2), (1, 5), (8, 9)
• gathers (Route, Sensor) : (1, 4), (8, 11)
• sensor (Switch, Sensor) : (3, 4), (6, 7), (10, 11)
• target (SwitchPosition, Switch) : (2, 3), (5, 6), (9, 10)

Well-formedness validation constraints are often checked
with graph queries [2]. The model is queried with graph pat-
terns that search for violations of the constraint in the model.
The result of a graph query is a set of tuples. The RouteSensor
constraint requires that all sensors that are associated with a
switch that belongs to a route must also be associated directly
with the same route. The constrain can be translated to a graph
query (in the lower left corner of Figure 2), which looks for
sensors that are connected to a switch, but the sensor and the
switch are not connected to the same route.

Graph queries can be formalized in relational algebra. Here
we only elaborate the join and antijoin operations, as their
performance has the greatest effect on query evaluation. The
rest of the operations are discussed in [13].

1The framework is available as an open-source project at https://github.
com/FTSRG/trainbenchmark
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• The join operation (▷◁) is used to connect relations based
on their attributes. The natural join operation performs
the join based on mutual attributes of the relations.
Example: the target ▷◁ follows ▷◁ sensor query selects the
matching ⟨SwitchPosition, Switch,Route, Sensor⟩ tuples.

• The antijoin operation ( ▷ ) is used to express negative
conditions. Formally, r ▷ s = r \ πR (r ▷◁ s).
Example: the sensor ▷ gathers query selects the
⟨Switch,Sensor⟩ pairs not connected to a Route.

Based on these examples, the RouteSensor query can be
formalized as:

target ▷◁ follows ▷◁ sensor ▷ gathers

On the example graph, the result set consist of the tuple
(5, 6, 1, 7). This indicates that the model is not well-formed
w.r.t. the RouteSensor constraint, as there should be a gather
edge from node 1 to node 7.

C. Incremental Query Evaluation

Rete [13] is an algorithm for incremental query evalua-
tion. It ensures incrementality by keeping partial matches in
memory. This is essentially a space-time tradeoff, an approach
widely used in computer science (e.g. lookup tables, caching).
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Fig. 2: The RouteSensor pattern and its Rete network.

The Rete algorithm constructs a network of processing
nodes consisting of three layers (Figure 2). The partial matches
(represented as tuples) are propagated through the network as
messages.

• Input nodes store the model elements: target, follows,
sensor and gathers.

• Worker nodes implement relational algebra operators:
Join A, Join B and Antijoin.

• Production nodes store the results of the query.
If the engineer inserts the missing gathers edge by adding

the tuple (1, 7) to the gathers input node (marked with a ∆
character in the figure), the Rete network only has to reevaluate
the results of Antijoin and Production nodes.

III. RELATED WORK

EMF-INCQUERY is an incremental query engine for mod-
els defined in the Eclipse Modeling Framework (EMF). It uses
the Rete algorithm for incremental query evaluation [2]. As
EMF-INCQUERY is a single workstation tool, the memory
consumption of the Rete algorithm does not allow it to scale
for arbitrarily large models.

Similarly to EMF-INCQUERY, INCQUERY-D is based on
the Rete engine but it was designed from the ground up
as a distributed pattern matching system [13]. It allows for
using NoSQL databases and triplestores as data sources,
which means that the input of the engine can be distributed.
INCQUERY-D’s workflow is similar to its predecessor, but it
deploys the Rete nodes over a distributed system.

Drools [10] is a business rule management system that
provides a rule engine that is capable of checking well-
formedness constraints. Drools also uses the Rete algorithm
as well to support incremental query evaluation. Rete-based
query evaluation is used for processing Linked Data as well.
INSTANS [11] uses this algorithm to perform complex event
processing on streaming RDF. Diamond [9] also uses a Rete
network to evaluate SPARQL queries on RDF data sets.

IV. OVERVIEW OF THE APPROACH

This section describes the methods used to make
INCQUERY-DS fast and scalable.

Runs on
Node

Deploys

Rete network

Input

Runs on
Node

I

II

III

Fig. 3: The architecture of INCQUERY-DS.

A. Sharded Rete Algorithm

As a Rete node stores partial matches of the graph, its
memory consumption is proportional to the size of the model.
This causes memory exhaustion for large models. However,
it is possible to split a Rete node to multiple node shards.
This way a logical node can be distributed across multiple
computers, splitting the memory requirements between the
shards (Figure 3).

Previous work [14] only focused on distributing the Rete
nodes between the machines in the cloud, but did not shard
individual Rete nodes in the network. This implies that each
Rete node needs to fit in the memory of a single computer,
which limits the scalability of the system. For example, in the
network for RouteSensor most of the memory is consumed by
a single node (Join B), so distributing the Rete network does
not allow it to scale for arbitrarily large models. However,
sharding allows us to distribute the content of a single Rete
network on multiple machines.
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To achieve high performance, the computations of a Rete
node must be performed based on the contents of a single
shard (thus avoiding the communication overhead between the
shards). For the join/antijoin nodes this requires tuples with the
same join key, from both inputs, to be sent to the same shards.

A sharded layout is shown in Figure 4. Node Join B is split
into two shards, Shard 0 and Shard 1, allocated on Host II and
Host III. The tuples of Join A, {(2, 3, 1), (5, 6, 1), (9, 10, 8)},
joined against the tuples of the sensor input node,
{(3, 4), (6, 7), (10, 11)}. The join keys are their second (sw)
and first (te) attributes, respectively.

For distributing the tuples, we use two hash functions.
First, we map the join key to a number. Consider the simple
hash function h(⟨k1, k2, . . . , kn⟩) = 37

∑
i ki mod 16. This

produces the following hash values for the keys:

h(⟨3⟩) = 15, h(⟨6⟩) = 14, h(⟨10⟩) = 2

To shard the tuples, we use another hash function, which
simply uses modulo s, where s is the number of shards: g(x) =
x mod s. Here, s = 2, hence

g(h(⟨3⟩)) = 1, g(h(⟨6⟩)) = 0, g(h(⟨10⟩)) = 0

Based on the hash values, the tuples with the join key 6
and 10 are processed by Shard 0, while the tuples with the
join key 3 are processed by shard 1.

Production

〈swP, sw, r, sen〉

swP swP

target

〈swP, sw〉
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sensor
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Fig. 4: Layout of the sharded Rete network for RouteSensor.

INCQUERY-DS makes the degree of sharding for each Rete
node a separate decision, i.e. some nodes might have many
shards, while others may remain unsharded. This greatly af-
fects the performance of the network. Efficient node allocation
is out of the scope of this paper, but is discussed in [8].

B. Join node optimization

As mentioned in our previous report [7], different join algo-
rithms and their underlying data structures have a significant
effect on the query performance. To elaborate this, we compare

the incremental performance of the hash join and the sort
merge join algorithm [4]. We implemented both algorithms
with both the standard Scala library data structures2 and a
third-party collection framework, GS-Collections3 (developed
by Goldman Sachs Group, Inc).

V. EVALUATION

A. Benchmark environment

The benchmarks were executed on virtual machines with
the following setup: 2 cores of an Intel Xeon E5420 processor
running at 2.50 GHz, 8 GBs of memory, Ubuntu 14.04 LTS
operating system, Oracle JDK 8 runtime with 4 GBs of heap
memory, and Gigabit Ethernet network.

B. Benchmark phases

We use the “Repair” scenario of the Train Benchmark. In
this scenario, the model is loaded and validated. Next, a subset
of the model is transformed and revalidated (Figure 5). This
aims to simulate the workload of a user applying quick fixes
to the model. The memory consumption and execution time is
recorded for each phase.

Fig. 5: Phases of the Repair Scenario.

C. Benchmark goals

We benchmarked various aspects of the system.
1) Scalability: To measure the scalability improvements

provided by the sharded join algorithm, we executed a bench-
mark on three machines in four settings:

• As a non-incremental baseline, we used Jena [1], a state-
of-the-art RDF-based SPARQL in-memory query engine.

• To compare the scalability of the various degrees
of distribution the benchmark measured 3 variants of
INCQUERY-DS.

– The Local variant acts as an incremental baseline,
allocating all nodes on a single machine.

– The Distributed variant allocates each node on sep-
arate computer, but does not utilize sharding.

– The Sharded variant also allocates two nodes on
separate computers, but the third node is split into
two shards, allocated on different machines.

The transformation change set is indicated with a ∆ char-
acter in Figure 4. This figure also shows the allocation of the
worker nodes in the Sharded variant.

2) Join Algorithm Performance: We compared the perfor-
mance of join algorithms and collection frameworks. This
benchmark was executed on a single machine and only used
Join A.

2http://docs.scala-lang.org/overviews/collections/overview.html
3https://github.com/goldmansachs/gs-collections
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D. Benchmark results

Figure 6 and Figure 7 show the results of the benchmarks.
In both figures, the x-axis shows the number of triples in the
model, while the y-axis shows the time required for the run.
Both axes use a logarithmic scale.

1) Scalability: Figure 6 shows the results for repeated
evaluations of the RouteSensor query. For large models (5M+
triples), Jena is two orders of magnitude slower than the
incremental variants. Compared to the Local variant, the
network overhead of Sharded INCQUERY-DS is apparent,
but the response time in the “Transformation and Recheck”
phase is still within the subsecond range. The Sharded variant
handles models twice as large as the Distributed variant. The
Distributed variant fails on the largest model, because Join B
runs out of memory.
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Fig. 6: Scalability of the RouteSensor query with hash join.

2) Join Algorithm Performance: Figure 7 displays the ex-
ecution times of the different join algorithms with different
underlying data structures. The “Check” phase times do not
differ significantly, but the implementation using sort merge
join are characteristically slower than the hash joins in the
“Transformation and Recheck” phase, since the merge join
algorithm has to iterate over relevant parts of the data. Com-
paring the GS and Scala hash joins, we can conclude that the
GS variant provides a modest improvement in both scenarios.

Table I shows the memory consumption of each algorithm-
implementation pair on the Join A node. The memory con-
sumption of the different algorithms does not differ signif-
icantly, but the GS implementations use consistently less
memory in every observation.

Join node \ Model size alias 512 1024 2048
GS-HashJoiner 30.0 54.5 103.7
Scala-HashJoiner 36.5 68.5 131.6
GS-MergeJoiner 34.0 63.1 120.5
Scala-MergeJoiner 37.3 69.9 134.0

TABLE I: Memory usage of the Join A node [MB]
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Fig. 7: Comparison of different join algorithms.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented and evaluated a truly scalable
incremental query evaluation framework prototype. The results
imply that the approach provides high performance for use
cases requiring incremental query evaluation, while scaling
well for large models.

As future work, we plan to integrate INCQUERY-DS with
existing stream processing frameworks, e.g. Kafka [6].
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Abstract—Failure Mode and Effects Analysis (FMEA) is a
systematic technique for failure analysis. It aims to explore
the possible failure modes of individual components or subsys-
tems and determine their potential effects at the system level.
Applications of FMEA are common in case of hardware and
communication failures, but analyzing software failures (SW-
FMEA) poses a number of challenges. Failures may originate
in permanent software faults commonly called bugs, and their
effects can be very subtle and hard to predict, due to the complex
nature of programs. Therefore, an automatic method to analyze
the potential effects of different types of bugs is desirable. Such
a method could be used to automatically build an FMEA report,
or to evaluate different failure mitigation techniques based on
their effects on the outcome of faults. This paper follows the
latter direction, demonstrating the use of a model checking-
based automated SW-FMEA approach to assess error detection
mechanisms of safety-critical embedded operating systems.

Index Terms—Failure Mode and Effects Analysis, SW-FMEA,
model checking, fault tolerance, error detector

I. INTRODUCTION

Safety and in particular the risk of failure is one of the
main concerns of safety-critical systems. Certification requires
the systematic analysis of potential failures, their causes and
effects, and the assessment of risk mitigation techniques used
to reduce the chance and the severity of system-level failures.

One of the first systematic techniques for failure analysis
was Failure Mode and Effect Analysis (FMEA) [2]. FMEA
is often the first step in reliability analysis, as it collects the
potential failure modes of subsystems, their causes and their
effects on the whole system. Together with criticality analysis
(often treated as part of FMEA, sometimes emphasized by the
term FMECA), the output of FMEA serves as the basis of
other qualitative and quantitative analyses, as well as design
decisions regarding risk mitigation techniques.

FMEA is usually applied at the hardware and communi-
cation level, where it requires a qualified analyst to collect
postulated component failures and identify their effects on
other components and the system level. In case of software
(SW-FMEA), failure modes originate in different types of
programming faults, commonly referred to as bugs. Due to the
complex nature of software and the many types of potential
bugs, it is much harder to collect failure modes and deduce
their potential effects, so an automated mechanism is desired.

This paper presents a way of automated SW-FMEA with
the use of executable software models. Assuming a set of

predefined fault types (programming errors) and a specification
of safe behavior at the system level, the proposed approach
applies model checking to generate traces leading from fault
activations to states that violate the specification (system-
level failures). These traces can be used to understand and
demonstrate fault propagation through the system and also as
test sequences for the final product.

In addition to automated SW-FMEA, the proposed approach
can be used to evaluate the efficiency of fault tolerance and er-
ror detection mechanisms. Compared to the baseline of having
only the core system model, fault tolerance mechanisms should
mask as many faults as possible (reducing the number of
fault activations that can lead to a system-level failure), while
error detectors should catch the propagating error on as many
traces as possible. The evaluation of the latter mechanism
is presented on a case study, using a model of the OSEK
API specification [1], which is a commonly used interface
specification for embedded operating systems.

The paper is structured as follows. Section II introduces the
key concepts of FMEA and model checking, then a framework
for model checking-based FMEA is outlined in Section III.
Applications of the approach are discussed in Section IV,
while Section V presents a case study. Section VI provides
the concluding remarks and our directions for future work.

II. BACKGROUND

This section summarizes the main idea of FMEA and in
particular SW-FMEA, as well as model checking that is the
basis of the approach presented in Section III.

A. Failure Mode and Effects Analysis

FMEA involves 1) the enumeration of potential failure
modes of subsystems, 2) an inductive reasoning of their effects
on different levels of the whole system (called error propaga-
tion), and 3) often the deductive analysis of their root causes.
The analysis is usually based on a model or specification
of a component, as well as historical data and experience
with similar components. The result is recorded in an FMEA
spreadsheet. Failure modes are then categorized based on
criticality, representing the level of chance and the severity of
potential consequences. Criticality can prioritize failures, and
based on the discovered causes and effects, fault-tolerance or
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error detection mechanisms can be designed to mask or detect
faults to ensure fail-safe operation of the system.

There are three main concepts related to error propagation.
A failure is an incorrect system function, i.e., an observable
invalid state. An error is a latent invalid state that has no
observable effects yet. Finally, a fault is the cause of a failure,
which can be either some kind of defect (physical or design)
or the failure of a related subsystem.

During error propagation, an activated fault can cause an
error, which will turn into a failure once it becomes observable
(e.g., by crossing an interface). FMEAs are usually performed
on many levels during the design of a system, so a failure of
a component is often a fault in another one. FMEA usually
assumes that only a single failure mode exists at a time.

Software FMEA: When performing FMEA on software
components, failure modes are usually caused by programming
(or configuration) errors. The challenge of analyzing them is
twofold. First, it is very hard to come up with a realistic set
of programming faults (called a fault model). The source of
bugs is almost always a human, and the most typical faults
highly depend on the programming language and the domain
as well. Constructing a realistic fault model is therefore even
harder in case only a design model is available. Secondly, the
effects of a bug is hard to track as it evolves in a complex
system.

This paper focuses on the challenge of analyzing the effects
of programming faults. The problem of designing proper fault
models is not discussed here, we refer to the fact that it is also
an important challenge in the field of mutation-based testing.
For an extensive overview of mutation-based testing and fault
models, the reader should refer to [7].

Most of the previous approaches to SW-FMEA build on
software testing (e.g., [8]), injecting faults directly into the
program code and running a set of tests to see any pos-
sible global effects. Model-based SW-FMEA has also been
proposed recently [4] based on executable software models,
model-level fault injection and simulations. Another approach,
similar to the one presented in this paper, uses model checking
to detect the violation of the system-level specification in case
active faults are present [5]. The common features of these
approaches include a predefined set of faults injected into the
code or model, a description of system-level failures/hazards,
and some sort of execution (either testing, simulation or model
checking) to generate traces connecting the first two.

Our approach presented in Section III improves existing
model checking-based SW-FMEA by optimizing fault activa-
tions and using monitors instead of a formal specification.

B. Model Checking

Model checking is an automated formal verification tech-
nique used to verify whether a system satisfies a requirement
or not. This is done by systematically (and typically exhaus-
tively) analyzing the states and/or possible behaviors of the
system model (i.e., the state space). If the specification is
violated, model checkers prove it with a counterexample.

Fig. 1: Overview of the presented approach.

In this work, the tool SPIN was used as a model checker [6].
SPIN is an explicit model checker (using an explicitly stored
graph representation of the state space) capable of reachability
analysis (is there a reachable “bad” state?) and linear temporal
model checking (describing complex temporal behavior). Its
strengths include its maturity, the rich set of configuration
opportunities and the expressiveness of its input model, given
in PROMELA (PROcess MEta LAnguage).

III. MODEL CHECKING-BASED SOFTWARE FMEA
The approach presented in this paper focuses on the “Effect

Analysis” part of FMEA. Assuming a set of possible faults
(failure modes) in the software and a characterization of
system-level failures, it examines an executable model of the
system to generate traces leading to system-level failures.

The process (shown in Figure 1) starts with fault injection,
when the input model is transformed into an analysis model
containing faults that can be turned on or off. It is assumed
that there is an oracle model that allows the detection of
system level failures (see Section III-2 for details), so the
model checker can analyze the model to check if any fault
can cause a system-level hazard. The output is a set of traces
that lead from every dangerous fault activation to reachable
system-level failures.

1) Fault Injection: The method requires a fault model
in terms of the modeling language. Here, a fault model is
assumed to be a set of alterations (mutations) that can be
applied on the model. The actual alteration is performed by
adding a trigger variable to activate or deactivate the fault, i.e.,
with the trigger variable set to false, the model should behave
correctly, while a value of true should cause an erroneous state
when the affected part is executed. Note that trigger variables
become part of the system as auxiliary state variables.

Using the trigger variables, a number of different fault
types can be modeled. First, a fault can be permanent (only
nondeterministic false → true transitions) or transient (non-
deterministic true → false transitions are also present).
Although in case of software bugs, the faults are usually
permanent, it is sometimes useful to have transient faults to
simulate the effects of hardware faults as well. Second, it is
sometimes desired to restrict the number of faults in the system
to at most one, or in some cases at most two.

By injecting the fault activation mechanism into the model,
a model checker is free to choose which fault to activate by
setting the trigger variables as long as it meets the restrictions.

2) Failure Detection: The traditional approach in model
checking is to provide a formal specification of the system.
Automated FMEA can then check if the specification still
holds in the presence of faults (as described in [5]).
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Fig. 2: Shape of the state space with eager and lazy evaluation.

In this work, we suggest an alternative that is closer to
a safety engineer’s viewpoint. Instead of specifying a failure
(or the correct behavior), it is sometimes easier to model a
component to detect and signal requirement violations. Such
a model can be idealistic (e.g., it may observe every detail of
the system or have infinite memory), since its only role is to
provide a definition for system-level failures, it does not have
to be implemented in the real system. Due to these properties,
we will call this idealistic component an oracle. Depending on
the goals and the domain, an oracle can be a reference model
or a more permissive abstract contract.

3) Failure traces: From the extended model and the oracle,
the model checker will be able to generate a set of traces
leading to system-level failures. From each trace, we can
extract the values of the trigger variables (i.e., which faults
were activated) and the location of the system-level failure
detected by the oracle. If the oracle can classify the failure,
this information can also be retrieved.

4) Efficiency and Lazy Evaluation: Model checking is
highly sensitive to the size and potential values of the state
vector. Unfortunately, adding a set of nondeterministic boolean
variables (here the trigger variables) increases the number of
potential states exponentially. Moreover, if permanent faults
are modeled in such a way that the initial activation is
random, the number of initial states immediately blows up
exponentially.

In order to avoid the combinatoric explosion, we suggest a
“lazy” strategy to evaluate fault activations. Let the trigger
variables have ternary values, with the third value being
undefined, also being the initial value. By injecting additional
logic to access the value of trigger variables, it is possible to
defer the valuation and have identical states for multiple fault
configurations up to an actual fault activation. This effect is
illustrated in Figure 2.

IV. EVALUATION OF FAULT TOLERANCE MECHANISMS
AND ERROR DETECTORS

Section III outlined a general approach to model checking-
based automated SW-FMEA. In this section, we present two
novel applications of the method to evaluate fault tolerance
mechanisms and error detectors. The goal is to measure the
efficiency of these mechanisms by analyzing what type of
faults they can mask or detect, respectively.

For an “absolute” measure, one can use an idealistic oracle
(like we suggested in Section III-2) as a baseline and “upper
bound” on the efficiency of realistic approaches. In case of
error detectors, it is also possible to compute the relative

efficiency of two solutions, i.e., how much “better” or “worse”
is one of them compared to the other.

The measurement setting is the following. In case of error
detectors, we first run a check with the oracle (or the first
detector) to get the total number of traces leading to observable
failures (denoted T as total), then we measure the same num-
ber (denoted D as detected) with the evaluated (or second). In
case of fault tolerance mechanisms, both steps use the oracle,
with the mechanism coupled with the system in the second
step. Efficiency is then defined as follows.

• In case of error detectors, the efficiency is E = D/T .
• In case of fault tolerance mechanisms, the efficiency is

E = (T −D)/T .
Efficiency can also be defined in case of fault types (or

failure modes), giving a more detailed picture about the
evaluated technique. By obtaining a number describing the
efficiency of different approaches, we hope to help design
decisions concerning what error detectors and fault tolerance
mechanisms to use (possibly in some combination).

V. OSEK API – A CASE STUDY

To demonstrate the merits of the proposed approach, we
used the model of the OSEK API [1], a common interface
definition for safety-critical embedded operating systems. In
a related project1, an OSEK-compliant real-time operating
system targeting the automotive industry had to be certified
according to ISO 26262 [3]. The developers of the OS wanted
to add fault tolerance and monitoring techniques addressing
potential programming errors, both from the side of the OS and
client applications. To aid design decisions, we have developed
the presented approach to evaluate different solutions still in
the modeling phase. For the analysis, we used a model of
the OSEK API and a set of test programs (both correct and
incorrect) taken from [9] and a set of error detectors with
assertions providing the “error signals”.

The OSEK API provides a set of interface functions with
their syntaxes and also the semantics of the implemented OS
primitives. The API defines primitives for task handling and
scheduling; resource, interrupt and event handling; semaphores
and messaging; as well as times and alarms. For the case study,
we used a model describing the Task API, the Resource API
and the Event API.

We have modeled two types of error detectors: as the ide-
alistic oracle, a (fault-free) Reference Model that is compared
to the state of the OSEK model after each interface call
(according to the Master-Checker pattern); as well as a simple
Priority Checker that observes only the priorities of scheduled
tasks. The Priority Checker can detect if the scheduler violates
the priorities, for example by preempting a task to run another
one with lower priority.

A. Implementation of Automated SW-FMEA

We have implemented the approach described in Section III
based on the model checker SPIN. Fault injection was per-

1This work has been partially supported by the CECRIS project, FP7–Marie
Curie (IAPP) number 324334.
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Fig. 3: Efficiency of the Priority Checker compared to the Reference Model

formed by an auxiliary program that parsed the PROMELA
model of the OSEK API and altered the code. We used a very
simple fault model: each instruction in the model could be
removed when activated by a trigger variable. We assumed a
single, permanent fault that activates in the initial state.

SPIN was configured to perform a bounded depth-first
search optimized for safety checking and enumerating every
violating trace. The tool looked for assertion violations (errors
detected by the evaluated error detectors) and invalid end states
(i.e. deadlocks). Once the model checking finished, the path
was replayed to obtain the last (violating) state, containing
the values of the trigger variables and the location of the error
signal. This information was aggregated for all traces, resulting
in the number of violating traces for each different fault-type.

B. Results

Running the analysis with the two detectors showed the
relative efficiency of the Priority Checker compared to the
more “heavyweight” Reference Model. The diagram in Fig-
ure 3 illustrates the efficiency for each fault type (alteration in
the API model) separately, also grouping them based on the
related API. Although the fault model is artificial, the diagram
highlights that the Priority Checker can barely detect faults in
the resource handling or task termination primitives, but it
is comparable to the Reference Model for most of the faults
related to rescheduling (starting tasks and handling events).

In a real world example, analysis of the characteristics of
different detectors could help in understanding their efficiency
(or coverage) better. In this study, the Reference Model can
also be regarded as an idealistic oracle, while something like
the Priority Checker can be implemented for an acceptable
cost. By knowing the costs of a solution and its characteristics,
it should be easier for engineers to find a cost-optimal solution
with the highest possible benefits.

VI. CONCLUSION AND FUTURE WORK

This paper presented a method for automated SW-FMEA
based on model checking, along with a novel idea for applying
such approaches in the evaluation of fault-tolerance mecha-
nisms and error detectors.

The main idea of the model checking-based method is to
1) use model-level fault injection (or model mutations) with

trigger variables to augment the system model with switchable
faults, then 2) use formal specification or an oracle model to
characterize system-level failures so that 3) the model checker
can generate traces leading from a fault activation to a failure.

Evaluation of fault-tolerance mechanisms and error detec-
tors is based on the notion of (relative) efficiency that describes
the number of masked/revealed errors compared to an oracle or
another technique (respectively). We hope that this additional
piece of information can aid safety-engineers in early design
decisions.

The main contribution of this paper is the outline of a
general idea. In order to make it applicable, there are a number
of further concerns to be considered. First, the fault model
for executable software models has a great impact on the
validity of the results, so a fine-tuned and validated fault
model is necessary. We plan to use completed projects with
code-level fault injection to statistically compare the effects of
model-level and code-level faults. Secondly, a specific model
checking algorithm could inherently optimize the structure of
the state space without lazy evaluation injected into the model
(see Section III-4). Thirdly, the case study presented here is
only in a preliminary phase – modeling other aspects of the
OSEK API and additional error detectors or fault-tolerance
mechanisms will be necessary to extract meaningful results.
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Abstract—This paper describes the operation principle and 

experimental results of a low cost positioning system based on 

low frequency magnetic fields. In particular, the system 

prototype is realized using low cost microcontroller based boards 

combined with off-the-shelf components and is tested over an 

area of approximately 50 m2. Experimental results show a mean 

positioning error lower than 0.2 m and a maximum positioning 

error lower than 0.7 m. 

Keywords—indoor positioning; localization; magnetic fields; 

resonators. 

I.  INTRODUCTION 

In the last 10 years, the knowledge of the position of 
different users has become a key factor in the development of 
several systems and applications. Examples are the Internet of 
Things (IoT) [1], Location Based Services (LBSs) [2] and 
Ambient Assisted Living (AAL) [3] applications. While in 
outdoor environments the Global Positioning System (GPS) 
solution is a well-established choice, in indoor environments it 
has a low applicability due to the lack of the satellites visibility. 
In fact, due to this, an embedded Indoor Messaging System 
(IMES), based on a GPS receiver [4], has been proposed. It has 
the goal of seamless indoor-outdoor positioning providing 
better than GPS accuracies in indoor environments. Moreover, 
several alternative indoor positioning systems and techniques 
have been developed. In particular, embedded positioning 
systems based on Wi-Fi signals and fingerprinting techniques 
[5] are a common solution. Low positioning performance and 
high effort database building and maintenance, attribute to this 
solution a decreasing attention by the scientific community. 
Systems based on ultrasound sensors offer centimeter level 
positioning accuracy performance [6], however they are short 
range and highly affected by non-line-of-sight (NLOS) 
conditions. Nowadays, systems based on narrow-band radio 
frequency signals like Bluetooth Low Energy (BLE) [7] are 
becoming more and more popular. They are built using 
standard hardware and require low power consumption and low 
cost. The main drawback is the positioning performance. In 
general, this class of positioning systems is based on proximity 
algorithms and received-signal-strength (RSS) measurements, 
that are affected by multipath phenomena and lead to large 
positioning errors. In order to improve the performance, a high 

number of nodes may be required, increasing installation and 
maintenance costs. Systems based on Ultra Wide Bandwidth 
(UWB) signals are easily found in the literature [8]. They are 
characterized by fine resolution time measurements and better 
penetration properties with respect to the narrow-band 
solutions. However, obstructions in the direct path, that are 
common in crowded environments, contribute to the 
performance degradation. On the other hand, inertial 
navigation [9] and magnetic field based [10]-[13] positioning 
systems are not affected or are more resistant to NLOS 
conditions, respectively. Due to their integrative nature, inertial 
navigation systems are affected by rapidly growing positioning 
errors. Instead, magnetic fields based positioning systems 
usually rely on bulky and expensive electronic instruments and 
require high power consumption or are characterized by high 
complexity and computation. Specifically, the magnetic 
positioning system described in [12], based on three square-
shaped low-frequency magnetic transmitters with side 
dimension of 1 m, and a three axis magnetic receiver, provides 
2D and 3D position measurements. The obtained mean 
positioning error over an experiment area of approximately 30 
m × 40 m, is 0.8 m and 0.4 m in the case of 3D and 2D 
positioning, respectively. The required current consumption for 
each transmitter is of the order of 7–8 A, and the analog to 
digital conversion at the receiver has a resolution of 24 bit. The 
outdoor remote positioning system in [13], which is based on 
magnetoquasistatic fields, provides 6 DoF measurements of a 
mobile transmitter by using seven magnetic field receivers. The 
magnetic transmitter with diameter of 16.5 cm is fed by a class 
E oscillator with a total output power of 0.56 W and the 
received signal by each receiver with diameter of 1 m is 
sampled with a resolution of 16 bit. The system performance is 
investigated over an outdoor experiment area of 27.43 m × 
27.43 m with a mean positioning error of 0.77 m, mean 
inclination orientation of 9.67° and mean azimuthal orientation 
error of 2.84°. 

In this paper, the authors investigate the performance of a 
first stage towards an embedded solution of a previously 
developed magnetic positioning system prototype [10][11], 
which showed a mean positioning error lower than 0.3 m over 
an indoor area of 12 m × 15 m and outdoor area of 14 m × 30 
m. The required power and current consumption of each 
transmitter with radius equal to 14 cm is lower than 0.15 W 
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and 0.02 A respectively. Here, low cost microcontroller based 
boards have been used instead of high cost electronic 
instruments improving system portability and decreasing power 
consumption and cost. A positioning accuracy of the order of 
tens of centimeters is obtained over an area of approximately 
50 m2. The paper is organized as follows. Section II describes 
the theoretical basis of the measurement model while Section 
III provides an overview of the architecture description. In 
Section IV the experimental results are provided and described 
and in Section V the conclusions are given. 

II. MEASUREMENT MODEL 

In order to realize an embedded system solution, usually 
simplicity and low power requirements may be of fundamental 
importance. Thus, taking the previous goals in account, the 
developed magnetic positioning system prototype [10][11] is 
based on a simple measurement model. In the following, a 
short summary of the theoretical basics is reported. First, an 
electromagnetic point of view is considered. The magnetic 
field generated by a circular coil assumed in the coordinate 
system origin, in the near field zone, can be modeled as a 
magnetic dipole [14] 
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where 
0

  is the free space magnetic permeability, n  is the 

observation versor, m  is the coil’s magnetic moment, d  is the 

observation distance,   is the operating frequency and t is the 

time. The magnetic moment m  is orthogonal to the coil 
surface and has a module m  equal to NISm  , where N is the 

number of turns in the coil, I is the feeding current and S is the 
coil’s surface. According to Faraday’s law of induction, the 
time varying magnetic field will couple a sensor coil with the 
field generating coil, inducing a voltage in the former [10][14]. 
In the case that both sensor coil and field generating coil are 
oriented in the same way, see Fig. 1(a), the relation between 
the induced voltage and the distance between the coil’s centers, 
in a bi-logarithmic scale, can be expressed as: 

   dbaV
1010
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where a is a hardware-configuration dependent constant and b 
has a nominal value of 3. The interested user can refer to [10] 
for detailed descriptions. In indoor environments, due to the 
interaction between the magnetic field and the different objects, 
the slope of the model (2) can assume different values [10]. 
Thus, a preliminary system calibration phase, that can be 
obtained by induced voltage measurements at known distances 
followed by linear fitting, is required in order to improve 
system accuracy and robustness [10][11]. During operating 
conditions, using calibration parameters and induced voltage 
measurements, ranging can be obtained by inverting (2). 

In order to obtain high operating ranges without high power 
consumption requirements, resonant coils may be used [11]. 
Considering an equivalent circuit point of view, as in Fig. 1(b), 
it can be shown that the induced voltage is given by: 
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where V0 is the feeding voltage, k is the coupling factor and Q1 

and Q2 are the resonator quality factors given by Q=L/R, with 
L and R representing resonator’s inductance and resistance, 
respectively. Thus, using high-Q resonant coils increases the 

induced voltage at a given distance. Consequently, once the 
receiver sensitivity is fixed, the operating range can be 
increased by using high-Q resonators. This is analogue to the 
antenna gains in a telecommunication system. High-Q 
resonators can be obtained by increasing the operating 
frequency, however this will increase the interaction between 
magnetic fields and surrounding environment [15], decreasing 
the system robustness. Thus, a tradeoff must be considered. In 
the following, an operating frequency of approximately 25 kHz 
will be used, since it provides good robustness and operating 
ranges up to 30 m or 12 m in line of sight (LOS) and NLOS 
conditions respectively. 

III. ARCHITECTURE DESCRIPTION 

The realized positioning system prototype is based on two 
types of system nodes, a set of magnetic field generating ones 
and a sensor node. A schematic representation of the system 
architecture, which is realized using off-the-shelf components, 
is shown in Fig. 2. 

In particular, the field generating nodes are composed by a 
resonator and a driving circuit realized with a microcontroller 
based board, the Programmable System on Chip (PSoC) 
CY8CKIT-049 of the PSoC 4 family by Cypress. Each 
resonator is formed by the parallel connection between a 
circular coil with 20 turns of radius equal to 15 cm showing a 
nominal inductance of 128 µH and a lumped capacitor of 330 
nF. The realized resonators have a nominal resonant frequency 
of 24.5 kHz and a quality factor of 12. The PSoC 4 board is 
programmed in order to provide a square wave signal with a 
frequency near to the resonance. Due to the resonator’s band 
pass behavior, only the first harmonic of the square wave will 
have a significant contribution to the generated magnetic field, 
with the higher harmonics leading to a negligible effect. The 
required driving current has a maximum value of 
approximately 20 mA rms, leading to a magnetic field intensity 

 
Fig. 1. Representation of the system configuration by considering an 

electromagnetic (a) and circuit (b) point of view. (a)-The magnetic field 

generated by a field generating coil at the coordinate system origin will 

couple with a sensor coil, inducing a voltage. Both the coils are assumed with 

the same orientation, lying in the xy plane. (b)-Circuit representation of the 

resonant coils assumption. 

 
Fig. 2. Schematic of the system architecture. The field generating 

resonator is driven by a square wave signal provided by a PSoC 4 board. 

After being amplified by an INA, the output of the sensor coil is digitized by 

the PSoC 5 on-board ADC, and finally is transmitted through USB to a PC. 

Distance and position estimation are performed in the PC. 
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of approximately one order of magnitude lower than the 
international regulations [10]. In order to avoid synchronization 
requirements that increase the system complexity, each field 
generating node is characterized by a particular frequency that 
is related with the known position of the node and identifies it 
at the receiver side. 

The sensor node is composed by the same resonator as the 
field generating one, and also includes all the electronics for 
signal conditioning, acquisition and processing. Specifically, 
the induced voltage, which is self-filtered by the resonator, is 
first amplified by an instrumentation amplifier (INA), the 
integrated circuit AD8421BRZ by Analog Devices, and then 
acquired by a CY8CKIT-050 PSoC 5LP microcontroller based 
board. The digitalized signal, obtained by using a 12 bit ADC 
configured with a sampling rate equal to 75.65 kSa/s is 
transferred to a PC through a USB connection with the PSoC 
5LP board. Then, the available signal, that comprises the 
contribution of all the field generating nodes plus noise, with a 
length of 30 kSa, after a flat-top windowing process, is used as 
an input to a DFT based algorithm for amplitude estimation. In 
particular, the usage of slightly different operating frequencies 
allows simultaneous amplitude estimation without time 
synchronization. Inverting the measurement model (2) and 
using the estimated amplitudes, range measurements are 
obtained. The Euclidean distance between a transmitting node 
with coordinates (xi yi) and the mobile node at a position with 

coordinates (x y) is given by    
22

iii
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the corresponding estimated range is represented by 
i

d
ˆ . The 

measurement of the sensor node position relative to the field 
generating nodes is obtained by minimizing in a least squares 
sense the non-linear cost function given by: 
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the field generating nodes and the position with coordinates (x 
y) and T is the transpose operator. Future developments include 
the realization of a fully embedded solution of the realized 
prototype. In particular, we are focusing on real time on-board 
amplitude estimation, range and position measurement without 
the usage of a PC. 

IV. EXPERIMENTAL RESULTS 

In order to test the performance of the developed system 
prototype it was setup in a laboratory environment, as shown in 

Fig. 3, over an area of 7.2 m × 7.2 m. The system nodes were 
operating in LOS conditions, however several disturbing 
objects like metal cabinets, tables, chairs and electronic 
instruments were inside the experiment area. First, using four 
field generating nodes which do not require any time 
synchronization, static repeated measurements were performed 
in a set of nine known position points where real-time 
positioning of the sensor node was obtained. Then, position 
estimation in a dynamic scenario was considered. The results 
are shown in Figs. 4-6. In particular, in Fig. 4 the system 
deployment and the repeated measurement results are shown 
where the black squares represent the field generating node 
positions, the red diamonds the true positions and the blue 
asterisks the estimated positions. The measurement points were 
taken at the edges, at the center and at the side centers of a 
square with dimensions 3 m × 3 m. The true positions were 
manually surveyed with an estimated accuracy of the order of a 
couple of centimeters, and for each of them 150 position 
measurements were considered. The mean positioning error 
was evaluated for each point and a maximum value lower than 
0.3 m was obtained. Further information regarding positioning 
error characteristics is provided by Fig. 5. In particular, the 
boxplot of the positioning error of all the considered points is 
shown. The positioning error shows a unimodal distribution 
and a maximum error of approximately 0.4 m, except a few 
outliers showing an error lower than 0.7 m. The mean error of 
all the measurements is approximately 0.17 m. 

System simplicity, intended as measurement model leading 
to low computational cost, is obtained by using geometrical 
assumptions and limitations, such as operation in a planar and 
with equally oriented coils scenario. Since in general this can 
restrict the system applicability, measurements in a dynamic 

 
Fig. 4. Positioning results of 150 repeated measurements for each point 

over nine static points. The true positions are represented by the red diamonds 

while the estimated positions by the blue asterisks. Field generating resonator 

positions are shown by black squares. 

 
Fig. 5. Boxplot representation of the positioning error over the repeated 

measurements represented in Fig. 3. The central line of each box is the 

median error while the edges of each box represent the first and third quartile. 

Top and bottom ends of the dashed black lines are the maximum and 

minimum error with the red plus symbols representing outliers. 

 

Fig. 3. Picture of the experiment environment. Two of the field 

generating nodes and the sensor node are shown. 
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scenario where the geometrical assumptions are not always 
satisfied are a key element for the system performance 
characterization. Two dynamic measurements were performed. 
In particular, a user followed a square reference path defined 
by the static measurement points, carrying the magnetic sensor 
node with himself. In both cases, the starting point was the 
number 1, shown by the black cross in Fig. 6. The first 
trajectory was the counterclockwise path starting in point 1 and 
ending in point 8, repeated three times. The second path was 
defined by two repetitions of the previous path, followed by the 
sequence 9-4-3-2-1-8-9. The real-time position estimation 
provided by the system is shown in Fig. 6. In particular, the 
blue dot-dashed line represents the first trajectory and the blue 
dashed line the second one. Estimated stop positions are 
represented by the magenta circle and the plus symbol. It can 
be clearly seen that the estimated positions are in good 
agreement with the followed paths. In general, it has been 
observed that misalignments or coplanarity deviations of the 
order of 10° only introduce a positioning error of the order of 
5-10 cm [10][11]. System performance in outdoor scenarios 
was also tested, obtaining a similar performance even in larger 
coverage areas. 

In general magnetic fields may be distorted by metals 
and/or different in-band noise sources in the environment. 
Some non-ideal effects, such as constant amplitude in-band 
interferences, can be mitigated by calibration, others may 
require lower operation frequency and/or higher SNR which 
can be obtained with higher power consumption. We have 
noted that the proposed method has a good robustness in 
typical indoor/outdoor environments since substantial part of 
the noise is filtered out by the band pass behavior of the 
resonators. Instead, in-band noise may be filtered out by 
considering non-linear coding and correlation techniques. 

V. CONCLUSIONS 

In this paper, a partially embedded version of a previously 
developed low cost magnetic positioning system is presented. 
A short overview of theoretical basics and system architecture 
is given and new obtained experimental results are discussed. 
Repeated measurements over an area of approximately 50 m2 
show a mean positioning error lower than 0.2 m with a 
maximum positioning error lower than 0.7 m. Moreover, 
measurements over two dynamic trajectories show good 
agreement with the reference path. 
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Fig. 6. Positioning measurement in a dynamic scenario. Two trajectories 

were followed with the first (a) consisting in the square defined by the 

external red diamonds and the second (b) consisting in two rectangles defined 

by the red diamonds. The results are represented by the blue dot-dashed line 

and the blue dashed line respectively. The start position is shown by the black 

cross and the stop positions by the magenta circle and magenta plus 

respectively. 
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Abstract—From the point of view of a medical physicist the 

creation of 3D visualizations to illustrate radiation dose 

distribution within a room or building is a very useful tool for 

radiation protection planning. This study describes a novel 

technique for 3D visualization of radiation field, where the 

source modeling is completely separated from the 

visualization process. Basically it uses an input file from pre-

simulated sources that actually significantly improves the 

computing time compared to the real-time simulations. 

Visualization module read this information stored in 

coordinate form with a representative value at each point, and 

constructs elemental shapes at specified coordinates. All 

shapes are associated with an intensity value, related to color 

scale. The shapes are colorized and then, enhanced with 

transparency effects. 
 

Keywords—3D dose visualization, radiation field, radiation 

protection planning 

I.  INTRODUCTION 

Radiation protection planning, is very important aspect of 

occupational health. There are several comercial computer 

programs in the global market, which are capable to display  

ionizing radiation fields within 3D environment, but mostly 

they have high price and very poor user interface. Radiation 

protection planning could be greatly enhanced by providing 

staff with a simple and easy to use tool to make source 

simulations and generate 3D visualizations. 
The aim of this study is to create and develop a novel 

method and software for 3D visualization of radiation fields in 
large space. This study sought to create the 3D visualization 
method that any potential user could emulate and adapt for any 
of a variety of purposes. Furthermore this software could be a 
useful tool for generation of 3D visualizations for augmented 
reality applications. 

 

II. CONCEPT OF METHOD 

The generation process of 3D radiation field can be 

divided into several  phases as shown in  Figure 1.  

 
Figure 1. Program concept flowchart 

A. Source modeling computational software approach 

A computational field model is based on Monte Carlo N-

Particle (MCNP) transport code [1]. If a nuclear physics code 

is able to keep a tally in multiple locations simultaneously, and 

provide output data in a format that is similar to (or could be 

made similar to via post processing) that in Table I., then the 

output from that code is compatible with the model 

construction process. In general there are no other factors that 

would limit the users choice of MC code package selection. 

The modeling technique was tested with such packages as 

GATE and PRIMO and in both cases satisfactory results were 

obtained. Post-simulation data is stored in a local database in 

*.txt format. 

Table I. Example data format compatible with Ruby code 

(x-coordinate)   (y-coordinate)   (z-coordinate)  (intensity) [%]* 

5 5 6 4.10 

6 4 6 3.80 

* intensity values are expressed as a percentage of the maximum dose 
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B. Field definition 

The first step is defining of a radiation field. A radiation field 

is a term in medical physics which most commonly refers to 

the particle fluence, and also often the energy distribution of 

ionizing radiation within a medium, volume or space. The key 

feature of a field is a quantifiable trait, such as the rate of 

particles entering each volume unit of space that varies 

throughout all environment. 

 

C. Model construction 

The radiation field model construction process is based on 

iterative, point by point technique. Building a model from 

many small parts potentially may propose more errors during 

construction process, but alternatively the construction method 

is conceptually very easy to understand and adapt for specific 

projects and programs. Besides, utilization of fundamentally 

simple concepts maximizes the compatibility of this method 

with various 3D modeling software packages. The only 

requirements for target 3D modeling software package is that 

the software:  

1) allows the automation of construction actions,  

2) allows transparency effects to be applied.  

 

D. Interacting with a visualization 

The final stage of the construction process takes place when 

the modeled field is used for its visualization. In this stage, 

viewpoints are setup for their eventual output as static images. 

The viewing process is entirely reliant on the construction 

process, as it limits which types of programs may open and 

view a constructed model. The assumption that the primary 

users will not be 3D modeling experts, requires that this 

interaction process be as user friendly as possible. 

E. Output of images 

Through the interaction process briefly described in previous 

section, it is necessary to respect a user requirement to collect 

and output images of the modeled field for inclusion into 

presentation material, reports or other media forms. The final 

consideration in the development of this method was that the 

end technique must make the process of generating this 

material very easy. 

F. Model portability to other 3D software (model export) 

Portability of a constructed model to alternative software is 

considered a desirable trait in this research. Once a field model 

has been created, its usefulness is directly related to the 

number of different analytical and visual applications 

available for user to view and analyze a model. This is 

primarily concerned with the data format of the 3D model. If a 

3D model is stored in an openly documented and available 3D 

format such as the COLLADA [2] format, it will be possible 

to use many different 3D viewers. In addition to being 

compatible with a wide array of modeling software due to no 

licensing costs, the COLLADA format is based on the 

Extensible Markup Language (XML). This allows a 

COLLADA formatted file to be directly opened with a simple 

text editor program and properties of the file can be edited 

directly via the text editor. Visualization script was designed 

using RUBY [3] programming language. 

III. KEY CHALLENGES 

A. Model visibility  

Visibility is a very important issue which needs to be 

considered very carefully. For a radiation field to be 

completely visible a computer model must allow a viewer to 

observe both internal and external details, like looking through 

a foggy window. This is an absolute requirement to allow all 

of the internal details within a field to be seen from external 

viewpoints, otherwise they would be obstructed by the outer 

layer of information. These details could be something such as 

a change of dose rate within a localized area, or depending on 

the type of field being modeled, it could be a change in local 

particle fluence quantities or other relevant factors. The 

visibility of non-radiation models (such as background) was 

also considered an equally important requirement.  

B. Model navigation 

Navigation refers to how the end user will move around a 

modeled field, so that the user is able to analyze a model from 

as many viewpoints as possible. The controls to move a 

viewpoint in an environment need to be very  intuitive in 

usage. How a user establishes multiple perspectives for a 

scene and manipulates a model plays a key role in the overall 

user friendliness of this software. 

C. Model colors 

Determining appropriate colors to be used in model is the next 

step needs to be addressed. If models are made with  

non intuitive colors, obtaining information from model 

become much more difficult. If a model uses too many colors 

it could also be difficult to review and understand the results. 

A set of recommendations concerning the use of color within a 

visualization will be required at some level to assist users in 

the creation of models. 

D. Model limits 

A model limit is a reference to where a radiation field model 

should be constructed and where it should not. Here is the 

potential for data excesses particularly for large and complex 

models. Reduction of data abundance (and computing time) is 

possible by limiting the model to only the specific section 

(ROI) needed for a given scenario. 

IV. METHOD SUMMARY 

A field is devided  into a set of finite elements with each 

element containing a series of bounds, an intensity value and a 

central coordinate. Each element is considered to act as a 

single representation of an intensity value for a field within the 

local bounds of that element. These elements are  

geometrically simple shapes such as cubes or boxes. These 

individual elements can be thought of as a physical 

representation of a volumetric pixel (voxel). Voxels can be 

used to represent data in a three-dimensional space as they 

contain both a physical location and a value at that location. 

Using basic shapes simplifies the arrangement of these 

elements into a single model where all the elements can be 

fitted together so their boundaries do not overlap each other. 

Theoretically an intensity value is not limited to a single type 
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of information (e.g., dose rate); any type of information could 

be visualized using this method. 

The method proposed for building and modeling a radiation 

field can be summarized as follows: 

1) a data set containing (xn, yn, zn, Vn) is taken (where xn, 

yn and zn represent coordinates, and Vn represents a value at 

those coordinates). 

The process requires that xn, yn, zn, values be at a fixed 

distance apart to establish a fundamental element size for that 

model (e.g., if they have values at 1m, 2m, 3m,...Nm, in all 

directions, this process will establish that each (xn+1 ) is 

equal to (xn+1m) and the fundamental element size is a cube 

of 1m x 1m x 1m)  

2) a script inside the 3D modeling program is being used 

for reading those values one at a time and constructs an 

element at each location [4]. This script includes a scale where 

the V value is assessed and each element is coloured based on 

its value.  

 a) the program is opened and the script is runing to 

calculate each (xn, yn, zn, Vn) and a shape is built (centered at 

the coordinate or other reference point)  

 b) based on the Vn value, that new object (volume) is 

given a colour, material, or whatever the term the program 

uses to define the appearance of an element  

3) this process then repeats until a shape has been built at 

all of the locations specified in the data file.  

 a) during the construction process different ranges of 

associations can be assigned to values of V. I.e.: if V is: 5> V 

> 3, then color = light blue which means any time a shape is 

built, and the V value is less than 5 but greater than 3, a color 

value of ‘light blue’ will be assigned  

 b) all entities within the same range will share the 

same color, or material property. They require transparency to 

be added to complete the visual effect. 

Visualization of point source sample data shown in Figure 2. 

and Figure 3. 

 

 

V. RESULTS 

Program accuracy was evaluated in the following stages:  

1) assessment of the radiation source Monte Carlo 

model accuracy relative to the measurements in  water 

phantom, 

2) visualized dose model accuracy relative to the 

KERMAAIR measurements – point dose in software compared 

with measured dose at specified coordinate in room. 

For evaluation purposes a linear accelerator Varian Clinac iX 

head model was created. Monte Carlo simulations was 

accomplished for  6MV beam at the field sizes of 5x5 cm; 

10x10 cm; 15x15 cm; 20x20 cm. Results verified relative to 

the measurement in IBA Blue Phantom. 

Comparsion of simulated and mesured %PDD is shown in 

Figure 4. 

 

 

Similar evaluation was also conducted for dose profiles in X 

and Y planes. 

Results are presented in Figure 5. and Figure 6., where blue 

curve represents calculated (simulated) dose profile but red 

curve is related to measured dose profile in water phantom.  

   

   

 

Established MC linac head model accuracy assessed as 

appropriate for the continuation of the experiment. 

For further evaluation of the program was created the linac 

bunker 3D model, with radiation source (linac) inside, as 

shown in Figure 7. 

 

Fig. 2 Example model of point 

source 

Fig. 3 Example model with 

transparency effect applied 

Fig.  4. Comparsion of %PDD for field size 10x10cm. 

Figure 5. X plane dose profile 

comparsion, 10x10cm 

Figure 6. Y plane dose profile 

comparsion, 10x10cm 

Fig. 7. Varian Clinac iX bunker 3D model, data taken from 

Liepaja Regional Hospital, scale 1:1 
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Radiation source data was taken from simulations mentioned 

above. After completion of the visualization, point doses from 

model was taken for 46 points and compared with measured 

dose under the same conditions. Example dose visualization is 

shown in Figure 8. 

 
 

 

 

Results obtained vary between 3.54% and 21.09% in relation 

to the measured dose. In addition, there is a trend that the error 

increases with increasing distance from isocenter. It could be 

explained by the fact that the precision of measurement is less 

at lower dose rate. The numerical values are partly 

summarized in the Table II. and Figure  9. 
 

Table II. 

X [cm] Y [cm] Z [cm] Δ% 

0 0 100 3.54 

50 50 100 8.32 

300 300 100 21.09 
Numerical values of measured dose error according to distance. 

 

 
Fig. 9. Measured dose error trend according to distance from isocenter. 

Breaking point at X 50cm; Y 50cm most likely was caused by use of unsuitable 

measuring equipment. 

VI. CONCLUSIONS 

In this study, a novel methodology for the display of 3D 

radiation fields was developed. New approach was formulated 

which focused on keeping the field definition process separate 

from the modeling process to maximize potential definition 

techniques.  

The types of expected issues associated with 3D radiation field 

visualizations were discussed and analyzed. Overall design 

requirements for this type of program development were 

established and eventually shown to have been achieved. The 

software product obtained in this study, of course, require 

improvements and adjustments, but generally it has been 

demonstrated that it is able to operate for its intended 

purposes. This is a unique case, when this type of modeling 

method was applied to radiotherapy radiation source modeling 

and field visualization in three-dimensional space. 

Further work is planned severely to work on improvement of 

the user interface and functionality. As the final result is 

expected to gain full-fledged software product, which can be 

used in radiation protection planning. 
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Abstract—In model-driven development design artefacts (e.g.
source code and system configuration) are automatically gener-
ated from models. For example, a distributed computer system,
which consists of multiple different hardware and software
elements, can be effectively captured by an appropriate graph-
like model, which can be used to generate configuration. Sev-
eral modelling problems can be automatically traced back to
optimization problems, such as finding the most cost effective,
reliable or efficient allocation software components to hardware
components. However, finding optimal solution for such systems
is a major challenge, because (1) existing approaches usually
operates over vectors while the problem at hand is defined by
graphs; (2) besides the model, the configuration steps may also
have to be optimized; and (3) for the best results, optimization
techniques should be adapted to the actual domain. In this paper,
we propose to integrate the bee colony optimization technique
with rule-based design space exploration to solve multi-objective
optimization problems in a configurable and extensible way.

I. INTRODUCTION

Design Space Exploration (DSE) is a method for finding
various system designs at design or even at runtime, which
satisfy given structural and numerical constraints. Besides
satisfying these constraints, DSE searches for an optimal or
nearly optimal solution.

Model-Driven Rule-Based DSE operates over the model. It
starts from an initial model and evolves it in each iteration
with use of graph transformation rules, until it reaches one
or more constraints satisfying model states. One of the ad-
vantages of this approach is that it also provides a sequence
of transformations as a solution besides the design candidate
itself. Furthermore, this approach is easy to integrate with
model-driven development [1].

Graph transformation rules consists of two main parts [2], a
graph pattern and an operation. The graph pattern defines lo-
cations of applicable transformations, through finding pattern-
matching parts of the graph, while the operation determines
the possible operations on these subgraphs, using previously
given schemas.

Model-driven rule-based DSE can solve multi-objective
optimization [3] problems. Best solution of such problems is
often non-trivial. There can be more than one equally good
solutions, because we have more objectives, which could be
contradicting to each other. E.g. the optimization objectives of
safety and cost are often conflicting, as improving safety may
lead to an increased cost.

Swarm intelligence is an effective heuristic method, for
finding a good solution in reasonable time. It is an adaptation
of successful natural survival strategies, such as foraging
of ants, bees and birds while they are looking for food
sources. A common feature among swarm intelligent methods
is the simplicity of participating units and the communica-
tion between them. The most used swarm-intelligent-based
search algorithms are the Particle Swarm Optimization (PSO),
Ant Colony Optimization (ACO) and Bee Colony Algorithm
(BCA). We found the BCA the most promising candidate for
initial investigations as it is the most flexible from the three.

Section II gives insight how the multi-objective rule-based
DSE works, and it also introduces the most important con-
cepts needed to understand DSE and Multi-Objective DSE
(MODSE). Section III describes swarm-intelligence-based al-
gorithms especially the Bee Colony Algorithm. In section IV,
we present our approach to solve DSE problems. Finally,
section V concludes the paper.

II. MULTI-OBJECTIVE DSE

Models have two main types, the metamodel and the in-
stance model. While metamodels describe the structure of
models, instance models give the exact description of them. In
our case, metamodels define the acceptable structures, which
in most cases enable a wide variety of models. DSE-used input
models belong to instance models, and they are defined in an
unambiguous way [4].

As an example, consider computers and processes in a
distributed system, where the metamodel defines the possible
elements – computers and processes – and possible con-
nections between them, while the instance model gives the
exact number of computers and processes and how they are
connected.

A graph transformation rule defines how an instance model
can be modified. A transformation rule (Figure 1) consists of
two sides: left hand side (LHS) is a constraint, which defines
the condition and gives context to the rule while the right hand
side (RHS) specifies the operation on the model. Left hand
side is given by a graph pattern, which consists of constraints
on types, connectedness and attributes. A graph pattern has
a match, when a subgraph in the given graph has the exact
structure as the pattern. A graph pattern can have multiple
matches on a model [1].
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As the graph pattern can have multiple matches, each
rule may have multiple activations, and in most cases it is
undefined, which rule should be applied. When an activation is
applied, the graph structure is modified by the transformation.

Fig. 1. Graph transformation rule for process reallocation

Well-formedness (WF) constraints (also known as design
rules or consistency rules) complement metamodels with
additional restrictions that have to be satisfied by a valid
instance model (in our case, functional architecture model).
Such constraints can also be defined by query languages such
as graph patterns or OCL invariants. Ill-formedness constraints
capture ill-formed model structures and are disallowed to have
a match in a valid model.

For instance in Figure 2, there is a design rule, that every
process has to belong to a computer. In this case, in Figure 3
there is a well-formed instance model (a) according to this
rule, while in (b) there is an instance model, that is ill-
formed. In the ill-formed model there is one match of the
ill-formedness constraint.

NEG

Ill-formedness 
constraints

C:Computer

P:Process

belongsTo

Well-formedness 
constraints

aloneProc(P)

NEG

C:Computer

P:Process

belongsTo

aloneProc(P)

NEG

Fig. 2. Structural constraints by graph patterns

A DSE problem requires three input parameters: 1) an initial
model, 2) a set of graph transformation rules and 3) a set of
goal constraints captured by graph patterns. A solution of a
DSE problem is a sequence of rule applications, which reaches
a goal model state that satisfies all the goal constraints. These
solutions are found by exploring the search space (or design
space), through executing graph transformations according to
an exploration strategy.

Multi-objective DSE (MODSE) incorporates objectives that
express the quality of a solution. Structural (well-formedness)
constraints can be also leveraged to an objective by measuring
the degree of constraint violation. These objectives are either
to minimize or maximize.

C1: Computer C3: Computer

P1: Process P2: Process P3: Process

belongsTo belongsTo belongsTo

C3: Computer

P1: Process P2: Process P3: Process

belongsTo

C1: Computer

belongsTo

a)

b)

Fig. 3. Example of well-formed (a) and ill-formed instance model (b)

Objectives can be defined on both the trajectory or the model
itself. While trajectory objectives measure the quality of the
rule application sequence such as number or cost of operations,
model specific objectives usually incorporates extra-functional
objectives such as performance and reliability.

 

 

 

 

 

 

 

 

 

 

dominating – not dominating possibilities 

 A and B are solutions: 
fitness values of A: x1, x2 , x3 

fitness values of B: y1, y2 , y3  

(1) A dominates B  

x1 >= y1 
x2 >= y2 

x3 >= y2 

(2) A does not dominates B 
      B does not dominates A 

x1 = y1  
x2 = y2 

x3 = y2 
 

(3) A does not dominates B 

      B does not dominates A 

x1 >= y1 
x2 <= y2 

x3 >= y2 
 

Bee algorithm 

Initialize population 
for size  n 

collect information 

(waggle dance) 
determine patch 

size for each patch 

is stop criteria 

met? 

collect information 

(waggle dance) 

select worthable 

patches 

NO 

STOP 

YES 

Fig. 4. Domination details x and y values are the fitness values of the solutions

While in a single-objective context solutions are easy to
compare to each other, measuring and ranking (evaluating) in
multi objective setting is not always obvious. For instance,
if there is a computer system that has to be optimized, it is
unclear whether three times faster or two times cheaper com-
puters are the better option. It depends mostly on other aspects
(size of the company, exact task, etc.), so for the same problem
both can be good solutions. Therefore, the domination function
is used in our DSE implementation to distinguish between
solutions and find the best one. An example for domination
can be seen in Figure 4. There are two functions, which can
be the objective values of two solutions, e.g. cost, response
time or safety. A solution dominates another, if at least one
objective value (fitness value) is higher than the others and all
other values are higher or equal. As a consequence, ordering
is unambiguous, a single best solution usually cannot be
determined. Instead, a Pareto front is defined, which contains
all the ”best” solutions. If a solution belongs to the Pareto
front, then none of it’s parameters can be increased without
decreasing other parameters. In consequence, all solutions in
the Pareto front dominate all other solutions, which are not
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part of the Pareto front.

III. SWARM INTELLIGENCE BACKGROUND

Swarm intelligence algorithms are based on modelling liv-
ing groups, which successfully accomplish specific tasks, like
ants, wolves or bees [5]. In these situations, a lonely animal
could not survive on his own, though the whole group can.
These methods are always heuristic and not aiming to find
the best solution as the animals neither do it, but to find a
good-enough solution in a reasonable time. Common in these
packs is that an individual follows simple rules during the
procedure while communicating few information to others.
Such techniques can be often used for complex optimization
problems, because they have good scalability and flexibility
[6].

Some of the well-known swarm algorithms are the Particle
Swarm Optimization (PSO), Bee Colony Algorithm (BCA)
and Ant Colony Optimization (ACO). We have chosen the
BCA for our initial experiments as 1) PSO is originally
designed for continuous problem domains and rule-based DSE
is a discrete optimization problem, 2) BCA seemed more
flexible than ACO in terms of adapting guided local search
exploration strategies such as hill climbing.

Bee Colony Algorithm is an often used swarm-intelligence-
base algorithm, which attempts to reproduce nectar-searching
methods of bee colonies. Normally, bees look for nectar in two
phases. In the first phase they look for flower patches where
nectar can be found. If a bee founds a patch, it goes back and
performs the waggle-dance, which is a communication form
between bees. Waggle-dance describes the size of the found
patch and the route to it. Depending on the goodness (size,
available nectar) of found patches a number of bees go out to
look for the food on this patch. Then they come back and tell
again how much more nectar is there.

Input parameters of the bee algorithm are: 1) the search
space (problem representation, neighbourhood function), 2)
the stopping criteria and 3) the size of bee population (n).

The BCA depicted in Figure 5 consists of three main phases:
• scouting phase,
• evaluation phase, and
• collection phase.
These n bees are divided into two groups. One group

(neighbourhood bees) explores the found patches and continue
to map them further, while the other group (scout bees) is
sent out to look for new ones. Neighbourhood bees can be
seen as a local search in possible optimum places while
scout bees help to skip from local minimum or maximum
places, and switch to a better surrounding. In the scouting
phase, the first population of bees is initialized and sent out
randomly to collect information. During scouting phase all n
bees are scout bees which means, that they randomly explore
the search space into different directions. In this phase it is
important to avoid generation of similar trajectories to sample
the search space in as many directions as possible. When
each bee has returned then comes the evaluation phase, when
patch ranking is determined, and stop condition is evaluated.

Patch ranking helps to decide that which patches are worth
for further exploration. If the stop criteria is fulfilled, then the
algorithm can be stopped, and the best patches are selected for
output. If the stop criteria is unsatisfied then we enter the loop
on the right side of Figure 5. In this loop, the best collected
patches are selected, and then the collection phase is started.
In the collection phase, neighbourhood bees are sent out to
the selected patches, and if there are more bees left (from the
initial n) then these are sent out as scout bees to search for
new patches.

The concrete ratio of scout and neighbourhood bees rely
mostly on measuring methods [7]. In our approach, users can
select the exact number of bees.

 

 

 

 

 

 

 

 

 

 

dominating – not dominating possibilities 

 parameters: c1, c2, c3 
A and B are solutions: 
   A: x1 *c1, x2 *c2, x3 *c3 
   B: y1 *c1, y2 *c2, y3 *c3 

(1) A dominates B  

x1 >= y1 
x2 >= y2 

x3 >= y2 

(2) A does not dominates B 
      B does not dominates A 

x1 = y1  
x2 = y2 

x3 = y2 
 

(3) A does not dominates B 

      B does not dominates A 

x1 >= y1 
x2 <= y2 

x3 >= y2 
 

Bee algorithm 

Initialize population 
for size  n 

collect information 

(waggle dance) 
determine patch 

size for each patch 

is stop criteria 

met? 

collect information 

(waggle dance) 

select worthable 

patches 

NO 

STOP 

YES 

Fig. 5. Algorithm of beestrategy

IV. THE PROPOSED APPROACH

The aim of our work is to use swarm-intelligence-based
algorithms (namely the bee colony algorithm) for multi-
objective design space exploration. While the basic challenges
such as solution encoding and objective encoding were solved
by Abdeen et al. in [3], adapting the bee algorithm has several
other challenges, such as:

1) What is the best strategy for scout bees?
2) What is the best strategy for selecting patches for the

next iteration (evaluation strategy)?
3) What is the best strategy for the neighbourhood bees?

16

18 20 14

? 16 ? 18
16

? 16

? ? ? ? 40? ? ?

Initialization state

Best solution

Explored states

Fig. 6. A possible search space of the bee algorithm
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A. Exploration Strategies for Scout Bees

The aim of the scout bees is to generate new solutions that
are far enough from each other as well as previously found
solutions to prevent the algorithm to stuck in local optimum.
Hence, scout bees should use relatively high randomness.

While traditional approaches represent solutions as integer
arrays and it is straightforward to generate such solutions, in
our approach, the solutions are represented as a sequence of
rule applications. We have two options for finding random
nodes. The first one is to search nodes from already found
patches. The advantage of this option is that it can cut down the
search time by some steps, though there are situations in which
scouts cannot reach every part of the graph and fail to improve
the solution. For example in Figure 6, if the exploration found
the three blue states with fitness values 18, 20 and 14, and the
scout bees only start from the best ones, 18 and 20, then the
exploration will miss the best solution depicted with green.

The other option is to search from the initial model, and
go randomly to patches. Then the algorithm is able to find
the green solution, though it needs more time. In this case
it is hard to reach patches that are further from the initial
model, and more likely to find solutions near to the initial
state. The good reason behind this is that we are looking for
sorted solutions. On the other hand, for scout bees it is hard to
decide which direction to follow, because in this situation to
reach some of the solutions they have to go through the blue
states as well. As a result, we have to search more, possibly all
states, which helps to find good solutions, but time-consuming.
Another problem is that we have to store quite many additional
data about each of the bees and their movements to avoid
infinite loops. For instance, which states were good, how many
times bees explored it, which other states were reached from
them. If we do not store this information, then the bees can
iterate through a loop, where each state is contained in the
same Pareto front.

B. Evaluation Strategies

The most important decision when choosing an evaluation
strategy is whether only the best or some of the worse patches
should remain, and to do it in every iteration, or they should
be set out only after a while. In some implementation, it
is possible to sort out the wrong patches, though in our
case it will not be a good idea, because the above-described
hill climbing effect would come into sight. We use non-
dominating sorting, which allows higher freedom for selecting
the correct solutions. Non-dominating sorting means, that the
algorithm separates solutions into groups according to their
domination levels (number of fronts, which dominate them). In
our approach, it is also modifiable how many worse solutions
should be taken into consideration.

C. Exploration Strategies for Neighbourhood Bees

Neighbourhood search can be seen as a local search, which
aims to discover the surrounding of a patch. It can be a hill
climbing style strategy, but it gives an upper limit to the
number of bees ordered to a patch. It can be a random strategy,

but it is really similar to the random search in the first phase,
so it has to be a combination of these two. In our approach,
there are more possible strategies from which bees can choose.
Some of them are similar to random search and some of them
are more like hill climbing strategies with little modifications.
However, each of them have some random factor to minimize
the possibility of parallel-running-bees collision, which would
not be a problem, but it involves unnecessary steps. Some of
the usable implementations are:

• Hill Climbing: first, it evaluates all the neighbourhood
states. Then, it finds dominating ones and randomly
selects one of them, if we have enough dominated state
in our list. If not, it can choose a non-dominating one
that helps to avoid local minimum.

• Simulated Annealing: initially it steps randomly, and as
time passes, the possibility of choosing a bad transforma-
tion decreases. At the end it acts like a the hill climbing
algorithm.

• Depth-First Search: it goes through all the states till a
given depth. It searches the solutions semi-randomly.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed to integrate the bee colony opti-
mization strategy as an exploration strategy with constrained
multi-objective rule-based design space exploration. We also
analysed the advantages and disadvantages of using different
algorithmic configurations of the bee exploration strategy.

As for future work, we would like to measure and evaluate
the effectiveness of the approach on a wide range of configu-
rations and compare it with other exploration strategies, such
as genetic algorithm and guided local search.
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Abstract—The behavior of practical safety critical systems
usually combines real-time behavior with structured data flow.
To ensure correctness of such systems, both aspects have to be
modeled and formally verified. Time related behavior can be
efficiently modeled and analyzed in terms of timed automata.
At the same time, program verification techniques like abstract
interpretation and software model checking can efficiently handle
data flow. In this paper, we describe a simple formalism that
is able to model both aspects of such systems and enables
the combination of formal verification techniques for real-time
systems and software. We also outline a straightforward method
for building efficient verifiers for the formalism based on the
combination of analyses for the respective aspects.

I. INTRODUCTION

Ensuring the correctness of safety critical systems using
formal verification is a challenging task as it requires formal
modeling of the system in question, as well as the applica-
tion of formal analysis techniques. Usually, the behavior of
practical safety critical systems exhibits both real-time aspects
(e.g. switching to an error state after a certain amount of time
has passed since the last event occurred) and data flow (e.g.
branching on the value of a program variable or initializing a
loop counter).

Time-related behavior can be conveniently modeled in terms
of timed automata [1]. Model checkers for timed automata like
UPPAAL [2] can efficiently verify models using dedicated
data structures that represent abstractions over real-valued
clock variables [3]. Usually, data variables are handled by
encoding the data flow into the control flow [2], which only
admits variables of finite domains, or alternatively by using a
logical encoding [4]–[11] and then performing model checking
by calling to decision procedures. In the latter case, the
information about time-related behavior becomes implicit and
efficiency depends mostly on the underlying solver.

On the other hand, state-of-the-art program verifiers [12] are
designed to handle complex data flow, described in terms of a
control flow automaton, and often use abstraction-refinement
techniques [13] to handle variables of possibly infinite do-
mains. However, they are not directly capable of verifying
timed systems.
∗This work was partially supported by Gedeon Richter’s Talentum Foun-

dation (Gyömrői út 19-21, 1103 Budapest, Hungary).†This work was partially supported by the ARTEMIS JU and the Hungarian
National Research, Development and Innovation Fund in the frame of the
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In this paper, to enable integration of verification techniques
used in real-time verification and program verification, we
define a formalism, Timed Control Flow Automata (TCFA),
that is an extension of Control Flow Automata (CFA) used in
program verification, with notions of Timed Automata (TA),
the prominent formalism of real-time verification. Its main ad-
vantage is that it represents both data flow and timing explicitly
and in a way that is similar to the original formalisms, thus
enables the application of analyses that fit to the respective
aspects. We define the syntax and semantics of the formalism,
and describe how it relates to CFAs and TAs. Furthermore, we
outline a simple method for combining analyses for the two
formalisms to build efficient verifiers for TCFAs.

II. BACKGROUND AND NOTATIONS

In this section, we describe the notations used in the paper.

A. Types

Let Type denote a set of types and Dom a map-
ping from types to their semantic domains. We as-
sume {bool, int, real} ⊆ Type such that Dom(bool) = B,
Dom(int) = Z and Dom(real) = R.

B. Variables

Let Var be a set of program variables. Variables have
types, expressed as function type : Var → Type . We abbre-
viate Dom(type(v)) by Dom(v). The set of variables of type
τ ∈ Type is denoted by Var(τ) = {v ∈ Var | type(v) = τ}.

C. Expressions

Let Expr be a set of well-typed expressions over Var .
An expressions can contain program variables v ∈ Var , log-
ical connectives (true, false, ¬, ∨, ∧, →, ↔), quantifiers
(∀x : τ .ϕ, ∃x : τ .ϕ) and logical variables, interpreted function
symbols (e.g. 0, +, ·), interpreted predicate symbols (e.g.
.
=, <, ≤), uninterpreted function and predicate symbols,
and type constructors and accessors in case the type system
supports complex data types. Given an expression e ∈ Expr
and a type τ ∈ Type , we denote by e : τ iff e has type
τ . Naturally, v : τ iff type(v) = τ for all variables v ∈ Var
and types τ ∈ Type . The set of formulas is denoted by
Form = {ϕ ∈ Expr | ϕ : bool}.
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D. States
A concrete data state S ∈ State is a mapping from variables

to values such that S(x) ∈ Dom(x) for all x ∈ Var . We
also extend this notion to arbitrary expressions. For a state
S ∈ State and formula ϕ ∈ Form , we denote by S |= ϕ iff
S(ϕ) = 1.

E. Statements
Let Stmt denote the set of statements. Although our for-

malization admits arbitrary structured statements, for the sake
of simplicity we assume that statements are of the form

s ::= [ϕ] | v := e | havoc v | s ; s
where v ∈ Var , e ∈ Expr and ϕ ∈ Form . Statement [ϕ]

is an assume statement, v := e is an assignment of e to v,
havoc v is an assignment of an arbitrary value of a suitable
type to v, and s ; s is a sequential statement.

The semantics of statements can be expressed
by the (not necessarily total) semantic function
Succ : State × Stmt → P(State) that assigns to a state
S ∈ State and a statement s ∈ Stmt a set of successor states
Succ(S, s). It can be defined as
• {S} if s = [ϕ] and S |= ϕ

• ∅ if s = [ϕ] and S 6|= ϕ

• {S ′ ∈ State | S ′ = S[v ← [ S(e)]} if s = v := e

• {S ′ ∈ State | S ′ = S[v ← [ x] for some x ∈ Dom(v)}
if s = havoc v

• {S ′′ ∈ State | S ′ ∈ Succ(S, s1) and S ′′ ∈ Succ(S ′, s2)
for some S ′ ∈ State} if s = s1 ; s2

F. Timed Automata
Timed automata [1] is a widely used formalism for modeling

real-time systems. A TA is a tuple (Loc,Clock , ↪→, Inv , `0)
where
• Loc is a finite set of locations,
• Clock is a finite set of clock variables.
• ↪→⊆ Loc × ClockConstr × P(Clock)× Loc is a set of

transitions where for (`, g, R, `′) ∈ ↪→, g is a guard and
R is a set containing clocks to be reset,

• Inv : Loc → ClockConstr is a function that maps to each
location an invariant condition over clocks, and

• `0 ∈ Loc is the initial location.
Here, ClockConstr denotes the set of clock constraints,

that is, formulas of the form xi ∼ 0 and xi − xj ∼ c where
xi, xj ∈ Clock , ∼ ∈ {<,≤, .=} and c is an integer literal.

The operational semantics of a TA can be defined as a
labeled transition system (S,Act ,→, I) where
• S = Loc × State is the set of states,
• I = {`0}×{S ∈ State | S(x) = 0 for all x ∈ Clock and
S |= Inv(`0)} is the set of initial states,

• Act = R≥0 ∪ {α}, where α denotes discrete transitions,
• and a transition t ∈→ of the transition relation
→⊆ S ×Act × S is either a delay transition that in-
creases all clocks with a value δ ≥ 0:

` ∈ Loc δ ≥ 0 S ′ = Delay(S, δ) S ′ |= Inv(`)

(`,S) δ−→ (`,S ′)

or a discrete transition:

`
g,R
↪−−→ `′ S |= g S ′ = Reset(S, R) S ′ |= Inv(`′)

(`,S) α−→ (`′,S ′)

Here, Delay : State × R≥0 → State assigns to a state
S ∈ State and a real number δ ≥ 0 a state Delay(S, δ) such
that

Delay(S, δ)(v) =
{
S(v) + δ if v ∈ Clock

S(v) otherwise

Moreover, Reset(S, R) models the effect of resetting clocks
in R to 0 in state S ∈ State:

Reset(S, R)(v) =
{
0 if v ∈ R
S(v) otherwise

G. Control Flow Automata

In program analysis, programs are modeled in terms
of control flow automata. Syntactically, a CFA is a tuple
(Loc,Var , ↪→, `0) where
• Loc is a finite set of program locations,
• Var is a set of program variables,
• ↪→⊆ Loc × Stmt × Loc is a set of control flow edges,

and
• `0 ∈ Loc is the initial location.
The operational semantics of a CFA then can be con-

veniently expressed in terms of a labeled transition system
(S,Act ,→, I) where
• S = Loc × State is the set of states,
• I = {`0} × State is the set of initial states,
• Act = Stmt ,
• and the transition relation →⊆ S ×Act × S is defined

by the rule

`
s
↪−→ `′ S ′ ∈ Succ(S, s)

(`,S) s−→ (`′,S ′)
H. Abstract Semantics

To ensure efficiency or termination, modern model checkers
and program analyzers check abstractions of systems, ex-
pressed in terms of abstract domains. An abstract domain is a
triple (S, E , γ) where
• S is the set of concrete states,
• E = (E,>,⊥,v,t) is a semi-lattice over the set of

abstract states E with a top element > ∈ E, a bottom
element ⊥ ∈ E, a preorder v⊆ E × E and a join oper-
ator t : E × E → E, and

• γ : E → P(S) is the concretization function that assigns
to each abstract state the set of concrete states it repre-
sents.
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Given a transition system (S,Act ,→, I) for the concrete se-
mantics, the abstract semantics w.r.t. E and γ can be expressed
as a transition system (E,Act , , γ(I)). For soundness of the
analysis, the following properties must hold:
• γ(>) = S and γ(⊥) = ∅,
• γ(e1) ∪ γ(e2) ⊆ γ(e1 t e2) for all e1, e2 ∈ E, and
•

⋃
s∈γ(e){s′ ∈ S | s

α−→ s′} ⊆ ⋃
e

α e′ γ(e
′) for all e ∈ E

and α ∈ Act .
The abstract transition relation  ⊆ E ×Act × E is also

called a transfer relation.
A verifier can then analyze the system by exploring the

abstract state space and applying abstraction refinement [13]
in case of a spurious error path that cannot be simulated
according to the concrete semantics.

III. TIMED CONTROL FLOW AUTOMATA

To extend CFAs with timed behavior, we assume
clock ∈ Type for a distinguished type clock such that
Dom(clock) = R≥0. This enables modeling of a clock vari-
able as a regular program variable of type clock. In his
context, Clock = Var(clock).

A. Syntax

A TCFA is a tuple (Loc,Urg ,Var , ↪→, Inv , `0) where
• (Loc,Var , ↪→, `0) is a CFA (with clock ∈ Type),
• Urg ⊆ Loc is a set of urgent locations that model loca-

tions where time shouldn’t pass, and
• Inv : Loc → Form is a function that maps invariants to

locations.
Moreover, we assume that all atomic formulas that contain

clock variables are clock constraints.1

As can be seen from the definition, a TCFA can either
be considered a CFA extended with clock variables, urgent
locations and location invariants, or alternatively, as a gener-
alized TA where guards and clock resets are represented as
statements. As a consequence, optimizations from both areas
(e.g. large block encoding [14]) might be applicable.

As an example, Figure 1 depicts Fischer’s protocol as a
TCFA. Here, a, b and i are constant values of type int.

Fig. 1. Fischer’s protocol as a TCFA

1Note that the formalism is sensible even if this assumption is not made.
However, in order to apply the theory of timed automata for verification, it
has to be assumed.

B. Concrete Semantics

The semantics of a TCFA is (S,Act ,→, I) where
• S = {`0} × State ,
• I = {(`0,S0) ∈ S | S0 |= Inv(`0)},
• Act = Stmt ∪ R≥0,
• and a transition t ∈→ of the transition relation
→⊆ S ×Act × S is either a delay transition that in-
creases all clocks with a value δ ≥ 0:

` ∈ Loc \Urg δ ≥ 0 S ′ = Delay(S, δ) S ′ |= Inv(`)

(`,S) δ−→ (`,S ′)

or a discrete transition that models the execution of a
statement s ∈ Stmt :

`
s
↪−→ `′ S ′ ∈ Succ(S, s) S ′ |= Inv(`′)

(`,S) s−→ (`′,S ′)

C. Abstract semantics

The abstract semantics of a TCFA can simply be defined
by extending the transfer relation with transitions that abstract
time delay. For TCFAs, the transfer relation is of the form
 ⊆ E × (Stmt ∪ {delay})× E, and the following addi-
tional property holds:

•
⋃
s∈γ(e){s′ ∈ S | s

δ−→ s′} ⊆ ⋃
e
delay e′

γ(e′) for all e ∈ E
and δ ∈ R≥0.

Alternatively, for the analysis of reachability properties, an
abstract combined step semantics [7] can be defined where a
transition is a combination of a single delay and a discrete
transition.

D. Connection to TAs and CFAs

The formulation above admits a simple description of both
CFAs and TAs. A timed automaton can be considered a TCFA
where Clock = Var , Urg = ∅ and only statements of the form
[ϕ]( ; x := 0)∗ are allowed where x ∈ Clock . Here, [ϕ] is a
guard and x := 0 is a clock reset. A CFA on the other hand
is a TCFA where Clock = ∅, Urg = Loc and Inv(`) = true
for all ` ∈ Loc.

Moreover, given a TCFA with Inv(`0) = true, it can be
transformed to a semantically equivalent CFA by applying the
following simple steps:
• Eliminating clock variables. For all variables x : clock

of the TCFA, the CFA has a variable x : real≥0 such that
Dom(real≥0) = Dom(clock) = R≥0.

• Eliminating location invariants. For all edges
(`, s, `′) of the TCFA, the CFA has an edge
(`, [Inv(`)] ; s ; [Inv(`′)], `′). Naturally, invariants
equivalent to true can be omitted.

• Simulating delay. For all locations ` ∈ Loc \Urg of the
TCFA, the CFA has an edge (`,delay, `) that simulates
delay steps. Here, delay stands for the statement

havoc δ ; x1 := x1 + δ ; . . . ; xn := xn + δ ; [Inv(`)]
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where δ : real≥0 is a distinguished delay variable and
{x1, . . . , xn} = Clock .

Figure 2 shows the resulting CFA for Fischer’s protocol.

Fig. 2. Fischer’s protocol as a CFA

E. Reachability Analysis of TCFAs

The main advantage of the above formulation is that it
admits verifiers to be built compositionally, in the spirit of
configurable program analysis [15]. More precisely, given
abstractions Edata for data variables and Etime for clock
variables with respective transfer relations  data and  time ,
a simple analysis can be built that explores the two aspects
independently and is a full-fledged verifier for the complete
system. Here, Edata is basically a verifier for software that
operates on CFAs, and Etime a verifier for timed automata.

As a simple example, Figure 3 illustrates the abstract state
space of Fischer’s protocol where Edata is predicate abstraction
over a single predicate lock = i (for i 6= 0), and Etime

is zone abstraction. With both timing and data handled with
an appropriate abstraction, a compact over-approximation of
the concrete state space is obtained that enables sound and
efficient reachability analysis of the system.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have described the formalism of timed
control flow automata that is an extension of control flow
automata with notions of timed automata. We have compared
it to the original formalisms, and highlighted a simple method
to build verifiers for the formalism by combining verifiers for
CFAs and TAs.

In the future, we plan to implement such combined analyses
and investigate them in depth. Moreover, to enable modeling of
industrial systems, the formalism can be extended with syntax
and semantics for parametric behavior and concurrency based
on shared variables and handshake synchronization.

REFERENCES

[1] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical
Computer Science, vol. 126, no. 2, pp. 183–235, 1994.

[2] G. Behrmann, A. David, K. G. Larsen, J. Håkansson, P. Petterson,
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Abstract— Accidents and diseases may lead to the amputation 

of limbs. The development of electromechanical prostheses aims 

to restore their function, hence granting a complete life again for 

injured people. But how may a prosthetic arm know what the 

user wants to do? Among the biggest challenges in restoring full 

limb function is connecting user intents to prosthesis control. 

This is the role of Brain-Computer Interfaces. Such devices 

process in real time the EEG signal acquired from the user’s 

brain and in the case of electromechanical prostheses infer 

various intentions which concern the movement of the replaced 

limb. Intents serve as the basis of the control signals. However, 

extracting information from EEG recordings is not 

straightforward. The current state of the technology is still far 

from restoring full limb function. This paper provides a brief 

overview of current BCI technology for limb restoration and 

outlines the future prospects of neural controlled 

electromechanical prostheses. 

Index Terms—BCI; prosthesis; EEG; signal processing; 

motion intent 

I. THE EEG PROCESSING PIPELINE IN BCIS 

From being captured to finally becoming a control signal, 
the EEG data goes through multiple transformations. These 
vary over different experiments and implementations. 
However, the main stages of the signal processing pipeline 
roughly follow a regular structure:  

1. Signal acquisition 
2. Artifact rejection 
3. Time-domain filtering 
4. Spatial filtering 
5. Feature generation 
6. Classification 

The most crucial points of the pipeline are briefly 
summarized in this section. 

A. Acquiring the EEG Signal 

An EEG recording system mainly consists of electrodes, 
amplifiers with filters, analog-digital converters and a 
recording computer [1]. Active electrodes are placed at the 
parts of interest (e.g. the primary motor cortex), and the 
reference electrode is usually placed on the top of the head, 
the ear or the mastoid. The electrodes pick up the signal from 
the scalp, and the amplifiers magnify the microvolt magnitude 
signals into a range where they can be digitalized with proper 

accuracy. Next a computer (desktop, embedded etc.) stores 
and processes the obtained data according to the purpose. 

The recorded EEG signal usually contains artifacts which 
should be removed either manually by experts or 
automatically. These undesired components are usually higher 
in amplitude and different in shape than a clean signal. 

B. Defining the Expected Signal Features 

For creating a processing algorithm, one must determine 
what signal features are expected in relation with the limb 
movement, both in temporal and spatial domain. There is a 
number of features of the EEG signal used for operating a 
BCI, such as Evoked Potentials (EP) [1], the Event-Related 
Desynchronization (ERD) and Synchronization (ERS) [2], and 
the Bereichtshaftspotential (or Readiness Potential) [3]. 

C. Time-Domain Filtering 

The purpose of time-domain filters is to eliminate (to the 
maximal possible extent) DC and high frequency noise and 
power line (50/60 Hz) harmonic interference. DC and high-
frequency noise can be reduced using a band pass filter, while 
the power line harmonic interference is usually cut out with a 
notch filter. Besides the elimination of the noise, the time-
domain filter may also separate the EEG signal into different 
frequency bands (alpha, beta, gamma etc.), to help the 
extraction of relevant features later on. Such multi-band filters 
are called filter banks. 

D. Spatial Filtering 

The EEG is usually acquired from multiple electrodes 
spread over the scalp. The signals picked up by different 
electrodes will inevitably contain some degree of redundancy. 
The purpose of spatial filtering is to remove this crosstalk 
between the electrodes and leave only the local signal 
component. The most common techniques for spatial filtering 
are the Principal Component Analysis (PCA) [4], the 
Independent Component Analysis (ICA) [5], the Common 
Spatial Pattern (CSP) method [6]. CSP performs better than 
PCA or ICA, but it requires much more computation. 

E. Class Feature Generation 

Signals must be transformed into features computed from 
record portions, by which the instances belonging to different 
classes can be best discriminated. In case of BCIs usually EEG 
signal values in a 1 or 2 seconds long window are used as 
instances. 

This work was partially supported by the ARTEMIS JU and the 

Hungarian National Research, Development and Innovation Fund in the frame 

of the R5-COP project. 
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Fig. 1. Architecture of the filter bank common spatial pattern (FBCSP) 

algorithm for the training and evaluation phases [14]. 

 

Fig. 2. The diagram of the classifier for EEG signal classification in 

[15]. 

A trivial shortcut at this step is simply to feed the filtered 
signal to the classification algorithm. Interestingly, this might 
be appropriate when using highly adaptive classification 
methods such as Artificial Neural Networks, which actually 
may find the best suitable transformation for the input data [7]. 
Features can also be the amplitudes of the oscillations within 
given frequency bands. A common feature generation 
approach is calculating the power of the signal and averaging 
it over a time period, for every channel. A more complex 
feature is the covariance matrix of the multi-channel values 
during an epoch. The advantage of using a covariance matrix 
is that it contains both per-channel and inter-channel 
information [8]. 

F. Classification 

Classification is the problem of identifying the category to 
which the new observation belongs, on the basis of the 
training with a set of data instances whose membership 
category is known. Popular classifiers include the Linear 
Discriminant Analysis (LDA) [9], Logistic Regression (LR) 
[10], Support Vector Machine (SVM) [11], and the Artificial 
Neural Network [12] along with its architectural variants. 
Compared to LDA and LR, the SVM and the ANN are more 
computationally intensive, but they have higher performance. 

II. RELATED WORKS 

Promising results were published in [13]. An algorithm 
was developed that allowed a man to grasp a bottle and other 
objects with a prosthetic hand. The system was measuring the 
EEG signal and joint angular velocities. In the demonstrations, 
a 56-year-old man, whose right hand had been amputated, 
grasped objects including a water bottle and a credit card with 
a prosthetic hand. The subject managed to grasp the selected 
objects 80 percent of the time. This experiment showed that it 
is feasible to extract detailed information on intended grasping 
movements from the EEG along with joint angular velocity. It 
also provided evidence that the acquired signals predicted the 
movement, rather than reflecting it. 

A rather complex method for the classification of motor 
imagery is described in [14]. The experiment involved two of 
the BCI Competition IV datasets, which contain 4 classes of 
motor imagery EEG trials: left hand, right hand, foot, and 
tongue. The processing algorithm, called Filter Bank Common 
Spatial Pattern (FBCSP) consists of four progressive stages of 
signal processing and machine learning: time-domain filter 
bank with Chebyshev Type II band-pass filters, CSP spatial 
filter, feature selection with the MIBIF (Mutual Information-
based Best Individual Feature) and MIRSR (Mutual 
Information-based Rough Set Reduction) algorithms, then 
classification of the selected CSP features using the Naive 
Bayesian Parzen Window method. The pipeline is depicted in 
Fig. 1. The best results yielded a kappa value of 0.572 and 
0.599 which makes this method promising for motor imagery 
classification. 

An interesting improvement to the CSP method is 
described in [15]. In this study, the outputs from different CSP 
subspaces are combined by majority voting, as depicted in Fig. 
2. The main advantage of such classifier ensemble is that a 
combination of similar classifiers is very likely to outperform 
a single classifier on its own. During the EEG recording from 

three healthy, right-handed participants, motor imagery tasks 
were to be performed and the discrimination of two different 
movements were studied. The classification features are 
obtained by projecting the signal using spatial filters, and 
calculating the difference of log-power values coming from 
two tasks. The sign of the resulting feature is interpreted as the 
predicted class in case of a single classifier. With 10 different 
spatial filters 10 feature values were computed and summed to 
represent the majority voting method (being aware that in the 
case of 10 features, the equality of votes may occur). The sign 
of the final sum is the basis of decision between two classes. 
According to the study, this CSP ensemble method 
outperformed LDA classifiers and SVMs, making it a 
promising method for BCI applications. 

III. THE MAIN ISSUES OF BCIS 

Decoding the brain activity to obtain useful control signals 
is extremely difficult. The first issue is that EEG signals have 
a poor signal-to-noise ratio. One reason of this is that the 
electric activity is recorded on the scalp, and the skull is a 
massive obstacle for neural signals. There are methods to 
temporarily implant electrodes in the patients’ brain, but 
usually noninvasive methods are preferred. There are several 
noninvasive electrode systems which reduce the scalp contact 
impedance by applying a saline solution to the recording 
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Fig. 3. Spatial patterns of the EEG from three different subjects during 

the execution of a specific movement. [8] 

spots. Assembling an EEG recording setup can also be 
cumbersome, as it is difficult to place the electrodes properly 
and their signal quality must be checked. A setup with a saline 
solution is even more complicated because of the handling of 
the liquid. 

Another issue is the accurate detection of limb motion 
intent from the digitalized recordings. Accurate inference also 
requires high spatial resolution over the scalp for the 
maximum possible information. Unfortunately the spatial 
resolution is not only a matter of electrode density. As only 
large populations of active neurons can generate electric 
potentials high enough for recording over the scalp with 
satisfactory signal-to-noise ratio, there is a limit on the 
localization of brain activity. The digital processing of the 
EEG with sometimes more than 100 channels involves 
intricate mathematics either way. 

Many methods build on some form of the Bayesian 
inference, providing a transparent analytical transformation of 
the raw data into intention probabilities. Besides these, there 
are highly adaptive algorithms with large number of 
parameters. Unfortunately most of them resemble a black box, 
where it is difficult to see what kind of actual transformations 
such tools perform. However, highly adaptive methods such as 
various Artificial Neural Network architectures perform 
outstandingly in several situations, therefore their examination 
is also important. 

The subject-specificity of the electric activity of the human 
brain is also an issue. An ideal, plug-and-play prosthetic 
device would be expected to function perfectly after being 
attached to the user, for which subject-invariant motion intent 
detection models are required in advance. This expectation 
seems unlikely as brain activity varies over different subjects 
during movement tasks, as illustrated in Fig. 3. 

Knowledge about the structure and function of the human 
brain is essential to decide where to place recording 
electrodes. In case of hand motions, the most important part is 
the motor cortex. It is involved in the planning, control, and 
execution of voluntary movements. The proper selection of 
scalp areas may help minimizing the number of recording 
channels, making the digital signal processing easier. 

The development of BCIs requires expertise from a 
multitude of areas such as neurology, electrical engineering, 
and mathematics, forcing experts from different fields to join 
in teams, which further adds to the difficulty of the problem. 

IV. CONCEPTS FOR FUTURE BCI DEVELOPMENT 

A. Intracranial Recording Methods 

As mentioned before, one of the major obstacles is the low 
signal-to-noise ratio of the noninvasive EEG as well as the 
limited spatial resolution. In neuroscientific research for 
example, intracranial recording methods are studied for 
cortical mapping [16]. The invasive technique of 
electrocorticography (ECoG) yields signals that have an 
exceptionally high signal-to-noise ratio, less susceptibility to 
artifacts than EEG, and higher spatial and temporal resolution. 
ECoG involves measurement of the brain actvity using 
electrodes that are implanted subdurally on the surface of the 
brain. ECoG data are often hard to obtain because of the risks 
and limitations of the invasive procedures involved, and the 
need to record within clinical settings. 

It is possible that future recording setups will comprise 
permanently implanted intracranial electrode grids, which can 
be connected to an external signal processing system in a 
plug-in manner. Besides the medical implications of the 
installation of such system, exposing the brain activity raises 
ethical questions as well. However, these concerns may be 
outweighted by the advantage of possibly regaining limb 
functions for physically impaired people. 

B. Incorporating Electromyography 

Electromyography (EMG) is a technique for recording and 
evaluating the electrical activity of skeletal muscles [17]. 
EMG signals can be used for prosthesis control [18]. The 
activity of muscle neurons essentialy represent the patient’s 
movement intentions, therefore recognizing patterns in an 
electromyogram in real-time yields a control signal for a 
prosthetic limb. There are numerous functioning myolelectric 
prostheses on the market, and such devices are under intense 
development.  There are for example myoelectric prosthetic 
arms which are capable of multiple different grasps [19] which 
can be selected according to the user’s intentions. 

Myoelectric prostheses may also be limited in the 
resolution of movements, but the easy acquisition and 
processing of the EMG signals make such devices convenient. 
This advantage is exactly what it makes EMG signals 
appealing in BCI-s as well. EMG signals may provide a 
relevant amount of information to that obtained from EEG, 
leading to a possibly more accurate and delicate motion intent 
detection. Future BCIs may utilize electrode grids over various 
muscles as well as over the scalp, and record body-wide neural 
activity to infer movement intentions. 

C. Applying Image Processing Methods to the Brain Activity 

Map 

The EEG signals are recorded over the scalp, which can be 
approximated with a spherical surface, or even with a plane if 
few electrodes are placed closely to each other. The measured 
electric potential values are distributed in a 2D space as 
illustrated in Fig. 3. This approach makes EEG data analysis 
feasible for image processing. 2D filters therefore might be 
used to extract features from the brain activity map. 
Determining the coefficients of such filters can be left to 
highly adaptive tools such as ANNs. Convolutional Neural 
Networks (CNNs) provided remarkable results for example in 

52



detecting hand motions [7],[8], while they relied on the spatial 
distribution only to a small extent. 

The potential of CNNs in BCI applications could be deeply 
exploited by involving experience from the field of image 
processing. An initial challenge is the transformation of the 
scalp space into an image. The EEG signal provides spatially 
noncontinuous information, but a continuous scalp current 
density function can be obtained for example with fitting 
spherical splines [20]. The mapping of such spherical function 
to a flat image is another challenge, but seems to be analogous 
to the map projection problem as the preservation of 
geometrical distances to a desired extent is important. 
However, the projection problem could possibly be bypassed 
with CNN layouts tailored for spherical convolution. 

D. Object Detection and Prosthesis Control via Visual Input  

The possible sensitivity of motion intent detection using 
EEG and even EMG signals seems to be limited. However, the 
environment may also provide information about the possible 
user intentions. A prosthetic device could be fitted with one or 
more cameras throught which it could analyze the surrounding 
objects and infer possible actions. These could be listed on a 
small screen built in the device or displayed on a Head-Up 
Display (HUD) realized in the user’s glasses. The selection 
from the proposed actions could be made by the user through 
motor imagery which would be detected from the neural 
activity. The prosthesis could also take care of the movement 
control using cameras as well as tactile sensors. 

Object detection in images is an intense research topic 
worldwide, for example there is significant activity around the 
ImageNet Large Scale Visual Recognition Challenge [21], 
which is a competition with the goal of classifying images of a 
large database. An efficient algorithm could process video 
frames in real time, hence it could track objects within a view. 

An example of this concept is the following. When a 
prosthetic arm detects hand motion intent from the wearer's 
physiological signals, and recognizes a particular door and a 
keyhole right in front of the user with a built-in camera, the 
control system could infer that the person wants to unlock the 
door. Then the prosthetic arm could automatically position and 
insert the appropriate key in the hole and open the lock, 
therefore assisting the wearer in entering the room or building. 

V. SUMMARY 

This paper presents an overview of the EEG signal 
processing pipeline in BCIs and also of the main issues of 
current BCI technology. Four proposals were outlined for the 
future of BCI development for prosthetic limbs. First, the 
application of intracranial electrodes, targeting the issue of the 
signal-to-noise ratio and the spatial resolution as well. Second, 
the incorporation of EMG to gather more information about 
movement intentions. Third, the application of image 
processing methods to enhance motion intent detecion 
algorithms. Last but not least the utilization of cameras for 
tracking surrounding objects to support prosthetic control. 
Presently there is moderate hope that relying solely on EEG 
will lead to fully functional prosthetic limbs. However, the 
incorporation of additional physiological measurements and 
environmental data might result in significant advancement 
towards this goal. 
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