<©IEEE

IEEE HUNGARY SECTION

CIRCUITS, SYSTEMS AND COMPUTERS JOINT CHAPTER
INSTRUMENTATION AND MEASUREMENT & ENGINEERING
IN MEDICINE AND BIOLOGY JOINT CHAPTER

PROCEEDINGS
OF THE

19™ PHD MINI-SYMPOSIUM

JANUARY 30, 2012.

1 i
H—h—ft—h—H—*H

L]
] i

m m n 0 " 0 " 0 " 0 n u ) n ) " () " 0 " 0 " n 0 n 0
{ [ ] [T [w W W W W w T

o ininininial
T T !!!!!!MM“H Y Y \MM
[ m_mm [mh%%”—\ml [ml_mn |

BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS
DEPARTMENT OF MEASUREMENT AND INFORMATION SYSTEMS



PROCEEDINGS
OF THE

19™ PHD MINI-SYMPOSIUM

JANUARY 30, 2012.
BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS
BUILDING |

r|||’(||||||. ., ,FU—U—U—U*, . .|||}|||’|||
L u [N L

MMMNM@@@M

BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS
DEPARTMENT OF MEASUREMENT AND INFORMATION SYSTEMS



© 2012 by the Department of Measurement and Information Systems
Head of the Department: Prof. Dr. Akos JOBBAGY

Conference Chairman:
Béla PATAKI

Organizers:

Péter Zoltan CSURCSIA
Tamas DEMIAN
Robert GALAMBOS
Péter MARX
Vilmos PALFI

Homepage of the Conference:
http://minisy.mit.ome.hu/

Sponsored by:
IEEE Hungary Section (technical sponsorship)
Schnell L&szI6 Foundation

ISBN 978-963-313-046-9



FOREWORD

This proceedings is a collection of the lectures of the 19" PhD Mini-Symposium held at the
Department of Measurement and Information Systems of the Budapest University of Technology and
Economics. The main purpose of these symposiums is to give an opportunity to the PhD students of
our department to present a summary of their work done in the preceding year. It is an interesting
additional benefit, that the students get some experience: how to organize such events. Beyond this
actual goal, it turned out that the proceedings of our symposiums give an interesting overview of the
research and PhD education carried out in our department. The lectures reflect partly the scientific
fields and work of the students, but we think that an insight into the research and development
activity of the department is also given by these contributions. Traditionally our activity was focused
on measurement and instrumentation. The area has slowly changed during the last few years. New
areas mainly connected to embedded information systems, new aspects e.g. dependability and
security are now in our scope of interest as well. Both theoretical and practical aspects are dealt with.

This is the first time that the proceedings will not be published in printed form, it has turned out that
nowadays the web publication of symposium lectures is enough. This new form has some
advantages, but it has some challenges as well. We hope that the advantages will dominate.

The papers of this proceedings are sorted into some main groups. These are Embedded and
Intelligent Systems; Measurement and Signal Processing; Model-based Software Engineering and
Knowledge Representation. The lectures are at different levels: some of them present the very first
results of a research, others contain more new results. Some of the first year PhD students have been
working on their fields only for half a year, therefore they submitted two-page papers. The second
and third year students are more experienced and have more results; therefore they have four-page
papers in the proceedings.

During this nineteen-year period there have been shorter or longer cooperation between our
department and some universities, research institutes and firms. Some PhD research works gained a
lot from these connections. In the last year the cooperation was especially fruitful with the Vrije
Universiteit Brussel Dienst ELEC, Belgium; Thales Rail Signalling Solutions Ltd., Prolan Process
Control Co., Nador Systemshouse Ltd., OptXware Research & Development Ltd., IBM Data Storage
Systems Ltd., IBM ISC Ltd., Innomed Medical Zrt., GAMAX kft., ImSoft kft, Robert Bosch kft., NI
Hungary kft.

We hope that similarly to the previous years, also this PhD Mini-Symposium will be useful for the
lecturers, for the audience and for all who read the proceedings.

Budapest, January 19, 2012.

Béla Pataki
Chairman of the PhD Mini-Symposium






LIST OF PARTICIPANTS

Participant Advisor Starting Year of PhD Course
BANYAI, Mihaly STRAUSZ, Gybrgy 2009
CSERPAN, Dorottya HORVATH, Gabor 2011
CSURCSIA, Péter Zoltan KOLLAR, Istvan 2010
DEMIAN, Taméas PATARICZA, Andrés 2010
ENGEDY, Istvan HORVATH, Gabor 2009
EREDICS, Péter DOBROWIECKI, Tadeusz 2009
GALAMBOS, Robert SUJBERT, LéaszI6 2010
GATI, Kristof HORVATH, Gabor 2011
GYORKE, Péter PATAKI, Béla 2011
HEGEDUS, Abel VARRO, Déniel 2009
HORVATH, Aron HORVATH, Gabor 2011
LACZKO, Péter FEHER, Béla 2009
MARX, Péter ANTAL, Péter 2010
OLAH, Janos MAJZIK, Istvén 2009
ORBAN, Gergely HORVATH, Gabor 2009
PALFI, Vilmos KOLLAR, Istvén 2010
SARKOZY, Péter ANTAL, Péter 2009
UJHELY], Zoltan VARRO, Déniel 2009
VOROS, Andras BARTHA, Tamés 2009



Program of The MINI-SYMPOSIUM

Embedded and Intelligent Systems Chair: JOBBAGY, Akos

LACZKO, Péter Efficient Multithreaded Task Scheduler for Visualization and 8
Data Processing

BANYAI, Mihaly Network Modeling of Learning in Schizophrenia 12

CSERPAN, Dorottya Calculation of Single Neuron’s Current Sources Based on 16
Multielectrode Recordings

SARKOZY, Péter Imputation and Haplotype Reconstruction in Genetic 18
Association Studies (Summary of PhD Work in 2011)

Model-based Software Technology and Knowledge Chair: PATARICZA, Andrés

Representation

HEGEDUS, Abel A Model-Driven Framework for Guided Design Space 22
Exploration

UJHELYI, Zoltan Dynamic Backward Slicing of Model Transformations 26

DEMIAN, Tamés Mapping Topic Maps to Common Logic 30

OLAH, Janos Context-Based Requirements Representation for Software 34
Testing (Summary of PhD Work in 2011)

VOROS, Andras Forward Saturation Based Model Checking 38

Measurement, Signal Processing and Intelligent Systems Chair: SUIBERT, Lé&szIl6

PALFI, Vilmos Four Parameter Sine Wave Estimation in Frequency Domain 42

GALAMBOS, Robert Finite-Difference Simulation of Acoustic Wave Propagationin 46
Enclosures

EREDICS, Péter The Intelligent Greenhouse (Summary of PhD Work in 2011) 50

GYORKE, Péter Detection of Complex Activities Using AAL Oriented Sensor 54
Network

CSURCSIA, Péter Zoltan Basics of Best Linear Approximation 58

Intelligent Systems Chair: DOBROWIECKI, Tadeusz

HORVATH, Aron Locating Clavicles on Chest Radiographs 62

ORBAN, Gergely Effects of Bone Shadow Removal on Lesion Detection on 64
Chest Radiographs

ENGEDY, Istvan Optimal Control with Reinforcement Learning Using Gaussian 68
Mixture Models

GATI, Kristof Data Analysis for Time Series Forecasting 72

MARX, Péter The relevance Vector Machine and an In Silico Study of the 76

Oxytocine Receptor Gene (Summary of PhD Work in 2011)



Conference Schedule

Time January 30, 2012

8:30 Conference Opening
Opening Speech:
JOBBAGY, Akos

8:30 Embedded and Intelligent
Systems

9:50 Cofee break

10:20 Model-based Software

Technology and Knowledge
Representation

11:40 Lunch break
13:00 Measurement, Signal
Processing and Intelligent
Systems
14:20 Cofee break
14:50 Intelligent Systems




EFFICIENT MULTITHREADED TASK SCHEDULER FOR
VISUALIZATION AND DATA PROCESSING

Péter LACZKO
Advisors: Béla FEHER, Istvan MIKLOS

I. Introduction

Genomics is the science of whole-genome scale phenomena, with applications ranging from phyloge-
netic and evolutionary studies to disease research and pharmaceutics. The ever-increasing throughput
and declining cost of next-generation sequencing (NGS) allows for studies with ever higher accuracy
and wider scope. However, scaling up NGS experiments to the whole-genome level leads to enormous
data sizes and poses a substantial challenge to traditional bioinformatics, setting the stage for methods
that ease the handling and processing of such enormous data sets.

In our paper we start with an overview of our genomics research project and characterize the abstract
informatics problem that can be generalized from the methods used in this particular study. We then
briefly describe the visualization and data processing framework we developed as our solution. The
focus of this paper is on the multithreaded task executor component of the framework; its design and
performance analysis are presented in detail.

II. Genomic Rearrangement Breakpoint Detection

Extensive genomic rearrangements are observed in many cancer cells [1]. The accurate mapping of
the tumor cell’s rearranged genomic landscape allows for the discovery of oncogenes created by these
structural variations as well as the classification of an unknown cancer case based on rearrangement
event frequency. NGS techniques allow for such analysis with greater accuracy than traditional meth-
ods, giving rise, however, to a different range of challenges.

The output of next-generation sequencing consists of a large number of short (35-200 basepair long)
reads originating from and covering manifold the genome of interest. These reads are mapped back to
a reference genome supposedly similar to the one sequenced. There are two ways that these short reads
can indicate the presence of possible breakpoints. First, if two halves of the same read map to distinct
locations on the reference the read is likely to have covered a breakpoint in the original genome (split-
read mapping). Second, if a pair of reads is known to have originated from within a known distance to
each other yet they map significantly farther away on the reference, it is explainable by a rearrangement
breakpoint between the two members (paired-end mapping).

Our combined representation of these two kinds of evidences was inspired greatly by [2]. In short,
every such evidence supports a range of possible breakpoints. As a breakpoint may connect any two
coordinates along the genome it can be represented as a point in a two-dimensional integer coordinate
system. A mapped split-read or mate-pair supports only a limited set of breakpoints that are confined
to the interior of a polygon in this coordinate system; this polygon is a square for split reads and
a trapezoid for mate-pairs. The intersection of a number of these polygons represents the possible
breakpoint that is supported by all the evidences involved.

The advantage of the above representation, besides being as general as possible, is that it is very
intuitive in the sense that there is a clear correspondence between concepts of the problem domain
(evidences, breakpoints, intersections) and their representation. Its downside, however, is that it is
impossible to physically create such a graph on a basepair resolution for a whole-genome data set, as
both axes of the coordinate system would extend to 3 x 10% in the case of the human genome. Therefore

8



a software tool that could visualize the evidence map of a real data set and would allow for the efficient
execution of a wide variety of algorithms on it is of great value to the genomics researcher. Next, we
briefly generalize this requirement and present our generic software library as a solution.

III. The Data Visualization and Processing Framework

A. Requirements

Consider a problem domain which can be represented in a very large (but finite) 1, 2 or 3 dimensional
coordinate system. Given an input set of an arbitrarily large number of objects, our system must allow
for visualization of any part of the chart, enumeration of the input data which was used for generating
that part, and the execution of a custom algorithm on this data.
There is no restriction on the nature of the data objects as long as they satisfy a few (sometimes soft)

conditions:

e They are independent, that is, any object is fully interpretable without any other objects.

e They can be assigned a one, two or three dimensional ,,bounding box™ with integer coordinates
that denotes their place in the coordinate system, which implies that
they have a natural ordering.
They are ,,small”, that is, the size of the chart area that an individual object affects is a negligible
portion of the whole coordinate system.

B. Solution

Our solution is a Java class library that exposes functionality to allow third party applications fulfill the
above requirements; or, from a different approach, it encapsulates all domain independent functionality
of a concrete visualization and data processing application for the breakpoint localization problem. See
Figure 1 for a block diagram of the library integrated.

""""" Interactive application™_ ~_ T_ T_ T_T_ .7 2

- |-Tre-eta-sks-||------'I-'ask-s- '-'-|| _________ TaT. .. --‘I-'ask-s-_ -

ez [F ] Z R | 777 [F k]
ﬂ ramewors Visualizer _ _ ﬂ ramewor}
BSTree Executor ToT.TL T Executor
OpenCL OpenGL LTt T OpenCL

Computation | | Rendering Computation

Data Data
file Memory CPU GPU file CPU GPU

Figure 1: Functional blocks of the framework (dashed) interoperating with the custom (interactive or
batch) application (dotted)

The main blocks of functionality are a binary spacing tree-based sorted cache of the current working
set of objects (BSTree), the Executor module responsible for application task scheduling, and a visu-
alizer engine which takes the burden of creating a usable interactive 3D-accelerated application off the
integrator of our library. The application can submit general computational tasks on the collection of
objects present in the working set which are ignorant on the underlying caching scheme; these tasks
can also be executed in batch mode on the whole data set. In addition to these, specialized tasks aware
of the underlying tree structure can also be executed.

The cache is based on a binary-, quad- or octree, depending on the dimensionality of the data (see
the schematic illustration for a 2D quadtree in Figure 2 A). A tree node can be either nonleaf, with
all possible children existing, or leaf, storing the data that belongs to the appropriate portion of the

9



entire coordinate system. The objects which overlap with this region are stored in leaf nodes, indexed
separately by all coordinates. The indexing is implemented with the TreeSet collection of the Java
language, which is effectively a binary search tree.

This double-layered design allows for fast but imprecise queries for a given region (in the BSTree),
yet does not introduce much space overhead as the large number of objects are actually stored in a
search tree (instead of a spacing tree). The multiple indexing of objects in each leaf node makes sorted
retrieval of objects in any region possible, by first traversing all nodes that have an intersection with
the region of interest and then merging the sorted object sets of these nodes (in linear time).

The fact that objects can be retrieved in order allows for a computational model that can handle
object interdependecies. We assume that the density of input objects can be so high that an algorithm
processing a region cannot load all its contents into memory; in other words, it has to access the
data sequentally. Generally, this would practically inhibit the implementation of algorithms that do
not process all objects independently. However, since the data will be sorted, the algorithm can keep
track of a ,,sweeping pointer” across one axis of the entire coordinate system, and can assume that no
objects with already passed-by coordinates will be encountered. Therefore, it can perform processing
that involves object interdependence (e.g. summing object coverage for points) for points in a sliding
window not wider than the maximum object size. To put it short, ,,localized reduction” phases in
algorithms are possible: two objects can mutually influence a computational result only if they overlap.

Furthermore, such a limited model of computation lends itself for parallelization. In our execution
model tasks declare two procedures: one for independent processing of objects and one for a ,,localized
reduction” (finishing) step. The objects are presented to a task in chunks, a set of as many objects as
requested by the task itself. Object processing is in theory independent for every chunk and can thus
be scheduled for separate threads in parallel; the finishing step is serial.

Figure 2 B illustrates this on an example. The upper chart shows which step is performed by which
thread for any given chunk, while the lower one is a classical sequence diagram of the same execution
scenario. Note that while the ,,process” step is always executed on a pre-defined number of objects,
the ,,finish” step is executed once regardless of how much the ,,sweeping pointer”” has advanced since
the last finish step. This may be scheduled to any thread and may take arbitrarily long (as opposed
to ,,process’” steps with a constant input chunk size). In this example, Thread #1 finishes the region
between the first object of Chunk 1 and the last one of Chunk 2, while Thread #2 finishes the region
between the first object of Chunk 3 and the last object of Chunk N.

Y.
A B . Thread #1 Thread #2
Finishing | P! b,
Thread #1 l Thread #2 ! Thread #3 ! . |Thread #N _ Thread #3
|
| | | | |
Contents P 1o

Chunk1l ' Chunk2 ' Chunk3 " Chunk N ' ChunkN+1

>

|
>
|

Processing

y

N
\

Processin Finishin. van

Thread #1 "ﬁ'ﬁ%ﬂ"_—’c o Zhunk 1 an
Processin Finishing . e

Thread #2 1 _Fnkc uni ChUNK S o N > >
Processin Processin

Thread #3 T=eherE TP eRoTE NP>

Processin
Thread #N W

Time

Figure 2: Schematic view of the data cache model and the task execution model

10



C. Performance Analysis

The task we used for performance testing was an actual algorithm of the genomics project. We created a
discretized coverage map of the chart regions with a given resolution, essentially summing the number
of overlapping evidences for each discrete block. The evidences of our data set were trapezoids with
longer parallel sides of 2000 base pairs. The region of the genome under investigation covered a square
with sides of about 5.5 megabasepairs, where 90,199 evidences were located. The square sizes we tried
were 100, 200, 400, 500 and 1,000 basepairs; the smaller size means finer resolution.

The algorithm first generates the discrete blocks for each object (which is fully parallelizable), then
it stores these into global memory (for which it competes with other threads). In the finishing step
(which is sequential) it sums the generated discrete blocks and stores them back into the tree.

We first executed the algorithm single-threaded for all resolutions and measured the ratio of time
spent with parallel, competing and serial tasks (Figure 3 A). The theoretical maximum speedup is lim-
ited by Amdahl’s law [3] (1); however, it does not take into account the possible blocking of competing
operations. We therefore evaluated this formula for two cases: assuming no blocking and assuming
fully serial execution. The theoretical maximum is therefore between these two values.

1

1-P+ £

We performed the measurements for 2, 3 and 4 threads on a quad-core Intel 17 processor (Figure 3 B,
C and D). It is clearly visible that the system schedules the task rather efficiently in the middle values
of the parameter range, with speedups nearing the best-case maximum. The inferior performance in
the extremities of the parameter range is yet to be explained; our hypothesis is that in the 100 basepair
case the higher overhead of object creation and garbage collection degrades performance, while on the
other end, the total execution time may be too short to take advantage of parallel execution.

Smax = (1)

22
= Speedup

2 * Limit (worst case)

u Serial 2 threads + Limit (best case)

W Competing 18
Parallelizable

16
5 A

o
@12

Resolution (basepairs)
1000 500 400 200 100

=

Q

%  10% 20% 30% 40% 50% 60% 70%  80%  90%  100% 6 . . , .
1000 500 400 200 100
Resolution (basepairs)

22 22
— D S

2 - Limit (worst case) 24, *-Limit (worst case)
3 threads -Limit (bestcase) e, 4 threads *-Limit (best case)

1000 500 400 200 100 1000 500 400 200 100
Resolution (basepairs) Resolution (basepairs)

Figure 3: Measurement results

References

[1] M. Stratton, P. Campbell, and P. Futreal, “The cancer genome,” Nature, 458(7239):719-724, 2009.

[2] S. Sindi, E. Helman, A. Bashir, and B. Raphael, “A geometric approach for classification and comparison of structural
variants,” Bioinformatics, 25(12):1222, 2009.

[3] G. Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,” in Proceedings
of the April 18-20, 1967, spring joint computer conference, pp. 483—485. ACM, 1967.

11



NETWORK MODELING OF LEARNING IN SCHIZOPHRENIA*

Mihaly BANYAI
Advisors: Péter ERDI, Fiilop BAZSO, Gyorgy STRAUSZ

I. Introduction

Schizophrenia is a complex disorder that manifests on many different levels ranging from the physi-
ology of single neurons through the dynamics of neural circuits to cognitive, affective or behavioral
symptoms (for clinical characterization of the disease see [1], for a review on functional connectiv-
ity during schizophrenia see [2]). We use a multi-level modelling approach to connect these different
levels. Our previous results demonstrated the schizophrenic patients show a significant impairment in
object-location associative learning tasks [3]. Here we developed a neural network model incorporat-
ing models of brain regions involved in paired-associate learning in order to analyze the mechanisms
underlying behavioral differences between schizophrenic patients and control subjects.

II. Methods

A. The experiment

We used a paired-associate learning paradigm in which subjects are required to learning arbitrary as-
sociations between locations (in space) and objects (with unique identities). In the encoding phase,
subjects see which object is asssociated to which field. In the recall phase, subjects are presented with
cues in the fields, and they have to give a verbal answer specifying the corresponding object. The raw
fMRI data reflect the blood-oxygene-level changes in the brain in 4 dimensions, with a time resolution
in the order of seconds and spatial resolution in the order of 10 mm?®. The data is normalized, and in
order to capture the large-scale dynamics of the cortex, regions of interest (ROI) are selected based
on the anatomical location of brain areas related to associative learning (primary visual cortex (V1),
superior parietal (SP) and inferior temporal cortex (IT), hippocampus (HPC) and dorsal prefrontal cor-
tex (PFC)). This way we obtain five time series describing the activities of the selected areas during
the experiment, in addition of the time series of the experimental conditions and the behavioral data
containing the subjects’ answers to the memory cues.

B. Neural network model

A feed-forward network creates the representations of the identity of the object and its location in the
model of the areas IT and SP in the ventral and dorsal visual streams, respectively. The proposed role
of the hippocampus is to bind these two representations together so that when cued by the location,
the correct object can be recalled. The model is outlined in Figure 1, where the detailed hippocampal
circuitry is also given, including the dantate gyrus (DG) and the CA3 region. Moreover, in order to
model cognitive control, we included a prefrontal region which controls learning and recall processes
presumably by modulating the plasticity and the efficiency of hippocampal synapses.

The interaction of the areas is described by the following equations:

This summary is based on M Bényai, B Ujfalussy, V Diwadkar and P Erdi. Impairments in the prefronto-hippocampal
interactions explain associative learning deficit in schizophrenia. BMC Neuroscience 12(Suppl 1):93, 2011.

12



%
CLdg E :wsp%dg sp + E :wzt—>dg Tit (1)

ng = F(adm 'ng) (2)

Zi(rég)Q
__idy) 3
= N (5,7, ®
4)

where agg denotes the activation of unit 7 in the dentate gyrus, v stands for sparseness, r for the firing
rate, w for the synaptic weights, F() is a treshold linear function and Np stands for the number of
cells in the dentate gyrus. Similarly, the activation of the CA3 region and the inferior temporal coretx
is given by the following equations.

=R Z wdg—wardg + L Z wsp%ca sp &)
=L Z Wit 6)
(7)

Here L and R are random variables sampled between 0 and 1 according to the learning and recall
phases of the task. Switching between learning and recall phase distributions of /2 and L models the
effect of the prefrontal cortex on the circuitry, which implements the decision if we have to update the
stored memory patterns or we have to retrieve one of them.

The synaptic weights are updated according to a Hebbian learning rule dependent on the phase we
are currently in. All weights are updated in a similar fashion to the following equation:

Aw”

sp—dg —

=(1- R)ozrzlg(rip — wY ) (8)

sp—dg

C. Dynamic causal modelling (DCM)

DCM provides a complete phenomenological model framework for the analysis of fMRI data. For a
detailed description see [4]. The model structure consists of two components: a neural state equation
and a hemodynamic model. The neural component describes the time evolution of the neural state
variables, =, which refer to the neural activity of the brain areas. The input variables, u, are the
conditions defined by the experiment (Eq. 9). The connectivity parameters of the neural model are
the elements of the three matrices, #,, = {A, B,C}. A contains the intrinsic coupling parameters,
the causal effects of the areas on each other, B contains the modulatory parameters, the effects of the
inputs on the intrinsic connections, and C' contains the direct effects of the inputs on the areas.

N
T = (A—i—Zuij)x—i-Cu )
y = Az, 0,) (10)

The hemodynamic component, A\, describes the nonlinear mapping from the neural activity to the
fMRI signal, y, actually measured in the brain areas (Eq. 10). For the details see [5]. We need to

13



estimate the values of the parameter set, § = {6, 0,} best fitting to measurement data. One possible
procedure to do so is the Bayesian maximum a posteriori (MAP) estimation technique defined by Eq.
11, where M denotes the specific connectivity pattern of the model.

y | 0, M)p(0| M)
py | M)

For all probability distributions in 11, we assume that both the prior (p(6 | M)) and posterior (p(6 |
y, M)) distributions are Gaussians, and the MAP estimation is defined as the mean of the posterior
distribution. To compare models with different connectivity patterns, we can set the prior probability
of having certain connections is a certain model to zero.

The model evidence is the probability of obtaining the actual measurement conditioned on the model
form integrated over parameter space. This way we obtain the expected posterior probability of each
model regarding the subject group. For a complete description of the comparison method see [6].

p(0] y, ) = 2 (11)

ply | M) = / p(y | 6, M)p(8 | M) d6 (12)

III. Results

A. Simulation of the neural model

We fitted the model performance to the behavioral data. On Figure 2 the blue circles indicate the
healthy subjects’ performance, the red circes the patients’. The empty circles show the simulated
data for two different parameter settings for the distributions of L and R. Our model predicts that the
impairment of cognitive control of the prefrontal cortex over hippocampal processes implies inaccurate
regulation of hippocampal dynamics and explains the poorer performance of patients in this task.

For a more complete discussion of the results see [7].

B. Estimation of the dynamic model

The comparison of different model connectivity structures lead to the finding that in schizophrenia,
the task-related functional network is fundamentally different relative to healthy controls, the patients’
networks lacking connections in the control signal flow from the prefrontal area to the lower level areas
(Figure 3). Comparison of the parameter estimates in the two groups implies significant impairments in
the prefrontal control of hippocampal memory formation in patients (Figure 4). This finding supports
the results from the neural network simulations by identifying the neural basis of the learning-recall
decision impairments.
For a more complete discussion of the results see [8].

IV. Conclusion

Our results show that prefronto-hippocampal interactions are material in understanding learning im-
pairments in schizophrenia, and our multi-level approach is suitable to integrate the explanatory ca-
pabilities of mechanistic neural models with the analytical power of data-driven phenomenological
approaches.

Acknowledgement

We are thankful to the National Institutes of Mental Health, the Children’s Research Center of Michi-
gan, the Elizabeth Elser Doolittle Investigator-ship and the Henry Luce foundation.

14



Figures

‘ Retina H Vi
Image Receptive fields

Figure 1: The outline of the neural network
model. The rigth panel gives the details of
the prefronto-hippocampal circuit and its in-
teraction with the superior parietal and infe-

i I circui : i
procampa circuit Control Subjects Patients
= T a2 8 o o = o o o
T e 8 - = e ©
o T 14 i o ® & T3 JOR )
s ° e ® ° s ° T ® o o
@ I L ° T ] 8 J. 1
2 « | » o | o I
g [=] ° © T .L
S « T e & ] I
% S —s Parameters: oS —e J_ Parameters:
=T A r.dg= 0.002 r.ca3=0.02 ‘ rdg= 0.002 r.ca3=0.02
g o rit= 0013 slope.r=18 g o rit= 0013 slope.r=11
slope.l=2 1 slope.l=2
o | 2
S T T T T 1T T T ° T T T T T T T
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Trial number

Figure 2: Results of the simulation of behav-
ioral data by the neural model. Performance
means the average ratio of correct answers
given by the subjects in each trial.

rior temporal areas.

1 * *
0.5
0
/ @ V1->8P V1->IT SP->HCSP->PF IT->HC IT->PF HC->SPHC->ITPF->HC
@ Intrinsic (A)
*:p<=0.1
@ 0.8 0.8
0.6 0.6
G @ 0.4 0.4
0.2 0.2

0 HC->SP HC->IT PF->HC 0 HC->SP HC->IT PF->HC

Figure 3: Results of the comparison of the
DCM models.
hippocampo-inferior
hippocampo-superior parietal interactions are
less likely to be present in the patient group.

03 Modulatory (B) - Encoding Modulatory (B) — Retrieval

01 0.2
Model probability

Figure 4: Results of the parameter level
comparison between healthy (yellow) and
schizophrenia (red) groups. Largest differ-
ences are seen in the strength of the interaction
between the prefrontal cortex and hippocam-
pus and the hippocampus and the inferior tem-
poral cortex.

Prefronto-hippocampal,
temporal and

References

[1]

P. J. Harrison, “The neuropathology of schizophrenia. a critical review of the data and their interpretation,” Brain,
122:593-624, 1999.

M. E. Lynall, “Functional connectivity and brain networks in schizophrenia,” Journal of Neuroscience, 14:9477-817,
2010.

V. Diwadkar, B. Flaugher, T. Jones, L. Zalanyi, B. Ujfalussy, M. S. Keshavan, and P. Erdi, “Impaired associative
learning in schizophrenia: Behavioral and computational studies,” Cognitive Neurodynamics, 2:207-219, 2008.

K. J. Friston, L. Harrison, and W. D. Penny, “Dynamic causal modelling,” Neurolmage, 19:1273-1302, 2003.

K. J. Friston, A. Mechelli, R. Turner, and C. J. Price, “Nonlinear responses in fmri: The balloon model, volterra kernels
and other hemodynamics,” Neurolmage, 12:466-477, 2000.

K. E. Stephan, W. D. Penny, J. Daunizeau, R. Moran, and K. J. Friston, “Bayesian model selection for group studies,”
Neurolmage, 46:1004—-1017, 2009.

P. Erdi, V. Diwadkar, and B. Ujfalussy, “The schizophrenic brain: A broken hermeneutic circle,” Neural Network
World, 19:413-427, 2009.

M. Bényai, V. Diwadkar, and P. Erdi, “Model-based dynamical analysis of functional disconnection in schizophrenia,”
Neurolmage, 58:870-877, 2011.

15



CALCULATION OF SINGLE NEURON’S CURRENT SOURCES
(SUMMARY OF PHD WORK IN 2011)

Dorottya CSERPAN
Adyvisors: Gabor HORVATH, Zoltan SOMOGYVARI

I. Introduction

In this paper we present the application of an electrophysiological method based on two different
neuron models. The sCSD (spike Current Source Density) method [1] uses extracellular potentials
recorded in mouse brain to evaluate the current flow through the cell membrane on different parts
of the cell. The traditional CSD analysis [2] calculates current source densities denoted to layers
of the neocortex, the novelty of sCSD method is the calculation of the current source densities of
single cells from the measured extracellular potentials. The relationship between these two quantities
is given by Poisson-equation. In matrix formalism, ¢ vector contains the measured n extracellular
potentials generated by the n current sources (C vector) and the so called transfer matrix (T) modells
the relationship between extracellular potentials and current sources. The current source densities can
be calculated by multiplying the extracellular potentials with the inverse (or pseudoinverse) of the
transfer matrix.

C=T"'® (1)

To make the solution unique the cell-electrode distance has to be estimated. Here two application of
sCSD for two different cases are shown, one regarding to neurons, which can be approximated with a
line segment and an other for the spherically symmetric cells.

II. The spike Current Source Density analysis of different neurons

A. Linear segment approximation

The line segment approximation can be used for elongated neurons which are parallel with the elec-
trode. By positioning the electrode perpendicular to the brain surface, the pyramidal cells (1.a) of the
neocortex will satisfy this assumption. These cells are represented as n point sources arranged in a line
segment, where n is equal to the number of electrodes. In this case the elements of the transfer matrix
(T') are the following: .

Ty = ——,
J 4’/T0'dij

2)
where d;; is the distance between the " electrode and j point source and o is the electrical conduc-
tivity of the extracellular medium. The cell-electrode distance was determined by the introduction of a
measure, which has an extremal value at the real distance. On the sCSD distributions (1.c) white colour
indicates the flow of positive ions into or negative ions outwards the cell. The strong white blob at 2
ms is the action potential initialization by the soma and the bright blobs afterwards in the neighbouring
segments are probably the dendritic backpropagation.

B. Spherical shell approximation

Some of the cells have a spherically symmetric morphology (e.g. relay cells (1.d)): the soma is in the
centre and the dendrites form a ball around it. It’s worthwhile to calculate the current sources of sphere
shells, since these corresponds to inputs from different brain regions. The distance of the electrode and
the soma was set to 20 pm, hence there is no method to predict it yet. We can specify this arrangement
as following: the electrode is 50 pum far from the soma, the others are in a line perpendicular to the

16



point sources multielectrode sCSD
* array | ®

R

|
~ N g =
I :
(a) (b) (c)
multielectrode ® |
array H
I
herical shell f > .
e \\\\\\\\@ . -
(d) (e) ®

Figure 1: (a) pyramidal cell (b) linear segment model (c) sCSD distribution of a pyramidal cell (d)
relay cell (e) spherical shell model (f) sSCSD distribution of a relay cell

line between the soma and the first electrode. Every electrode corresponds to one spherical shell. The
electrode can measure the extracellular potentials of current sources of the inner shells. In this case the
transfer matrix has the following form:

- if < i 3
T Arad, s )

T; =0ifj > (4)
where d; is the distance between the i*" electrode and the soma. The action potential initialization is
also recognizable here (1.f), the darker blobs before it on the outer shells might are caused by the input
currents.

III. Conclusions

By the application of sCSD method various interesting phenomena can be observed, which cannot
be seen in other in vivo extracellular measurements. Still there are limitations in the usage, further
investigations and the development of the models are needed. The future goals are the investigation of
the origins coming to a neuron and effect of the inputs on firing.

Acknowledgement

I am grateful to Laszl6 Acsady and Péter Bartho6 for providing the data.

References

[1] Z. Somogyvari, L. Zalanyi, 1. Ulbert, and P. Erdi, “Model-based source localization of extracellular action potentials,”
J. Neurosci. Meth., 147(2):126-137, 2005.

[2] C. Nicholson and J. A. Freeman, “Theory of current source density analysis and determination of conductivity tensor
for anuran crebellum,” J. Neurophysiol., 38(2):356-368, 1975.

17



IMPUTATION AND HAPLOTYPE RECONSTRUCTION IN GENETIC
ASSOCIATION STUDIES (SUMMARY OF PHD WORK IN 2011)

Peter SARKOZY
Advisor: Peter ANTAL

I. Genetic Association studies

The quickly decreasing cost of performing genotype analysis on more and more samples and loci
have ushered in an era where even smaller research groups can perform genetic association studies.
These studies are quickly becoming limited by univariate association analysis [1], as most single-
gene diseases and mutations have already been tied to known mutations. Univariate analysis does not
provide an efficient and knowledge rich method of uncovering multiple interactions and pathway
level overviews.

Partial genetic association studies (PGAS) are commonly performed with the aim of uncovering
associations with a particular phenotype or measurable trait by determining the genotypes of a set of
loci selected on genes that are suspected to be a part of the biological pathway which plays a role in
determining the phenotype. Genome wide association studies (GWAS) genotype millions of tag
SNP's per genome, where the tag SNPs are selected to provide maximum linkage disequilibrium
based coverage of the genome. While GWAS studies have a lower price per SNP genotyped, they
require thousands of samples while measuring millions of loci. PGAS studies present a more
focused, narrow search of associations with a specific trait.

I1. The genetics of trait impulsivity

The genotyping capabilities provided by the Semmelweis University enabled us to design a genetic
association study to map the underlying genetics of trait impulsivity. Trait impulsivity is a complex
construct which is measured through a questionnaire called the Barratt Impulsivity Scale [2] (BIS),
containing 30 questions which are subdivided into three groups, which measure three components of
impulsivity, non-planning, motor impulsivity and cognitive impulsivity.

We used the genotyping system to measure 96 single nucleotide polymorphisms that covered 16
genes along various neurotransmitter pathways. The SNP's were selected in order to provide
maximum coverage, while also including SNP's that were previously shown to be associated with
trait impulsivity.

A Probabilistic genotyping

The measurements provided a low call rate which is typical of most genotyping systems, in our
case there were eight SNP's which did not return any recoverable data. The remainder of the samples
had a 79% call rate. The high number of missing samples made it impossible for us to run Bayesian
multilevel analysis [3] on the data set, because the method requires a complete set of variables for
each sample. Discarding samples with one or more SNP's missing would have resulted in an
extremely small data set. | investigated the underlying cause of the high failure rate for each
measured SNP, and found that some of the results were recoverable through manual clustering. I also
found that data concordance was around 99% even in the case of the high quality measurements.

I was able to utilize the fact that measurements were not of tag SNP's only, but were rather
intended as a high coverage mapping of the measured genes. Using the linkage disequilibrium (LD)
present between loci that were in physical proximity (Fig. 1.), it is possible to recover most of the
failed measurements.

18



| developed a tool that allows the analysis of the raw measurement data, which is recorded as a
digital image. First the high-frequency noise is eliminated from the image while the background
noise level is calculated as well, then the best well alignment is found using an image difference
based classifier. Low-frequency noise components, such as wipe marks, specks of dust and residual
chemicals are then removed by checking for the evenness of intensity inside each well. After
subtracting both low and high frequency noise components | obtained accurate intensity data for the
entire set, as well as quality parameters which gave a distribution of possible genotypes for each
sample. This intensity data was in concordance with the intensity data supplied by the measurement
system itself, only showing marked differences where there were low-frequency noise components
and physical artifacts visible on the measurement plates.

e ———— ——

Figure 1. LD for an entire set of measurements, 96 SNPs across 16 genes. The image represents a
covariance matrix with its main diagonal plotted horizontally. Dark squares mark high linkage.

B Recovery using LD

Using the software package Impute2 [4], which incorporates multiple heterogeneous data sources,
including data from the 1000 Genomes project [5] as well as the HapMap project, it is possible to
impute missing genotypes if we have measured other SNP's which are in linkage disequilibrium.
| tested the software by imputing a single SNP without supplying any measurement information
about the SNP to the impute software package. | then combined the output of impute with the
accurate intensity data obtained by my image processing algorithm, and the two independent results
showed a remarkable concordance (Fig 2.). This meant that even though the clusters on most of the
failed measurements were hard to separate, they still contained valid and useful information.

01rs6265-chiamo 01rs6265-imputed

7000

7000

6000 1 6000
5000/ 5000
4000 4000 |
3000/ 3000/

2000 2000}

1000 . R 1000} Ll

op o 1 0p m

—1000

0 500 1000 1500 2000 2500 3000 3500 doco 0% 500 1000 1500 2000 2500 3000 3500 4000

Figure 2. The left image plots the green and blue intensity data from a single SNP. The right plot
shows the fusion of imputed values (RGB) plotted independently of the intensity data.

1. Analysis

Analysis of this recovered data set presented multiple problems when | attempted to use Bayesian
networks in Bayesian multilevel analysis to uncover the strongly relevant associations between the

19



SNP's and the impulsivity target variables. The Bayesian method searches in the space of graph
structures, and for computational reasons each node has a limited number of parents. The imputed
data contained many SNP's in tight linkage, which meant that if one SNP was selected as a parent of
a target variable while searching in the space of graph structures, all the other linked SNP's would
also enter as parents. This violated the limit on the maximum number of parents for each node,
resulting in inconsistent results.

A Tag SNP selection

Multiple sets of tag SNP's were selected using various r* values. This method was used to
overcome the instability of the MCMC algorithm [6] by trimming redundant and tightly linked
variables from the data set. Analysis of these results were most stable with an r® value of 0.5.
Unfortunately this resulted in reducing our initial set of 96 SNP's to 52. Much of the information loss
in this way flattened the posterior probabilities of association for the analysis (Fig. 3.).

1.00
0.80

0.60 ——Haplotypes
0.40 \ Tag SNPs
0.20 N —— All SNPs

OOO |||||||||||||||| T 1

Figure 3. The Y axis shows the MBM posterior probabilities, while the X axis contains the genes
sorted in descending order. Tag SNP’s show the flattest posteriors, while the haplotype level shows a
more peaked distribution.

B Haplotype reconstruction

The central concept in converting SNP’s to haplotypes is centered around exploiting the linkage
disequilibrium that exists between close loci to transform sets of SNP’s to haplotypes. The sets are
most often defined by the genes that the SNP’s are located on. In case of large genomic regions
spanning more than 50 kb, that are likely to be in separate haplotype blocks (the haplotype blocks
can be identified with software like HaploView [7] each block is defined as a separate set), allowing
separation of non-tightly linked regions.

Haplotype reconstruction provides a reduction in the dimensionality of the data [8], because SNPs
inside a haplotype block are represented as a single variable, at the cost of an increase in cardinality.
SNPs have a cardinality of 3 (homozygous wild, heterozygous, homozygous mutant), where the
theoretical cardinality of a haplotype block is 4", where n is the number of SNP’s in the block. The
limited number and approximate stability of recombination hotspots creates linkage disequilibrium.
This results in mutations being passed on together. Exploiting this linkage allows us to greatly reduce
the resulting cardinality.

The question whether a heterozygous SNP has a mutant allele on the paternal or the maternal
chromosome (the phase of the SNP) can also be resolved with haplotype reconstruction — but only on
the haplotype level. This allows us to get a complete picture of the mutations on both copies of the
gene in the genome. Inter-gene phase remains unknown, but it does not have a major effect.

Haplotype reconstruction also allows us to aggregate rare variants in a knowledge rich fashion [9],
as well as allowing higher-level aggregations such the gene or pathway levels.

C Data averaging in Bayesian model averaging

Haplotypes are at a higher abstraction level than singular SNP’s and the ability to incorporate
phase information into a genetic association study can prove very useful. Bayesian model averaging

20



is used to overcome the limitations presented by moving to a higher abstraction level, as well as
allowing us to use probabilistic phased data.

We use a probabilistic genotyping model p(Dy) based on image processing and clustering. Next
we apply an existing phasing method to generate probabilistic phased genotype data p(D'y |Dn).
Finally, as unifying framework we overview the use of uncertain datasets in statistical data analysis,
which is summarized as Eq. (1).

p(ax(M)) = Ep(DN)[Ep(D'N|DN)[Ep(M|D'N) [a(M)]]] 1)

This shows the embedded averaging over genotyping uncertainty and phasing uncertainty, and
additionally Bayesian model averaging (assuming that «(M)denotes an important feature of model

M, e.g. a direct causal relation between two variables). Averaging Markov blanket membership
values is trivial, while averaging over phasing uncertainty presents a unique challenge in averaging
the model features such as Markov blanket sets and Markov boundary graphs.

1V. Results

Fusion of uncertain measurements with the linkage disequilibrium known from publicly available
data makes it possible to recover most of the failed measurements, while also allowing us to quantify
the uncertainty present in our recovery.

Figure 3 shows that the posterior probabilities are the most peaked when using haplotype
reconstruction while also showing that the loss of information when using only tag SNP's is
unacceptable. Data averaging results in a large increase in the computational requirements for the
BMV MLA method, as it requires the sampling of the sources of uncertainty and then running
multiple instances of the analysis. Depending on the number of samples produced, this ranges from
10-100 fold increase in computational time, limiting this option to cases where there is a high level
of aggregation, a low number of variables or if sufficient computational resources are present.

The results of my research are under review for publication in the journal Artificial Intelligence in
Medicine. My work is supported by TAMOP-4.2.1/B-09/1/KMR-2010-0002, TAMOP - 4.2.2.B-
10/1--2010-0009, and the following Hungarian Scientific Research Funds: OTKA-PD-76348 and
NKTH TECH 08-A1/2-2008-0120 (Genagrid).

References

[1] J. McClellan and MC. King. Genetic heterogeneity in human disease. Cell, 141:210-217,2010.

[2] J. H. Patton, M. S. Stanford, E. S. Barratt, Factor structure of the barratt impulsiveness scale, J Clin Psychol 51:768-
774, 1995

[3] P. Antal, A. Millinghoffer, G. Hullam, Cs. Szalai, and A. Falus. A Bayesian view of challenges in feature selection:
Feature aggregation, multiple targets, redundancy and interaction. JMLR Proceeding, 4:74-89, 2008.

[4] B. Servin, M. Stephens, Imputation-based analysis of association studies: candidate genes and quantitative traits,
PLoS Genetics 3(7):e114, 2007.

[5] The 1000 Genomes Project Consortium: A map of human genome variation from population-scale sequencing
Nature 467:1061-1073, 2010.

[6] S. Chiband E. Greenberg. Understanding the metropolis-hastings algorithm. The American Statistician, 49(4):327-
335, 1995.

[7]1 J.C. Barrett, B. Fry, J. Maller, M. J. Daly, Haploview: analysis and visualization of LD and haplotype maps,
Bioinformatics 21:263-65, 2005.

[8] Clark A.G. Inference of haplotypes from PCR-amplified samples of diploid populations. Molecular Biology and
Evolution, 7(2):111-122, 1990.

[9] M. Stephens and P. Donnelly. A comparison of Bayesian methods for haplotype reconstruction from population
genotype data. The American Society of Human Genetics, 73(5):1162-1169, 2003.

21


http://www.nature.com/nature/journal/v467/n7319/full/nature09534.html#group-1

A MODEL-DRIVEN FRAMEWORK FOR
GUIDED DESIGN SPACE EXPLORATION*

Abel HEGEDUS
Adyvisor: Daniel VARRO

I. Introduction

Design space exploration (DSE) is a the analysis of several “functionally equivalent” implementation
alternatives, which meet all design constraints in order to identify the most suitable design choice (solu-
tion) based on quality metrics such as cost or dependability. Design space exploration is a challenging
problem in application areas (such as dependable embedded systems and IT system management),
where model-driven engineering (MDE) techniques are already popular. DSE can be performed either
during the design process to find optimal designs or during runtime to help dynamic reconfigurations.

In traditional DSE problems, the design constraints and quality metrics are numeric attributes to
express cost, time or memory limits, etc. However, systems with modular software and hardware
architectures (like AUTOSAR [2] in the automotive domain or large reconfigurable architectures) led
to the introduction of complex restrictions on the graph-based model of the system.

Existing DSE approaches usually apply model checking complemented with exhaustive state space
exploration or solve finite domain constraint satisfaction problems that cannot effectively handle struc-
tural constraints and dynamic manipulation of elements. In order to alleviate these issues, designers
often provide additional information (hints) about the system (e.g. from earlier experience or by some
analysis) that can reduce the design space to a more feasible size.

Guided model-driven design space exploration aims to explore alternative system designs efficiently
by making use of advanced model-driven techniques (e.g. incremental model transformations) and
hints (obtained by analysis tools or provided by the designer). These hints are interpreted during the
exploration to continue along promising search paths (using selection criteria) and to avoid the traversal
of unpromising designs (by cut-off criteria). Additionally, the use of incremental techniques leads to
exploration strategies that are able to find additional (alternative) solutions.

In this paper, a model-driven framework for guided design space exploration is described, where
the system states are graphs, operations are defined as graph transformation rules, while goals and
constraints are defined as graph patterns.

II. Overview of the Approach

The schematic overview of the framework for guided design

space exploration is illustrated in First, the design Desigxzi:r;d:e:f:pﬂon_ G::ii,::}d
problem description specifies the domain where the explo- - initial state ek e e
ration takes place to produce solutions. It includes: (1) the e Cuidance.
initial state of the system at the start of the exploration, (2) the || " =memes S ‘;fi;tfria

set of manipulation operations (called labeling or exploration |

rules) defined on the system, (3) goals described as structural Design Space |_ Exploration

or numerical constraints, which need to be satisfied by so- Bxploretion Sty
lution states found by the exploration, and (4) global con- Design Space Exploration
straints, which are satisfied by the initial and solution states

and all intermediate states on the trajectory between them. Figure 1: Model-driven Guided DSE

*This summary is based on the ASE’11 paper with the same title [1]]

22



The design space exploration performs the search for solutions by exploring the design (or state)
space of the problem description. It starts from the initial state and traverses reachable states by ap-
plying the operations on the system. In order to find a solution quickly, exploration is often aided by
an exploration strategy. A simple strategy (as proposed in [3]) may use random selection in a depth
first search or statically assign priority levels to operations. However, a more advanced strategy should
also determine whether a given state will never lead to a valid solution (i.e. it is a dead end) and states
reachable from it should not be traversed. In a guided approach, the exploration strategy relies on
guidance, which uses hints for driving the traversal and identifying dead ends.

Hints are information originating from the designer or (as in [4]) from some automated analysis
carried out using formal methods that often abstract the design problem description. For example,
the result of such analysis can be information regarding the number of operation applications (called
occurrence vector). The guided approach uses occurrence vectors and dependency relations between
rules, computed from pre- and postconditions, as hints (see [1]]).

Finally, the guidance calculates and interprets hints and provides decision support for the exploration
strategy (see details in [1]). In this approach, guidance is defined as the evaluation of cut-off and
selection criteria based on the current state and the hints (as defined in [4]). Cut-off criteria identify
dead end states and bound the exploration, while selection criteria prioritize available rules in a state
by their likelihood of leading to a final (solution) state.

III. Exploration Strategy

Guided exploration strategies can be categorized by the used hints and guidance. Here, two guided
strategies are presented, the first uses occurrence vectors only as hints (occurrence), while the other
uses rule dependency as well (full guidance). Note that the full guidance strategy uses rule priorities
only if two labeling rules were evaluated as equal by the guidance. These strategies are compared to
the fixed priority strategy.

Figure 2| illustrates the design space exploration for these techniques on a simple example. The
circles denote the traversed states which are numbered according to the traversal order, while the ap-
plicable rules are listed beside them.

Downward arrows illustrate rule applications,

‘Whllﬁlt dotted arrows represent backtracking from 7 Foed priority ™\
invalid or cut-off states. The same rule can be ap- P1<P,<Ps

plied multiple times at a given state if more than
one applicable match is found in the graph (see
state 2 on the right side). The exploration termi-
nates when an optimal solution is found. A solution
is optimal if the path leading to it contains the least
number of rule applications (i.e. it is the shortest
trajectory to a solution model).

In the case of the fixed priority strategy, the next
applied operation is the one with the highest prior- ~ Figure 2: Comparison of exploration strategies
ity among the applicable ones. As the depth-first
technique is used in the fixed priority exploration strategy, the first solution found by that strategy is
often several times longer than the optimal, suboptimal solutions are used iteratively as depth limits to
force the exploration to find shorter solutions.

The occurrence strategy applies operations based on the occurrence vector provided by the system
analysis. shows that the hint states the 5 should be applied twice and 73 once. Therefore,
is not applied in state O or 2 (highlighted) in order to be compliant to the occurrence vector.

The full guidance exploration strategy (illustrated in the right side of takes the dependency

23

(" Occurrence [ Full guidance\

1, Fy I3 ry, My, I3
c={0,2,1} c={0, 2,1}




relations between rules into account in addition to the occurrence vector. Therefore, in state 1 (high-
lighted) it selects r3 for the next application. Rule 75 is applicable on two matches in state 2, the first
leading to a dead-end state, while the second application leads to a solution in state 4. Note that the
selection in state 1 leads to a reduced traversed design space compared to the occurrence strategy.

IV. Implementation Details

gives an overview of the implemented guided design space exploration framework. The im-
plementation uses the VIATRA2 model transformation framework [5]], which provides metamodeling
capabilities and supports model transformations based on the concepts of graph transformations and
abstract state machines. Its incremental pattern matcher is used as a powerful query engine.

The design space exploration is performed by

the constraint satisfaction engine, CSP(M), pre- VIATRA;V'“e'fd”"e”G“ided Design Space Exploration
sented in [3]], where rules, goals and constraints o L__y| SN | | [ ipsalver )
(specified using graph transformation rules and (CRLEY)_J1
patterns) are used in solving constraint satisfac- --Er-i;e-r?;----D-e-p-e-n-d-e}-c;---> Dependency i
tion problems over the input model (both in- definitions | | graph (EMF) [ ] (acr::]'ﬁf) i
cluded in the design problem description). I AN -
The abstraction of graph transformation rules Exploration <— E’;Ft"rgtrztg'; " <« Guidance
into Petri nets (PN) and Integer Linear Program- (copim)

ming (ILP) problems are also automated. The in- Figure 3: Overview of the guided DSE framework
dustry leading IBM CPLEX [6] optimization tool

is used, which supports the calculation of alternate solutions (occurrence vectors used for initializing
the dependency graph GG;). The edges of (G, are computed from the transformation rules using the
Condor [7] dependency analyzer tool, while the graph itself is built and stored as an Eclipse Model-
ing Framework (EMF) instance model. The criteria definitions and the criteria evaluation algorithm
(guidance) are implemented in Java as separate components, and are connected to the guided design
space exploration strategy.

V. Evaluation of the Approach

The aim of the evaluation was to demonstrate that the full guidance strategy is more efficient than the
other strategies (namely, fixed priority and occurrence strategy, which were used for previous measure-
ments in [3]]) as it traverses considerably fewer states and does not introduce significant overhead, thus
provides better runtime in the other approaches for most of the experiments.

Cases used in the Evaluation

For evaluation, the cloud case study presented in [[1]] and a service configuration case study (presented
in [8]) were used. These cases are relevant in the context of model-driven DSE as they represent both
design and runtime exploration problems and make comparison with previous results [8, 3] possible.

Both case studies included multiple cases (see [Figure 4). PowerOn cases deal with empty initial
models, while Reconfigure (RC) cases deal with existing models which must be modified to satisfy
goals. Finally, the Clustered DB case requires databases to be deployed on clusters.

Evaluation Environment and Method

The evaluation was carried out 5 times for each test case and strategy in the following way:

(1) the initial model is loaded into VIATRA2, (2) the goals, constraints and operations are added
to the framework, (3) the exploration component is initialized and runtime measurement is started
(using wall time with OS-level nanotime precision). Next, (4) the design space exploration framework
computes solutions. Finally, (5) the runtime measurement is stopped and the results are saved. The
exploration is limited to 1 million visited states.

24



Evaluation of Results
r———
The graph in shows the results of Number of visited states

measurements using the case study models. 1000000
For each case, the length of the shortest solu- 1909 “ I
&

800 000

700 000

600 000

u iJ 500 000
%Q’%\ %\@ é‘@

tion trajectory (the number of applied rules) 1(1)222

is given in parenthesis with the average num- 100
ber of visited states during the design space 10

exploration illustrated for each strategy. 400 000

. . bb\ ’LQ
The following observations were made > & & & & &
] J,)é‘ & Q& S @zb &
based on the results from the experiments: & QO&‘ &F T ¢

(1) The combined use of occurrence vectors ® Fixed Priority M Occurrence i Full guidance
and rule dependency for cut-off and selection
criteria based guidance outperforms our pre-
viously published strategies; (2) The added computation required for criteria evaluation does not sig-
nificantly increase runtime; and (3) The under-approximation of the occurrence vector based analysis
ensures that guided strategies always find optimal solutions first (similarly to the A* algorithm). Note
that in the last experiment the fixed priority strategy visits less states than the guided strategies because
of a high number of infeasible occurrence vectors.

Figure 4: Results for exploration

VI. Conclusion and Future Work

Guided DSE exploration uses hints to reduce the number of states traversed when searching for solu-
tions. Hints are used (i) to identify dead-end states (cut-off criteria) and (ii) to order applicable rules
in a given state (selection criteria). In this paper, I summarized the results of developing a model-
driven framework for guided DSE, which uses rule dependency and occurrence vectors as hints for
the exploration strategy. Evaluation of the exploration strategies using a cloud configuration problem
showed that the criteria-driven approach reduces the design space further thus increasing efficiency.
The framework was also successfully applied for generating quick fixes for domain specific model-
ing languages [9], evaluation with BPMN business process models showed that it can work as a good
design time development assistance tool.

Future work aims to improve the framework by introducing incremental techniques for identifying
states, handling guidance and space exploration. There are also plans for extending the framework to
handle EMF models.

References

[1] A. Hegediis, A. Horvith, 1. Réth, and D. Varrd, “A model-driven framework for guided design space exploration,” in
26th IEEE/ACM Intl. Conf. on Automated Software Engineering (ASE 2011). IEEE Computer Society, 11/2011 2011.

[2] AUTOSAR Consortium, The AUTOSAR Standard., http://www.autosar.org/.

[3] A.Horvéth and D. Varré, “Dynamic constraint satisfaction problems over models,” Software and Systems Modeling,
2011, 10.1007/s10270-010-0185-5.

[4] A. Hegediis, A. Horvith, and D. Varré, “Towards guided trajectory exploration of graph transformation systems,”
ECEASST, 40, 2010, Petri Nets and Graph Transformation 2010.

[5] A.Balogh and D. Varrd, “Advanced model transformation language constructs in the VIATRA?2 framework,” in ACM
Symp. on Applied Computing (SAC 2006), p. 1280-1287, Dijon, France, 2006. ACM Press.

[6] IBM, ILOG CPLEX Optimizer, http://www.ibm.com/software/integration/optimization/cplex—optimizer/.
[71 ROOTS, Condor, http://roots.iai.uni-bonn.de/research/condor/.

[8] S. Varré-Gyapay and D. Varr6, “Optimization in Graph Transformation Systems Using Petri Net Based Techniques,”
ECEASST, 2, 2006, Petri Nets and Graph Transformation 2006.

[9] A. Hegediis, A. Horvith, 1. Rath, M. C. Branco, and D. Varré, “Quick fix generation for dsmls,” in IEEE Symposium
on Visual Languages and Human-Centric Computing, VL/HCC 201 1. IEEE Computer Society, 09/2011 2011.

25


http://www.autosar.org/
http://www.ibm.com/software/integration/optimization/cplex-optimizer/
http://roots.iai.uni-bonn.de/research/condor/

DYNAMIC BACKWARD SLICING OF MODEL TRANSFORMATIONS™

Zoltan UJHELYI
Advisor: Daniel VARRO

I. Introduction

Model-driven design (MDD) aims to simultaneously improve quality and productivity by providing
early model validation and automating various phases of software development including source code,
test case or configuration generation. Model transformations (MT) play a central role in automating
such tasks. Model-to-model transformations take one (or more) source model(s) as input and derive
one (or more) target model(s) as output typically together with detailed traceability links.

Model transformations are captured in the form of a MT program, which can be taken as a regular
piece of software. However, elementary steps in MT programs are captured by highly data-driven
declarative rules, while complex transformations are assembled from elementary steps using some
imperative control structures. Due to this hybrid nature of MT languages, the direct adaptation of
existing software engineering results is problematic, especially, when designing complex MTs where
debugging and validation plays a crucial role.

Many integrated development environments (IDEs) include sophisticated program slicing techniques
to calculate control and data dependencies between the statements of a program. When debugging
MTs, transformation experts would require similar support to identify parts of the MT program which
have causal dependence on a selected statement of the MT program (called slicing criterion). However,
the slicing criterion of a MT program can also depend on an element of the underlying model when
a read or write operation on the element causes a causal dependency. For instance, declarative model
queries issued by transformation rules might introduce data dependencies that can only be detected
precisely by creating relevant slices of the transformed models as well.

In a previous short paper [1], we introduced the concepts of model transformation slicing for the
first time (up to our best knowledge), and identified the main scientific challenges. We argued that
the adaptation of existing program slicing techniques turns out to be non-trivial as MT programs take
models as an additional input. Therefore, slices of a MT program should simultaneously incorporate
the causally dependent statements and the causally dependent parts of the underlying model.

A further difference to a traditional (dynamic) program slicing setup comes from the fact that MTs
are executed mostly at design time in modern IDEs, which frequently save additional information when
executing a transformation in order to provide undo/redo support. Consequently, execution traces of a
MT run are readily available for transformation MT slicing.

In [1], we informally sketched the idea of dynamic backward slicing of model transformations. In
the current paper, we provide an overview of our approach together with an extensive experimental
evaluation of our dynamic backward slicing approach that is carried out using various case studies
taken from previous model transformation benchmarks.

II. Model Transformation Slicing: An Example

A traditional program slice consists of the parts of a program that (potentially) affect the values com-
puted at some point of interest [3]. In [1] we defined the slicing problem of MTs as illustrated in
Figure 1. The slicing algorithm receives three inputs: the slicing criterion, the model transformation
program, and the models on which the MT program operates. As an output, slicing algorithms need to

This summary is based on the following publications [1, 2].

26



produce (1) transformation slices, which are statements of the MT program depending or being depen-
dent on the slicing criterion, and (2) model slices, which are parts of the model(s) depending (or being
dependent) causally on the slicing criterion (due to read or write model access).

Criteria

transformation

Figure 1: Slicing Problem of Model Transformations

Transformation

There are various program slicing approaches in the literature, in this paper we focus on dynamic and
backward slicing. Dynamic slicing relies on a specific execution (test case) of the program. In case of
MT slicing, the affected statements of the slicing criterion are calculated wrt. this specific execution,
while model slices can be identified on the specific (input) models. A backward slice of a MT consists
of (1) all statements and control predicates of the program and (2) all elements of the underlying model
the slicing criterion is dependent on.

In the remaining part of this section, we informally present the core technique of dynamic backward
slicing of MT programs using a demonstrative example of Petri net simulation formalized by model
transformations in the MT language of the VIATRA2 framework. This example is frequently used to
demonstrate how model transformations can be used in model simulation scenarios, furthermore, it
already served as a performance benchmark for MTs [4].

A. Running Example: Simulation of Petri nets

Petri nets are bipartite graphs with two disjoint set of nodes: Places and Transitions. Places can contain
an arbitrary number of Tokens that represent the state of the net (marking). The process called firing
changes this state: a token is removed from every input place of a transition, and then a token is added
to every output place of the firing transition. If there are no tokens at an input place of a transition, the
Transition is disabled, and thus it cannot fire. The structure of the modeling language of Petri nets is
formalized by a corresponding metamodel in Figure 2a.

Example 1. Figure 2b depicts a simple Petri net. The net consists of three places, representing a Client,
a Server and a Store and two transitions. If the Client issues a query (the Query transition fires), the
query is saved in the store (a token is created), the Server gets the control (another token is created),
and the client waits for a response (the Respond transition fires and a token is removed).

B. The VIATRA?2 Transformation Language

Graph patterns are often considered as atomic units of MTs [5]. They represent complex structural
conditions (or constraints) that are to be fulfilled by a part of the (input) models. Graph patterns are
also used to declaratively define model manipulation steps.

InhibitorArc
[Association]

Query
| OutArc l Client Store

[A
Transition
[Class]

Place
[Class]

InArc
tokens [Association]

[Association] Server
Token
Respond Respond Respond
(a) Metamodel for Petri nets (b) A Simple Petri (c) The Model af- (d) The Calculated
net ter Firing the Query Model Slices
Transition

Figure 2: A Petri net Example

27



Example 2. The sourcePlace pattern (Line 1) in Listing 3 is used to identify the source places of a
transition. The pattern consists of a Transition node Tr and a Place node Pl connected by an edge of
type of OA. It is important to note that as only variables Tr and Pl appear in the header of the pattern,
they can be received from the caller of the pattern as input parameters, or passed back to the caller as
output parameters, while the variable OA is an internal pattern variable.

Graph transformation (GT) provides a high-level rule and pattern-based manipulation language for
graph models. GT rules are specified using a left-hand side graph (pattern) to decide the applicability
of the rule, and a right-hand side graph (pattern) which declaratively specifies the result model after
the rule application. This is achieved by removing all elements only present in the LHS, creating all
elements only present in the RHS, and leaving every other element unchanged.

Example 3. Listing 3 presents two simple GT rules that are (respectively) used to add a token to or
remove a token from a place. The LHS pattern of the addToken (Line 19) pattern consists of a single
place, while its RHS extends it with a token and an edge. This means, applying the rule creates a token
and connects it to the place.

Complex MT programs can be assembled from elementary graph patterns and graph transformation
rules using some kind of a control language. In our examples, we use abstract state machines for this
purpose as available in the VIATRA2 framework with all the necessary control structures including
the sequencing operator (seq), ASM rule invocation (call), variable declarations and updates (let and
update constructs), if-then-else structures, and single or simultaneous application at possible matches
(forall and choose).

Example 4. The fireTransition rule (Line 27) in Listing 3 describes the firing of a transition in VIA-
TRA2. At first the code determines whether the input parameter is a fireable Transition using the
isTransitionFireable pattern. Then in a sequence the GT rule removeToken is called for each
sourcePlace, followed by a call to GT rule addToken for every targetPlace.

C. A Sample Dynamic Backward Slice

To illustrate the MT slicing problem, we consider the execution of the rule fireTransition called with
the transition Query as a parameter. Figure 2c displays the model after the execution: the token from
the place Client is removed, while a token is added to places Store and Server. As a slicing criterion,
we selected the invocation of the GT rule addToken in Line 34 together with variable PI.

We can calculate the backward slices for the criterion as follows. (1) At the last item of the trace
the variable Pl is bound during the matching of the pattern targetPlace, so the pattern invocation is
part of the slice (Line 33). (2) As the pattern matching of targetPlace uses model elements (Server,
Query and the TA between them), they have to be added to the model slice. (3) The forall rule in
Line 33 is included in the slice as it defines the variable Pl. (4) On the other hand, the token removal
operation (Line 31) does not affect the slicing criterion as Pl is a different variable (redefined locally),
T is passed as input parameter, while no model elements touched by this GT rule are dependent from
those required at the slicing criterion. (5) Although the condition in Line 28 does not define variables
that are used later in the slice, it is added because the execution of the forall rule added to the slice
depends on the evaluated condition. (6) Finally, as the slice includes statements that use the variable T,
its definition as an incoming parameter of the fireTransition rule is added to slice.

The calculated program slice is represented by underlined source statements in Listing 3: the pattern
targetPlace and parts of the fireTransition rules are included.

As model elements are created and deleted during the execution of the transformation, the corre-
sponding model slice can contain elements from multiple states. To display the slice, Figure 2d shows
the final model state of the Petri net by adding the deleted token from the place Client as a cross. In
this figure the model slices are included inside the dashed rectangles: the transition Query, the places
Client and Server, the arcs between the included transition and place, and the token in Server.

28



= IR Y LY B N VU R R

=2 v

12

Pl T Pl =
pattern sourceblace(Tr, Pl) = { 19 gtrule addToken (in P1l) = {

T iti Tr); sy -
Pizzthi??( r) 20 precondition find place (P1l)
! 21 diti find placeWithToken (P1
Place.OutArc(OA, P1, Tr); » }postcon ition find placeWithToken (P1)
} s
_ 23 gtrule removeToken(in P1l) = {
pattern térqetPlace(Tr, Pl) = 24 precondition find pattern placeWithToken (P1)
Transition (Txr); 25 postcondition find pattern place (P1l)
Place (Pl); 2%}
Transition.InArc(IA, Tr, Pl); 27 rule fireTransition(in T) =
1 28 if (find isTransitionFireable(T)) seq {
pattern place (Pl) = {

29 /* remove tokens from all input places */

Place(Pl); 30 forall Pl with find sourcePlace (T, P1l)

} 31 do apply removeToken (Pl); // GT rule invocation

pattern placeWithToken (P1l) = {
Place (Pl);
Place.Token (To);
Place.tokens (X, P1l, To);

}

32 /+ add tokens to all output places #*/
33 forall Pl with find targetPlace (T, P1l)
34 do apply addToken (P1l));

Figure 3: Slicing criterion: variable PI in Line 34

III. Evaluation and Future Work

The aim of the evaluation is to demonstrate that our MT slicing approach provides small, relevant slices
describing both control and data dependencies from the selected slicing criteria wrt. to the correspond-
ing execution trace. To illustrate the simultaneous slicing of the models and MT programs, we selected
four fundamentally different MT programs (two model simulation and two model-to-model transfor-
mations) in [2] available in the VIATRA2 transformation framework, which were already used in the
past for performance benchmark investigations (e.g. at various model transformation tool contests).
These MT programs are used “as is”, without any manual changes to them.

Our measurements showed that our MT slicing approach is able to provide small and understand-
able slices that encapsulates both control and data (model) dependency information simultaneously. In
addition to that, by the analysis of the measurements we concluded that (1) in case of complex, impera-
tive control structures, MT slices are dominantly created from the dependency between the statements
of the transformation programs, thus traditional imperative program slicing techniques are applicable
and provide appropriate results. However, (2) in case of declarative transformation rules slices are
primarily created based on model dependencies.

In the future, we plan to investigate other slicing challenges for MT programs. The overview of the
MT slicing problems in [1] provides a full research agenda to address both dynamic and static slicing,
in forward and backward directions. Future research may also investigate how relevant breakpoints
can be automatically inserted during MT debugging where slicing techniques can also be exploited.

References
[1] Z. Ujhelyi, A. Horvath, and D. Varr6, “Towards dynamic backwards slicing of model transformations,” in ASE 2011,
26th IEEE/ACM International Conference on Automated Software Engineering. ACM, 2011.

[2] Z. Ujhelyi, A. Horvéth, and D. Varr6, “Dynamic backwards slicing of model transformations,” in ICST 2012, Fifth
International Conference on Software Testing, Verification and Validation, 2012, Accepted.

[3] F. Tip, “A survey of program slicing techniques,” Journal of Programming Languages 3(3), pp. 121-189, 1995.

[4] G. Bergmann, A. Horvith, I. Ré4th, and D. Varré, “A benchmark evaluation of incremental pattern matching in graph
transformation,” in Proc. 4th International Conference on Graph Transformations, ICGT 2008, pp. 396410, 2008.

[5] D. Varré and A. Balogh, “The model transformation language of the VIATRA?2 framework,” Sci. Comput. Program.,
68(3):214-234, 2007.

29



MAPPING ToPric MAPS TO COMMON LOGIC

Tamas DEMIAN
Advisor: Andras PATARICZA

I. Introduction

This work is a case study for the mapping of a particular formal language (Topic Map[1] (TM)) to
Common Logic[2] (CL). CL was intended to be a uniform platform ensuring a seamless syntactic
and semantic integration of knowledge represented in different formal languages. CL is based on
first-order logic (FOL) with a precise model-theoretic semantic. The exact target language is Common
Logic Interchange Format (CLIF), the most common dialect of CL. Both CL and TM are ISO standards
and their metamodels are included in the Object Definition Metamodel[3] (ODM). ODM was intended
to serve as foundation of Model Driven Architecture (MDA) offering formal basis for representation,
management, interoperability, and semantics. The paper aims at the evaluation of the use of CL as a
fusion platform on the example of TM.

II. The Topic Maps

TM is a technology for modelling knowledge and connecting this structured knowledge to relevant
information sources. A central operation in TMs is merging, aiming at the elimination of redundant
TM constructs. TopicMapConstruct is the top-level abstract class in the TM metamodel (Fig. 1). The
later detailed ReifiableConstruct, TypeAble and ScopeAble classes are also abstract. The remaining
classes are pairwise disjoint.

- TopicMapConstruct % TopicMapConstruct
-itemID 0..* -itemID 0..*

ReifiabIeConstructH TypeAble H ScopeAble ‘ ‘ReifiableConstructH TypeAble H ScopeAble ‘
N

0.1

Reification ~ TypeT. ScopeT.

TopicMap
=T
AssociationRole

Occurrence
-value -datatype

-value

Variant
-value -datatype

Figure 1: The class hierarchy and the relation and attribute names of the TM metamodel.

TopicMap is a set of topics and associations. Topic is a symbol used within a TM to represent
exactly one subject, in order to allow statements to be made about that subject. The Association
and AssociationRole classes enable TM to express hyperrelations between topics. The number of
contained AssociationRole instances is the arity of the relation.

30



The Occurrence class represents a relationship between a subject and an information resource. Oc-
currences are essentially specialized associations, where one participant in the association can be an
information resource. For example the topic 'Iron’ may have an occurrence with Unicode string at-
tributes: (datatype = IRI, value = http : //en.wikipedia.org/wiki/Iron) or an other occurrence
with (datatype = density, value = 7.88g/cm?).

In many cases the extensibility of TM constructs by additional information is useful, for example by
adding occurrences to an association, or by assigning a name to an occurrence. Reification is the act
of making a topic represent the subject of another TM construct in the same TM. For example, creat-
ing a topic that represents the relationship expressed by an association is reification. Reification may
store meta-data like authors, version number, copyright external documentation or schema. Typeable
constructs must have a type topic. Statements can be declared with occurrences. Topic names, variant
names, occurrences, and associations are statements, whereas assignments of identifying locators to
topics are not considered as statements. All statements have a scope, representing the context within
which a statement is valid. Scope could be for example the source of information or solution of a
homonymic conflict (e.g., ’file’ in the context of fishes or IT).

Subject identifiers and subject locators of topics enable the use of references to internal or external
information resources. The identifiers may represent the subject of the topic in a human readable form
without any specific semantic. On the other hand, the locator is unique and conforms some locator
notation standard like URI or IRI. Subjects which are not information resources should be treated as
subject identifiers.

A topic name consists of the base name, and variants of it, known as variant names. Topic names
may have a scope, which defines in what context the topic name is an appropriate label for the subject.
Suitable base names for people, countries, and organizations are their names, while base names for
documents, musical works, and movies might be their titles. Essentially, a base name is a specialized
kind of occurrence. A variant name is an alternative form of a topic name that may be more suitable in
a certain context than the corresponding base name, so variants must have a more specific scope.

III. The mapping

The ODM contains both the mapping from TM to Web Ontology Language (OWL) and the mapping
from OWL to CL. So the composition of mappings seemed to be a long but steady way to perform the
desired mapping. We followed this way to be as close to the spirit of ODM as possible. However, we
faced many problems during this procedure. The understanding of the transformations using different
formalisms (QVT, translation tables and corresponding axioms) was the most time consuming part of
the job. The cited mappings of ODM][3] are incomplete. It is not surprising, because the syntax and
semantic of OWL and CL are relatively complex.

The OWL-CL mapping of ODM is based on the work of P. Hayes[4] which is still incomplete. Many
OWL and RDF statements lack a clear CL translation. Fortunately, the first mapping does not result in
ambiguous statements or constructs, so the composition of the mappings was relatively simple. Hayes
mentions two logical styles of mappings between formal languages: translation and embedding. Let
us see the next OWL/RDF triple:

behind rdf:type owl:TransitiveProperty

which carries the meaning that *behind’ is a transitive binary relation. This is semantically equivalent
with the next CLIF sentence:

(forall (x y z) (implies
(and (behind x y) (behind y z))
(behind x z)

))

31



However, the next statement is also a correct CLIF sentence with the same meaning but the OWL/RDF
syntax survives somehow:

(rdf_triple behind rdf:type owl:TransitiveProperty)

We will refer to the first solution as translation while the second -which preserves the vocabulary of
the source language- is called embedding. Embedding can be considered as a specific syntactic sugar.
Therefore we need some extra axioms in CLIF that fix the meaning of them:

(forall (x y z) (iff (rdf_triple v x z)(x y z)))
(forall (x y) (iff (rdf:type x y) (y x)))
(forall (p) (iff
(owl:TransitiveProperty p)
(forall (x y z) (implies (and (p x y) (p y 2)) (P x 2z) ))

))

If some semantic aspects of the source language were unclear, we could express it using embeddings
without sugar axioms.

( forall (u) ( implies (subclass u) (superclass u) ))

where the unary relations above are type-instance relations. This notation in [4] [5] is just a natural
convention but not a semantic extension.

(forall (p qg) (iff
(supsub p 9)
(forall (x) ( implies (g x) (p x ) ))

))

Returning to the subject, the composition of TM-OWL and OWL-CL mappings was followed by a
consolidation of the result (Table 1). The introduced CL relations should inherit their semantics from
TM.

Table 1: Mapping between TM and CL constructs

TM construct TM construct parameters CL constructs
Topic Map x:TM CL Module
Association . x:A | parent y:TM x:Sentence of y:Module
Reification x:TM reified by y:T(parent z:TM) || Importation(z) into X, (= X y)
ID-s and locators CL Names
multiple ID-s (=1d1 id2)
sup.t.-subt. relation xT,y:T, ... (supsub x y)
type-inst. relation xT, y:T, ... xy)
Association II. ~ x:A | typeisy:T (y x)
AssociationRole  x:AR | type y:T, parent z:A, player q:T (yzq)
Occurence  x:0 | type y:T, parent z:T, value q:string || (y Z q)
TopicName x:TN | type y:T, parent z:T, value q:string || (y z q)
Variant x:V | parent z:T, value q:string (variant z q)
Scope x:TMC, scope is y:T (scope x y)

We will demonstrate the mapping by the following TM example (Fig. 2) followed by the correspond-
ing CL theory. Example includes different styles of type-instance and subtype-supertype relations

because ODM uses both of them. The TM and CL Module containment is neglected here.

32




Human Thing

:Assoc.Role :Association :Assoc.Role :Topic typ :Topic
type

:Topic

:Topic

:Topic

motherson1 Bob
)M :Assoc.Role WY :Association [J#l :Assoc.Role ISl “Topic
Figure 2: TopicMap example (pr.=parent, pl.=player).

(supsub Human Woman) (MotherSon mothersonl)
(supsub Thing Human) (Mother mothersonl Alice)
(Woman Alice) (Son mothersonl Bob)
(

Human Bob)

The mother-son relation is quite verbose but includes the role names of the arguments too. We can
easily shorten it as follows:

(MotherSon Alice Bob).

IV. Conclusions

Despite the fact CL aims to be a common platform for semantic integration and covers the semantic
of FOL, it does not cover the most common semantic relations used in knowledge representation like
type-instance, subtype-supertype or containment. Type-instance relations have a natural notation as
an unary relation and the supertype-subtype relation can be derived from it using the features of FOL.
However, these relations should be handled explicitly as semantic extensions[2] in a new dialect or
should be standardized. There are no available CL examples for fundamental features, e.g., for im-
porting modules, exclusion sets, texts. The lack of complete and normative translations from the most
important knowledge representation languages is the main obstacle of CL to become a widely accepted
common platform. Correct usage of CL texts, modules and importation remained an open question. It
is crucial in matching ontologies but there are no relevant examples at all, e.g., in [3][4][S]. Neuhaus
[6] shows that the semantics of modules are erroneous and suggests two options how to fix them. So
CL alone is insufficient to express the basic concepts of knowledge representation in a uniform way
and suffers from semantic inconsistencies.

References
[1] ISO, ISO/IEC JTC1/SC34 Topic Map Reference Model, 2008, available at
http://www.isotopicmaps.org/sam/sam-model/.

[2] ISO, ISO/IEC 24707:2007(E) Common Logic (CL): a framework for a family of logic-based languages, 2007,
available at standards.iso.org/ittf/Publicly AvailableStandards/c039175_ISO_IEC_24707_2007(E).zip.

[3] OMG, Ontology Definition Metamodel, 2009, available at www.omg.org/spec/ODM/1.0/.

[4] P. Hayes, Translating Semantic Web languages into Common Logic, 2005, draft, available at
http://www.ihmc.us/users/phayes/cl/sw2scl.html.

[5] P. H. C. Menzel, “A new axiomatic semantics for semantic web languages,” .

[6] F. Neuhaus, “The semantics of modules in common logic,” in Proc. of the Third Interdisciplinary Ontology Meeting,
vol. 3, Tokyo, Feb. 27-28 2010.

33



CONTEXT-BASED REQUIREMENTS REPRESENTATION FOR
SOFTWARE TESTING (SUMMARY OF PHD WORK IN 2011)

Janos OLAH
Adyvisor: Istvan MAJZIK

I. Introduction

The quality and the success of software systems depends on how well it meets its intended needs
of the stakeholders. Requirements engineering (RE) is a process which involves the understanding
the needs of stakeholders; understanding the context in which the system will operate; capturing the
requirements into an adequate format; and validating that the documented requirements match the
negotiated requirements.

Beyond these core activities, many software engineering activities and artefacts are based on the re-
quirements, e.g., software testing. In this paper we introduce a novel requirements description method,
which is able to capture requirements related to the context of software (i.e., requirements, that can be
expressed solely in terms of the context), and can effectively support the generation of functional test
cases.

II. Requirements engineering

By definition, requirement is “a condition or capability needed by a user to solve a problem or achieve
an objective” (ISO/IEC/IEEE 24765:2010; Systems and Software Engineering). While other software
engineering activities result in artefacts directly affecting the software’s behaviour (i.e., they are part
of the solution), requirements engineering rather defines the problem that has to be solved. This means
that functional requirement descriptions are written entirely in terms of the environment of the desired
software.

In RE related research papers, RE research is decomposed into five tasks: elicitation, modelling, re-
quirements analysis, verification and validation, and requirement management [1]. These RE activities
are usually iterative, since they involve many actors (stakeholders, architects, developers, testers, etc.)
with different background and focus.

These activities cannot be executed and understood separately. In this paper we want to emphasize
how an adequate requirements description can help generating sound functional test cases, thus we will
focus on requirements elicitation and modelling.

Requirements elicitation involves activities to understand the goals and motives of building the de-
sired software system. Activities of elicitation comprise discussion with the stakeholders, hence in-
formal and intuitive models are especially popular, like use-cases, scenarios (simple text, cartoons
or video), demos and simulations. These promise easy comprehension and quick feedback by non-
professional stakeholders.

During requirements modelling phase, the high-level models constructed for stakeholders are refac-
tored to more detailed, precise, often formal models, that models can be used by software architects and
developers to plan and create the software system. Scenario-based models are usually constructed dur-
ing this phase of RE. These models contain a “step-by-step description of series of events, that may oc-
cur concurrently or sequentially” (IEEE 1362-1998 (R2007)). Scenario-based models are well-known
examples of relationship between RE and software testing. For example UML sequence diagrams are
popular to model the flow of messages, events and actions between the components of a system (in
addition, they are still relatively easy to understand by non-technical stakeholders). Scenario-based

34



models contains all necessary information (i.e., input data and conditions, and expected output data
and conditions), thus testers can reuse these scenario descriptions to derive test cases.

III. Context modelling

In this paper we propose a novel requirements representation approach, which utilizes the model of
the software’s context. Contextual RE techniques analyse stakeholders’ requirements with respect
to a particular context. The context is the environment in which the desired software will operate.
The importance of context during requirements elicitation has long been recognized by RE research
community, however in many cases the contextual techniques often focus on improving the elicitation
phase (e.g., stakeholder interview design) by understanding the context [2].

In contrast to this approach, we refer to context modelling as the main part of the elicitation phase. In
most cases, there are assumptions about the context, and in many cases this context is finite and entirely
known. During the modelling of the context we create a metamodel that contains every possible object
that may appear in the environment of the software, and every action through which the environment
can affect the software.

We would like to express the functional requirements in terms of this metamodel. This means that
the requirements are model instances conforming to this metamodel. Again, this representation is only
appropriate in case of context-related functional requirements, where the user needs can be described
entirely with objects and actions from the software’s environment.

For example in case of an autonomous robot vacuum cleaner, the environment is a household. The
stakeholders have the apriori knowledge of every possible object that may appear in the environment
of the robot (e.g., furniture, living beings), and the possible actions are known as well (e.g., percep-
tions/actuations of the robot). Another example is a software with web-based interface, with given
GUI objects (buttons, text boxes, combo-boxes, drop-down lists, etc.) and standard actions (e.g., click,
double-click, draw, type, etc.) that can be executed on these objects.

In order to thoroughly express the software’s functionalities with model instances, we need to capture
the expected output as well. This means we need to complement the metamodel or create another
metamodel with actions and objects, which define the output of the software. It is important to note that
in many cases the input and output metamodels may be the same or at least the objects may be similar,
and only the actions are different. For example in the household environment of the autonomous
vacuum cleaner the objects are common for both metamodels, but the actions may be different for the
output metamodel (e.g., start draining, give alert). In the other example, the output actions will contain
elements associated with the server side action (e.g., page loaded, exception thrown).

Using this approach to RE elicitation, we express the software functionalities as ordered pairs of
input and output models.

A. Motivation of context-based requirements representation

According to the context representation described above, during the elicitation phase we create a struc-
tured view of the software’s environment that contains every relevant object, action and relationship
among these, instead of an ad-hoc representation of context elements in different requirements without
capturing their hierarchy and relations. In addition we may assign arbitrary attributes to these model
elements (e.g., timing to actions, position to objects).

Beyond the requirements, using the domain-specific, structured metamodel of the context enables the
representation of the necessary constraints, that for example require the presence of a certain object, or
define cardinality restrictions.

The primary aim of the proposed representation is to facilitate test case derivation. We represent
functional test data as model instances of the context metamodel that contain the requirements input
model instances, and test executions are evaluated by searching for the output model instances. We

35



think that the proposed representation is advantageous in the following cases:

e To support automated test case derivation with instantiation of elements of the metamodel (i.e.,
model instance generation) and fulfilment of the constraints.

e To derive robustness test cases through the violation of constraints.

e To systematically combine requirements (i.e., input models of different requirements) to derive
more complex test cases.

e To detect incompleteness and explore inconsistency among the requirements on the basis of the
metamodel.

e To define precise coverage metrics based on the hierarchy of elements and their relations.

B.  Example

Let us consider the example of a web-based software. On the login screen there are two text boxes
(e.g., login name and password) and one button (e.g., login). Thus the metamodel in this simple case
contains two text boxes and a button, and a two actions, namely type and click. Additionally there
are actions executed by the software, for example “page load”. This simple metamodel describes the
context of the program (i.e., in this case we composed one single metamodel).

A basic requirement to express may be the following: when the user provides the login credentials
and then click on login button, the welcome screen is loaded.

In order to describe this requirement, we instantiate two text boxes and two type actions from the
input metamodel, and associate each text box instance with two type action instance. The instances
can have parameters, for example text that have to be typed, timing relations, etc. Then we create
an instance of the button and an associated click action. This model instance conforming to the in-
put metamodel will be the input model of the requirement, expressing that the user types the login
credentials and then clicks on login button.

We may express the expected outcome by instantiating a page load action (i.e., the output model),
which again can hold the expected page title as parameter. Using our proposed representation, this pair
of input and output model will express the requirement mentioned above.

For the example above, a straightforward action metamodel can be constructed using Selenium com-
mand set. Selenium is a browser automation tool, that is very popular for web application’s test au-
tomation [3]. The command set (usually referred to as “selenese’) contains actions in three category.

Actions provide functionality to manipulate the application, e.g., click on or select an item.
Accessors are used to identify and save the current state of the application.

Assertions can verify that the state of the application matches what expected, e.g., verify that a check
box is checked, etc.

In case of a web-based software, using these as actions in the metamodel and every GUI element from
the interface, we get a metamodel that is appropriate to describe almost every interactions (including
timing information and any desired parameter) between the software and its environment.

IV. Use of context-related requirements for software testing

Software testing is the process of evaluating the quality of the software under test (SUT) by controlled
execution, usually with the primary aim to reveal inadequate behaviour. In functional (i.e., black-box)
software testing we treat software as it would be a function transforming the input data to the output
data. We do not have or do not use the information about the internal structure of the SUT. This means
that the tester has to be familiar with relations between the SUT and the environment. At this point
we may exploit the proposed requirements representation approach, since it expresses how the SUT

36



interact with its environment without dealing with details or internal information. These can be used
to derive test case descriptions for the SUT.

A possible way of test case generation based on the requirement models is model generation, i.e.,
model instance creation conforming to the given metamodel. In simple cases the input model of the
requirements model can be used as an input test data directly, and we can compare the output model to
the actual output data. However, when we need more complicated models to exercise the SUT (e.g., we
have constraints that force the presence of particular elements), we may expand the initial input model
by instantiating further elements from the metamodel, and get a model that contains other objects and
actions.

In the previous example, we may instantiate every clickable GUI element from the metamodel and
add a click event to all of these, and then type the login credentials and click on login button. With
this extension we can verify that the requirement is satisfied even if the user previously clicked every
element on the web interface.

In addition, we may automate the generation of such models. Search-based software engineering
(SBSE) is the use of search-based optimization algorithms (usually metaheuristic search techniques)
to software engineering problems. The key ingredients for the application of search-based optimiza-
tion is the choice of representation of the solutions and the definition of the fitness function. In case
of test generation on the basis of context related requirements, we can represent solutions with model
instances, and we can compose the fitness function from the test goals and coverage metrics (e.g., min-
imum number of elements, instantiation of particular elements), that will guide the model generation.
Thus we can use SBSE to search for model instances that are appropriate according to our selected
conditions. A search-based model generation approach is presented in [4] and [5].

V. Conclusion and future work

In this paper we have briefly introduced a novel approach for high-level description of context-related
functional requirements. We create a metamodel, that describes the context of the software, and con-
tains every possible object that may appear in the context and every possible action that may affect the
software or can be executed by the software. We use the context metamodel and define requirements
as model instances conforming to this metamodel. We think that this new approach to requirement
modelling is advantageous when generating functional test cases.

In the future we plan to implement a framework which is able to generate test cases based on the
context-related requirement models and additional boundary conditions.

Acknowledgement

This work was partially funded by TAMOP-4.2.1/B-09/1/KMR-2010-0002 and ARTEMIS-JU Grant
Agreement 100233 (R3-COP).

References

[1] B. H. C. Cheng and J. M. Atlee, “Research directions in requirements engineering,” in 2007 Future of Software
Engineering, FOSE 07, pp. 285-303, Washington, DC, USA, 2007. IEEE Computer Society,
URL.: http://dx.doi.org/10.1109/FOSE.2007.17.

[2] T. Cohene and S. Easterbrook, “Contextual risk analysis for interview design,” in Proceedings of the 13th IEEE
International Conference on Requirements Engineering, pp. 95-104, 2005.

[3] Selenium Project, Selenium Documentation, 2011, URL: http://seleniumhq.org/docs/.

[4] Z. Szatmadri, J. Oldh, and I. Majzik, “Ontology-based test data generation using metaheuristics,” in Proc. of the 8th
International Conference on Informatics in Control, Automation and Robotics, 2011.

[5] J. Oldh and 1. Majzik, “Search-based functional test data generation using data metamodel,” in Proc. of the 3rd
International Symposium on Searc Based Software Engineering, 2011.

37



FORWARD SATURATION BASED MODEL CHECKING

Andras VOROS
Adyvisor: Tamas BARTHA

I. Introduction

Formal methods are gaining importance as safety critical, distributed and embedded systems are be-
coming widespread. By using formal verification we can find errors or we can prove the correctness
in an early stage of the design. Model checking is an automatic verification method to check discrete,
finite state models. In the last 20 years many model checking algorithms appeared: in this paper we
focus on one of them, the so-called saturation algorithm. Saturation is a symbolic state space genera-
tion and model checking algorithm, which is efficient for globally asynchronous, locally synchronous
(GALS) models. Former work presented structural model checking algorithms using saturation and
constrained saturation, which were based on the classical backward traversal of the state space. In this
paper we introduce saturation model checking based on forward state traversal. We hope this research
direction to further improve the efficiency of model checking algorithms.

II. Preliminaries

Petri nets [1] are graphical models for concurrent and asynchronous systems, providing both structural
and dynamical analysis.

An event in the system is the firing of an enabled transition. The firing of transitions is non-
deterministic. The state space of a Petri net is the set of states reachable through transition firings.

In order to examine a model (for example a Petri net), we have to explore its possible dynamic
behaviour, i.e. the state space. Traditional symbolic state space exploration uses encoding for the
traversed state space, and stores this compact, encoded representation only. Decision diagrams proved
to be an efficient form of symbolic storage, as applied reduction rules provide a compact representation
form. Another important advantage is that symbolic methods enable us to manipulate large set of states
efficiently.

A Multiple-valued Decision Diagram (MDD) is a directed acyclic graph, representing a function f
consisting of K variables: f : {0,1,...}* — {0,1}. An MDD has a node set containing two types
of nodes: non-terminal and two terminal nodes (0 and 1). The nodes are ordered into K + 1 levels. A
non-terminal node is labelled by a variable index 0 < k£ < K, indicating which level the node belongs
to (which variable it represents), and has n; (the domain size of the variable, in binary case n; = 2)
edges pointing to nodes in level k£ — 1 (the i-th edge of node n is written as n[i]). A terminal node is
labelled by the variable index (. Further information can be found in [2].

With the help of MDD based symbolic representation we are able to explore the state space of com-
plex systems. The first step of symbolic state space generation is to encode the possible states. Tradi-
tional approach encodes each state with a certain variable assignment of state variables (v, vs . .. vy,),
and stores it in a decision diagram. To encode the possible state changes, we have to encode the tran-
sition relation, the so called next-state function. This can be done in a 2n level decision diagram with
variables: N = (vy, vy ... 0p, 04,0, ... v),), where the first n variables represent the “from”, and sec-
ond n variables the “fo” states. The next-state function represents the possibly reachable states in one
step.

Usually the state space traversal builds the next-state relation using a breadth first search. The reach-
able set of states .S from a given initial state s is the transitive closure (in other words: the fixed-point)

38



of the next-state relation: S = N *(s,). Saturation based state space exploration differs from traditional
methods as it combines symbolic methods with a special iteration strategy. This strategy is proved to
be very efficient for asynchronous systems modelled with Petri nets.

The saturation algorithm consists of the following steps:

e Decomposition: Petri nets can be decomposed into local submodels. The global state is the
composition of the components’ local states: s, = (s1,S2,...,S,), where n is the number of
components, and s, is the local state of the n-th component. This decomposition is the first step
of the saturation algorithm.

e Event localization: As the effects of the transitions are usually local to the component they
belong to, we can omit these events from other sub-models, which makes the state space traversal
more efficient. For each event e we set the border of its effect by the top (top.) and bottom (bot.)
levels (submodels). Outside of this interval we omit the event e from the exploration.

e Special iteration strategy: Saturation iterates through the MDD nodes and generates the whole
state space representation using a node-to-node transitive closure. In this way saturation avoids
the peak size of the MDD to be much larger than the final size, which is a critical problem in
traditional approaches. Let 5(k, p) represent the set of states represented by the MDD rooted at
node p, at level k. Saturation applies N * locally to the nodes from the bottom of the MDD to the
top. Let & be the set of events affecting the k-th level and below, so top, < k. We call a node
p at level k saturated, iff node B(k,p) = Uyeee N (B(K,p)). The state space generation ends
when the node at the top level becomes saturated, so it represents the state space: S = N *(sg).

e Encoding of the next-state function: Saturation algorithm uses a disjunctive-conjunctive tran-
sition relation decomposition [3], where the global next state relation N is constructed as the
disjunction of the transition relations for all event: A" = J,,, V.. Each transition relation N,
is then constructed as the conjunction of sub-relations. Sub-relations are constructed model de-
pendently, as the chosen higher level model determines how they can be efficiently created. In
the case of ordinary Petri nets conjunctive representation can be based on Kronecker matrices
[2], however for scalability and flexibility reasons we employ symbolic representation of the
Next-state functions.

e Building the MDD representation of the state space: At first we build the MDD representing the
initial state. Then we start to saturate the nodes in the first level by trying to fire all e events
where top. = 1. After finishing the first level, we saturate all nodes at the second level by firing
all events, where top, = 2. If new nodes are created at the first level by the firing, they are also
saturated recursively. The procedure is continued at every level & for events, where top, = k.
When new nodes are created in a level below the current one, they are also recursively saturated.
If the root node at the top level is saturated, the algorithm terminates. Now the MDD represents
the whole state space with the next-state relation encoded in Kronecker matrices or symbolically
in MDD-s.

e State space representation as an MDD: A level of the MDD generated during saturation rep-
resents the local state space of a submodel. The possible states of the submodel constitute the
domain of the variables in the MDD. Each local state space is encoded in a variable.

Model checking [4] is an automatic technique for verifying finite state systems. Given a model
defined for example as a Petri net in our context, model checking decides whether the model fulfils the
specification. Formally: let M be a Kripke structure (i.e. state—transition graph). Let f be a formula of
temporal logic (i.e. the specification). The goal of model checking is to find all states s of M such that
M, s E f (“F” means “satisfies”).

State space generation serves as a prerequisite for the structural model checking: verifying temporal
properties needs the state space and transition relation representation. CTL (Computation Tree Logic)
is widely used to express temporal specifications of systems, as it has expressive syntax and there are

39



efficient algorithms for its analysis. Operators occur in pairs in CTL: the path quantifier, either A
(on all paths) or E (there exists a path), is followed by the tense operator, one of X (next), F (future,
or finally), G (globally), and U (until). However we only need to implement 3 of the 8 possible
pairings due to the duality [4]: EX, EU, EG, and we can express the remaining with the help of
them in the following way: EFp = E[true Up|, AXp = =EX-p, AGp = —-EF—p, AFp = -EG—p,
Alp U g] = —E[~q U (=p A —q)] A ~EG—g.

The CTL model checking algorithm efficiently utilizes the data structures created previously, during
the state space exploration. As CTL operators express next-state relations and fixed point properties,
we have to efficiently express the inverse of the next-state function A/ ~1. The semantics of the 3 CTL
operators:

e EX: " F EXpiff 3i' € N (i") s.t. i' E p. This means that EX corresponds to the inverse N
function, applying one step backward through the next-state relation, formally: EX p = A/ ~1(p)

e EG:° E EGpiff Vn > 0,3i" € N(i" ') s.t. i" E p so that there is a strongly connected compo-
nent containing states satisfying p. This computation needs a greatest fixed-point computation:
EGp=gfp Z[p N EX Z]

e EU:i° FE[p U ¢|iff In > 0,3t € N(i°),...,Fi" € N(i" ) s.t. i" E gand i™ F pforallm <
n. Informally: we search for a state g reached through only states satisfying p. The computation
of this property needs a least fixed-point computation: E[p U ¢] =lfp Z[¢ V (p N EX Z)]

As it is easy to see, these operations and fixed-point calculations are based on the pre-image (inverse
Next-state) computation operator: N 1. The question comes naturally: can we replace backward
traversal based operators? The idea of forward state traversal symbolic model checking appeared to
replace backward state traversal.

In order to be able to do forward model checking, we have to convert the semantics of the backward
model checking [5]. If we examine a model with initial state sy, where exactly predicate p, is true,
so that sy F f can be rewritten: so F f <= py A [ # false <= py N\ =f = false. The semantic
of forward and backward traversal model checking differs, like the expressible possible properties
[6]. Forward model checking is built on path expressions, which is contrary to the approach used by
backward structural model checking. The forward model checking approach builds a so-called path
set expression (PSE) and checks its validity in the model [7]. The basic elements of PSE-s are the
following (p and g are propositional formulas):

e [p] matches every one-step sequence, which satisfies p

e [p]*[¢q] matches every finite sequence, which ends in a state satisfying ¢, and all states before
satisfies p. This is the forward traversal counterpart of the E[pUg] CTL operator.

e [p|* matches every infinite sequence such that each state satisfies p. This is the forward traversal
counterpart of the EG p CTL operator.

e o3 matches to every sequence, such that the first finite part matches formula «, and after it the
(tail) sequence matches /3

e « : ( matches to every sequence, such that the first finite part matches formula «, then there is a
state, where both « and /3 is true, then the last (tail) sequence matches

The main forward traversal evaluation procedures and their semantics are the following:

e fw([p][f]): it computes the PSE [p][f], the procedure computes N'(p) A f # false,

e fwU(p, q): it computes the PSE [p] : [¢]*, the procedure computes the forward least-fixed point
Ifp Z[p v N(Z A q)]

o fwG(init,p): it computes the PSE [init] : [p|“, the procedure computes the forward greatest
fixed-pont gfp Z[p AN (Z)]; to be able to compute this greatest fixed-point, we have to compute
the reachable states from init state satisfying p: Ifp Z[init V N'(Z A p)], which can be done with
the formerly defined procedure: fwU(init, p)

40



ITII. Saturation based forward model checking

Our aim is to apply saturation in forward model checking, so we need saturation based fw, fwU and
fwG procedures. At the end of this section we show how CTL expressions are computable with these
forward traversal procedures.

For this reason, we employ the so-called constrained saturation algorithm [8], with small modifica-
tions. The traditional constrained saturation algorithm uses M_l to explore the states, so it uses back-
ward state traversal. By changing the direction, and using ; in the algorithm ConsSaturate(p, q) [8],
it will compute exactly the same states as procedure fwU(p, ¢). The main advantage of this approach
is that we can avoid the intersection operations which are applied in the traditional approaches at every
breadth-first step. So we have an algorithm to compute fwU(p, ¢). We have to be able to compute
fw([p][f]) and fwG(p) too to be able to handle more CTL operators. fw([p][f]) needs a Next-state
computation, which does not use saturation, it can be done with former approaches. The algorithm
computing fwG(init, p) starts with computing ConsSaturate(init, q), and then by standard breadth
first search it computes the greatest fixed-point gfp Z[p A N (Z)].

In the following the basic CTL expressions and their forward traversal based counterparts are:
e Forward EX evaluation: It can be changed to fw([p][f]). So we can replace the outermost EX

evaluation with Next-state computation, fw([p][f]) : p A EX[ # false <= N (p) A [ # false
e Forward EU evaluation: It can be changed to fwU(p, ¢), so we can replace the outermost EU
evaluation as follows: p A E[qg U f] # false <= fWU(p, q) A f # false
e Forward EG evaluation: Using the fwG operator, we can replace the outermost EG evaluation
as follows: p A EG ¢ # false <= fWG(p, q) # false
This way many of the CTL expressions are convertible to model check in a forward manner. How-
ever, there are still some examples, which are not, according to the literature [6]. The theoretical
question is still open: which formulas are expressible with this logic [6].

IV. Conclusion

In this paper I have presented how forward traversal based CTL model checking can be done with the
help of the saturation algorithm. The main motivation of this work is to further improve the efficiency
of saturation by avoiding the full state space exploration which was necessary with former saturation
based model checking algorithms.

In the future we plan to implement these algorithms and we would like to further improve EG
computation, which seems to be the bottleneck of our approach.

References

[1] T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings of the IEEE, 77(4):541-580, April 1989.

[2] G. Ciardo and A. S. Miner, “Storage alternatives for large structured state spaces,” in Proceedings of the 9th ICCPE:
Modelling Techniques and Tools, pp. 44-57, London, UK, 1997. Springer-Verlag.

[3] G. Ciardo and A. Yu, “Saturation-based symbolic reachability analysis using conjunctive and disjunctive partitioning,”
Correct Hardware Design and Verification Methods, 3725:146-161, 2005.

[4] E. Clarke, O. Grumberg, and D. A. Peled, Model Checking, The MIT Press, 1999.

[5] H. Iwashita, T. Nakata, and F. Hirose, “CTL model checking based on forward state traversal,” in 1996 IEEE/ACM
International Conference on Computer-Aided Design, pp. 82—-87. IEEE, 1996.

[6] T. Henzinger, O. Kupferman, and S. Qadeer, “From pre-historic to post-modern symbolic model checking,” in Com-
puter Aided Verification, pp. 195-206. Springer, 1998.

[7] H. Iwashita and T. Nakata, “Forward model checking techniques oriented to buggy designs,” Proceedings of IEEE
International Conference on Computer Aided Design (ICCAD) ICCAD-97, pp. 400-404, 1997.

[8] Y. Zhao and G. Ciardo, “Symbolic CTL model checking of asynchronous systems using constrained saturation,” in
Proceedings of the 7th International Symposium on Automated Technology for Verification and Analysis, ATVA 09,
pp- 368-381, Berlin, Heidelberg, 2009. Springer-Verlag.

41



FOUR PARAMETER SINE WAVE ESTIMATION IN FREQUENCY
DOMAIN

Vilmos PALFI
Adpvisor: Istvan KOLLAR

I. Introduction

Accurate characterization of analog-to-digital converters (ADC) is an important field of measurement
technology. A widely used method for characterizing ADC’s is the so called histogram test [1]. In
this method first the ADC is excited with a sine wave input, then the integral nonlinearity (INL) and
differential nonlinearity (DNL) can be identified from the number of samples in the code bins. Obvi-
ously, the parameters of the applied sine wave and the sampling frequency are important. The IEEE
standard for ADC testing [2] defines that sampling should be coherent and the number of periods has
to be relative prime to the number of samples, in order to achieve the most accurate results. However,
the satisfaction of these conditions can only be checked from the measured signal, since both the fre-
quency of the signal generator and of sampling have limited precision. With the increase of the number
of samples to obtain more precise measurement of the characteristics of the device under test, even a
small deviation from coherence in the sampling causes significant errors in the characterization with
false INL and DNL values, and also an increase in the time required to execute the least-squares four
parameter sine wave fit algorithm. In this paper an increased-speed algorithm is presented with the
capability to decide if the test signal is suitable to test the ADC or not. In some cases the coherence

condition can be assured with further preprocessing steps, this will also be studied.
1

II. Background

A. Histogram Test
In the histogram test the ADC is excited with a sine wave input. The form of the input is

z[k] = Ay sin(wk + ¢) + C =
A cos(wk) + Bsin(wk) 4+ C, (1)
k=1,2,...N.

Where A; = A? + B? is the amplitude, w is the angular frequency, C' is the DC offset, and p =
arctan(B, A) is the initial phase, and N is the number of samples. Let H[i] be the total number of
samples received in the code bin ¢, and

H.[k] = Z Hi). )

If we know the parameters Ay, and C' (A, B, and ('), then the nth transition level can be estimated as
T[n] = C — Ay cos(rH.[n —1]/N). (3)
The kth code bin width is given by
Wkl =T[k + 1] — Tk], 4)
and the INL and DNL values can be estimated.

IThis work is based on Verification of parameter settings in ADC test with sine fitting”, IMTC 2012 abstract

42



Error in estimated INL when the sine wave is not sampled coherently
2 T T T T T T T T T T

INL Error [LSB]

200 400 600 800 1000 1200 1400 1600 1800 2000
Transition levels

Figure 1: Errors in the INL estimation when not coherently sampled sine wave is applied

B. Standards for choosing signal and sampling frequencies, record length and periods per record

The sine wave input is optimal if the sampling is coherent, so an integer number of periods are sampled,
and all the samples represent different phases. If the sampling frequency is fs, the number of samples
is IV, then the signal frequency is optimal if

J
fx: Nfsa (5)

where J is an integer relative prime to N, and f, is the signal frequency. Fig. 1 shows why it is
important to precisely meet the coherency condition. An ideal ADC was tested with one period of
a sine wave, the record length was N = 22° = 1048576. To have one period, the optimal signal
frequency would be f,,; = fs/N, where f, is the sampling frequency. The applied signal frequency
was f, = 1.001f,,. As Fig. 1 shows, this difference causes significant errors in estimating the
transition levels and then in calculating the INL. The second condition ensures that every input sample
represents a different phase, with uniform phase distribution. For example, if both the number of
samples and number of periods can be divided by 2, then the first and the second half of the sequence
are exactly the same (apart from the noise), so the number of useful samples is half the number of total
samples.

III. FOUR-PARAMETER SINE WAVE ESTIMATION IN THE FREQUENCY DOMAIN

A. Implementation properties

The goal was to create an algorithm which can identify the parameters of the sine wave much faster
than the ordinary least squares method. The sine wave’s four parameter form is

x(k) = Acos(2rkf) + Bsin(2rkf) + C. (6)

This form is very advantageous because it is linear in 3 parameters. Due to the nonlinearity in fre-
quency, an iterative numerical method is needed to find the minimum of the least squares cost function
as a solution in closed form is not available for nonlinear LS. The output of the ADC is windowed with
samples of the four-term Blackman-Harris window, which has side lobes under -91 dB. Then FFT is

43



Table 1: "RESULTS FOR "REAL-LIKE” QUANTIZER”

) NoB Added noise
Estimator
Added noise 0 [—q. 4]
_ o -3.09-1078 | 7.22-1078
time :
o 6.70-107 | 2.20-1076
I —8.28-107% | 3.41-107°
freq
o 7.58-1077 |2.37-1076

performed, and the cost function is calculated in the frequency domain. After calculating the initial
values of the parameters, Gauss-Newton algorithm is used to find the minimum. Since the Blackman-
Harris window has small side lobes, the information in the frequency domain is compressed into a few
points. In the fitting algorithm we use 30 points to determine the parameters, independently from the
length of the time domain signal. The original, time domain algorithm uses every time domain sample
in the fit, so for large records the computational burden is high. In this frequency domain fit only the
evaluation speed of the FFT depends on N, so it is much faster thus it allows the use of large records.

B. Properties of the estimator

In this section the statistical properties of the estimator will be discussed. We assume that the noise in
the frequency domain is approximately normally distributed. This assumption is based on the Central
Limit theorem. The noise at the FFT output will be Gaussian independently from its original distri-
bution. The larger the number of samples, the previous approximation is truer. This means that the
weighted least squares estimation used is a maximum likelihood estimation, so it has a number of
advantageous properties:

e the estimator is asymptotically normally distributed,

e the estimator is asymptotically unbiased,

e the covariance matrix of the estimator asymptotically reaches the Cramer-Rao lower bound.

Due to the first property the estimators can be fully characterized with their mean value (1) and standard
deviation (o). In the next section the estimator is compared to the result of the ordinary least squares
method, described in the standard [2].

C. Comparing the algorithm to the original estimation

In the following tests the standard deviations and the mean values of the estimators were compared
between time domain and frequency domain to illustrate the quality of the frequency domain fit of the
Blackman-Harris weighted data. In these tests the amplitude, phase, offset and frequency were chosen
as random variables uniformly distributed in [0.5, 1], [0, 2], [-0.5, 0.5], [4fs/N, 10 fs/N], respectively,
and the record length was N = 22°. To simulate life-like circumstances, a quantizer based on real
nonlinear characteristics was created. The number of fraction bits was 10, the full scale range (FS) was
1 V, and the quantizer was bipolar so it worked between -1 V and 1 V, thus it had a sign bit. Fig. 2
shows the INL and DNL characteristics of the quantizer. First we tested with pure sine wave, then the
input was disturbed with uniformly distributed noise in [—g, ¢|. The results are shown in Table 1.

IV. Using the estimator to preprocess data

Two important conditions should be met to obtain the best results. These are coherent sampling and
the appropriate relation between the number of samples and the number of periods of the sine wave

44



Integral nonlinearity

0.1 T
\‘ “\ ) ‘ ! “\“‘1

E‘ | I | T ‘
(7] |
= ol NN mr T ek
— f \‘ ‘ ‘ | ‘ | Al
z

01 200 400 600 800 1000 1200 1400 1600 1800 2000

Transition levels
0.05 Differential nonlinearity

DNL [LSB]
=)

~0.05 200 40 600 800 1000 1200 1400 1600 1800 2000
Transition levels

Figure 2: INL and DNL characteristics of the quantizer

applied. Both of the conditions can be met if the input signal’s frequency is chosen correctly. So
the frequency domain estimator is a feasible tool to check if the input sine wave is appropriate to test
the converter. The distribution of the phases depends on the deviation of the wave frequency from
coherence. In details, if

fo J

f—=N+A 7)

then none of the sampling points deviate from the ideal phase from more than f—}{, (where %r is the ideal
distance between two adjacent sampling points) if

1
Al < 3TN (8)
is true [3]. So we can check if the input sine wave meets the previous conditions or not, and warn the
user. Furthermore, in the case when the sampling is almost coherent, but we have a few additional
samples from the beginning of the next period, we can calculate how many samples should be thrown
away to reach the best results. If a few samples are missing from the end of the whole last period, we
can either throw away the whole period or suggest new sampling.

V. Conclusion

The main advantage of the estimator that it can determine in no time (compared to the original least
squares) if the measured signal is applicable to characterize an ADC properly, and in some special
cases it can modify the input to ensure better results.

References

[1] J. Blair, “Histogram measurement of ADC nonlinearities using sine waves,” IEEE Transactions on Instrumentation
and Measurement, 43(3):373-383, Jun 1994.

[2] “IEEE standard for terminology and test methods for analog-to-digital converters,” IEEE Std 1241-2010 (Revision of
IEEE Std 1241-2000), pp. 1 —139, 14 2011.

[3] P. Carbone and G. Chiorboli, “Adc sinewave histogram testing with quasi-coherent sampling,” in Instrumentation and
Measurement Technology Conference, 2000. IMTC 2000. Proceedings of the 17th IEEE, vol. 1, pp. 108 —113 vol.1,
2000.

45



FINITE-DIFFERENCE SIMULATION OF ACOUSTIC WAVE
PROPAGATION IN ENCLOSURES

Roébert GALAMBOS
Adyvisors: Laszlo SUJBERT, Balazs BANK

I. Introduction

There are various cases where the acoustic behavior of an enclosure must be calculated. Such a problem
is the placement of loudspeakers in a given space to achieve the best sound experience. The ray tracing
is a well known numerical technique but mostly suitable for high frequency analysis where geometric
approximations can be applied [1]. For very low frequencies and small enclosures, modal approach
based on modal profiles calculated in the frequency domain, by finite-element method is appropriate
in many cases [2]. In the middle-frequency range, where the wave behavior is still dominant, and
large number of modes are important, the simulation of the acoustic space is hard to treat. With the
increasing calculation capacity of the computers the time-domain approaches seem to be appropriate
for solving the problem.

This paper demonstrates the simulation of small spaces with different geometries and wall behaviors,
by the finite-difference time-domain (FDTD) method [2, 3, 4]. It can be utilized for speaker config-
uration relevant compensation filter design, and for simulation of various multirate signal processing
applications.

II. The FDTD Simulation Method

The finite-difference time-domain method utilizes two coupled first-order differential equations. Itis a
finite-difference approximation of the time and space derivatives of the wave equation [3, 6].

The first equation of the two coupled differential equations is the linear force equation, that is valid
for acoustic process with small amplitude where the pressure p and the particle velocity u are related
in the following way:

Ju
1
Vp = o (D

where py is the density of the transmission medium in kg/m?3.
The second equation of the two coupled differential equations is the linear continuity equation:

Vous———— 2)

where c is the wave propagation speed in the medium in m/s.

The most common discretisation is carried out on a rectangular grid where pressure and particle
velocity are the unknown quantities. The grid is basically a double grid where the pressure points
are equidistantly sampled in all the three directions, and between each two pressure points there is a
velocity point in the middle. The boundaries are velocity points. This is displayed in Figure 1.

This means that pressure points are sampled at every (z;y; z) where z = dx-h;y = dy-h;z = 0z-h
and the time is sampled at ¢t = 6t -k where h € Z and k € Z. (1) and (2) can be sampled in time and
space using the sample rate 1/k Hz and 1/h m™!.

From (1) the velocity can be determined at the following positions (upper index shows only the
relevant direction):

46



LLES o o

X0 X0X0X0X0X
X X X X
X0X0X0X0XO0X
X X X X
0—%—© X—O—X—O-
X X X X
X0 X0X0X0X0X
X X X X
X0X0X0X0XO0X

£a3 X F" £a3 X

Figure 1: One slice of the grid system. X - marks the velocity and O - marks the pressure points

:l:5m ot 0y ot 0z ot
T i y oY y
u <.Z’ 27%2775 2)7 u (xay:l: 2727t 2)7 u <$>?/;Z 27t+2> (3)

This is computed at the time ¢ + %, and the velocity can be determined as follows:
o (24 ox ‘4 ot . ox . ot k p (o0 = p( )
u' x4+ —,y, 2 — | =u" v+ —,y,2,t—— x4+ o0x,y, 2 x,Y, 2
2 Y y? Y 2 2 ) y’ ) 2 hpo y? p Y y? Y

oy ot oy ot k
y %Y oY _ v oy _ o
u (x,y—i— 2,z,t—l— 2) U (x,y—i— 2,z,t 2) hpo[ p(z,y+ 0y, 2,t) — Dyy.. (1))

- +6Z t+5t = u’ +5Z L [p( +0z,t) — (t)]
U x7y72 27 2 =Uu %?%Z 27 2 hp() x yaz z pm,y,z
4)

From (2) the acoustic pressure can be calculated as follows:

c,ook oz ot - ox ot
p(x,y,z,t—i—ét):p(m,y,z,t) h T+ 27y727t+5 —u $_77y727t+5

_ ek Y (YO
3 { (y+2 z,t+2) u’ | x,y 2,z,t+2

cpok’ 0z ot ; 0z ot
A ch,z—i—? t+2 —u | z,y,2 — 2 t—|—2
@)

There are several boundary conditions applicable for affecting the wave propagation in the simulation
model.

A. Ideal wall simulation

Acoustic behavior of enclosures can be modeled by assuming ideally reflecting (lossless) walls. The
initial value of the velocity grid is zero and it remains zero during the simulation. Therefore these grid
points are overwritten with zero after the calculation of the velocity points.

B. Real wall simulation

Real walls are not lossless, and the simulations’ accuracy can be improved by taking into account that
the wall itself has an impedance that determines the absorption and the reflection of the wall.
Starting from (2) we take only one direction, the other directions can be derived from this:

- oz ot - ox ot k.

47



where the wall is located at the (J: + %", v, z) coordinates. This means that we do not have any pressure
information in the wall, therefore we can not use the p (x,y, 2,t). To calculate the derivative we can
use an asymmetric finite-difference approximation:

ox
p(x+6x7yaz>t) _p(xayazat) ~ 2 {p(m+5w,y,z,t} —-Pp (l’—F gayazat)‘| (7)
but we have no pressure grid point at the (m + %‘, v, z) coordinates. It can be calculated in the following
way [2]:
o )

where Z is the impedance of the wall. Another approximation must be applied to get the
u” (x4 %, y, 2,t) because we only have the u® (z + %, y,z,t + &) and the u” (z + %, y, 2,t — &),
There we use interpolation in the time domain as follows:

x oz FY z S 5
P PR Wil Gl 212Ul 9 ekl Claak 21 2Ll ) 9)
2 2
Applying these approximations on (6) we get the following formula [2, 4]:
(08 L O k=2 L b O
U v 9 < ol B —— x — .t — —
27y7 ) ) poh/k’—i-Z 27y7 ) 9
(10)
— ————p (@ +or,y, 2,1
poh/k + 7P Y z:t)

To simplify the simulation model only the real part of the wall impedance is used. The impedance can
be calculated from the absorption coefficient of the wall as follows [2]:

14++v1—«
l1-v1l—-«a

where « is the absorption coefficient. The advantage of the above mentioned approximation is that only
the nearest pressure points and the wall impedance is required to calculate the new velocities from the
old values.

C. Stability

Because time and space equations are not independent from each other, choosing wrong sampling
frequency can make the simulation unstable. To ensure the stability of the simulation (5) and (4) must
satisfy the following [2, 3, 4, 7]:

Z = poc (11)

o5t < ! (12)

1 1 1
522 T 52 T 52

As (12) estimates the maximum time step allowed from system stability point of view, it can be used
to maximize the computational efficiency.

III. Implementation

The simulation was implemented in MATLAB. The system has been modeled using 4 rectangular
grids. One for the pressure that has m X n X p size, and one for each velocity direction with size
increased by one in the given direction (eg. for x direction (m + 1) X n x p). As the pressure has been

48



calculated at a certain time instant, the velocity can be calculated separately for all directions. It can
be done because of the orthogonality. This results in a simple grid addressing, and matrix handling in
the implementation.

The room can be defined with a 3D matrix, where each cell represents a pressure point. If a cell
has a value of 0 the pressure point is handled as space, and if the cell has another value, the value will
be considered to be the Z impedance of the wall, and reflection is calculated according to the wall
impedance. This gives us the possibility to define a room with different wall behaviors. Figure 2 shows
a small rectangular room slice from the top with a pillar in it. The sound source was placed near the
upper right corner. The waves reflected from the walls and the pillar can clearly be seen in the figure.
Behind the pillar the wavefront closes due to diffraction of the wave.

Room Simulation Data Plot [iteration: 7500.]

10 20 30 40 50 60 70 80 90 100 :

Figure 2: Pressure propagation in the simulation space (the pillar is displayed as a black